Sample records for horizontal heating system

  1. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer

    USGS Publications Warehouse

    Lu, Ning; Ge, Shemin

    1996-01-01

    By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.

  2. Benard and Marangoni convection in multiple liquid layers

    NASA Technical Reports Server (NTRS)

    Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.

    1992-01-01

    Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.

  3. Modelling and experimental performance analysis of solar-assisted ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur

    2017-01-01

    In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.

  4. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  5. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  6. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  7. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Schedules and technical progress in the development of eight prototype solar heating and combined solar heating and cooling systems are reported. Particular emphasis is given to the analysis and preliminary design for the cooling subsystem, and the setup and testing of a horizontal thermal energy storage tank configuration and collector shroud evaluation.

  8. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  9. Geothermal Energy Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Gary

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  10. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    NASA Astrophysics Data System (ADS)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  11. Modeling of High Capacity Passive Cooling System

    DTIC Science & Technology

    2009-03-01

    Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat

  12. Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution

    NASA Astrophysics Data System (ADS)

    Olbricht, M.; Addy, J.; Luke, A.

    2016-09-01

    Horizontal tube bundles are often used as falling film evaporators in absorption chillers, especially for systems working at low pressure as H2O/LiBr. Experimental investigations are carried out in a falling film evaporator consisting of a horizontal tube bundle with eighty horizontal tubes installed in an absorption chiller because of a lack of consistent data for heat and mass transfer in the literature. The heat and mass transfer mechanisms and the flow pattern in the falling film are analysed and compared with correlations from literature. The deviations of the experimental data from those of the correlations are within a tolerance of 30%. These deviations may be explained by a change of the flow pattern at a lower Reynolds number than compared to the literature.

  13. Heat Transfer from a Horizontal Cylinder Rotating in Oil

    NASA Technical Reports Server (NTRS)

    Seban, R. A.; Johnson, H. A.

    1959-01-01

    Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.

  14. Similarity Solutions on Mixed Convection Heat Transfer from a Horizontal Surface Saturated in a Porous Medium with Internal Heat Generation

    NASA Astrophysics Data System (ADS)

    Ferdows, M.; Liu, D.

    2017-02-01

    The aim of this work is to study the mixed convection boundary layer flow from a horizontal surface embedded in a porous medium with exponential decaying internal heat generation (IHG). Boundary layer equations are reduced to two ordinary differential equations for the dimensionless stream function and temperature with two parameters: ɛ, the mixed convection parameter, and λ, the exponent of x. This problem is numerically solved with a system of parameters using built-in codes in Maple. The influences of these parameters on velocity and temperature profiles, and the Nusselt number, are thoroughly compared and discussed.

  15. Estimating the CO2 mitigation potential of horizontal Ground Source Heat Pumps in the UK

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, R.; Verhoef, A.; Vidale, P. L.; Gan, G.; Chong, A.; Clark, D.

    2012-04-01

    By 2020, the UK will need to generate 15% of its energy from renewables to meet our contribution to the EU renewable energy target. Heating and cooling systems of buildings account for 30%-50% of the global energy consumption; thus, alternative low-carbon technologies such as horizontal Ground Couple Heat Pumps (GCHPs) can contribute to the reduction of anthropogenic CO2 emissions. Horizontal GCHPs currently represent a small fraction of the total energy generation in the UK. However, the fact that semi-detached and detached dwellings represent approximately 40% of the total housing stocks in the UK could make the widespread implementation of this technology particularly attractive in the UK and so could significantly increase its renewable energy generation potential. Using a simulation model, we analysed the dynamic interactions between the environment, the horizontal GCHP heat exchanger and typical UK dwellings, as well as their combined effect on heat pump performance and CO2 mitigation potential. For this purpose, a land surface model (JULES, Joint UK Land Environment Simulator), which calculates coupled soil heat and water fluxes, was combined with a heat extraction model. The analyses took into account the spatio-temporal variability of soil properties (thermal and hydraulic) and meteorological variables, as well as different horizontal GCHP configurations and a variety of building loads and heat demands. Sensitivity tests were performed for four sites in the UK with different climate and soil properties. Our results show that an installation depth of 1.0m would give us higher heat extractions rates, however it would be preferable to install the pipes slightly deeper to avoid the seasonal influence of variable meteorological conditions. A value of 1.5m for the spacing between coils (S) for a slinky configuration type is recommended to avoid thermal disturbances between neighbouring coils. We also found that for larger values of the spacing between the coils (S > 2), a slinky coil diameter (D) of 0.8m might be a better choice in terms of heat extraction rate. The fluid temperature of the pipe had a direct effect on the heat extraction rates of the system. The coefficient of performance of a heat pump did not remain constant and depended on the operating conditions and outdoor temperatures. The outcomes of this study will allow us to give recommendations to installers and relevant government bodies concerning the optimal configuration of future installations of horizontal GCHPs at UK developments. Finally, long-term simulations with the coupled JULES-GCHP model, using high resolution (1 km) meteorological (historical and projected data), soil physical and land cover data over the entire UK-domain, will allow us to explore the effect that global warming will have on future surface and soil temperatures, as well as soil moisture contents, and therefore its impact on the energy demand of the buildings and the CO2 mitigation potential of this type of renewable energy.

  16. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  17. The Radiator-Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Marsh, B. D.; Geiser, P.

    2015-12-01

    Standard Enhanced Geothermal Systems (EGS) have repeatedly been hobbled by the inability of rock to conductively transfer heat at rates sufficient to re-supply heat extracted convectively via artificially made fracture systems. At the root of this imbalance is the basic magnitude of thermal diffusivity for most rocks, which severely hampers heat flow once the cooled halos about fractures reach ~0.1 m or greater. This inefficiency is exacerbated by the standard EGS design of mainly horizontally constructed fracture systems with inflow and outflow access at the margins of the fracture network. We introduced an alternative system whereby the heat exchanger mimics a conventional radiator in an internal combustion engine, which we call a Radiator-EGS (i.e., RAD-EGS). The heat exchanger is built vertically with cool water entering the base and hot water extracted at the top. The RAD-EGS itself consists of a family of vertical vanes produced through sequential horizontal drilling and permeability stimulation through propellant fracking. The manufactured fracture zones share the orientation of the natural transmissive fracture system. As below about 700 m, S1 is vertical and the average strike of transmissive fractures parallels SHmax, creating vertical fractures that include S1 and SHmax requires drilling stacked laterals parallel to SHmax. The RAD-EGS is also based on the observation that the longevity of natural hydrothermal systems depends on thermal recharge through heat convection but not heat conduction. In this paper, we present numerical simulations that examine the effects of the depths of the injector and extraction wells, vane size, coolant flow rate, the natural crustal geothermal gradient, and natural regional background flow on geothermal energy extraction.

  18. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  19. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  20. APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadday, M.A.

    1999-09-20

    The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less

  1. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.

    2017-06-01

    In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.

  2. A simple model of the effect of ocean ventilation on ocean heat uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Urban, Nathan Mark

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Seriesmore » of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.« less

  3. Heat Transfer of HC290-OIL Mixtures in a Horizontal Condensing Micro-Fin Tube

    NASA Astrophysics Data System (ADS)

    Tong, M. W.; Dong, M. L.; Li, Y.

    Heat transfer coefficients was experimentally determined for a horizontal micro-fin tube (2m in length, 11.44mm ID) with HC290-oil mixtures. The oil is Suniso 3GS, which is a widely used oil in refrigerant systems. The micro-fin tube is a internally enhanced tube, which has 60 fins with a height of 0.25mm and 20° spiral angle. The condensation temperatures varied from 40° to 45° and the refrigerant mass flux was varied from 40kg/(m2s) to 220kg/(m2s). The results showed that the mean condensation heat transfer coefficients on the test section (inlet vapor quality 1, outlet vapor quality 0.1~0.25) decreased as the oil concentrations were increased and the condensation temperature had negligible effect on the heat transfer coefficients.

  4. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... will allow Oconee to effectively manage its spent fuel inventory to meet decay heat zoning requirements... thermal stresses, including potential elongation from decay heat and irradiation. In addition, the NRC...] system provides for the horizontal dry storage of canisterized spent fuel assemblies in a concrete...

  5. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  6. Onset of thermally induced gas convection in mine wastes

    USGS Publications Warehouse

    Lu, N.; Zhang, Y.

    1997-01-01

    A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.

  7. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  8. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  9. Numerical investigation on natural convection in horizontal channel partially filled with aluminium foam and heated from above

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Diana, A.; Manca, O.; Nardini, S.

    2017-11-01

    Natural convection gets a great attention for its importance in many thermal engineering applications, such as cooling of electronic components and devices, chemical vapor deposition systems and solar energy systems. In this work, a numerical investigation on steady state natural convection in a horizontal channel partially filled with a porous medium and heated at uniform heat flux from above is carried out. A three-dimensional model is realized and solved by means of the ANSYS-FLUENT code. The computational domain is made up of the principal channel and two lateral extended reservoirs at the open vertical sections. Furthermore, a porous plate is considered near the upper heated plate and the aluminium foam has different values of PPI. The numerical simulations are performed with working fluid air. Different values of assigned wall heat flux at top surface are considered and the configuration of the channel partially filled with metal foam is compared to the configuration without foam. Results are presented in terms of velocity and temperature fields, and both temperature and velocity profiles at different significant sections are shown. Results show that the use of metal foams, with low values of PPI, promotes the cooling of the heated wall and it causes a reduction of Nusselt Number values with high values of PPI.

  10. Horizontal heat fluxes over complex terrain computed using a simple mixed-layer model and a numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Fujio; Kuwagata, Tuneo

    1995-02-01

    The thermally induced local circulation over a periodic valley is simulated by a two-dimensional numerical model that does-not include condensational processes. During the daytime of a clear, calm day, heat is transported from the mountainous region to the valley area by anabatic wind and its return flow. The specific humidity is, however, transported in an inverse manner. The horizontal exchange rate of sensible heat has a horizontal scale similarity, as long as the horizontal scale is less than a critical width of about 100 km. The sensible heat accumulated in an atmospheric column over an arbitrary point can be estimatedmore » by a simple model termed the uniform mixed-layer model (UML). The model assumes that the potential temperature is both vertically and horizontally uniform in the mixed layer, even over the complex terrain. The UML model is valid only when the horizontal scale of the topography is less than the critical width and the maximum difference in the elevation of the topography is less than about 1500 m. Latent heat is accumulated over the mountainous region while the atmosphere becomes dry over the valley area. When the horizontal scale is close to the critical width, the largest amount of humidity is accumulated during the late afternoon over the mountainous region. 18 refs., 15 figs., 1 tab.« less

  11. Divergence of turbulent fluxes in the surface layer: case of a coastal city

    NASA Astrophysics Data System (ADS)

    Pigeon, G.; Lemonsu, A.; Grimmond, C. S. B.; Durand, P.; Thouron, O.; Masson, V.

    2007-08-01

    This study quantifies the processes that take place in the layer between the mean building height and the measurement level of an energy balance micrometeorological tower located in the dense old core of a coastal European city. The contributions of storage, vertical advection, horizontal advection and radiative divergence for heat are evaluated with the available measurements and with a three-dimensional, high-resolution meteorological simulation that had been evaluated against observations. The study focused on a summer period characterized by sea-breeze flows that affect the city. In this specific configuration, it appears that the horizontal advection is the dominant term. During the afternoon when the sea breeze is well established, correction of the sensible heat flux with horizontal heat advection increases the measured sensible heat flux up to 100 W m-2. For latent heat flux, the horizontal moisture advection converted to equivalent latent heat flux suggests a decrease of 50 W m-2. The simulation reproduces well the temporal evolution and magnitude of these terms.

  12. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.

  13. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGES

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  14. 10. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. To the left of the horizontal (fluted) cylinder is the water pump which moved the boiler feed water through the engine's pre-heat system (the exhaust steam heated the boiler feedwater before it was pumped on to the boiler). The steam-feed port, manual throttle valve, and fly-ball governor and pulley and to the right of the cylinder. The drive shaft with flywheel to the left and pulley to the right are seen behind the piston rod, cross-head, wrist pen, connecting rod and the slide valve and eccentric. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. Vapor compression heat pump system field tests at the TECH complex

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1985-07-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  16. Vapor compression heat pump system field tests at the tech complex

    NASA Astrophysics Data System (ADS)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  17. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  18. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  19. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less

  20. Systems and methods for producing hydrocarbons from tar sands formations

    DOEpatents

    Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX

    2009-07-21

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  1. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  2. Thermal properties variations in unconsolidated material for very shallow geothermal application (ITER project)

    NASA Astrophysics Data System (ADS)

    Sipio, Eloisa Di; Bertermann, David

    2018-04-01

    In engineering, agricultural and meteorological project design, sediment thermal properties are highly important parameters, and thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially in very shallow geothermal systems. Herein, the first 2 m of depth from surface is of critical importance. However, the heat transfer determination in unconsolidated material is difficult to estimate, as it depends on several factors, including particle size, bulk density, water content, mineralogy composition and ground temperature. The performance of a very shallow geothermal system, as a horizontal collector or heat basket, is strongly correlated to the type of sediment at disposal and rapidly decreases in the case of dry-unsaturated conditions. The available experimental data are often scattered, incomplete and do not fully support thermo-active ground structure modeling. The ITER project, funded by the European Union, contributes to a better knowledge of the relationship between thermal conductivity and water content, required for understanding the very shallow geothermal systems behaviour in saturated and unsaturated conditions. So as to enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material were tested in the laboratory, and an overview of physical-thermal properties variations under several moisture and load conditions for different mixtures of natural material was here presented.

  3. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  4. The design improvement of horizontal stripline kicker in TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chou, P. J.; Chan, C. K.; Chang, C. C.; Hsu, K. T.; Hu, K. H.; Kuan, C. K.; Sheng, I. C.

    2017-07-01

    We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.

  5. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  6. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    NASA Astrophysics Data System (ADS)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  7. High-Viscosity Oil Filtration in the Pool Under Thermal Action

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.

    2018-05-01

    We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.

  8. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  9. Effect of peripheral irregularities in the temperature field during turbine startups with flange heating along the reduction on the durability of turbine casings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beryland, V.I.; Glyadya, A.A.; Pozhidaev, A.V.

    1982-07-01

    One method for improving the operating flexibility of 150, 200, and 300 MW steam turbines is heating the flanges of the horizontal casing point during startup, both when cold and before cooling down. A design analysis was conducted of the comparative effectiveness of various heating systems from the standpoint of minimizing both temperature differences across the flange width, as well as the level of related thermal stresses. The effects of flange heating during the entire operating period are discussed.

  10. Eddy Correlation Flux Measurement System (ECOR) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  11. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    NASA Astrophysics Data System (ADS)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  12. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    NASA Astrophysics Data System (ADS)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  13. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    NASA Astrophysics Data System (ADS)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  14. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  15. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  16. Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds

    NASA Astrophysics Data System (ADS)

    Samaha, Mohamed A.; Kahwaji, Ghalib Y.

    2017-11-01

    Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.

  17. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.

  18. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  19. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  20. Multi-step heater deployment in a subsurface formation

    DOEpatents

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  1. Solar project description for Design Construction Association single family dwelling, Big Fork, Montana

    NASA Astrophysics Data System (ADS)

    1980-04-01

    A solar energy system was installed in a 2100 sq ft house located in Big Fork, Montana. The system is designed to provide solar energy for heating and domestic hot water. Solar energy is collected by flat plate collectors with a gross area of 792 square feet. The collector banks are mounted on the roof of the house and face due south at an angle of 45 deg to the horizontal optimizing solar energy collection. Solar energy is transferred from the collector array to a 1500 gallon storage tank. Water is used as the heat collection, transfer and storage medium. Freeze protection is provided by use of a drain down system. Space heating demands are met by circulating hot water from storage through baseboard units in the distribution system of the house. Auxiliary space heating is provided by an electrical heating element in the boiler. Similarly, an electrical heating element in the DHW tank provides energy for water heating. The dwelling was fully instrumented for performance evaluation since October 1977 and the data is integrated into the National Solar Data Network.

  2. Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain

    NASA Astrophysics Data System (ADS)

    Moderow, U.; Feigenwinter, C.; Bernhofer, C.

    2007-04-01

    Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5 10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.

  3. Calculation of critical heat transfer in horizontal evaporator pipes in cooling systems of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Aksenov, Andrey; Malysheva, Anna

    2018-03-01

    An exact calculation of the heat exchange of evaporative surfaces is possible only if the physical processes of hydrodynamics of two-phase flows are considered in detail. Especially this task is relevant for the design of refrigeration supply systems for high-rise buildings, where powerful refrigeration equipment and branched networks of refrigerants are used. On the basis of experimental studies and developed mathematical model of asymmetric dispersed-annular flow of steam-water flow in horizontal steam-generating pipes, a calculation formula has been obtained for determining the boundaries of the zone of improved heat transfer and the critical value of the heat flux density. A new theoretical approach to the solution of the problem of the flow structure of a two-phase flow is proposed. The applied method of dissipative characteristics of a two-phase flow in pipes and the principle of a minimum rate of entropy increase in stabilized flows made it possible to obtain formulas that directly reflect the influence of the viscous characteristics of the gas and liquid media on their distribution in the flow. The study showed a significant effect of gravitational forces on the nature of the phase distribution in the cross section of the evaporative tubes. At a mass velocity of a two-phase flow less than 700 kg / m2s, the volume content of the liquid phase near the upper outer generating lines of the tube is almost an order of magnitude lower than the lower one. The calculation of the heat transfer crisis in horizontal evaporative tubes is obtained. The calculated dependence is in good agreement with the experimental data of the author and a number of foreign researchers. The formula generalizes the experimental data for pipes with the diameter of 6-40 mm in the pressure of 2-7 MPa.

  4. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    PubMed Central

    Zeng, Ximin; Ardeshna, Devarshi

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. PMID:25911489

  5. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    PubMed

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  7. Condensation enhancement by means of electrohydrodynamic techniques

    NASA Astrophysics Data System (ADS)

    Butrymowicz, Dariusz; Karwacki, Jarosław; Trela, Marian

    2014-12-01

    Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.

  8. Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.

    NASA Astrophysics Data System (ADS)

    Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.

    2003-12-01

    The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are simulated by the model. They are determined by the observed mean U wind shear (unidirectional versus reverse shear profiles above midlevels).Several sensitivity tests are performed to examine the impact of the radiation, microphysics, and large-scale mean horizontal wind on the organization and intensity of the SCSMEX convective systems.

  9. Concentration Dependence of Pool Nucleate Boiling Heat Transfer Coefficients for R134a and Polyolester Oil System

    NASA Astrophysics Data System (ADS)

    Sato, Tomoaki; Takaishi, Yoshinori; Oguchi, Kosei

    This paper presents experimental results of the concentration dependence of heat transfer coefficients for mixtures of R134a and polyolester (POE) oil under the conditions of pool nuc1eateboiling. The experiments are conducted by means of ah horizontal platinum wire at saturation tel11peraturesof 9, 19, and 29°C and at oil concentrations from 0 to 8 mass%. The present results show that the boiling heat transfer coefficient for the system concerned decreases with increasing oil concentration as a whole but increases slightly at a low oil concentration of about 4 mass%. A correlation equation is also given as a function of heat flux, temperature and oil concentration to reproduce the experimental boiling heat transfer coefficient within an uncertainly of about±15%.

  10. Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Bruneau, Nicolas; Zika, Jan; Toumi, Ralf

    2017-10-01

    We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.

  11. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet steam mass flow rate increased, the length required for complete condensation also increased. Comparison of tube centerline temperature profiles was also used to examine the effect of inlet pressure on the heat transfer performance. From this assessment, it was determined that as the inlet pressure increased, the length required for complete condensation decreased. The investigation of tube bundle effects was conducted by comparing the condensate flow rates. The experimental results showed that the upper tubes in the bundle had better heat transfer performance than the lower tubes. In regard to modeling of the heat exchanger in this study, for the primary side, an empirical correlation was developed herein to provide Nusselt numbers for condensation heat transfer in horizontal tubes with noncondensable gases. Nusselt numbers were correlated as: Nu = 106.31·Re m0.147·W a-0.843. The empirical model for condensation heat transfer coefficients and the secondary-side model were integrated within a Matlab program to provide an analysis tool for horizontal tube bundle condenser heat exchangers. Also on the secondary side, two phase heat transfer coefficients were modeled considering both convective boiling and nucleate boiling as: hTP = 10.03·exp(-2.28·alpha)· hCV + 0.076·exp[3.73x10-6·(Re f-1.6x105)]·hNB.

  12. Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics.

    NASA Astrophysics Data System (ADS)

    Chagnon, Jeffrey M.; Bannon, Peter R.

    2005-05-01

    The adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered “external” to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems.For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode—the Lamb mode— containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection.The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery—all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward.A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established.A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia-gravity waves oscillating about a nontrivial hydrostatic and geostrophic state.This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.

  13. Simulations of horizontal roll vortex development above lines of extreme surface heating

    Treesearch

    W.E. Heilman; J.D. Fast

    1992-01-01

    A two-dimensional, nonhydrostatic, coupled, earth/atmospheric model has been used to simulate mean and turbulent atmospheric characteristics near lines of extreme surface heating. Prognostic equations are used to solve for the horizontal and vertical wind components, potential temperature, and turbulent kinetic energy (TKE). The model computes nonhydrostatic pressure...

  14. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  15. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  16. Cross-diffusive effects on the onset of double-diffusive convection in a horizontal saturated porous fluid layer heated and salted from above

    NASA Astrophysics Data System (ADS)

    Rajib, Basu; C. Layek, G.

    2013-05-01

    Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy—Rayleigh number depends on cross-diffusive parameters at marginally stationary convection, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy—Rayleigh number increases with increasing value of the solutal Darcy—Rayleigh number in the absence of cross-diffusive parameters. The critical Darcy—Rayleigh number decreases with increasing Soret number, resulting in destabilization of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.

  17. Development of a Standalone Thermal Wellbore Simulator

    NASA Astrophysics Data System (ADS)

    Xiong, Wanqiang

    With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new correlations regressed by this study. Meanwhile, a correlation for handling heat transfer in double-tubing annulus is regressed. This work initiates the research on heat transfer in a double-tubing wellbore system. A series of validation and test works are performed in hot water injection, steam injection, real filed data, a horizontal well, a double-tubing well and comparison with the Ramey method. The program in this study also performs well in matching with real measured field data, simulation in horizontal wells and double-tubing wells.

  18. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  19. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  20. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  1. Some heat transfer and hydrodynamic problems associated with superconducting cables (SPTL)

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Daney, D. E.; Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevckenko, O. A.

    1978-01-01

    To study some effects of thermogravitation on (CIIK-SPTL) systems, a heated tube experiment was set up at Krzhizhanovsky Power Engineering Institute Moscow, U.S.S.R. Heat transfer data were taken with fluid helium flowing through a 2.85 m, 19 mm diameter uniformly heated horizontal tube. Temperatures were measured on the top and bottom of the tube at six axial locations with three other circumferential measurements made at (X/L) =57. Typical temperature profiles show significant variations both axially and circumferentially. The data are grouped using reduced Nusselt number (NuR) and the bulk expansion parameter for each axial location. The average data for 0.26 less than or equal to X/L less than or equal to 0.76 follow a power law relation with the average expansion parameter. System instabilities are noted and discussed. Future work including heat transfer in coaxial cylinders is discussed.

  2. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less

  3. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments.

    PubMed

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-10-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. (81m)Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  4. Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi

    Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.

  5. The turbulence structure of katabatic flows below and above wind-speed maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher

    2015-04-01

    Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.

  6. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    NASA Astrophysics Data System (ADS)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  7. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  8. Heat transfer to horizontal tubes immersed in a fluidized-bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Menart, J.; Hajicek, D.R.

    Experiments were carried out to measure the heat transfer rates to water-cooled horizontal tubes immersed in an atmospheric fluidized-bed combustor burning North Dakota lignite. The effect of bed temperature (T/sub B/ = 587 to 1205K), particle size (anti d/sub p/ = 0.544 to 2.335 mm), and fluidizing velocity (U = 0.73 to 2.58 m/s) on the heat transfer rate to horizontal tubes immersed in a fluidized-bed combustor (0.45 x 0.45 m) was investigated. Among existing correlations, correlations proposed by Glicksman and Decker (1980), Zabrodsky et al. (1980), Catipovic et al. (1980), Grewal (1981), and Bansal et al. (1980) are foundmore » to predict the present data quite well, when the contribution due to radiation is included. The radiative heat transfer is estimated as the difference between the heat transfer to an oxidized boiler tube and to a gold-plated tube. The relative contribution of radiation is found to be 11% for a bed of sand particles (anti d/sub p/ = 0.9 mm) operating at 1088K. 40 refs., 7 figs., 5 tabs.« less

  9. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    NASA Astrophysics Data System (ADS)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.

  10. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick; Im, Piljae

    2012-04-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first costmore » of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three parallel circuits - out and back), and the multiple instances of FHX and/or HGHX are all connected in series. The working fluid is 20% by weight propylene glycol in water. Model and design tool development was undertaken in parallel with constructing the houses, installing instrumentation, and monitoring performance for a year. Several detailed numerical models for FHX were developed as part of the project. Essentially the project team was searching for an energy performance model accurate enough to achieve project objectives while also having sufficient computational efficiency for practical use in EnergyPlus. A 3-dimensional, dual-coordinate-system, finite-volume model satisfied these criteria and was included in the October 2011 EnergyPlus Version 7 public release after being validated against measured data.« less

  11. An Experimental Apparatus to Study Enhanced Condensation Heat Transfer of Steam on Horizontal Tubes.

    DTIC Science & Technology

    1982-06-01

    6-inches in diam- eter and 18-inches long and provides for condensing all excess steam. Two helically wound -oils of 3/8-inch copper tubing,- one 5 1...ml--13E lmoI EE EEEM NAVAL POSTGRADUATE SCHOOL Monterey, California SP27 1982 F THESIS AN EXPERIMENTAL APPARATUS TO STUDY ENHANCED CONDENSATION HEAT...Enhanced Condensation Heat Transfer June 1982 of Steam on Horizontal. Tubes & 081OWN ow,. NeWOormueT -. AUT@,a~4. CONTRACT ORt GOAMT NtUpMORA~e Raymond

  12. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties.

    PubMed

    Sadri, Rad; Hosseini, Maryam; Kazi, S N; Bagheri, Samira; Abdelrazek, Ali H; Ahmadi, Goodarz; Zubir, Nashrul; Ahmad, Roslina; Abidin, N I Z

    2018-01-01

    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Studies of heat source driven natural convection. Ph.D. Thesis. Technical Report, Jul. 1974 - Aug. 1975

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Emara, A. A.

    1975-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid was measured for Rayleigh numbers from 1890 to 2.17 x 10 to the 12th power. The fluid layer is bounded below by a rigid zero-heat-flux surface and above by a rigid constant-temperature surface. Joule heating by an alternating current passing horizontally through the layer provides the uniform volumetric energy source. The overall steady-state heat transfer coefficient at the upper surface was determined by measuring the temperature difference across the layer and power input to the fluid. The correlation between the Nusselt and Rayleigh numbers for the data of the present study and the data of the Kulacki study is given.

  14. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  15. Simulations of surface winds at the Viking Lander sites using a one-level model

    NASA Technical Reports Server (NTRS)

    Bridger, Alison F. C.; Haberle, Robert M.

    1992-01-01

    The one-level model developed by Mass and Dempsey for use in predicting surface flows in regions of complex terrain was adapted to simulate surface flows at the Viking lander sites on Mars. In the one-level model, prediction equations for surface winds and temperatures are formulated and solved. Surface temperatures change with time in response to diabatic heating, horizontal advection, adiabatic heating and cooling effects, and horizontal diffusion. Surface winds can change in response to horizontal advection, pressure gradient forces, Coriolis forces, surface drag, and horizontal diffusion. Surface pressures are determined by integration of the hydrostatic equation from the surface to some reference level. The model has successfully simulated surface flows under a variety of conditions in complex-terrain regions on Earth.

  16. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  17. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  18. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE PAGES

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    2017-05-16

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  19. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    PubMed

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  20. Systems and Methods for Designing and Fabricating Contact-Free Support Structures for Overhang Geometries of Parts in Powder-Bed Metal Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)

    2017-01-01

    Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.

  1. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  2. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels

    PubMed Central

    Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695

  3. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  4. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    PubMed Central

    Paria, S.; Sarhan, A. A. D.; Goodarzi, M. S.; Baradaran, S.; Rahmanian, B.; Yarmand, H.; Alavi, M. A.; Kazi, S. N.; Metselaar, H. S. C.

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052

  5. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    PubMed

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  6. Technical activities report: Heat, water, and mechanical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, W.K.

    1951-10-04

    Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at highmore » flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.« less

  7. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure

    PubMed Central

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k−ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  8. Mathematical modeling of heat transfer problems in the permafrost

    NASA Astrophysics Data System (ADS)

    Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

    2014-11-01

    In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.

  9. Natural convection in a fluid layer periodically heated from above.

    PubMed

    Hossain, M Z; Floryan, J M

    2014-08-01

    Natural convection in a horizontal layer subject to periodic heating from above has been studied. It is shown that the primary convection leads to the cooling of the bulk of the fluid below the mean temperature of the upper wall. The secondary convection may lead either to longitudinal rolls, transverse rolls, or oblique rolls. The global flow properties (e.g., the average Nusselt number for the primary convection and the critical conditions for the secondary convection) are identical to those of the layer heated from below. However, the flow and temperature patterns exhibit phase shifts in the horizontal directions.

  10. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  11. A heat budget for the Stratus mooring in the southeast Pacific

    NASA Astrophysics Data System (ADS)

    Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.

    2012-12-01

    The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.

  12. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    NASA Astrophysics Data System (ADS)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  13. Horizontal Heat Impact of Urban Structures on the Surface Soil Layer and Its Diurnal Patterns under Different Micrometeorological Conditions

    PubMed Central

    Zhou, Hongxuan; Hu, Dan; Wang, Xiaolin; Han, Fengsen; Li, Yuanzheng; Wu, Xiaogang; Ma, Shengli

    2016-01-01

    The temperature of the surface soil layer around different orientation walls was investigated horizontally along several construction-soil micro-gradients in Beijing, China. On a diurnal scale, similar fluctuating trends in T0 and T50 (temperature of surface soil layer, 0 and 0.5 m from the building baseline) adjacent to the external walls of buildings with the same orientation usually appeared under similar micrometeorological conditions. The difference between T0 and T50 (ΔT0–50) can be considered an indicator of the intensity of the horizontal heat effects: higher ΔT0–50 values correspond to greater intensities. The values of ΔT0–50 for south-, north-, east- and west-facing sides of buildings were highest on sunny days in summer and exhibited values of 6.61 K, 1.64 K, 5.93 K and 2.76 K, respectively. The scope of horizontal heat impacts (Sh) changed on a diurnal scale between zero and the maximum, which fluctuated with the micrometeorological conditions. The maximum values of Sh were 0.30, 0.15, 0.20 and 0.20 m for south-, north-, east-, and west-facing walls. The ΔT0–50 was related to solar radiation, horizontal heat flux, relative humidity, wind speed, soil moisture differences and air temperature; the relative importance of these factors was 36.22%, 31.80%, 19.19%, 2.67%, 3.68% and 6.44%, respectively. PMID:26728627

  14. An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II - Vertical structure

    NASA Technical Reports Server (NTRS)

    Mapes, Brian; Houze, Robert A., Jr.

    1993-01-01

    The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.

  15. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHPmore » in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.« less

  16. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles

    NASA Astrophysics Data System (ADS)

    Kruizenga, Alan Michael

    An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.

  17. Theoretical analysis of heat flow in horizontal ribbon growth from a melt. [silicon metal

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1978-01-01

    A theoretical heat flow analysis for horizontalribbon growth is presented. Equations are derived relating pull speed, ribbon thickness, thermal gradient in the melt, and melt temperature for limiting cases of heat removal by radiation only and isothermal heat removal from the solid surface over the melt. Geometrical cross sections of the growth zone are shown to be triangular and nearly parabolic for the two respective cases. Theoretical pull speed for silicon ribbon 0.01 cm thick, where the loss of latent heat of fusion is by radiation to ambient temperature (300 K) only, is shown to be 1 cm/sec for horizontal growth extending 2 cm over the melt and with no heat conduction either to or from the melt. Further enhancement of ribbon growth rate by placing cooling blocks adjacent to the top surface is shown to be theoretically possible.

  18. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  19. Numerical study of terrain-induced mesoscale motions and hydrostatic form drag in a heated, growing mixed layer

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.

    1984-01-01

    Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.

  20. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    NASA Astrophysics Data System (ADS)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing the uncertainties in observational flux products and setting requirement targets for future observation programs.

  1. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    NASA Astrophysics Data System (ADS)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.

  2. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  3. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 1; Modeling Strategies and Simulations of TOGA-COARE Convective Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.

  4. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  5. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  6. The vertical dependence in the horizontal variability of salinity and temperature at the ocean surface

    NASA Astrophysics Data System (ADS)

    Asher, W.; Drushka, K.; Jessup, A. T.; Clark, D.

    2016-02-01

    Satellite-mounted microwave radiometers measure sea surface salinity (SSS) as an area-averaged quantity in the top centimeter of the ocean over the footprint of the instrument. If the horizontal variability in SSS is large inside this footprint, sub-grid-scale variability in SSS can affect comparison of the satellite-retrieved SSS with in situ measurements. Understanding the magnitude of horizontal variability in SSS over spatial scales that are relevant to the satellite measurements is therefore important. Horizontal variability of SSS at the ocean surface can be studied in situ using data recorded by thermosalinographs (TSGs) that sample water from a depth of a few meters. However, it is possible measurements made at this depth might underestimate the horizontal variability at the surface because salinity and temperature can become vertically stratified in a very near surface layer due to the effects of rain, solar heating, and evaporation. This vertical stratification could prevent horizontal gradients from propagating to the sampling depths of ship-mounted TSGs. This presentation will discuss measurements made using an underway salinity profiling system installed on the R/V Thomas Thompson that made continuous measurements of SSS and SST in the Pacific Ocean. The system samples at nominal depths of 2-m, 3-m, and 5-m, allowing the depth dependence of the horizontal variability in SSS and SST to be measured. Horizontal variability in SST is largest at low wind speeds during daytime, when a diurnal warm layer forms. In contrast, the diurnal signal in the variability of SSS was smaller with variability being slightly larger at night. When studied as a function of depth, the results show that over 100-km scales, the horizontal variability in both SSS and SST at a depth of 2 m is approximately a factor of 4 higher than the variability at 5 m.

  7. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  8. Influence of thermo-gravitational convection in the flow of liquid metal in a horizontal pipe with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Akhmedagaev, R.; Listratov, Y.

    2017-11-01

    The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.

  9. Burnout in the horizontal tubes of a furnace waterwall panel

    NASA Astrophysics Data System (ADS)

    Kamenetskii, B. Ya.

    2009-08-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  10. High-heat transfer low-NO.sub.x combustion system

    DOEpatents

    Abbasi, Hamid A.; Hobson, Jr., William J.; Rue, David M.; Smirnov, Valeriy

    2005-09-06

    A combustion apparatus comprising a pre-combustor stage and a primary combustion stage, the pre-combustor stage having two co-axial cylinders, one for oxidant and one for fuel gas, in which the fuel gas is preheated and the primary combustion stage having rectangular co-axial passages through which fuel and oxidant are admitted into a refractory burner block. Both passages converge in the vertical plane and diverge in the horizontal plane. The passage through the refractory burner block also has a rectangular profile and diverges in the horizontal plane. The outlets to the primary combustion stage are recessed in the refractory burner block at a distance which may be varied.

  11. Experimental and analytical investigation of 0 G condensation in a mechanical refrigeration system application

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1975-01-01

    Basic equations of momentum and energy are presented and discussed with respect to heat transfer and pressure drop for forced flow condensation in horizontal tubes under 1-g and 0-g conditions. Some experimental results are presented for condensing refrigerant-12 in a system of three parallel-connected quartz tubes (3-mm inside diameter, G = 1.037 to 3.456 x 105 lbm/hr-sq. ft). From high speed photographs, measurements were obtained of film thickness, phase velocities, disturbance wavelengths, and flow regimes and their transitions. Based upon these measurements various dimensionless force ratios (flow and instability parameters) were calculated. Under 0-g conditions a uniformly thick redistribution of liquid condensate about the tube walls was found to result in a lowered heat transfer coefficient as compared with 1-g conditions, based upon fundamental heat transfer theory. A model is proposed that takes into account the difference in heat transfer due to condensate distribution under 1-g and 0-g conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterton, Mike

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system somore » the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.« less

  13. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid

    2017-02-01

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  14. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less

  15. Heat transfer and fire spread

    Treesearch

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  16. Carbon Dioxide-Lubricant Two-Phase Flow Patterns in Small Horizontal Wetted Wall Channels: The Effects of Refrigerant/Lubricant Thermophysical Properties

    ERIC Educational Resources Information Center

    Seeton, Christopher John

    2009-01-01

    Microchannel heat exchangers are gaining popularity due to their ability to handle high pressures, reduce refrigerant charge, and reduce heat exchanger package size. These heat exchanger designs provide better heat exchange performance due to increased refrigerant side heat transfer coefficients and geometries that allow for a denser packing…

  17. Demonstration of a shape memory alloy torque tube-based morphing radiator

    NASA Astrophysics Data System (ADS)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  18. The influence of horizontally non-uniform heating upon the development of strong convective mesoscale disturbances

    NASA Astrophysics Data System (ADS)

    Yu, Zhihao; Chen, Liangdong

    1985-08-01

    It is shown by observational data and synoptic analysis that the development of strong convective echo is influenced by the horizontally non-uniform heating, such as the one caused by lake-land distribution. In this paper, a simple linear cell-convection model is established using an appropriate heating field, and the instability of heating convection is theoretically studied. It is found that the heating convection development will be unstable if the heating-caused temperature gradient dT 0/ dy is greater than the critical value ( dT 0/ dy) c which is approximately 0.64°C/10 km, and that the development of convective band has a preferred width of 12.5 km. It will take 25 min for the initial disturbance to increase intensity by 10 times. All these results are in rather good agreement with the squall line process in the lake-land region of Jiangsu Province on June 8, 1979.

  19. Analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical heat storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, A.

    1998-07-01

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less

  20. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  1. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  2. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  3. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    PubMed

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  4. MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model.

    PubMed

    Alsabery, A I; Sheremet, M A; Chamkha, A J; Hashim, I

    2018-05-09

    The problem of steady, laminar natural convection in a discretely heated and cooled square cavity filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically by using the finite difference method. Isothermal heaters and coolers are placed along the vertical walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (10 3  ≤ Ra ≤ 10 6 ), the Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity ratio (0.28 ≤ k w  ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles volume fraction (0 ≤ ϕ ≤ 0.04). The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other authors. The obtained results reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal parameters for the heat transfer enhancement in dependence on the considered system. Moreover, high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near the centered solid block where thermal plumes from the local heaters interact.

  5. Effects of heat exchanger tubes on hydrodynamics and CO 2 capture of a sorbent-based fluidized bed reactor

    DOE PAGES

    Lai, Canhai; Xu, Zhijie; Li, Tingwen; ...

    2017-08-05

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber's performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered sub-grid models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable accuracymore » and manageable computational effort. Previously developed filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical tubes) on the adsorber's hydrodynamics and CO 2 capture performance are then examined. A one-dimensional three-region process model is briefly introduced for comparison purpose. The CFD model matches reasonably well with the process model while provides additional information about the flow field that is not available with the process model.« less

  6. Heat transfer in a tank with a cryogenic fluid under conditions of external heating

    NASA Astrophysics Data System (ADS)

    Notkin, V. L.

    Heat transfer in the gas layer of a horizontal cylindrical tank with a fluctuating level of boiling liquid nitrogen is investigated experimentally. Criterial equations for heat transfer in the gas cavity of the tank are obtained. A procedure is proposed for calculating heat fluxes, temperature fields, and cryogenic fluid evaporation during the filling and draining of the tank.

  7. Tuning transitions in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Kunnen, Rudie; Clercx, Herman

    2015-11-01

    Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.

  8. Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Sahraoui, Nassim M.; Houat, Samir; Saidi, Nawal

    2017-05-01

    We perform a contribution with a simulation study of the mixed convection in horizontal channel heated from below. The lattice Boltzmann method (LBM) is used with the Boussinesq approximation to solve the coupled phenomenon that governs the systems thermo-hydrodynamics. The double populations thermal lattice Boltzmann model (TLBM) is used with the D2Q5 for the thermal field and D2Q9 model for the dynamic field. A comparison of the results of the averaged Nusselt number obtained by the TLBM with other references is presented for an area stretching. The streamlines, the vortices, the isotherms, the velocity profiles and other parameters of the study, are presented at a certain time tT which is chosen arbitrarily. The results presented here are in good agreement with those reported in the scientific literature which gives us high expectations about the reliability of the TLBM to simulate this kind of physical phenomena. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Li, Tingwen

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less

  10. Phase change liquid purifier and pump

    DOEpatents

    Steinhour, Leif Alexi

    2017-05-23

    Systems, methods, and apparatus are provided for purifying and pumping liquids, and more particularly, for purifying and pumping water. The apparatus includes a chamber including a top portion and a bottom portion. A surface configured to be heated is proximate the bottom portion of the chamber. A baffle is disposed within the chamber and above the surface. The baffle is disposed at an angle relative to a vertical direction. The chamber further includes an inlet and a first outlet. The surface heats a liquid in the chamber, causing the liquid to boil. In operation, bubbles rise from the surface and are forced in a horizontal direction by the baffle disposed in the chamber.

  11. D region disturbances caused by electromagnetic pulses from lightning

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1992-01-01

    Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.

  12. Impacts of Realistic Urban Heating. Part II: Air Quality and City Breathability

    NASA Astrophysics Data System (ADS)

    Nazarian, Negin; Martilli, Alberto; Norford, Leslie; Kleissl, Jan

    2018-03-01

    Urban morphology and inter-building shadowing result in a non-uniform distribution of surface heating in urban areas, which can significantly modify the urban flow and thermal field. In Part I, we found that in an idealized three-dimensional urban array, the spatial distribution of the thermal field is correlated with the orientation of surface heating with respect to the wind direction (i.e. leeward or windward heating), while the dispersion field changes more strongly with the vertical temperature gradient in the street canyon. Here, we evaluate these results more closely and translate them into metrics of "city breathability," with large-eddy simulations coupled with an urban energy-balance model employed for this purpose. First, we quantify breathability by, (i) calculating the pollutant concentration at the pedestrian level (horizontal plane at z≈ 1.5 -2 m) and averaged over the canopy, and (ii) examining the air exchange rate at the horizontal and vertical ventilating faces of the canyon, such that the in-canopy pollutant advection is distinguished from the vertical removal of pollution. Next, we quantify the change in breathability metrics as a function of previously defined buoyancy parameters, horizontal and vertical Richardson numbers (Ri_h and Ri_v , respectively), which characterize realistic surface heating. We find that, unlike the analysis of airflow and thermal fields, consideration of the realistic heating distribution is not crucial in the analysis of city breathability, as the pollutant concentration is mainly correlated with the vertical temperature gradient (Ri_v ) as opposed to the horizontal (Ri_h ) or bulk (Ri_b ) thermal forcing. Additionally, we observe that, due to the formation of the primary vortex, the air exchange rate at the roof level (the horizontal ventilating faces of the building canyon) is dominated by the mean flow. Lastly, since Ri_h and Ri_v depend on the meteorological factors (ambient air temperature, wind speed, and wind direction) as well as urban design parameters (such as surface albedo), we propose a methodology for mapping overall outdoor ventilation and city breathability using this characterization method. This methodology helps identify the effects of design on urban microclimate, and ultimately informs urban designers and architects of the impact of their design on air quality, human health, and comfort.

  13. Modelling Precipitation and Temperature Extremes: The Importance of Horizontal Resolution

    NASA Astrophysics Data System (ADS)

    Shields, C. A.; Kiehl, J. T.; Meehl, G. A.

    2013-12-01

    Understanding Earth's water cycle on a warming planet is of critical importance in society's ability to adapt to climate change. Extreme weather events, such as floods, heat waves, and drought will likely change with the water cycle as greenhouse gases continue to rise. Location, duration, and intensity of extreme events can be studied using complex earth system models. Here, we employ the fully coupled Community Earth System Model (CESM1.0) to evaluate extreme event impacts for different possible future forcing scenarios. Simulations applying the Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5 were chosen to bracket the range of model responses. Because extreme weather events happen on a regional scale, there is a tendency to favor using higher resolution models, i.e. models that can represent regional features with greater accuracy. Within the CESM1.0 framework, we evaluate both the standard 1 degree resolution (1 degree atmosphere/land coupled to 1 degree ocean/sea ice), and the higher 0.5 degree resolution version (0.5 degree atmosphere/land coupled to 1 degree ocean/sea ice), focusing on extreme precipitation events, heat waves, and droughts. We analyze a variety of geographical regions, but generally find that benefits from increased horizontal resolution are most significant on the regional scale.

  14. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    NASA Astrophysics Data System (ADS)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  15. Soviet-West German Symposium on Heat Transfer in Cryogenic Systems, 3rd, Kharkov, Ukrainian SSR, Oct. 9-11, 1989, Proceedings

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The papers presented in this volume describe a rotating cryostat for the simulation of mechanical, thermal, and hydraulic processes in superconducting rotors; the problems of cooling the fully superconducting generator stator; an investigation of natural circulation by optical methods; and a method of calculating void fraction for vapor-liquid or gas-liquid flow conditions. Attention is given to an experimental study of the processes of He-3 boiling and condensation, heat transfer in He II at a slow variation of the heat load, an investigation of He II flow crisis in porous media, and cryogenic heat pipes. Other papers are on the stability of rotating superconducting windings for electric machines, the stability of high-temperature superconductors cooled by liquid nitrogen, a calculation of the transpiration cooling of a cylindrical porous wall, and pressure losses in boiling nitrogen flow through horizontal channels.

  16. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand (d/sub p/ = 888 to 1484 ..mu..m) and limestone (d/sub p/ = 716 to 1895 ..mu..m) are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125/sup 0/K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient.more » The predicted values of heat transfer coefficient from the correlations proposed by Grewal (1981) and Bansal et al. (1980) are found to be within +-25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included. 5 figures, 5 tables.« less

  17. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  18. Natural convection heat transfer in water near its density maximum

    NASA Astrophysics Data System (ADS)

    Yen, Yin-Chao

    1990-12-01

    This monograph reviews and summarizes to date the experimental and analytical results on the effect of water density near its maximum convection, transient flow and temperature structure characteristics: (1) in a vertical enclosure; (2) in a vertical annulus; (3) between horizontal concentric cylinders; (4) in a square enclosure; (5) in a rectangular enclosure; (6) in a horizontal layer; (7) in a circular confined melt layer; and (8) in bulk water during melting. In a layer of water containing a maximum density temperature of 4 C, the onset of convection (the critical number) is found not to be a constant value as in the classical normal fluid but one that varies with the imposed thermal and hydrodynamic boundaries. In horizontal layers, a nearly constant temperature zone forms and continuously expands between the warm and cold boundaries. A minimum heat transfer exists in most of the geometries studied and, in most cases, can be expressed in terms of a density distribution parameter. The effect of this parameter on a cells formation, disappearance and transient structure is discussed, and the effect of split boundary flow on heat transfer is presented.

  19. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  20. Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak

    NASA Technical Reports Server (NTRS)

    Keyser, D. A.; Johnson, D. R.

    1982-01-01

    Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.

  1. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    PubMed Central

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  2. Credit BG. View looking northeast down from the tower onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  3. A Report from the Thermal Science Research Center (TSRC)

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1998-01-01

    A vertical flow loop was designed and assembled to determine the local (circumferential and axial) and mean wall temperature distributions for single-phase and two-phase (subcooled and saturated) downward flow in both uniformly-heated and single-side heated vertical channels. Freon-11 was used as the working fluid in order to directly relate and compare the results with a previous experimental campaign which employed this same working fluid. For a given steady-state experiment, the following parameters were held constant: (1) exit pressure, (2) inlet temperature, and (3) mass velocity. For a given configuration of the 2.2 m long cylindrical channel test section, which had a 1.2 m long heated section, the applied heat rate was varied from zero through successive quasi-steady states to a level which corresponded to localized film boiling in the test section. The measurements showed that the boiling curve changes significantly at higher mass velocities with respect to both the circumferential and axial directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential direction. The measurements point to the existence of a dry-out phenomenon occurring at multiple levels of the applied heat for the single-side heated channel. In comparing the heat transfer for horizontal channel flow with a vertically downward flow, the results show that significantly lower heat transfer occurs in the horizontal flow. However, this trend reverses as both the Reynolds number and the applied heat rate increase. Both the Liu-Winterton and Shah correlations were compared with the experimental data. The Shah correlation predicted the uniformly heated tube data better. When a thermal hydraulic diameter approach was used for the single-side heated case, the data at upstream locations for Z/L less than 0.5 was bounded above by the Liu-Winterton correlation and below by the Shah correlation. At Z/L = 0.5, the Shah correlation bounded the data; and for Z/L greater than 0.5, both correlations overpredicted the data with the Shah correlation being closest to the data. The present results indicate that additional correlational development is needed. In addressing some of the advanced space thermal management objectives concerning accommodating high heat fluxes in non-uniformly heated systems, a large battery of experiments 88 have been completed where local two-dimensional wall temperature variations were measured for both single-phase and two-phase flow in a single-side heated circular tube. As noted above, the results show significant axial and circumferential variations. Accurately accounting for such variations can result in optimized future advanced space, enhanced (high heat flux) thermal management systems.

  4. Ground heat flux and power sources of low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  5. Characterization of convective heating in full scale wildland fires

    Treesearch

    Bret Butler

    2010-01-01

    Data collected in the International Crown Fire modeling Experiment during 1999 are evaluated to characterize the magnitude and duration of convective energy heating in full scale crown fires. To accomplish this objective data on total and radiant incident heat flux, air temperature, and horizontal and vertical gas velocities were evaluated. Total and radiant energy...

  6. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    PubMed Central

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  7. Solar project description for First Baptist Church, Aberdeen, South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    The solar energy system at the First Baptist Church in Aberdeen, South Dakota is described. The solar energy system was built into the new 12,350 square foot church to heat the church and to provide domestic hot water. The 1404 square foot collector array of Solaron double glazed, flat black, flat plate collectors is mounted to the roof at a tilt angle of 30/sup 0/ from the horizontal. Thermal energy is stored in an 1100 cubic foot rock box that is located underground beneath the church. The box is filled with 35 tons of cleaned, washed rocks ranging in sizemore » from 3/4 to 1 1/2 inches. Solar space heating is provided by either the collector array directly or by rock box. Auxiliary space heating is provided by a 1,375,000 Btu electric boiler. Domestic hot water is preheated through a coil in the collector supply duct and stored in a 120 gallon tank. Auxiliary heating of the domestic hot water is provided by a 119 gallon electric water heater.« less

  8. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  9. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  10. First Results of the Land Atmosphere Feedback Experiment

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Turner, D. D.

    2017-12-01

    The Land-Atmosphere Feedback Experiment (LAFE) deployed several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site during August 2017. A novel synergy of remote sensing systems was applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric boundary layer (ABL). The impact of spatial inhomogeneities of the soil-vegetation continuum on LA feedback was studied using the scanning capability of the instrumentation as well as soil, vegetation, and surface flux measurements. The synergy of remote sensing and in-situ instruments consisted of three components: 1) The SGP water-vapor and temperature Raman lidar, the SGP Doppler lidar, the University of Hohenheim (UHOH) Doppler lidar, and the NCAR water-vapor DIAL to measure mean profiles and gradients of moisture, temperature, and horizontal wind. Due to their high vertical and temporal resolutions, also profiles of higher-order turbulent moments in the water vapor and wind fields as well as of profiles of the latent heat flux, the sensible heat flux, TKE, and momentum flux were observed. 2) A novel scanning lidar system synergy consisting of the NOAA High-Resolution Doppler lidar, the UHOH water-vapor differential absorption lidar, and the UHOH temperature rotational Raman lidar. These systems performed coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere including the interfacial layer at the ABL top. This component was augmented by three energy balance closure towers of NOAA and one EBC station of UHOH. 3) The University of Wisconsin SPARC and the University of Oklahoma CLAMPS systems operating two vertically pointing atmospheric emitted radiance interferometers and two Doppler lidar systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. NOAA ARL also provided UAS and aircraft measurements (Navajo Piper) in accordance with the surface scans. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site was studied for the first time. This is essential for advanced observation and understanding of LA feedback. First results are presented at the conference.

  11. Screening of liquids for thermocapillary bubble movement

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Papazian, J. M.; Smith, H. D.; Mattox, D. M.

    1979-01-01

    Ground-based methods for pretesting qualitatively the thermocapillary movement of gas bubbles in a liquid to be used in space processing are discussed. Theoretical considerations are shown to require the use of a thin, enclosed, horizontal liquid film in order that the bubbles move faster than the bulk convection of the liquid, with insulating boundaries to prevent the onset of instabilities. Experimental realizations of horizontal cells in which to test the thermocapillary movement of bubbles in sheets of molten glass heated from below and organic melts in tubes heated from both ends are briefly described and the results of experiments are indicated.

  12. Enhanced Evaporation and Condensation in Tubes

    NASA Astrophysics Data System (ADS)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  13. Implications of Wind-Assisted Aerial Navigation for Titan Mission Planning and Science Exploration

    NASA Technical Reports Server (NTRS)

    Elfes, A.; Reh, K.; Beauchamp, P.; Fathpour, N.; Blackmore, L.; Newman, C.; Kuwata, Y.; Wolf, M.; Assad, C.

    2010-01-01

    The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed by the unpropelled balloon. The results show that using the Titan wind field allows an aerobot to significantly extend its scientific reach, and that a montgolfiere (unpropelled or propelled) is a highly desirable architecture that can very significantly enhance the scientific return of a future Titan mission.

  14. Description and cost analysis of a deluge dry/wet cooling system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less

  15. Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines

    Treesearch

    W.E. Heilman

    1994-01-01

    A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...

  16. Substantial reduction of the heat losses to ambient air by natural convection from horizontal in-tube flows: impact of an axial bundle of passive baffles

    NASA Astrophysics Data System (ADS)

    Campo, A.; Cortés, C.

    This paper is concerned with a distinct and effective technique to insulate horizontal tubes carrying hot fluids without using the variety of insulating materials traditionally utilized in industry. The tubes transport hot fluids and are exposed to a natural convection environment of air at standard atmospheric temperature and pressure. Essentially, an ``equivalent quantity of insulation'' is provided by an envelope of straight symmetric baffles made from a low conductivity material that is affixed to the outer surface of the horizontal tubes. A simple 1-D lumped model of comparable precision to the customary 2-D differential model serves to regulate the thermal interaction between the two perpendicular fluid streams, one horizontal due to internal forced convection and the other vertical due to external natural convection in air. All computations are algebraic and lead to a rapid determination of the two quantities that are indispensable to design engineers: the mean bulk temperatures of the internal hot fluid moving either laminarly or turbulently, together with the degraded levels of heat transfer rates.

  17. A 3D mathematical model for the horizontal anode baking furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.

    In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less

  18. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    NASA Astrophysics Data System (ADS)

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-09-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.

  19. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  20. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  1. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    NASA Technical Reports Server (NTRS)

    Lee, Steve; Le, Hung; Leimkuehler, Thomas O.; Stephan, Ryan A.

    2009-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PCM) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  2. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.

    PubMed

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-10-09

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  3. 21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  5. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  6. Predictive capabilities of series solutions for laminar free convection boundary layer heat transfer

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Chao, B. T.

    1978-01-01

    Various types of series solutions for predicting laminar, free-convection boundary-layer heat transfer over both isothermal and nonisothermal boundaries are reviewed. The methods include finite difference, Merk series, Blasius series, and Goertler series. Comparative results are presented for heat transfer over an isothermal, horizontal, elliptical cylinder in both slender and blunt configurations.

  7. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    NASA Astrophysics Data System (ADS)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be included into atmospheric numerical models.

  8. Chill Down Process of Hydrogen Transport Pipelines

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  9. Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues.

    PubMed

    Lollo, Pablo C B; Moura, Carolina S; Morato, Priscila N; Amaya-Farfan, Jaime

    2013-01-01

    Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP), but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric) and downhill (predominantly eccentric) muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7%) and downhill (-7% of inclination). At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK) and lactate dehydrogenase (LDH) were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal). When the contraction was concentric (uphill) and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL(-1)) in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively). The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus. Key PointsExercise can induce increases in HSP70 in the lung, kidney and heart, and in the soleus and gastrocnemius muscles, probably due to systemic alterations such as hypoxia, increase in temperature and the production of free radicals.Predominantly concentric contractions (running uphill), seem to be the most efficient way of increasing the HSP70 concentrations in the different tissues, followed by eccentric contraction (downhill) and lastly the concentric-eccentric cycle (horizontal).The energy demand, already known to influence HSP70, appears not to be the only factor responsible for the response of these proteins, considering that for the kidney and the soleus muscle, downhill running was more efficient in raising the HSP70 response than horizontal running.Future research should explore the mechanisms by which the eccentric, concentric and eccentric-concentric contractions are capable of influencing the responses of the heat shock proteins, opening possibilities for increasing the levels of these proteins in desirable situations, such as to protect against excess free radicals or injuries.

  10. A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow

    NASA Technical Reports Server (NTRS)

    Ungar, E. K.; Eichhorn, R.

    1988-01-01

    Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.

  11. Kinetic energy and quasi-biennial oscillation.

    NASA Technical Reports Server (NTRS)

    Miller, A. J.

    1971-01-01

    The modulation of the vertical flux of kinetic energy to the stratosphere by the pressure-work effect at 100 mb is compared with variations in the hemispheric kinetic energy, the horizontal momentum and heat transports at 'low' latitudes, and the tropical zonal wind and temperature for the lower stratosphere. It is deduced that the variation of the vertical flux of geopotential is in phase with the kinetic energy in the lower stratosphere and is statistically related to the time rate of change of the horizontal transports of heat and momentum at 30 N. The association of these results to the general circulation of the lower stratosphere is considered.

  12. Bifurcations and chaos in convection taking non-Fourier heat-flux

    NASA Astrophysics Data System (ADS)

    Layek, G. C.; Pati, N. C.

    2017-11-01

    In this Letter, we report the influences of thermal time-lag on the onset of convection, its bifurcations and chaos of a horizontal layer of Boussinesq fluid heated underneath taking non-Fourier Cattaneo-Christov hyperbolic model for heat propagation. A five-dimensional nonlinear system is obtained for a low-order Galerkin expansion, and it reduces to Lorenz system for Cattaneo number tending to zero. The linear stability agreed with existing results that depend on Cattaneo number C. It also gives a threshold Cattaneo number, CT, above which only oscillatory solutions can persist. The oscillatory solutions branch terminates at the subcritical steady branch with a heteroclinic loop connecting a pair of saddle points for subcritical steady-state solutions. For subcritical onset of convection two stable solutions coexist, that is, hysteresis phenomenon occurs at this stage. The steady solution undergoes a Hopf bifurcation and is of subcritical type for small value of C, while it becomes supercritical for moderate Cattaneo number. The system goes through period-doubling/noisy period-doubling transition to chaos depending on the control parameters. There after the system exhibits Shil'nikov chaos via homoclinic explosion. The complexity of spiral strange attractor is analyzed using fractal dimension and return map.

  13. A quasi two-dimensional benchmark experiment for the solidification of a tin lead binary alloy

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Dong; Petitpas, Patrick; Garnier, Christian; Paulin, Jean-Pierre; Fautrelle, Yves

    2007-05-01

    A horizontal solidification benchmark experiment with pure tin and a binary alloy of Sn-10 wt.%Pb is proposed. The experiment consists in solidifying a rectangular sample using two lateral heat exchangers which allow the application a controlled horizontal temperature difference. An array of fifty thermocouples placed on the lateral wall permits the determination of the instantaneous temperature distribution. The cases with the temperature gradient G=0, and the cooling rates equal to 0.02 and 0.04 K/s are studied. The time evolution of the interfacial total heat flux and the temperature field are recorded and analyzed. This allows us to evaluate heat transfer evolution due to natural convection, as well as its influence on the solidification macrostructure. To cite this article: X.D. Wang et al., C. R. Mecanique 335 (2007).

  14. Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.

    2008-03-01

    The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.

  15. Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.

    DTIC Science & Technology

    1984-04-01

    The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In

  16. New system speeds bundling of split firewood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A firewood compacting and strapping machine is manufactured by Carolson Stapler and Shippers Supply, Omaha, and FMC Industrial Packaging Division, Philadelphia. A hydraulic compactor applies 20,000 lbs of compressive force to each bundle of split logs, reducing each package to a diameter of about 12 inches. A polypropylene band is applied and heat sealed around each bundle. Bundles are stacked on end, twenty-four to a pallet, and the entire load is banded with one horizontal strap.

  17. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  18. New Correlation Methods of Evaporation Heat Transfer in Horizontal Microfine Tubes

    NASA Astrophysics Data System (ADS)

    Makishi, Osamu; Honda, Hiroshi

    A stratified flow model and an annular flow model of evaporation heat transfer in horizontal microfin tubes have been proposed. In the stratified flow model, the contributions of thin film evaporation and nucleate boiling in the groove above a stratified liquid were predicted by a previously reported numerical analysis and a newly developed correlation, respectively. The contributions of nucleate boiling and forced convection in the stratified liquid region were predicted by the new correlation and the Carnavos equation, respectively. In the annular flow model, the contributions of nucleate boiling and forced convection were predicted by the new correlation and the Carnavos equation in which the equivalent Reynolds number was introduced, respectively. A flow pattern transition criterion proposed by Kattan et al. was incorporated to predict the circumferential average heat transfer coefficient in the intermediate region by use of the two models. The predictions of the heat transfer coefficient compared well with available experimental data for ten tubes and four refrigerants.

  19. Further Studies in Filmwise Condensation of Steam on Horizontal Finned Tubes

    DTIC Science & Technology

    1992-03-01

    which to base their design of Ocean Thermal Energy Conversion ( OTEC ) heat exchangers . ANL used two shell-and-tube heat exchangers , with no inserts, for...throughout the duration of this study. xiii~q I. INTRODUCTON A. BACKGROUND A reduction in size and weight of all types of heat exchangers aboard Naval...vessels will allow more efficient use of space. The benefits might include greater equipment accessibility for maintenance or greater heat exchanger

  20. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  1. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  2. Carbothermic reduction with parallel heat sources

    DOEpatents

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  3. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    PubMed Central

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  4. Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru

    Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.

  5. Horizontal semi-dry electroblotting for the detection of the low density lipoprotein receptor in solubilized liver membranes.

    PubMed

    Himber, J

    1993-08-01

    A high efficiency transfer of the low density lipoprotein (LDL) receptor proteins from polyacrylamide slab gel onto immobilizing nitrocellulose membranes using the horizontal semi-dry electrophoretic system is described. The transfer of the LDL receptors from solubilized rat liver microsomes was performed between two graphite plate electrodes in a continuous buffer system containing methanol and sodium dodecyl sulfate. The protein transfer was achieved in only 150 min at a constant current of 0.8 mA/cm2 at room temperature with very low Joule heat development. The homogeneous electric field yield between the two electrode plates produced a satisfactory transfer of the LDL-receptor protein band in spite of its high molecular weight, and only few protein traces remained in the polyacrylamide gel after blotting. This improved method allows a rapid and quantitative transfer of the LDL receptors without protein denaturation, since the specific binding activity of the blotted receptor is retained as demonstrated by ligand-blotting and immunoblotting.

  6. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however, can "remove" such cloud top level convection. The later one consists with measured high static stability at the cloud top level from radio occultation measurement.

  7. Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model

    NASA Astrophysics Data System (ADS)

    Salvati, Agnese; Palme, Massimo; Inostroza, Luis

    2017-10-01

    Although Urban Heat Island (UHI) is a fundamental effect modifying the urban climate, being widely studied, the relative weight of the parameters involved in its generation is still not clear. This paper investigates the hierarchy of importance of eight parameters responsible for UHI intensity in the Mediterranean context. Sensitivity analyses have been carried out using the Urban Weather Generator model, considering the range of variability of: 1) city radius, 2) urban morphology, 3) tree coverage, 4) anthropogenic heat from vehicles, 5) building’s cooling set point, 6) heat released to canyon from HVAC systems, 7) wall construction properties and 8) albedo of vertical and horizontal surfaces. Results show a clear hierarchy of significance among the considered parameters; the urban morphology is the most important variable, causing a relative change up to 120% of the annual average UHI intensity in the Mediterranean context. The impact of anthropogenic sources of heat such as cooling systems and vehicles is also significant. These results suggest that urban morphology parameters can be used as descriptors of the climatic performance of different urban areas, easing the work of urban planners and designers in understanding a complex physical phenomenon, such as the UHI.

  8. Theoretical analysis of start-up power in helium pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Monan; Huang, Rongjin; Xu, Dong; Li, Laifeng

    2017-02-01

    An analytical model for one-turn helium pulsating heat pipes (PHPs) with single liquid slug and vapor plug is established in present study. When an additional heat power takes place in the evaporating section, temperature and pressure will increase. The pressure wave travels through vapor and liquid phases at different speed, producing a pressure difference in the system, which acts as an exciting force to start up the oscillating motion. Results show that the start-up power of helium PHP is related to the filling ratio. The start-up power increases with the filling ration. However, there exist an upper limit. Furthermore, the start-up power also depends on the inclination angle of PHP. When the inclination angle increases, the heat input needed to start up the oscillating motion decreases. But for one-turn helium PHP, it can not be started up when the inclination angle is up to 90°, equalling to horizontal position,. While the inclination angle ranges between 0° (vertical position) and 75°, it can operate successfully.

  9. Porous Foam Based Wick Structures for Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  10. Heating Rate Distributions at Mach 10 on a Circular Body Earth-to-Orbit Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Wells, William L.; MacConochie, Ian O.; Helms, Vernon T., III; Raney, David

    1985-01-01

    Among the concepts being considered for future Earth-to-orbit transport vehicles are fully reusable single-stage systems which take off vertically and land horizontally. Because these vehicles carry their own propellant internally, they are much larger than the present Space Shuttle Orbiter. One such single-stage vehicle under study is the circular body configuration which has the advantages of simple structural design and large volume-to-weight ratio. As part of an overall evaluation of this configuration, a series of heat transfer and surface flow tests were conducted. The phase-change paint and oil-flow tests were performed in the Langley 31-Inch Mach-10 Tunnel at angles of attack from 20 through 40 degrees in 5-degree increments. Heat-transfer coefficient data are presented for all angles of attack and detailed oil-flow photographs are shown for windward and leeward surfaces at 25 and 40 degrees angle of attack. In many ways, heating was similar to that previously determined for the Shuttle Orbiter so that, in a cursory sense, existing thermal protection systems would appear to be adequate for the proposed circular-body configurations.

  11. Capillary Liquid Acquisition Device Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hastings, L. J.; Statham, G.; Turpin, J. B.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of subcooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs? Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, 200x1400 and 325x2300, both with Twill Dutch Weave. Upon consideration of both the water and LN2 data, it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  12. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  13. Cattaneo-Christov based study of {TiO}_2 -CuO/EG Casson hybrid nanofluid flow over a stretching surface with entropy generation

    NASA Astrophysics Data System (ADS)

    Jamshed, Wasim; Aziz, Asim

    2018-06-01

    In the present research, a simplified mathematical model is presented to study the heat transfer and entropy generation analysis of thermal system containing hybrid nanofluid. Nanofluid occupies the space over an infinite horizontal surface and the flow is induced by the non-linear stretching of surface. A uniform transverse magnetic field, Cattaneo-Christov heat flux model and thermal radiation effects are also included in the present study. The similarity technique is employed to reduce the governing non-linear partial differential equations to a set of ordinary differential equation. Keller Box numerical scheme is then used to approximate the solutions for the thermal analysis. Results are presented for conventional copper oxide-ethylene glycol (CuO-EG) and hybrid titanium-copper oxide/ethylene glycol ({TiO}_2 -CuO/EG) nanofluids. The spherical, hexahedron, tetrahedron, cylindrical, and lamina-shaped nanoparticles are considered in the present analysis. The significant findings of the study is the enhanced heat transfer capability of hybrid nanofluids over the conventional nanofluids, greatest heat transfer rate for the smallest value of the shape factor parameter and the increase in Reynolds number and Brinkman number increases the overall entropy of the system.

  14. 8. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. It received steam from the locomotive type, fire-tube portable boiler in the background. The engine's water pump which pumped water from the feed-water clarifying cistern, in between the boiler and engine, through a pre-heat system and on to the boiler, is seen in front of the fluted cylinder. The fly-ball governor, missing its balls, the steam port, and manual throttle valve are above and behind the cylinder. The flywheel, drive shaft, and pulley are on the left side of the engine bed. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  16. How well can change diagnose the effects of coupling of the Regional Atmosphere on ET of an Irrigated Surface Under Extreme Advection of Heat

    USDA-ARS?s Scientific Manuscript database

    The role of imported heat and saturation deficit versus available energy on the energy balance of a cotton field is investigated in a semi-arid region under a range of conditions, including extreme horizontal advection of heat. Using eddy covariance measurements of water vapor fluxes, a modified Pen...

  17. Natural convective heat transfer from square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  18. Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus

    NASA Astrophysics Data System (ADS)

    Omojaro, Adebola Peter; Breitkopf, Cornelia

    2017-07-01

    Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.

  19. Numerical study focusing on the entropy analysis of MHD squeezing flow of a nanofluid model using Cattaneo–Christov theory

    NASA Astrophysics Data System (ADS)

    Akmal, N.; Sagheer, M.; Hussain, S.

    2018-05-01

    The present study gives an account of the heat transfer characteristics of the squeezing flow of a nanofluid between two flat plates with upper plate moving vertically and the lower in the horizontal direction. Tiwari and Das nanofluid model has been utilized to give a comparative analysis of the heat transfer in the Cu-water and Al2O3-water nanofluids with entropy generation. The modeling is carried out with the consideration of Lorentz forces to observe the effect of magnetic field on the flow. The Joule heating effect is included to discuss the heat dissipation in the fluid and its effect on the entropy of the system. The nondimensional ordinary differential equations are solved using the Keller box method to assess the numerical results which are presented by the graphs and tables. An interesting observation is that the entropy is generated more near the lower plate as compared with that at the upper plate. Also, the heat transfer rate is found to be higher for the Cu nanoparticles in comparison with the Al2O3 nanoparticles.

  20. Regular network model for the sea ice-albedo feedback in the Arctic.

    PubMed

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  1. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  2. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  3. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  4. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  5. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...

  6. A scanned focused ultrasound device for hyperthermia: numerical simulation and prototype implementation

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Raynolds, Timothy; Geimer, Shireen D.; Potwin, Lincoln; Paulsen, Keith D.

    2004-07-01

    We are developing a scanned focused ultrasound system for hyperthermia treatment of breast cancer. Focused ultrasound has significant potential as a therapy delivery device because it can focus sufficient heating energy below the skin surface with minimal damage to intervening tissue. However, as a practical therapy system, the focal zone is generally quite small and requires either electronic (in the case of a phased array system) or mechanical steering (for a fixed bowl transducer) to cover a therapeutically useful area. We have devised a simple automated steering system consisting of a focused bowl transducer supported by three vertically movable rods which are connected to computer controlled linear actuators. This scheme is particularly attractive for breast cancer hyperthermia where the support rods can be fed through the base of a liquid coupling tank to treat tumors within the breast while coupled to our noninvasive microwave thermal imaging system. A MATLAB routine has been developed for controlling the rod motion such that the beam focal point scans a horizontal spiral and the subsequent heating zone is cylindrical. In coordination with this effort, a 3D finite element thermal model has been developed to evaluate the temperature distributions from the scanned focused heating. In this way, scanning protocols can be optimized to deliver the most uniform temperature rise to the desired location.

  7. Vibration effect on the Soret-induced convection of ternary mixture in a rectangular cavity heated from below

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Zubova, N. A.

    2017-06-01

    This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.

  8. Investigation of Hydrophobic Radomes for Microwave Landing System.

    DTIC Science & Technology

    1982-11-01

    horizontal heating wires on the inside surface, and 2) a slotted waveguide unit (C-band waveguide, about 2 feet in length) covered with a Teflon shrink tube ...AZ) Fiberglass flat 1.5ft x 13ft NE sandwich (EL) Teflon shrink 1 in x 2 ft SW tubing (Field Mon.) 7 (8) Hydrophobic Coating for Antenna Weather...SURFACE PREPARATION 13 24 Mar 󈨖 Conolite Primer: Vellox S-048 Finish: Microfine FSD, 7 coats, sprayed 14 24 Mar 󈨖 Conolite Teflon film, C-TAPE-36

  9. Method for in situ heating of hydrocarbonaceous formations

    DOEpatents

    Little, William E.; McLendon, Thomas R.

    1987-01-01

    A method for extracting valuable constituents from underground hydrocarbonaceous deposits such as heavy crude tar sands and oil shale is disclosed. Initially, a stratum containing a rich deposit is hydraulically fractured to form a horizontally extending fracture plane. A conducting liquid and proppant is then injected into the fracture plane to form a conducting plane. Electrical excitations are then introduced into the stratum adjacent the conducting plate to retort the rich stratum along the conducting plane. The valuable constituents from the stratum adjacent the conducting plate are then recovered. Subsequently, the remainder of the deposit is also combustion retorted to further recover valuable constituents from the deposit. Various R.F. heating systems are also disclosed for use in the present invention.

  10. Dynamics of the global meridional ice flow of Europa's icy shell

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  11. Evaluation of generalized heat-transfer coefficients in pilot AFBC units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.

    Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.

  12. Evaluation of generalized heat transfer coefficients in pilot AFBC units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.

    Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.

  13. Test of Monin-Obukhov similarity theory using distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.

    2017-12-01

    Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.

  14. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  15. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  16. Emergence of magnetic flux from the convection zone into the corona

    NASA Astrophysics Data System (ADS)

    Archontis, V.; Moreno-Insertis, F.; Galsgaard, K.; Hood, A.; O'Shea, E.

    2004-11-01

    Numerical experiments of the emergence of magnetic flux from the uppermost layers of the solar interior to the photosphere and its further eruption into the low atmosphere and corona are carried out. We use idealized models for the initial stratification and magnetic field distribution below the photosphere similar to those used for multidimensional flux emergence experiments in the literature. The energy equation is adiabatic except for the inclusion of ohmic and viscous dissipation terms, which, however, become important only at interfaces and reconnection sites. Three-dimensional experiments for the eruption of magnetic flux both into an unmagnetized corona and into a corona with a preexisting ambient horizontal field are presented. The shocks preceding the rising plasma present the classical structure of nonlinear Lamb waves. The expansion of the matter when rising into the atmosphere takes place preferentially in the horizontal directions: a flattened (or oval) low plasma-β ball ensues, in which the field lines describe loops in the corona with increasing inclination away from the vertical as one goes toward the sides of the structure. Magnetograms and velocity field distributions on horizontal planes are presented simultaneously for the solar interior and various levels in the atmosphere. Since the background pressure and density drop over many orders of magnitude with increasing height, the adiabatic expansion of the rising plasma yields very low temperatures. To avoid this, the entropy of the rising fluid elements should be increased to the high values of the original atmosphere via heating mechanisms not included in the present numerical experiments. The eruption of magnetic flux into a corona with a preexisting magnetic field pointing in the horizontal direction yields a clear case of essentially three-dimensional reconnection when the upcoming and ambient field systems come into contact. The coronal ambient field is chosen at time t=0 perpendicular to the direction of the tube axis and thus, given the twist of the magnetic tube, almost anti-parallel to the field lines at the upper boundary of the rising plasma ball. A thin, dome-shaped current layer is formed at the interface between the two flux systems, in which ohmic dissipation and heating are taking place. The reconnection proceeds by merging successive layers on both sides of the reconnection site; however, this occurs not only at the cusp of the interface, but, also, gradually along its sides in the direction transverse to the ambient magnetic field. The topology of the magnetic field in the atmosphere is thereby modified: the reconnected field lines typically are part of the flanks of the tube below the photosphere but then join the ambient field system in the corona and reach the boundaries of the domain as horizontal field lines.

  17. An Assessment of Some Design Constraints on Heat Production of a 3D Conceptual EGS Model Using an Open-Source Geothermal Reservoir Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yidong Xia; Mitch Plummer; Robert Podgorney

    2016-02-01

    Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less

  18. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    NASA Technical Reports Server (NTRS)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  19. Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai

    2018-05-01

    Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.

  20. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks (Postprint)

    DTIC Science & Technology

    2013-11-01

    Flows in Microchannels ," Heat Transfer Engineering, Vol. 27, No. 9, 2006, pp. 4-19. 2Kandlikar, S. G., " Heat Transfer Mechanisms During Flow...Boiling in Microchannels ," Journal of Heat Transfer , Vol. 126, No. 1, 2004, pp. 8-16. 3Kreitzer, P. J., Byrd, L., and Willebrand, B. J., "Initial...an integral aspect of modeling two phase flows as most pressure drop and heat transfer correlations rely on a priori knowledge of the flow regime for

  1. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  2. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity

    NASA Astrophysics Data System (ADS)

    Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.

    2017-03-01

    The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.

  3. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  4. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  5. 16 CFR § 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  6. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Nazarian, Negin; Martilli, Alberto; Kleissl, Jan

    2018-03-01

    As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.

  7. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A.

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimesmore » are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.« less

  8. Estimates of horizontal fluxes of oxygen, heat, and salt in western Long Island Sound

    NASA Astrophysics Data System (ADS)

    McCardell, Grant; O'Donnell, James

    2014-10-01

    The dissolved oxygen (DO) concentration in the bottom waters of western Long Island Sound decreases to hypoxic levels between April and July. Since the rate of decline of DO is considerably less than measured respiration, there must be significant vertical transport of DO from oxygen richer waters near the surface and/or horizontal transport from the central Sound. Simple model budgets with either of these sources are able to provide predictions of the seasonal rate of decline that are consistent with the observed values. Although prior budget estimates indicated that vertical fluxes were a significant portion of the resupply of DO, these were not able to discount the possible importance of horizontal fluxes, nor have there been any measurements of horizontal fluxes in this region. We present an analysis of time series of moored conductivity, temperature, DO, and current observations in the hypoxic area of Long Island Sound during the summers of 2005 and 2006. We estimate the near-bottom along-channel flux divergences of salt, heat, and DO as 0.11 ± 0.08 g kg-1 d-1, -5 ± 6 W m-3, and 4 ± 6 μM d-1, respectively. Since this horizontal DO transport is only 25% of the magnitude of the mean rate of respiration, we conclude that vertical transport by mixing forms the bulk of the physical resupply of DO to the hypoxic zone of the western Sound.

  9. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  10. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  11. Numerical analysis of single tank thermocline thermal storage system for concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Afrin, Samia

    The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can increase the operating range of the storage facilities to higher range of temperatures. In this work HitecRTM molten salt is considered as the heat transfer fluid (HTF). The operating temperature of this HTF is 300-500°C. So to increase the thermal properties of this HTF nanomaterial has been added. The effective thermal conductivity and specific heat capacity of the nanofluid were calculated and the thermal effect of this nanofluid was observed from the simulation result.

  12. Performance enhancement of fin attached ice-on-coil type thermal storage tank for different fin orientations using constrained and unconstrained simulations

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Duong, X. Q.; Chung, J. D.

    2017-03-01

    One of the drawbacks in latent thermal energy storage system is the slow charging and discharging time due to the low thermal conductivity of the phase change materials (PCM). This study numerically investigated the PCM melting process inside a finned tube to determine enhanced heat transfer performance. The influences of fin length and fin numbers were investigated. Also, two different fin orientations, a vertical and horizontal type, were examined, using two different simulation methods, constrained and unconstrained. The unconstrained simulation, which considers the density difference between the solid and liquid PCM showed approximately 40 % faster melting rate than that of constrained simulation. For a precise estimation of discharging performance, unconstrained simulation is essential. Thermal instability was found in the liquid layer below the solid PCM, which is contrary to the linear stability theory, due to the strong convection driven by heat flux from the coil wall. As the fin length increases, the area affected by the fin becomes larger, thus the discharging time becomes shorter. The discharging performance also increased as the fin number increased, but the enhancement of discharging performance by more than two fins was not discernible. The horizontal type shortened the complete melting time by approximately 10 % compared to the vertical type.

  13. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.

    1989-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  14. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio

    1990-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  15. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  16. Prospects for altimetry and scatterometry in the 90's. [satellite oceanography

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.

    1985-01-01

    Current NASA plans for altimetry and scatterometry of the oceans using spaceborne instrumentation are outlined. The data of interest covers geostrophic and wind-driven circulation, heat content, the horizontal heat flux of the ocean, and the interactions between atmosphere and ocean and ocean and climate. A proposed TOPEX satellite is to be launched in 1991, carrying a radar altimeter to measure the ocean surface topography. Employing dual-wavelength operation would furnish ionospheric correction data. Multibeam instruments could also be flown on the multiple-instrument polar orbiting platforms comprising the Earth Observation System. A microwave radar scatterometer, which functions on the basis of Bragg scattering of microwave energy off of wavelets, would operate at various view angles and furnish wind speeds accurate to 1.5 m/sec and directions accurate to 20 deg.

  17. Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Bartha, E. B.; Pongracz, R.; Bartholy, J.

    2012-04-01

    Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For both RCMs A1B emission scenario was used. The climatic conditions of 1961-1990 (as a reference), and 2021-2050, 2071-2100 future periods are evaluated using bias corrected daily mean temperature outputs of both RegCM and PRECIS. Based on the results the following main conclusions can be drawn: (i) Heat waves are very likely to occur more frequently in the 21st century than in the reference period, 1961-1990. (ii) By the end of the 21st century heat warning level 3 is projected to occur with similar frequency as the heat warning level 1 in the reference period. (iii) By the end of the 21st century the average first occurrence of the heat warning days is simulated to shift earlier, and the average last occurrence later, than in the reference period - thus the length of the heat wave season is projected to become remarkably larger. (iv) For each time slices (both reference and future periods), PRECIS simulations suggest a more often occurrence of heat warning cases in the Carpathian basin than the RegCM experiments.

  18. Experimental technique for studying high-temperature phases in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, A.; Schoenitz, M.; Hoffmann, V. K.; Dreizin, E. L.

    2004-12-01

    Containerless, microgravity experiments for studying equilibria in molten metal-gas systems have been designed and conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. An experimental apparatus enabling one to acoustically levitate, laser heat, and splat quench 1-3 mm metal and ceramic samples has been developed and equipped with computer-based controller and optical diagnostics. Normal-gravity testing determined the levitator operation parameters providing stable and adjustable sample positioning. A methodology for optimizing the levitator performance using direct observation of levitated samples was developed and found to be more useful than traditional pressure mapping of the acoustic field. In microgravity experiments, spherical specimens prepared of pressed, premixed powders of ZrO2, ZrN, and Zr, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser up to 2800 K. Using a uniaxial acoustic levitator in microgravity, the location of the laser-heated samples could be maintained for about 1 s, so that local sample melting was achieved. Oscillations of the levitating samples in horizontal direction became pronounced in microgravity. These oscillations increased during the sample heating and eventually resulted in moving the sample out of the stable position and away from the laser beam.

  19. SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT.

    ERIC Educational Resources Information Center

    BELLOMY, CLEON C.; CAUDILL, WILLIAM W.

    THE PURPOSE OF THIS REPORT DEFINES THE SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT AND SUGGESTS A MORE NATURAL APPROACH TO A LESS RESTRICTED ARCHITECTURE. ONE OF THE TWO BASIC ARCHITECTURAL ELEMENTS IN THE SPATIAL CONCEPT IS THE HORIZONTAL SCREEN WHICH KEEPS THE SUN AND RAIN OFF, LETS IN LIGHT, KEEPS OUT SUN HEAT, RETAINS ROOM HEAT, AND…

  20. Heat-resistant anemometers for fire research

    Treesearch

    John R. Murray; Clive M. Countryman

    1968-01-01

    Heat-resistant anemometers have been developed for measuring horizontal and vertical air flow in fire behavior studies. The anemometers will continue to produce data as long as the anemometer body is less than 650°F. They can survive brief immersion in flame without major damage. These air-flow sensors have aluminum bodies and rotor hubs and stainless steel...

  1. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  2. Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study

    NASA Astrophysics Data System (ADS)

    Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław

    2017-10-01

    Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).

  3. Effects of Ultrasonic Vibration on Heat Transfer Characteristics of Lithium Bromide Aqueous Solution under the Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Yamashiro, Hikaru; Nakashima, Ryou

    The effects of ultrasonic vibration on heat transfer characteristics of lithium bromide aqueous solution under the reduced pressures are studied experimentally. Pool boiling curves on horizontal smooth tube are obtained using distilled water and 50 % LiBr aqueous solution as test liquids. The system pressure p is varied from 12 to 101 kPa and the liquid subcooling ΔTsub ranges from 0 to 70 K. The frequency of ultrasonic vibration vi s set at 24 and 44 kHz, and the power input to the vibrator P is varied from 0 to 35 W. The wall superheat at the boiling incipience is found to decrease with increasing P, and the nucleate boiling curve shifts toward the lower wall temperature region. However, the effect of P is not found to be very significant in the high heat flux region, especially in the case of small liquid subcooling. Ultrasonic vibration is also found to improve the nucleate boiling heat transfer coefficient by up to a maximum of 3.5 times and to prevent crystallization of the solution and precipitation of additives.

  4. Heating-insensitive scale increase caused by convective precipitation

    NASA Astrophysics Data System (ADS)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective extremes, we conclude that the formation of extreme events is a highly nonlinear process. However, our results suggest that crucial features of convective organization throughout the day may be independent of temperature - with possible implications for large-scale model parameterizations. Yet, the timing of the onset of initial precipitation depends strongly on the temperature boundary conditions, where higher temperatures, or earlier, moderate heating, lead to earlier initiation of convection and hence allow for more time for development and the production of extremes.

  5. Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Ashwinkumar, G. P.; Sandeep, N.

    2017-09-01

    In the current study, we investigated the impact of thermophoresis and Brownian moment on the boundary layer 2D forced convection flow of a magnetohydrodynamic nanofluid along a persistently moving horizontal needle with frictional heating effect. The various pertinent parameters are taken into account in the present analysis, namely, the thermophoresis and Brownian moment, uneven heat source/sink, Joule heating and frictional heating effects. To check the variation in the boundary layer behavior, we considered two distinct nanoparticles namely Al50Cu50 (alloy with 50% alumina and 50% copper) and Cu with water as base liquid. Numerical solutions are derived for the reduced system of governing PDEs by employing the shooting process. Computational results of the flow, energy and mass transport are interpreted with the support of tables and graphical illustrations. The obtained results indicate that the increase in the needle size significantly reduces the flow and thermal fields. In particular, the velocity field of the Cu-water nanofluid is highly affected when compared with the Al50Cu50 -water nanofluid. Also, we showed that the thermophoresis and Brownian moment parameters are capable of enhancing the thermal conductivity to a great extent.

  6. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to other megacities to enable them to be more resilient to UHI effects.

  7. The Weight Loss Effect of Heated Inner Cylinder by Free Convection in Horizontal Cylindrical Enclosure

    NASA Astrophysics Data System (ADS)

    Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.

    2018-03-01

    The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.

  8. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    NASA Astrophysics Data System (ADS)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  9. Growth and Study of Nonlinear Optical Materials for Frequency Conversion Devices with Applications in Defense and Security

    DTIC Science & Technology

    2015-03-01

    contemporary heat seeking missiles are rather flying computers—they cannot be fooled easily but can see the target in fog and clouds and even...usually not protected. Obviously, the IR countermeasure development is a step behind the heat seeking missile development, which means...horizontal reactor customized for low pressure operation (Fig. 3). The 3-inch diameter quartz tube was heated in a 3-zone resistive furnace. Quartz boat

  10. Thermal Expansion of Metal Matrix Composites.

    DTIC Science & Technology

    1981-08-01

    mirrors by M, for the right-hand side, the interferometer optical path length difference is OPLD I = B1S 1 - BIM 6 (20) Similarly, OPLD2 2 B M5 - S2M4...resultant optics separation) available and by the amount of heat flow the system can tolerate. Thin horizontal Invar or Zerodur support rods have proved...Aluminized end faces, polished < X/5, are preferable to altern-te mounted mirrors 18 of X/2 to X/5 and coated with a few hundred angstroms of vapor-deposited

  11. Integrated Modeling Study of the Effects of the Magnetospheric Forcing on the Jovian Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Bogan, Denis (Technical Monitor); Waite, J. Hunter

    2005-01-01

    The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter s thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approx.2 km/s and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy t o equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (< 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (>0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.

  12. Numerical and Experimental Studies of the Natural Convection Flow Within a Horizontal Cylinder Subjected to a Uniformly Cold Wall Boundary Condition. Ph.D. Thesis - Va. Poly. Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.

    1972-01-01

    Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.

  13. Venusian tectonics: Convective coupling to the lithosphere?

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1987-01-01

    The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.

  14. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  15. Martian Electron Temperatures in the Sub Solar Region.

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  16. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  17. Sodium VCHP with Carbon-Carbon Radiator for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Anderson, William G.; Miller, William O.; Ramirez, Rogelio

    2010-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling converter normally provides this cooling. If the Stirling convertor stops in the current system the insulation is designed to spoil, preventing damage to the GPHS at the cost of an earlier termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to allow multiple stops and restarts of the Stirling convertor. A sodium VCHP with a Haynes 230 envelope was designed and fabricated for the Advanced Stirling Radioisotope Generator (ASRG), with a baseline 850° C heater head temperature. When the Stirling convertor is stopped, the heat from the GPHS is rejected to the Cold Side Adapter Flange using a low-mass, carbon-carbon radiator. The VCHP is designed to activate with a AT of 30° C. The 880° C temperature when the Stirling convertor is stopped is high enough to avoid risking standard ASRG operation, but low enough to save most of the heater head life. The VCHP has low mass and low thermal losses for normal operation. The design has been modified from an earlier, stainless steel prototype with a nickel radiator. In addition to replacing the nickel radiator with a low mass carbon-carbon radiator, the radiator location has been moved from the ASRG case to the cold side adapter flange. This flange already removes two-thirds of the heat during normal operation, so it is optimized to transfer heat to the case. The VCHP was successfully tested with a turn-on ΔT of 30° C in three orientations: horizontal, gravity-aided, and against gravity.

  18. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  19. Integrated heat exchanger design for a cryogenic storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindricalmore » tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.« less

  20. Natural convection and radiation heat transfer from an array of inclined pin fins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessio, M.E.; Kaminski, D.A.

    1989-02-01

    Natural convection and radiation from an air-cooled, highly populated pin-fin array were studied experimentally. the effects of pin density, pin length, and the angle of the pin to the horizontal were measured. Previous work by Sparrow and Vemuri treated the case of a vertical base plate with horizontal fins. recently, Sparrow and Vemuri (1986) extended their study to include results for vertical fins with a horizontal down-facing base plate, as well as vertical fins with a horizontal up-facing base plate. In this study, the base plate is maintained in a vertical position and the angle of the pins is variedmore » from the horizontal. The main intent of this study was to compare the performance of inclined pin fins with straight pin fins. In all cases studied, the straight, horizontal fins were superior to the inclined fins. It was possible to obtain a single general correlation of the test data. While this correlation is recommended within the range of parameters that were tested here, one significant parameter, the size of the base plate, was not varied.« less

  1. A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.

    PubMed

    Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael

    2009-09-01

    We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.

  2. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    NASA Technical Reports Server (NTRS)

    Bugby, D. C.; Farmer, J. T.; Stouffer, C. J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal control architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture is comprised by linking one or more hot-side variable conductance heat pipes (VCHPs) in series with one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. Combining two variable conductance devices in series ensures very high switching ratio isolation from severe environments like the Earth's moon, where each lunar day spans 15 Earth days (270 K sink, with a surface-shielded/space viewing radiator) and each lunar night spans 15 Earth days (80-100 K radiative sink, depending on location). The single VCHP-single LHP system described herein was developed to maintain thermal control of International Lunar Network (ILN) anchor node lander electronics, but it is also applicable to other variable heat rejection space missions in severe environments. The LHPVCHP system utilizes a stainless steel wire mesh wick ammonia VCHP, a Teflon wick propylene LHP, a pair of one-third square meter high ? radiators (one capillary-pumped horizontal radiator and a second gravity-fed vertical radiator), a half-meter of transport distance, and a wick-bearing co-located flow regulator (CLFR) to allow operation with a hot (deactivated) radiator. The VCHP was designed with a small reservoir formed by extending the length of its stainless steel heat pipe tubing. The system was able to provide end-to-end switching ratios of 300-500 during thermal vacuum testing at ATK, including 3-5 W/K ON conductance and 0.01 W/K OFF conductance. The test results described herein also include an in-depth analysis of VCHP condenser performance to explain VCHP switching operation in detail. Future multi-VCHP/multi-LHP thermal management system concepts that provide scalability to higher powers/longer transport lengths are also discussed in the paper.

  3. Vapordynamic thermosyphon - heat transfer two-phase device for wide applications

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei

    2015-12-01

    Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.

  4. Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment

    DTIC Science & Technology

    2006-09-30

    temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the

  5. The Influence of Wall Conductivity of Film Condensation with Integral Fin Tubes

    DTIC Science & Technology

    1993-09-23

    tube based on Nusselt theory ) dynamic viscosity, kg/(m*s) Mf dynamic viscosity of the condensate film, kg/(m*s) Aw dynamic viscosity of the cooling...improve the simple model of Nusselt to predict the heat transfer 2 coefficient for condensation on horizontal tubes. Nusselt’s theory was based on a plain...be developed and utilized. 1. Norisontal Smooth Tubes Nusselt [Ref. 16] developed the foundation for the study of filmwise condensation on horizontal

  6. A Critical Review of Heat Transfer Enhancement Techniques for Use in Marine Condensers.

    DTIC Science & Technology

    1982-09-01

    horizontal tube, the Nusselt theory predicts that the condensate film is thinnest at the top of the tube, and thickens around the tube until at the...transfer coefficient. As pointed out above, the Nusselt analysis assumes that the condensate film drains from a horizontal tube in a continuous sheet...the condensate falling on the lower tubes does not deteriorate the thermal performance of these tubes because the helically - wrapped wires draw the

  7. Tilted geostrophic convection in icy world oceans caused by the horizontal component of the planetary rotation vector

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2012-12-01

    The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume in Europa's ocean (Seafloor heat source = 4 GW; ocean depth = 100 km; rotation period = 3.55 days; latitude = 30° N). Left: elevation section through plume. Right: 3-d isosurface of constant temperature (1 microkelvin above ambient). Note alignment of geostrophic eddies along angular rotation axis.

  8. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  9. Development and testing of aluminum micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  10. Experimental and Theoretical Studies of Condensation on a Horizontal Tube Row with Vapour Shear

    NASA Astrophysics Data System (ADS)

    Aoune, Azzeddine

    Available from UMI in association with The British Library. This thesis presents an experimental and theoretical investigation into the effect of vapour shear on the condensation of steam flowing vertically downwards over a single horizontal tube and a horizontal tube in a row. Honda and Fujii's conjugate heat transfer analysis has been adapted and modified to take account of property variation with temperature and release of sensible heat to the condensing film. In industrial condensers, even in the first row, the vapour velocity profile around a tube is affected by the presence of its neighbours. This work extends Honda and Fujii's analysis to investigate the effect of tube spacing on the heat transfer. The finite element method was used to obtain the velocity field around the tube in a row and subsequently the boundary layer equations for the condensate and vapour film along with the heat flow in the tube wall were solved simultaneously. Data have been obtained at absolute pressures of 0.8 and 0.9 bar and for steam superheat up to 40 degC. Approach steam velocities up to 25 m/s were covered. Cooling water velocities and temperatures were in the range 0.68-1.16 m/s and 18-43^circ C, respectively. Honda et al (67), Roshko's flow, theory was found to fit the data for the steam flowing over the isolated tube. The theoretical data for the latter agreed well with the Shekriladze and Gomelauri (2) and Rose (40) correlations and Honda et al (67), potential flow, theory. On | Nu| Re^{-1/2} versus F basis, an average enhancement of 50% in condensate film heat transfer was observed in the case of steam flowing over the tube in a row compared to the isolated tube. This compared with the predicted value of 23% enhancement.

  11. Methane digester for wastewater grown aquatic plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    The purpose of this project was to build and test a small-scale, prototype anaerobic digester using wastewater grown aquatic plants as feed stock. Two 150 gal. digesters of the horizontal ''bag'' shape were constructed and fed with water hyacinths and duckweed plants grown on wastewater. Bio-films were added to increase methane bacteria surface attachment area, and solar heating was used to increase operating temperatures. Repeated difficulties were encountered with the low cost materials and construction techniques used, causing leaks of liquids and methane gas, and in the solar heat exchanger. As a consequence, no reliable data were obtained on performance.more » Due to an inadequate budget, the project was terminated without making construction changes needed to properly operate the system for a long period of time. 15 refs., 7 figs.« less

  12. Horizontal Collision Avoidance Systems Study

    DOT National Transportation Integrated Search

    1973-12-01

    This report presents the results of an analytical study of the merits and mechanization requirements of horizontal collision avoidance systems (CAS). The horizontal and combined horizontal/vertical maneuvers which provide adequate miss distance with ...

  13. 1982 Summer Study Program in Geophysical Fluid Dynamics at the Woods Hole Oceanographic Institution. Particle Motions in Fluids.

    DTIC Science & Technology

    1982-11-01

    heated below from infrared radiation and heated internally by condensation in tropical cumulus towers. This leads to a large convective cell (in the...Isotropic Turbulence Shinichiro Yanase ............ ......................... 152 I I Page No. Thermal Convection : Numerical Experiments near the Onset to...to Oscillating Wind Stress Masaaki Takahashi .. .. ....................... 239 Vertical Convection and Horizontal Advection Stephan Fauve

  14. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  15. The Effect of Condensate Inundation on Steam Condensation Heat Transfer in a Tube Bundle.

    DTIC Science & Technology

    1985-06-01

    predicted by Nusselt [Ref. 10] were measured. This increase was attributed to the effect of surface tension drawing the condensate to the wire and acting...analysis of film condensation on a horizontal tube was set forth by Nusselt in 1916. His analy- sis was, however, for laminar film condensation on a single...temperature. Jakob [Ref. 17] extended the Nusselt analysis to film condensation on a vertical in-line column of horizontal tubes by assuming that all

  16. An experimental study of the Rayleigh-Taylor instability critical wave length

    NASA Astrophysics Data System (ADS)

    Kong, Xujing; Wang, Youchun; Zhang, Shufei; Xu, Hongkun

    1992-06-01

    A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins, which is based on visual observation in experiment. The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film, thus enhancing condensation heat transfer.

  17. Heat transfer to small horizontal cylinders immersed in a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, J.; Koundakjian, P.; Naylor, D.

    2006-10-15

    Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less

  18. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  19. Pioneering Heat Pump Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of themore » data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode« less

  20. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  1. Finite-Element Analysis of Melt Flow in Horizontal Twin-Roll Casting of Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Park, Jong-Jin

    Twin-roll casting has been useful in production of thin strips of metals. Especially, the process of horizontal twin-roll casting is often used for magnesium and aluminum alloys, which are lighter in weight and smaller in specific heat as well as latent heat in comparison to steel. In the present investigation, where magnesium alloy AZ31 was targeted, asymmetric behavior of the melt flow due to the gravity was examined in terms of contact length and pressure, and the nozzle for melt ejection was modified for its shape and location. Variations of the melt flow including vortexes were investigated in consideration of heterogeneous nucleation and uniform microstructure. The melt flow was further examined in the perspective of possible randomness of the grain orientation through thickness under differential speeds of rolls.

  2. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  3. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE PAGES

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...

    2018-01-01

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  4. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  5. Reordering transitions during annealing of block copolymer cylinder phases

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene- block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the finalmore » horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less

  6. Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Wu, S. Q.; Jin, T.

    2017-12-01

    Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.

  7. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    NASA Astrophysics Data System (ADS)

    Kilic, Cevahir; Raible, Christoph C.

    2015-04-01

    It is well known that the sea surface temperature (SST) has an influence on the development and intensification of tropical cyclones (TCs). This influence has become even more important during the past decades, as TCs show an intensification, which goes along with an increase in SSTs. The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. (Kilic and Raible, 2013) The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. To gain further insights in the dynamics, the potential vorticity (PV) and its tendency (PVT) are analysed. A positive PVT is located to the moving direction relative to the TC centre. Splitting the PVT in the horizontal advection, vertical advection, and diabatic heating terms, we find that mainly the horizontal advection term contributes to this PVT maximum, due to a steering by strong environmental flow. The impact of the diabatic heating is of minor importance and, hence, the TC motion is dominated by horizontal advection. The amount of the horizontal advection as well as the amount of the diabatic heating rise with increasing SST due to the enhanced Carnot cycle. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a TC. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds. This study confirm the linear relation between SST and TC intensity. However, in case of localised SST anomalies, the relative location to the TC core determes the gradient of the linear relation. The gradient decreases with increasing distance between SST anomaly and initialisation point. The anomalies located west and north of the initialisation point have a stronger impact than the ones located south and east, as they lie in the moving direction of the TC. Further, in terms of magnitude and pattern, the horizontal advection term of PVT does not strongly differ from the reference simulation. However, the pattern of diabatic heating term differs: A maximum of diabatic heating is still located in moving direction, but additionally the diabatic heating is found in the spiral rain bands. Thus, the vortex is drifted to the SST anomaly due to the asymmetry in the TC circulation induced by the diabatic heating term of the PVT. References Kilic, C., and C. C. Raible, Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF, METEOROLOGISCHE ZEITSCHRIFT, 22(6), 685-698, 2013.

  8. Mixed Convection Flow in Horizontal CVD Reactors

    NASA Astrophysics Data System (ADS)

    Chiu, Wilson K. S.; Richards, Cristy J.; Jaluria, Yogesh

    1998-11-01

    Increasing demands for high quality films and production rates are challenging current Chemical Vapor Deposition (CVD) technology. Since film quality and deposition rates are strongly dependent on gas flow and heat transfer (W.K.S. Chiu and Y. Jaluria, ASME HTD-Vol. 347, pp. 293-311, 1997.), process improvement is obtained through the study of mixed convection flow and temperature distribution in a CVD reactor. Experimental results are presented for a CVD chamber with a horizontal or inclined resistance heated susceptor. Vaporized glycol solution illuminated by a light sheet is used for flow visualization. Temperature measurements are obtained by inserting thermocouple probes into the gas stream or embedding probes into the reactor walls. Flow visualization and temperature measurements show predominantly two dimensional flow and temperature distributions along the streamwise direction under forced convection conditions. Natural convection dominates under large heating rates and low flow rates. Over the range of parameters studied, several distinct flow regimes, characterized by instability, separation, and turbulence, are evident. Different flow regimes alter the flow pattern and temperature distribution, and in consequence, significantly modify deposition rates and uniformity.

  9. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  10. Pool boiling on surfaces with mini-fins and micro-cavities

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2012-11-01

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  11. Three dimensional heat transport modeling in Vossoroca reservoir

    NASA Astrophysics Data System (ADS)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to Curitiba - Brazil. It is monomictic and its function is to regulate the flow to Chaminé hydropower plant. Vossoroca is monitored since 2012. Temperature is measured with seven temperature sensors in the deepest region of the reservoir and meteorological data is measured on a station close to the reservoir. The objective of this work is the 3D modeling of heat transport in Vossoroca reservoir with Delft3D. Temperature gradients between surface and bottom of Vossoroca reservoir during summer may reach 10°C, with surface temperatures around 25°C. Vossoroca is mixed during winter, with temperatures around 15°C. Based on these results, the position of the oxycline can be reconstructed. This information may lead to an adapted reservoir management, minimizing the potential effects to the downstream ecosystem, which normally can be strongly affected by the exposure to oxygen depleted water.

  12. Analysis of temperature time series to estimate direction and magnitude of water fluxes in near-surface sediments

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several numerical models that simulate heat transport in porous media (e.g. VS2DH, HydroGeoSphere, FEFLOW) but there can be a steep learning curve to the modelling frameworks and may therefore not readily accessible to routinely infer water fluxes between groundwater and surface water. We developed a user-friendly, straightforeward to use software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates time variable vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation (FLUX-BOT can be downloaded from the following web site: https://bitbucket.org/flux-bot/flux-bot). We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance. Both, the empirical analysis of temperature amplitudes as well as the numerical inversion of measured temperature time series to estimate the vertical magnitude of water fluxes extent the suite of current heat tracing methods and may provide insight into temperature data from an additional perspective.

  13. Horizontal Two Phase Flow Regime Identification: Comparison of Pressure Signature, Electrical Capacitance Tomography (ECT) and High Speed Visualization (Postprint)

    DTIC Science & Technology

    2012-11-01

    W., and Mudawar , I., "Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks," International Journal of Heat and...Mass Transfer, Vol. 47, No. 10-11, 2004, pp. 2045-2059. 3 Zhang, H., Mudawar , I., and Hasan, M. M., "Photographic Study of High-Flux Subcooled Flow...component Fow in Pipes," Chemical Engineering Progress, Vol. 45, 1949, pp. 39-48. 34 Qu, W., and Mudawar , I., "Measurement and Prediction of Pressure

  14. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu

    2013-08-20

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large rangemore » of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.« less

  15. An examination of natural convection between two horizontal walls

    NASA Astrophysics Data System (ADS)

    Martine, J.-P.

    Measurements were made of the turbulence magnitudes and characteristics of natural convective air flow between plates. The thermal and kinematic properties of the flows were determined for comparison with theoretical predictions. Three horizontal layers were identified, as were the principle parameters for a law of variations. A viscous film with heat transferred mainly by conduction, a thermal boundary layer where strong convective changes occurred, and a central isothermal mean layer where the temperature was convected as a passive scalar were characterized. The velocity structures, both horizontal and vertical, were defined in each region. The thermal gradients were strongest near the wall, to the extent that new thermometric instruments are necessary for direct instantaneous measurement of the discrete layers that might form in that region.

  16. Mobile Lid Convection Beneath Enceladus' South Polar Terrain

    NASA Technical Reports Server (NTRS)

    Barr, Amy C.

    2008-01-01

    Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.

  17. Impacts of convection on high-temperature aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when injection temperatures exceed 35°C. Convection results in an accumulation of heat below the upper confining layer. The consequential increase of the heat plume contact area with this formation results in increased conductive heat transfer. Also, thermal gradients between the heat plume and the ambient groundwater increase with injection temperature, which increases heat conduction within the aquifer. Both effects reduce the thermal recovery of the ATES system. At the end of the 10th injection / withdrawal cycle the efficiency of thermal recovery thus reaches about 76 % for the 20°C scenario, 74% for 35°C, 71 % for 60°C and 66 % for the 90 °C scenario. Sensitivity analysis indicates that permeability in horizontal and vertical directions are controlling factors for the extent of convective heat displacement. Also, heat plume dimensions are influenced by permeability, and to a lesser extent by heat capacity and porosity of the aquifer. The planning of high-temperature ATES at a specific site hence requires a careful investigation of hydraulic and heat transport properties. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  18. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  19. Design and spacecraft-integration of RTGs for solar probe

    NASA Technical Reports Server (NTRS)

    Schock, A.; Noravian, H.; Or, T.; Sankarankandath, V.

    1990-01-01

    The design, analysis, and spacecraft integration of radioisotope thermoelectric generators (RTG) to power the Solar Probe under study at NASA JPL is described. The mission of the Solar Probe is to explore the solar corona by performing in situ measurements at up to four solar radii to the sun. Design constraints for the RTG are discussed. The chief challenge in the design and system integration of the Solar Probe's RTG is a heat rejection problem. Two RTG orientations, horizontal and oblique, are analyzed for effectiveness and results are summarized in chart form. A number of cooling strategies are also investigated, including heat-pipe and reflector-cooled options. A methodology and general computer code are presented for analyzing the performance of arbitrarily obstructed RTGs with both axial and circumferential temperature, voltage, and current variation. This methodology is applied to the specific example of the Solar Probe RTG obstructed by a semicylindrical reflector of 15-inch radius.

  20. Influence of the shape factor on the flow and heat transfer of a water-based nanofluid in a rotating system

    NASA Astrophysics Data System (ADS)

    Khan, Umar; Adnan; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    2017-04-01

    The flow of a nanofluid between two parallel plates (horizontally placed) has been investigated. Different shapes of nanoparticles (suspended in a base fluid) have been considered and the effect of the shape factor has been analyzed. The lower plate is being stretched in opposite directions with forces of the same magnitude. The plates and nanofluid rotate together with angular velocity Ω. The dimensionless form of the flow model, in the form of a system of ordinary differential equations, is obtained by employing some viable similarity transformations. A well-knows analytical method i.e. Variation of Parameters Method (VPM), has been used to solve the problem. Besides, the same system of equations has also been solved numerically by using the forth order Runge-Kutta method, combined with shooting technique. The graphs highlight the influence of ingrained dimensionless physical parameters on the skin friction coefficient, velocity and temperature profiles, and local rate of heat transfer. It is observed that the velocity increases by varying suction/injection parameter and the temperature seems to drop for higher values of the Reynolds number. A decrement in skin friction is observed for increasing nanoparticles volume fraction. On the other hand, the local rate of heat transfer increases for increasing suction/injection parameter, Reynolds number and nanoparticles volume fraction.

  1. Physical modelling of Czochralski crystal growth in horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter

    2017-07-01

    This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.

  2. Numerical Study of Single Bubble Growth on and Departure from a Horizontal Superheated Wall by Three-dimensional Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Li, Hui-Xiong; Guo, Kai-Kai; Zhao, Jian-Fu; Wang, Tai

    2018-05-01

    A three-dimensional hybrid lattice Boltzmann method was used to simulate the progress of a single bubble's growth and departure from a horizontal superheated wall. The evolutionary process of the bubble shapes and also the temperature fields during pool nucleate boiling were obtained and the influence of the gravitational acceleration on the bubble departure diameter (BDD), the bubble release frequency (BRF) and the heat flux on the superheated wall was analyzed. The simulation results obtained by the present three-dimensional numerical studies demonstrate that the BDD is proportional to g^{-0.301}, the BRF is proportional to g^{-0.58}, and the averaged wall heat flux is proportional to g^{0.201}, where g is the gravitational acceleration. These results are in good agreement with the common-used experimental correlations, indicating the rationality of the present numerical model and results.

  3. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  4. Understanding the West African Monsoon from the analysis of diabatic heating distributions as simulated by climate models

    NASA Astrophysics Data System (ADS)

    Martin, G. M.; Peyrillé, P.; Roehrig, R.; Rio, C.; Caian, M.; Bellon, G.; Codron, F.; Lafore, J.-P.; Poan, D. E.; Idelkadi, A.

    2017-03-01

    Vertical and horizontal distributions of diabatic heating in the West African monsoon (WAM) region as simulated by four model families are analyzed in order to assess the physical processes that affect the WAM circulation. For each model family, atmosphere-only runs of their CMIP5 configurations are compared with more recent configurations which are on the development path toward CMIP6. The various configurations of these models exhibit significant differences in their heating/moistening profiles, related to the different representation of physical processes such as boundary layer mixing, convection, large-scale condensation and radiative heating/cooling. There are also significant differences in the models' simulation of WAM rainfall patterns and circulations. The weaker the radiative cooling in the Saharan region, the larger the ascent in the rainband and the more intense the monsoon flow, while the latitude of the rainband is related to heating in the Gulf of Guinea region and on the northern side of the Saharan heat low. Overall, this work illustrates the difficulty experienced by current climate models in representing the characteristics of monsoon systems, but also that we can still use them to understand the interactions between local subgrid physical processes and the WAM circulation. Moreover, our conclusions regarding the relationship between errors in the large-scale circulation of the WAM and the structure of the heating by small-scale processes will motivate future studies and model development.

  5. Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian

    2017-10-01

    Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.

  6. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    NASA Astrophysics Data System (ADS)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  7. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Baxter, Van D; Munk, Jeffrey D

    2012-01-01

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heatmore » during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.« less

  8. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  9. Experimental and Numerical Investigation of Forced Convection Heat Transfer in Heat Sink with Rectangular Plates at Varying Inclinations on Vertical Base

    NASA Astrophysics Data System (ADS)

    Patil, Harshal Bhauso; Dingare, Sunil Vishnu

    2018-03-01

    Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).

  10. The Impact of TRMM on Mesoscale Model Simulation of Super Typhoon Paka

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Jia, Y.; Halverson, J.; Hou, A.; Olson, W.; Rodgers, E.; Simpson, J.

    1999-01-01

    Tropical cyclone Paka formed during the first week of December 1997 and underwent three periods of rapid intensification over the following two weeks. During one of these periods, which initiated early on December 10, Paka's Dvorak-measured windspeed increased from 23 to 60 m/s over a 48-hr period. On December 18, during the last rapid deepening episode, Paka became a supertyphoon with a maximum wind speed of about 80 m/s. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (135, 45 and 15 km horizontal resolution) will be used to simulate supertyphoon Paka. We performed two runs initialized with Goddard Earth Observing System (GEOS) data sets. The first GEOS data set does not incorporate either TRMM (tropical rainfall measuring mission satellite) or SSM/I (sensor microwave imager) observed rainfall fields into the GEOS's assimilation system while the second one does. Preliminary results show that the MM5 simulated surface pressure deepened by more than 25 mb (45 km resolution domain) in the run initialized with the GEOS data set incorporating TRMM and SSM/I derived rainfall, compared to the one initialized without. However, the track and precipitation patterns are quite similar between the runs. In our presentation, we will show the impact of TRMM rainfall upon the MM5 simulation of Paka at various horizontal resolutions. We will also examine the physical processes associated with initial explosive development by comparing MM5 simulated rainfall and latent heat release. In addition, budget (vorticity, PV, momentum and heat) calculations and sensitivity tests will be performed to examine the upper-tropospheric and SST mechanisms responsible for the explosive development of Paka.

  11. Transient laminar opposing mixed convection in a symmetrically heated duct with a plane symmetric sudden contraction-expansion: Buoyancy an inclination effects

    NASA Astrophysics Data System (ADS)

    Martínez-Suástegui, Lorenzo; Barreto, Enrique; Treviño, César

    2015-11-01

    Transient laminar opposing mixed convection is studied experimentally in an open vertical rectangular channel with two discrete protruded heat sources subjected to uniform heat flux simulating electronic components. Experiments are performed for a Reynolds number of Re = 700, Prandtl number of Pr = 7, inclination angles with respect to the horizontal of γ =0o , 45o and 90o, and different values of buoyancy strength or modified Richardson number, Ri* =Gr* /Re2 . From the experimental measurements, the space averaged surface temperatures, overall Nusselt number of each simulated electronic chip, phase-space plots of the self-oscillatory system, characteristic times of temperature oscillations and spectral distribution of the fluctuating energy have been obtained. Results show that when a threshold in the buoyancy parameter is reached, strong three-dimensional secondary flow oscillations develop in the axial and spanwise directions. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.

  12. KSC-97PC1069

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers David Rice, at left, and Johnny Melendez rotate a radioisotope thermoelectric generator (RTG) to the horizontal position on a lift fixture in the Payload Hazardous Servicing Facility. The RTG is one of three generators which will provide electrical power for the Cassini spacecraft mission to the Saturnian system. The RTGs will be installed on the powered-up spacecraft for mechanical and electrical verification testing. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  13. Effects of Simulated Microgravity on Thermotolerance of Pea Seedlings

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    2008-06-01

    A coordinated plant response to simulated microgravity (clinorotation) and heat stress was analyzed. 5-d pea seedlings grown on a horizontal clinostat or in the stationary conditions were exposed to different heat treatments (mild, severe and severe after pretreatment). Temperature-dependent quantitative changes in the heat stress response were revealed in the clinorotated seedlings comparatively to the stationary grown ones: less growth activity, an increase in the production of high levels of heat shock proteins Hsp70 and Hsp90, a higher extent of the membrane damage. Thus, clinorotated seedlings were more sensitive to heat stress. The data suggest that clinorotation may influence distinct functions, including Hsps synthesis and protection of membrane integrity, that affect plant growth activity and thermotolerance as a result.

  14. Three-dimensional flow in the Florida platform: Theoretical analysis of Kohout convection at its type locality

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.

    2007-01-01

    Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.

  15. Seasonality and mechanisms of tropical intraseasonal oscillations

    NASA Astrophysics Data System (ADS)

    Hazra, Abheera; Krishnamurthy, V.

    2018-01-01

    This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.

  16. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    NASA Astrophysics Data System (ADS)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  17. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90% on various supercomputers.

  18. Two-dimensional microclimate distribution within and above a crop canopy in an arid environment: Modeling and observational studies

    NASA Astrophysics Data System (ADS)

    Naot, O.; Mahrer, Y.

    1991-08-01

    A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered. The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients. Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.

  19. Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat.

    PubMed

    Ludlow, M M; Björkman, O

    1984-11-01

    Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.

  20. An evaluation of borehole flowmeters used to measure horizontal ground-water flow in limestones of Indiana, Kentucky, and Tennessee, 1999

    USGS Publications Warehouse

    Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.

    2001-01-01

    Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.

  1. Heat flow anomalies and their interpretation

    NASA Astrophysics Data System (ADS)

    Chapman, David S.; Rybach, Ladislaus

    1985-12-01

    More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10 n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10 (n - 1) km in the respective representations. The largest scale of 10 4 km encompasses heat flow on a global scale. Global heat loss is 4 × 10 13 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 10 3 km. Shields, with similar dimensions, exhibit negative anomalies. The scale of 10 3 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 10 2 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere. Beginning with map dimensions of 10 2 km thermal anomalies of scale 10 1 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental geothermal systems have thermal anomalies 10 1 km wide and are capable of producing hundreds of megawatts of thermal energy. The smallest scale addressed in this paper is 10 1 km. Worldwide interest in exploiting geothermal systems has been responsible for a recent accumulation of heat flow data on the smallest of scales considered here. The exploration nature of the surveys involve 10's of drillholes and reveal thermal anomalies having widths of 10 0 km. These are almost certainly connected to surface and subsurface fluid discharge systems which, in spite of their restricted size, are typically delivering 10 MW of heat to the near surface environment.

  2. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  3. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  4. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-07-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  5. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-02-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  6. Ecological Origins of Freedom: Pathogens, Heat Stress, and Frontier Topography Predict More Vertical but Less Horizontal Governmental Restriction.

    PubMed

    Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C

    2017-10-01

    What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.

  7. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  8. Numerical modeling of heat transfer in molten silicon during directional solidification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2015-06-24

    Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less

  9. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh

    2017-09-01

    The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.

  10. Intelligent systems installed in building of research centre for research purposes

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Mokry, Marian; Kolkova, Zuzana; Sedivy, Stefan

    2016-06-01

    The attractiveness of intelligent buildings is nowadays directly connected with higher level of comfort and also the economic mode of consumption energy for heating, cooling and the total consumption of electricity for electric devices. The technologies of intelligent buildings compared with conventional solutions allow dynamic optimization in real time and make it easy for operational message. The basic division of functionality in horizontal direction is possible divide in to two areas such as Economical sophisticated residential care about the comfort of people in the building and Security features. The paper deals with description of intelligent systems which has a building of Research Centre. The building has installed the latest technology for utilization of renewable energy and also latest systems of controlling and driving all devices which contribute for economy operation by achieving the highest thermal comfort and overall safety.

  11. Indirect Measurement of Local Condensing Heat-Transfer Coefficient Around Horizontal Finned Tubes

    DTIC Science & Technology

    1987-09-01

    vapor-sidp coefficients exceeded Nusselt values by factors of approximately 7 to 9 (for a constant temperature drop across the condensate film). Honda...3/8 in.) diameter water-cooled copper tubes helically coiled to a height of 457 mm (le In.). The auxiliary condenser was cooled by a continuous...NAVAL POSTGRADUATE SCHOOL Monterey, California , " I - . 0) I DECI 41987S:,• c ý ! i, THESIS INDIRECT MEASUREMENT OF LOCAL CONDENSING HEAT-TRANSFER

  12. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser beam. The follow-up on-ground experiments were conducted to study phase relations in the Zr-O-N system at high-temperatures. Samples with specific compositions were laser-heated above the melt formation and naturally cooled. Recovered samples were characterized using electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results of these analyses combined with the interpretations of the binary Zr-O and Zr-N phase diagrams enabled us to outline the liquidus and the subsolidus equilibria for the ternary Zr-ZrO2-ZrN phase diagrams. Further research is suggested to develop the microgravity techniques for detailed characterization of high-temperature relations in the reactive, metal based systems.

  13. Condensation of binary mixtures on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.

    2017-12-01

    The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.

  14. On the energy balance closure and net radiation in complex terrain

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Niedrist, Georg; Scholz, Katharina; Tomelleri, Enrico; Zhao, Peng

    2017-01-01

    In complex, sloping terrain, horizontal measurements of net radiation are not reflective of the radiative energy available for the conductive and convective heat exchange of the underlying surface. Using data from a grassland site on a mountain slope characterised by spatial heterogeneity in inclination and aspect, we tested the hypothesis that a correction of the horizontal net radiation measurements which accounts for the individual footprint contributions of the various surfaces to the measured sensible and latent heat eddy covariance fluxes will yield more realistic slope-parallel net radiation estimates compared to a correction based on the average inclination and aspect of the footprint. Our main result is that both approaches led to clear, but very similar improvements in the phase between available energy and the sum of the latent and sensible heat fluxes. As a consequence the variance in the sum of latent and sensible heat flux explained by available radiation improved by >10 %, while energy balance closure improved only slightly. This is shown to be mainly due to the average inclination and aspect corresponding largely with the inclination and aspect of the main flux source area in combination with a limited sensitivity of the slope correction to small angular differences in, particularly, inclination and aspect. We conclude with a discussion of limitations of the present approach and future research directions. PMID:28066093

  15. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.

  16. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  17. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    NASA Astrophysics Data System (ADS)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  18. Ignition of combustible fluids by heated surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph Michael

    The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.

  19. NCEP Data Products

    Science.gov Websites

    Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN Inventory of Data Products on Generated Products Image of horizontal rule Global Forecast System (GFS) GFS Ensemble Forecast System (GEFS of horizontal rule External Products Image of horizontal rule Canadian Ensemble Forecast System

  20. Latent heat effects of the major mantle phase transitions on low-angle subduction

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2001-08-01

    Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4-5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300-400 km. Varying the olivine-spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.

  1. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  2. Mixing weld gases offers advantages

    NASA Technical Reports Server (NTRS)

    May, J. L.; Mendenhall, M. M.

    1969-01-01

    Argon added to helium during gas tungsten arc cover-pass welding in the horizontal position results in a better controlled wider bead width, increased arc stability, and reduction in heat input. Adequate filler material wetness and penetration pass coverage is possible with only one pass.

  3. Experience gained from the development and results from tests of the equipment of the Kalinin NPP Unit 4 regeneration and intermediate steam separation and reheating system

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Sukhorukov, Yu. G.; Ermolov, V. F.; Svyatkin, F. A.; Nikolaenkova, E. K.; Sintsova, T. G.; Grigor'eva, E. B.; Esin, S. B.; Ukhanova, M. G.; Golubev, E. A.; Bik, S. P.; Tren'kin, V. B.

    2014-06-01

    The equipment of the Kalinin NPP Unit 4 regeneration, intermediate separation, and steam reheating (ISSR) systems is described and the results of their static and dynamic tests are presented. It was shown from an analysis of test results that the equipment of the regeneration and ISSR systems produce the design thermal and hydraulic characteristics in static and dynamic modes of its operation. Specialists of the Central boiler-Turbine Institute Research and Production Association have developed procedures and computer programs for calculating the system of direct-contact horizontal low-pressure heaters (connected according to the gravity circuit arrangement jointly with the second-stage electrically-driven condensate pumps) and the ISSR system, the results of which are in satisfactory agreement with experimental data. The drawbacks of the layout solutions due to which cavitation failure of the pumps may occur are considered. Technical solutions aimed at securing stable operation of the equipment of regeneration and ISSR systems are proposed. The process arrangement for heating the chamber-type high-pressure heaters adopted at the Kalinin NPP is analyzed. The version of this circuit developed at the Central Boiler-Turbine Institute Research and Production Association that allows the heating rate equal to 1°C/min to be obtained is proposed.

  4. A preliminary study of numerical simulation of thermosolutal convection of interest to crystal growth

    NASA Technical Reports Server (NTRS)

    Miller, T. L.

    1984-01-01

    Calculations were performed with computer models using three types of finite difference methods of thermosolutal convection: horizontal heating of a container filled with a stably stratified solution, finger convection in a container, and finger convection in a horizontally infinite channel. The importance of including thermosolutal convection in models of crystal growth is emphasized, and the difficulties in doing so are demonstrated. It is pointed out that these difficulties, due primarily to the fine structure of the convection, may be partly overcome by the use of fine grids and implicit time stepping methods.

  5. Thermocouple Probe Orientation Affects Prescribed Fire Behavior Estimation.

    PubMed

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Waldrop, Thomas A; Wang, G Geoff; Bridges, William C; Rogers, Mary-Frances; Dozier, James H

    2018-01-01

    Understanding the relationship between fire intensity and fuel mass is essential information for scientists and forest managers seeking to manage forests using prescribed fires. Peak burning temperature, duration of heating, and area under the temperature profile are fire behavior metrics obtained from thermocouple-datalogger assemblies used to characterize prescribed burns. Despite their recurrent usage in prescribed burn studies, there is no simple protocol established to guide the orientation of thermocouple installation. Our results from dormant and growing season burns in coastal longleaf pine ( Mill.) forests in South Carolina suggest that thermocouples located horizontally at the litter-soil interface record significantly higher estimates of peak burning temperature, duration of heating, and area under the temperature profile than thermocouples extending 28 cm vertically above the litter-soil interface ( < 0.01). Surprisingly, vertical and horizontal estimates of these measures did not show strong correlation with one another ( ≤ 0.14). The horizontal duration of heating values were greater in growing season burns than in dormant season burns ( < 0.01), but the vertical values did not indicate this difference ( = 0.52). Field measures of fuel mass and depth before and after fire showed promise as significant predictive variables ( ≤ 0.05) for the fire behavior metrics. However, all correlation coefficients were less than or equal to = 0.41. Given these findings, we encourage scientists, researchers, and managers to carefully consider thermocouple orientation when investigating fire behavior metrics, as orientation may affect estimates of fire intensity and the distinction of fire treatment effects, particularly in forests with litter-dominated surface fuels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Convective fluid flows in a horizontal channel with evaporation: analytical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Lyulin, Y. V.; Rezanova, E. V.

    2017-11-01

    Heat- and mass transfer processes in a two-layer system of the liquid and gas are studied with respect to evaporation at interface. The stationary convective flows of two immiscible viscous incompressible fluids filling an infinite channel and being under action of the transverse gravitation field are studied analytically. Mathematical modeling of the flows is carried out with the help of the Navier-Stokes equations in Boussinesq approximation. The Dufour and Soret effects are taken into consideration in the gas-vapor phase. In the two-dimensional case the exact solutions of special type are constructed under condition of a given specific gas flow rate. Comparison of the analytical results with results of the physical experiments with the “liquid-gas” system like “ethanol-air” are presented.

  7. A Unique Facility For Metabolic and Thermoregulatory Studies

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca C.; Webbon, Bruce W.

    1995-01-01

    A unique exercise facility has been developed and used to perform tipper body ergometry tests for space applications. Originally designed to simulate the muscular, cardiovascular and thermoregulatory responses to working in zero gravity, this facility may be used to conduct basic thermoregulatory investigations applicable to multiple sclerosis patients. An environmental chamber houses the tipper body ergometer and permits control of temperature, air now and humidify. The chamber is a closed system and recirculate-s air after conditioning if. A Cybex Lipper body ergometer has been mounted horizontally on the wall of the environmental chamber. In this configuration, the subject lies underneath the arm crank on a supine seat in order to turn the crank. The supine seat can be removed in order to introduce other equipment into the chamber such as a stool to allow upright arm cranking, or a treadmill to allow walk-run experiments. Physiological and environmental signals are fed into a Strawberry Tree data acquisition system while being monitored and logged using the Workbench software program. Physiological monitoring capabilities include 3-lead EKG using an H-P patient monitor, 5 site skin temperature and core temperature using YSI thermistors, and O2 consumption and CO2 production using AMFTFK Applied Electrochemistry analyzers and sensors. This comprehensive data acquisition set tip allows for calculation of various thermoregulatory indices including heat storage, evaporative heat loss, latent heat loss, and metabolic rate. The current system is capable of adding more data acquisition channels if needed. Some potential studies that could be carried out using the facility include: 1) An investigation into the efficiency of cooling various segments of the body to lower Tc 1-2 F. 2) A series of heat and mass balance studies comparing various LCG configurations.

  8. Effect of Joule heating and current crowding on electromigration in mobile technology

    NASA Astrophysics Data System (ADS)

    Tu, K. N.; Liu, Yingxia; Li, Menglu

    2017-03-01

    In the present era of big data and internet of things, the use of microelectronic products in all aspects of our life is manifested by the ubiquitous presence of mobile devices as i-phones and wearable i-products. These devices are facing the need for higher power and greater functionality applications such as in i-health, yet they are limited by physical size. At the moment, software (Apps) is much ahead of hardware in mobile technology. To advance hardware, the end of Moore's law in two-dimensional integrated circuits can be extended by three-dimensional integrated circuits (3D ICs). The concept of 3D ICs has been with us for more than ten years. The challenge in 3D IC technology is dense packing by using both vertical and horizontal interconnections. Mass production of 3D IC devices is behind schedule due to cost because of low yield and uncertain reliability. Joule heating is serious in a dense structure because of heat generation and dissipation. A change of reliability paradigm has advanced from failure at a specific circuit component to failure at a system level weak-link. Currently, the electronic industry is introducing 3D IC devices in mainframe computers, where cost is not an issue, for the purpose of collecting field data of failure, especially the effect of Joule heating and current crowding on electromigration. This review will concentrate on the positive feedback between Joule heating and electromigration, resulting in an accelerated system level weak-link failure. A new driving force of electromigration, the electric potential gradient force due to current crowding, will be reviewed critically. The induced failure tends to occur in the low current density region.

  9. The Modelling Analysis of the Response of Convective Transport of Energy and Water to Multiscale Surface Heterogeneity over Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    SUN, G.; Hu, Z.; Ma, Y.; Ma, W.

    2017-12-01

    The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not only for understanding the land atmosphere interactions over a heterogeneous surface by evaluating and improving the performance PBL schemes in WRF-meso, but also for the understanding the profound effect of Tibetan Plateau on the regional and global climate.

  10. Design and performance evaluation of a cryogenic condenser for an in-pile experiment

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Crum, R. J.; Hsu, Y.

    1972-01-01

    An apparatus was designed to enable in-pile irradiation of materials in liquid hydrogen at cryogenic temperatures. One of the principal components of this apparatus was a horizontal tube condenser. The performance of the condenser was evaluated by running a liquid-nitrogen prototype of the apparatus at heat loads comparable to or greater than those expected during the irradiation. The test showed that the condenser was capable of handling the design heat load and that the design procedure was sound.

  11. Experimental Analysis of Heat Transfer Characteristics and Pressure Drop through Screen Regenerative Heat Exchangers

    DTIC Science & Technology

    1993-12-01

    of fluid T1 initial temperature of matrix and fluid Tf1 average inlet temperature after the step change Tii average inlet temperature before the step...respectively, of the regenerator. The horizontal distances shown with Tf1 , Tj, and T,2 illustrate the time interval for which the average values were...temperature was not a true step function, the investigator made an approximation. The approximation was based on an average temperature. Tf1 was the

  12. Convection in a nematic liquid crystal with homeotropic alignment and heated from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, G.

    Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.

  13. Daily simulations of urban heat load in Vienna for 2011

    NASA Astrophysics Data System (ADS)

    Hollosi, Brigitta; Zuvela-Aloise, Maja; Koch, Roland

    2014-05-01

    In this study, the dynamical urban climate model MUKLIMO3 (horizontal resolution of 100 m) is uni-directionally coupled with the operational weather forecast model ALARO-ALADIN of the ZAMG (horizontal resolution of 4.8 km) to simulate the development of the urban heat island in Vienna on a daily basis. The aim is to evaluate the performance of the urban climate model applied for climatological studies in a weather prediction mode. The focus of the investigation is on assessment of the urban heat load during day-time. We used the archived daily forecast data for the summer period in 2011 (April - October) as input data for the urban climate model. The high resolution simulations were initialized with vertical profiles of temperature and relative humidity and prevailing wind speed and direction in the rural area near the city in the early morning hours. The model output for hourly temperature and relative humidity has been evaluated against the monitoring data at 9 weather stations in the area of the city. Additionally, spatial gradients in temperature were evaluated by comparing the grid point values with the data collected during a mobile measuring campaign taken on a multi-vehicle bicycle tour on the 7th of July, 2011. The results show a good agreement with observations on a district scale. Particular challenge in the modeling approach is achieving robust and numerically stable model solutions for different weather situation. Therefore, we analyzed modeled wind patterns for different atmospheric conditions in the summer period. We found that during the calm hot days, due to the inhomogeneous surface and complex terrain, the local-scale temperature gradients can induce strong anomalies, which in turn could affect the circulation on a larger scale. However, these results could not be validated due to the lack of observations. In the following years extreme hot conditions are very likely to occur more frequently and with higher intensity. Combining urban climate simulations with the operational meso-scale forecasting model may identify hot spots in urban areas and bring added value in excessive heat warning systems in the future.

  14. Reframing and addressing horizontal violence as a workplace quality improvement concern.

    PubMed

    Taylor, Rosemary A; Taylor, Steven S

    2018-06-27

    To reframe horizontal violence as a quality improvement concern. Although the number of studies exploring horizontal violence has increased, evidence supporting the effectiveness of current interventions is weak and the problem persists. Often framed as an individual or interpersonal issue, horizontal violence has been recognized as a complex phenomenon that can only be understood through an examination of social, individual and organizational factors. As such, interventions to address horizontal violence must be applied systemically and address contributions from all sources. This is a discussion paper. This discussion is based on results of a study of nurses' perceptions of horizontal violence and review of the literature. Context is recognized as a contributing factor in human behavior, yet often overlooked in interventions to address horizontal violence. Moving the focus away from the individual and investigating systems contributions to horizontal violence using existing quality improvement frameworks is suggested. To date, efforts to address horizontal violence have not been proven effective. There is a call for a wider application and investigation of interventions. This reframing provides the system level application suggested and would address a broader range of factors contributing to the perpetuation of the phenomenon. © 2018 Wiley Periodicals, Inc.

  15. Role of surface heat fluxes underneath cold pools

    PubMed Central

    Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320

  16. Cylindrical heat conduction and structural acoustic models for enclosed fiber array thermophones.

    PubMed

    Dzikowicz, Benjamin R; Tressler, James F; Baldwin, Jeffrey W

    2017-11-01

    Calculation of the heat loss for thermophone heating elements is a function of their geometry and the thermodynamics of their surroundings. Steady-state behavior is difficult to establish or evaluate as heat is only flowing in one direction in the device. However, for a heating element made from an array of carbon fibers in a planar enclosure, several assumptions can be made, leading to simple solutions of the heat equation. These solutions can be used to more carefully determine the efficiency of thermophones of this geometry. Acoustic response is predicted with the application of a Helmholtz resonator and thin plate structural acoustics models. A laboratory thermophone utilizing a sparse horizontal array of fine (6.7 μm diameter) carbon fibers is designed and tested. Experimental results are compared with the model. The model is also used to examine the optimal array density for maximal efficiency.

  17. R and D work on the constrained vapor bubble system for a microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wayner, P. C., Jr.; Plawsky, J. L.

    2005-01-01

    We are working with Project Scientists R. Balasubramanian and Sang Young Son, and a NASA Projects Team headed by Sue Motil at the Glenn Research Center on the design and development of an experimental system for use on the International Space Station during the year 2006. John Eustace is the coordinator for the flight experiment at Zin-Tech (previously Northrop-Grumman) for the design and development of the Constrained Vapor Bubble Heat Exchanger, CVBHX, cell which will fit into the Light Microscope Module, LMM. Good progress is being made. The CDR for the LMM being developed was held on December 10-1 1,2003. Experimental results obtained under microgravity conditions will be compared with those obtained at Rensselaer. Basic and applied research at Rensselaer continues on the experimental and theoretical details associated with passive phase change heat transfer processes controlled by interfacial forces in the CVBHX. The extensive results of our current research are presented in the 23 external publications listed below. Twenty-two external presentations have been given. Briefly, evaporation/condensation data from both vertical and horizontal CVBHX systems were obtained and analyzed for both polar (wetting) and apolar (partially wetting) fluids. The vertical system is axi-symmetric, but strongly effected by gravity. Whereas, the horizontal system is asymmetric, but weakly effected by gravity. Therefore, there will be significant differences in the operation of the cell in the earth s environment versus the operation under microgravity conditions. Due to its relative large size, the system s performance should be optimum under micro-gravity conditions, where the CVBHX should be a very effective passive heat exchanger. The CVBHX was found to be an ideal experimental setup in which to study the effects of interfacial phenomena on both the evaporation and drop-wise condensation processes. The optical technique (Image Analyzing Interferometry, IAI), which is based on the measurement and analysis of the reflectivity pattern of a thin film, was significantly improved. The accuracy of the IAI system is of critical importance to the success of the mission because it is used to measure the details of the pressure field in the liquid by measuring the film thickness profile. The accuracy was found to be excellent and various publications/presentations documenting these new results were written. Significant new results were also obtained for the effect of the oscillating contact line region on evaporation. Three doctoral students graduated under this grant. All three work in US industry, two for Intel. Another doctoral student is in his third year of study and will finish under an extension of the NASA grant: # NNC05GA27G.

  18. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed Analog to Digital (A/D) converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  19. The impact of horizontal resolution on the representation of air-sea interaction over North Atlantic open ocean convection sites

    NASA Astrophysics Data System (ADS)

    Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng

    2017-04-01

    Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.

  20. Thermal structure and heat balance of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.

    1989-01-01

    Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.

  1. GPM SLH: Convective Latent Heating Estimated with GPM Dual-frequency Precipitation Radar Data

    NASA Astrophysics Data System (ADS)

    Takayabu, Y. N.; Hamada, A.; Yokoyama, C.; Ikuta, Y.; Shige, S.; Yamaji, M.; Kubota, T.

    2017-12-01

    Three dimensional diabatic heating distribution plays essential roles to determine large-scale circulation, as well as to generate mesoscale circulation associated with tropical convection (e.g. Hartmann et al., 1984; Houze et al. 1982). For mid-latitude systems also, diabatic heating contributes to generate PVs resulting in, for example, explosive intensifications of mid-lattitude storms (Boettcher and Wernli, 2011). Previously, with TRMM PR data, we developed a Spectral Latent Heating algorithm (SLH; Shige et al. 2004, etc.) for 36N-36S region. It was based on the spectral LH tables produced from a simulation utilizing the Goddard Cloud Ensemble Model forced with the TOGA-COARE data. With GPM DPR, the observation region is extended to 65N-65S. Here, we introduce a new version of SLH algorithm which is applicable also to the mid-latitude precipitation. A new global GPM SLH ver.5 product is released as one of NASA/JAXA GPM standard products on July 11, 2017. For GPM SLH mid-latitude algorithm, we employ the Japan Meteorological Agency (JMA)'s high resolution (horizontally 2km) Local Forecast Model (LFM) to construct the LUTs. With collaborations of JMA's forecast group, forecast data for 8 extratropical cyclone cases are collected and utilized. For mid-latitude precipitation, we have to deal with large temperature gradients and complex relationship between the freezing level and cloud base levels. LUTs are constructed for LH, Q1-QR, and Q2 (Yanai et al. 1973), for six different precipitation types: Convective and shallow stratiform LUTs are made against precipitation top heights. For deep stratiform and other precipitation, LUTs are made against maximum precipitation to handle the unknown cloud-bases. Finally, three-dimensional convective latent heating is retrieved, utilizing the LUTs and precipitation profile data from GPM 2AKu. We can confirm that retrieved LH looks very similar to simulated LH, for a consistency check. We also confirm a good continuities of mean LH distributions between tropics and mid-latitudes in horizontal as well as in vertical. Further analysis results will also be presented. Acknowledgments: This research was supported by JAXA PMM RA8 and the Environment Research and Technology Development Fund (2-1503) of Environmental Restoration and Conservation Agency.

  2. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    USGS Publications Warehouse

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate continuous, rapid venting. Increased heat input at the base of the faults resulted in temporarily greater fluid discharge, but the flow could not be sustained because the modeled system could not recharge cold fluid quickly enough to remove sufficient heat through the vents.

  3. 77 FR 50577 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... the drive mechanism of the horizontal stabilizer trim actuator. This AD requires repetitive detailed... horizontal stabilizer trim control system; repetitive measurements for discrepancies of the ballscrew to... lubrication of the horizontal stabilizer trim control system; repetitive measurements for discrepancies of the...

  4. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    NASA Astrophysics Data System (ADS)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  5. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  6. Effects of Dark Brooders on Behavior and Fearfulness in Layers

    PubMed Central

    Riber, Anja B.; Guzman, Diego A.

    2016-01-01

    Simple Summary Chicks require heat to maintain body temperature during the first weeks after hatch. Heat is normally provided by use of heating lamps or whole-house heating, but an alternative is dark brooders, i.e. horizontal heating elements equipped with curtains. The effects of providing layer chicks with dark brooders during the brooding period on behavior and fearfulness were investigated. Brooders resulted in chicks showing less locomotive activity, feather pecking and fleeing. Also, a long-term reduction of fearfulness in brooder birds was found. Results support the suggestion that rearing with dark brooders can be a successful method of reducing or preventing some of the major welfare problems in layers. Abstract Chicks require heat to maintain body temperature during the first weeks after hatch. This may be provided by dark brooders; i.e., horizontal heating elements equipped with curtains. The objective was to test effects of rearing layer chicks with dark brooders on time budget and fearfulness. Behavioral observations were performed during the first six weeks of age. Three different fear tests were conducted when the birds were age 3–6, 14–15 and 26–28 weeks. During the first four days, brooder chicks rested more than control chicks whereas they spent less time drinking, feather pecking and on locomotion (p ≤ 0.009). On days 16, 23, 30 and 42, brooder chicks spent less time on feather pecking, locomotion and fleeing (p ≤ 0.01) whereas foraging and dust bathing occurred more often on day 42 (p ≤ 0.032). Brooder birds had shorter durations of tonic immobility at all ages (p = 0.0032), moved closer to the novel object at age 15 weeks (p < 0.0001), and had shorter latencies to initiate locomotion in the open-field test at age 28 weeks (p < 0.0001). Results support the suggestion that dark brooders can be a successful method of reducing or preventing fear and feather pecking in layers. PMID:26751482

  7. Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection

    NASA Astrophysics Data System (ADS)

    Taji, S. G.; Parishwad, G. V.; Sane, N. K.

    2014-07-01

    This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.

  8. Linear servomotor probe drive system with real-time self-adaptive position control for the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Kuang, A. Q.; LaBombard, B.; Burke, W.

    2017-07-01

    A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density—through use of a mirror Langmuir probe bias system—combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.

  9. Developing a weather observation routine during ICARUS

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.

    2016-12-01

    Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.

  10. The 3-D description of vertical current sheets with application to solar flares

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Davis, J. M.

    1991-01-01

    Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer at the locations of potential flaring. During the initial rearrangement of the field strong plasma turbulence develops. Following the impulsive phase, the final current sheet will experience faster reconnection which we believe responsible for the gradual phase of the flare. The reconnection will dissipate part of the current and will produce sustained and extended heating in the flare region and in the postflare loops.

  11. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  12. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  13. Changes of endolymphatic pressure in the semicircular canal of pigeon by caloric stimulation

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Suzuki, H.; Watanabe, S.

    1994-08-01

    It gets into difficult to explain the mechanism of caloric nystagmus only by convection theory from results of microgravity experiments. One of the other theories is an occurrence of a relative volume change due to a temperature change. Since the volume change must lead to a pressure change after caloric stimulation, we tried to measure the ampulla pressure of the horizontal semicircular canal in pigeons (Columba livia) using an improved servo micropipette system. The main result was that the ampulla pressure increased by cooling and decreased by heating. The changes of the ampulla pressure depended on the temperature change but were not influenced by the pigeon's head position.

  14. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  15. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  16. Monitoring water content dynamics of biological soil crusts

    USGS Publications Warehouse

    Young, Michael H.; Fenstermaker, Lynn F.; Belnap, Jayne

    2017-01-01

    Biological soil crusts (hereafter, “biocrusts”) dominate soil surfaces in nearly all dryland environments. To better understand the influence of water content on carbon (C) exchange, we assessed the ability of dual-probe heat-pulse (DPHP) sensors, installed vertically and angled, to measure changes in near-surface water content. Four DPHP sensors were installed in each of two research plots (eight sensors total) that differed by temperature treatment (control and heated). Responses were compared to horizontally installed water content measurements made with three frequency-domain reflectometry (FDR) sensors in each plot at 5-cm depth. The study was conducted near Moab, Utah, from April through September 2009. Results showed significant differences between sensor technologies: peak water content differences from the DPHP sensors were approximately three times higher than those from the FDR sensors; some of the differences can be explained by the targeted monitoring of biocrust material in the shorter DPHP sensor and by potential signal loss from horizontally installed FDR sensors, or by an oversampling of deeper soil. C-exchange estimates using the DPHP sensors showed a net C loss of 69 and 76 g C m−2 in control and heated plots, respectively. The study illustrates the potential for using the more sensitive data from shallow installations for estimating C exchange in biocrusts.

  17. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  18. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.

    PubMed

    Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho

    2009-07-01

    A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.

  19. Nonlinear Dynamics of Turbulent Thermals in Shear Flow

    NASA Astrophysics Data System (ADS)

    Ingel, L. Kh.

    2018-03-01

    The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.

  20. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.

    2015-11-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  1. Infrared remote sensing of the vertical and horizontal distribution of clouds

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.; Haskins, R. D.

    1982-01-01

    An algorithm has been developed to derive the horizontal and vertical distribution of clouds from the same set of infrared radiance data used to retrieve atmospheric temperature profiles. The method leads to the determination of the vertical atmospheric temperature structure and the cloud distribution simultaneously, providing information on heat sources and sinks, storage rates and transport phenomena in the atmosphere. Experimental verification of this algorithm was obtained using the 15-micron data measured by the NOAA-VTPR temperature sounder. After correcting for water vapor emission, the results show that the cloud cover derived from 15-micron data is less than that obtained from visible data.

  2. Convection in a colloidal suspension in a closed horizontal cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Cherepanov, I. N.

    2015-02-15

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined.

  3. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  4. STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-03-14

    A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less

  5. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  6. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  7. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    NASA Astrophysics Data System (ADS)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content tendency is nearly zero and the steady balance involves simply horizontal advection and the surface heat flux, which at these latitudes has a damping role in the model. An important finding of this study is the identification of two interdecadal timescales, roughly 10 and 20 years, both similar to those reported by other investigators in recent years. [Tourre et al., 1998; Latif and Barnett, 1994; Robertson, 1995; White et al, 1997; Gu and Philander, 1997; Jacobs et al., 1994]. The 20-year timescale is only present in diabatic heat budget components, while the 10-year timescale is present in both diabatic and adiabatic components. The 10-year timescale can also be seen in the surface heat flux time series, but it occurs in the ocean adiabatic components which demonstrates the importance of oceanic adjustment through Rossby wave dynamics on decadal timescales.

  8. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  9. Steady Fluid Flow to a Radial System of Horizontal Wells

    NASA Astrophysics Data System (ADS)

    Morozov, P. E.

    2018-03-01

    A semi-analyticalmethod for determining the productivity of a radial system of horizontal wells in an anisotropic reservoir is proposed. Calculation results for the productivity and distribution of fluid flow along the length of the wellbores of the radial system of horizontal wells using the proposed method are compared with the data of experimental studies based on electrolytic simulation and engineering formulas. The effects of the number of wellbores, their location in the reservoir, and the hydraulic pressure loss on the distribution of the fluid flow along the length of horizontal wellbores are investigated.

  10. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    NASA Astrophysics Data System (ADS)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  11. Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story.

    PubMed

    Mafart, P; Leguérinel, I; Couvert, O; Coroller, L

    2010-08-01

    The assessment and optimization of food heating processes require knowledge of the thermal resistance of target spores. Although the concept of spore resistance may seem simple, the establishment of a reliable quantification system for characterizing the heat resistance of spores has proven far more complex than imagined by early researchers. This paper points out the main difficulties encountered by reviewing the historical works on the subject. During an early period, the concept of individual spore resistance had not yet been considered and the resistance of a strain of spore-forming bacterium was related to a global population regarded as alive or dead. A second period was opened by the introduction of the well-known D parameter (decimal reduction time) associated with the previously introduced z-concept. The present period has introduced three new sources of complexity: consideration of non log-linear survival curves, consideration of environmental factors other than temperature, and awareness of the variability of resistance parameters. The occurrence of non log-linear survival curves makes spore resistance dependent on heating time. Consequently, spore resistance characterisation requires at least two parameters. While early resistance models took only heating temperature into account, new models consider other environmental factors such as pH and water activity ("horizontal extension"). Similarly the new generation of models also considers certain environmental factors of the recovery medium for quantifying "apparent heat resistance" ("vertical extension"). Because the conventional F-value is no longer additive in cases of non log-linear survival curves, the decimal reduction ratio should be preferred for assessing the efficiency of a heating process. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. System Finds Horizontal Location of Center of Gravity

    NASA Technical Reports Server (NTRS)

    Johnston, Albert S.; Howard, Richard T.; Brewster, Linda L.

    2006-01-01

    An instrumentation system rapidly and repeatedly determines the horizontal location of the center of gravity of a laboratory vehicle that slides horizontally on three air bearings (see Figure 1). Typically, knowledge of the horizontal center-of-mass location of such a vehicle is needed in order to balance the vehicle properly for an experiment and/or to assess the dynamic behavior of the vehicle. The system includes a load cell above each air bearing, electronic circuits that generate digital readings of the weight on each load cell, and a computer equipped with software that processes the readings. The total weight and, hence, the mass of the vehicle are computed from the sum of the load-cell weight readings. Then the horizontal position of the center of gravity is calculated straightforwardly as the weighted sum of the known position vectors of the air bearings, the contribution of each bearing being proportional to the weight on that bearing. In the initial application for which this system was devised, the center- of-mass calculation is particularly simple because the air bearings are located at corners of an equilateral triangle. However, the system is not restricted to this simple geometry. The system acquires and processes weight readings at a rate of 800 Hz for each load cell. The total weight and the horizontal location of the center of gravity are updated at a rate of 800/3 approx. equals 267 Hz. In a typical application, a technician would use the center-of-mass output of this instrumentation system as a guide to the manual placement of small weights on the vehicle to shift the center of gravity to a desired horizontal position. Usually, the desired horizontal position is that of the geometric center. Alternatively, this instrumentation system could be used to provide position feedback for a control system that would cause weights to be shifted automatically (see Figure 2) in an effort to keep the center of gravity at the geometric center.

  13. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  14. Film condensation of steam flowing downward on a tier of horizontal cylinders at different inclination angles in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of forced laminar film condensation of steam flowing downward a tier of horizontal cylinders is investigated numerically. The effects of free stream non-condensable gas, air concentration (m1,∞), free stream velocity (Reynolds number), cylinder diameter, and angle of inclination on the condensation heat transfer are analyzed. Two flow arrangements, inline and staggered, are analyzed and investigated. The mathematical model takes into account the effect of staggering of the cylinders and how condensation is affected at the lower cylinders when condensate does not fall on to the center line of the cylinders. Condensation heat transfer results are available in ranges from (U∞ = 1 - 30 m/s) for free stream velocity, (m1,∞ = 0.01 -0.8) for free stream air mass fraction and (D = 12.7 -50.8 mm) for cylinder diameter. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed. This results from the presence of small amounts of free stream air mass fractions in the steam-air mixture and increase in the cylinder diameter. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Down the bank, a rapid decrease in the vapor side heat transfer coefficient is noticed. It may be resulted from the combined effects of inundation, decrease in the vapor velocity and increase in the non-condensable gas (air) at the bottom cylinders in the bank.

  15. Modeling Vertical Structure and Heat Transport within the Oceans of Ice-covered Worlds (Invited)

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2010-12-01

    Indirect observational evidence provides a strong case for liquid oceans beneath the icy crust of Europa and several other frozen moons in the outer solar system. However, little is known about the fluid circulation within these exotic oceans. As a first step toward understanding circulations driven by buoyancy (rather than mechanical forcing from tides), one must understand the typical vertical structure of temperature, salinity, and thus density within the ocean. Following a common approach from terrestrial oceanography, I have built a "single column convection model" for icy world oceans, which describes the density structure of the ocean as a function of depth only: horizontal variations are ignored. On Earth, this approach is of limited utility, because of the strong influence of horizontal wind-driven currents and sea-surface temperature gradients set in concert with the overlying atmosphere. Neither of these confounding issues is present in an icy world's ocean. In the model, mixing of fluid properties via overturning convection is modeled as a strong diffusive process which only acts when the ocean is vertically unstable. "Double diffusive" processes (salt fingering and diffusive layering) are included: these are mixing processes resulting from the unequal molecular diffusivities of heat and salt. Other important processes, such as heating on adiabatic compression, and freshwater fluxes from melting overlying ice, are also included. As a simple test case, I considered an ocean of Europa-like depth (~100 km) and gravity, heated from the seafloor. To simplify matters, I specified an equation of state appropriate to terrestrial seawater, and a simple isothermal ocean as an initial condition. As expected, convection gradually penetrates upward, warming the ocean to an adiabatic, unstratified equilibrium density profile on a timescale of 50 kyr if 4.5 TW of heat are emitted by the silicate interior; the same result is achieved in proportionally more/less time for weaker/stronger internal heating. Unlike Earth's oceans, I predict that since icy worlds' oceans are heated from below, they will generally be unstratified, with constant potential density from top to bottom. There will be no pycnocline as on Earth, so global ocean currents supported by large-scale density gradients seem unlikely. However, icy world oceans may be "weird" in ways which are unheard-of in terrestrial oceanography The density of sulfate brine has a very different equation of state than chloride brines: does this affect the vertical structure? If the ocean water is very pure, cold water can be less dense than warm. Can this lead to periodic catastrophic overturning, as proposed by other authors? These and other questions are currently being investigated using the single-column convection model as a primary tool.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Songgang; Galbraith, Ross

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 tomore » 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.« less

  17. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  18. Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus - A radiative-convective-dynamical model

    NASA Technical Reports Server (NTRS)

    Friedson, James; Ingersoll, Andrew P.

    1987-01-01

    A model is presented for the thermodynamics of the seasonal meridional energy balance and thermal structure of the Uranian atmosphere. The model considers radiation and small-scale convection, and dynamical heat fluxes due to large-scale baroclinic eddies. Phase oscillations with a period of 0.5 Uranian year are discerned in the total internal power and global enthalpy storage. The variations in the identity of the main transport agent with the magnitude of the internal heat source are discussed. It is shown that meridional heat transport in the atmosphere is sufficient to lower seasonal horizontal temperature contrasts below those predicted with radiative-convection models.

  19. Results of tests on a specimen of the SRB aft skirt heat shield curtain in the MSFC LRLF

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1980-01-01

    A full scale segment of the actual Solid Rocket Booster aft skirt heat shield curtain was tested in the Large Radiant Lamp Facility (LRLF) at Marshall Space Flight Center. The curtain was mounted in the horizontal position in the same manner as it is to be mounted on the SRB. A shaker rig was designed and used to provide a motion of the curtain, simulating that to be caused in flight by vehicle acoustics. Thermocouples were used to monitor curtain materials temperatures. Both ascent and reentry heat loads were applied to the test specimen. All aspects of the test setup performed as expected, and the test was declared successful.

  20. Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method

    PubMed Central

    2013-01-01

    This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re. PMID:23594696

  1. Investigation of thermo-fluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Sobhani, M.; Behzadmehr, A.

    2018-05-01

    This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.

  2. Thermal maturity patterns of Cretaceous and Tertiary rocks, San Juan Basin, Colorado and New Mexico

    USGS Publications Warehouse

    Law, B.E.

    1992-01-01

    Horizontal and vertical thermal maturity patterns and time-temperature modeling indicate that the high levels of thermal maturity in the northern part of the basin are due to either: 1) convective heat transfer associated with a deeply buried heat source located directly below the northern part of the basin or 2) the circulation of relatively hot fluids into the basin from a heat source north of the basin located near the San Juan Mountains. Time-temperature and kinetic modeling of nonlinear Rm profiles indicates that present-day heat flow is insufficient to account for the measured levels of thermal maturity. Furthermore, in order to match nonlinear Rm profiles, it is necessary to assign artifically high thermal-conductivity values to some of the stratigraphic units. These unrealistically high thermal conductivities are interpreted as evidence of convective heat transfer. -from Author

  3. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  4. On the Biohabitability of M-dwarf Planets

    NASA Astrophysics Data System (ADS)

    Wandel, A.

    2018-04-01

    The recent detection of Earth-sized planets in the habitable zone of Proxima Centauri, Trappist-1, and many other nearby M-type stars has led to speculations whether liquid water and life actually exist on these planets. To a large extent, the answer depends on their yet unknown atmospheres, which may, however, be within observational reach in the near future by JWST, ELT, and other planned telescopes. We consider the habitability of planets of M-type stars in the context of their atmospheric properties, heat transport, and irradiation. Instead of the traditional definition of the habitable zone, we define the biohabitable zone, where liquid water and complex organic molecules can survive on at least part of the planetary surface. The atmospheric impact on the temperature is quantified in terms of the heating factor (a combination of greenhouse heating, stellar irradiation, albedo, etc.) and heat redistribution (horizontal energy transport). We investigate the biohabitable domain (where planets can support surface liquid water and organics) in terms of these two factors. Our results suggest that planets orbiting M-type stars may have life-supporting temperatures, at least on part of their surface, for a wide range of atmospheric properties. We apply this analyses to Proxima Cen b and the Trappist-1 system. Finally, we discuss the implications for the search of biosignatures and demonstrate how they may be used to estimate the abundance of photosynthesis and biotic planets.

  5. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  6. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    NASA Astrophysics Data System (ADS)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  7. Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Stubbs, Sandy M.

    1965-01-01

    An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal.

  8. A study of wind effects on collector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onur, N.; Hewitt, J.C. Jr.

    1980-08-01

    Convective heat transfer experiments have been run on flat-plate collectors for tilt angles ranging from the horizontal to the vertical and for five different flow velocities. Experimental data are used to evaluate the currently used models, namely, those of Jurges (1924), Drake (1948), and Sparrow et al (1970-79), and it is shown that although none of these models provides an exact fit, they do represent bounds for the present data. It is also shown that the effect of flow from the northern quadrants provides an additional heat loss reduction of 10 to 20%.

  9. Breakdown of dynamic balance of a particle in a quadrupole cell by laser-induced aerosol heating.

    PubMed

    Itoh, M; Lwamoto, T; Takahashi, K; Kuno, S

    1992-08-20

    The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO(2) laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 10(5) W/m(2). The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

  10. Study on the glaze ice accretion of wind turbine with various chord lengths

    NASA Astrophysics Data System (ADS)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  11. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  12. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  13. Recent crustal subsidence at Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Dzurisin, D.; Savage, J.C.; Fournier, R.O.

    1990-01-01

    Following a period of net uplift at an average rate of 15??1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984-1985 and then subsided 25??7 mm during 1985-1986 and an additional 35??7 mm during 1986-1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: {Mathematical expression}1 = 0.10 ?? 0.09 ??strain/year oriented N33?? E??9?? and {Mathematical expression}2 = 0.20 ?? 0.09 ??strain/year oriented N57?? W??9?? (extension reckoned positive). A best-fit elastic model of the 1985-1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10??5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity. ?? 1990 Springer-Verlag.

  14. Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen

    2001-03-15

    Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinarymore » hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be highlighted:1. The heat flux removable in rectangular electrically conducting ducts at walls parallel to the magnetic field is by a factor of 2 higher than in the slug flow model previously used in design calculations. Conditions for which this heat transfer enhancement is attainable are presented. The measured dimensionless pressure gradient coincides with the theoretical one and is constant throughout the whole Reynolds number regime investigated (Re = 10{sup 3} {yields} 10{sup 5}), although the flow turns from laminar to turbulent. The use of electromagnetic TPs close to the heated wall leads to nonmeasurable increase of the heat transfer in the same Re regime as long as they do not lead to an interaction with the wall adjacent boundary layers.2. Mechanical TPs used in an electrically insulated rectangular duct improved the heat transfer up to seven times compared to slug flow, but the pressure drop can increase also up to 300%. In a cost-benefit analysis, the advantageous parameter regime for applying this method is determined.3. Experiments performed in a flat box both in a vertical and a horizontal arrangement within a horizontal magnetic field show the expected increase of damping of the fluid motion with increasing Hartmann number M. At high M, buoyant convection will be completely suppressed in the horizontal case. In the vertical setup, the fluid motion is reduced to one large vortex leading to a decreasing heat transfer between heated and cooled plate to pure heat conduction.From an analysis of the experimental and theoretical results, general design criteria are derived for the orientation and shape of the first wall coolant ducts of self-cooled liquid metal blankets. Methods to generate additional turbulence within the flow, which can improve the heat transfer further are elaborated.« less

  15. Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Oncken, O.

    2008-12-01

    We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.

  16. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for geothermal power systems.

  17. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE PAGES

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  18. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan

    2016-01-01

    A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.

  19. Seasonal cycle of the mixed-layer heat and freshwater budget in the eastern tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Rath, Willi; Dengler, Marcus; Lüdke, Jan; Schmidtko, Sunke; Schlundt, Michael; Brandt, Peter; Partners, Preface

    2016-04-01

    A new seasonal mixed-layer heat flux climatology is used to explore the mechanisms driving seasonal variability of sea surface temperature and salinity in the eastern tropical Atlantic (ETA) with a focus on the eastern boundary upwelling regions. Until recently, large areas at the continental margins of the ETA were not well covered by publically available hydrographic data hampering a detailed understanding of the involved processes. In a collaborative effort between African and European partners within the EU-funded PREFACE program, a new seasonal climatology for different components of the heat and freshwater budget was compiled for the ETA using all publically available hydrographic data sets and a large trove of previously not-publically available hydrographic measurements from the territorial waters of western African countries, either from national programs or from the FAO supported EAF-Nansen program. The publically available data includes hydrographic data from global data repositories including most recent ARGO floats and glider measurements. This data set was complemented by velocity data from surface drifter and ARGO floats to allow determining horizontal heat and freshwater advection. Monthly means of air-sea heat fluxes were derived from the TropFlux climatology while precipitation rates were derived from monthly mean fields of the Global Precipitation Climatology Project. Finally, microstructure data from individual measurement campaigns allow estimating diapycnal heat and salt fluxes for certain regions during specific months. A detailed analysis of the seasonal cycle of mixed-layer heat and freshwater balance in previously poorly covered regions in the eastern tropical Atlantic upwelling is presented. In both eastern boundary upwelling region, off Senegal/Mauritania and off Angola/Namibia, average net surface heat fluxes warm the mixed layer at a rate between 50 and 80 W/m2 with maxima in the respective summer seasons. Horizontal advection contributed to cooling of the mixed layer but a residual cooling term remains in both upwelling regions. A surprising result is that this residual is largest in the Angolan upwelling region, where upwelling-favourable winds are generally weaker than off Namibia and in the north-eastern upwelling region. The contributions of windstress-derived vertical advection and diapycnal heat and freshwater fluxes are discussed. In addition, the TropFlux climatology is evaluated against radiative and turbulent ocean-atmosphere heat and freshwater fluxes derived from ship-board observations.

  20. Role of surface heat fluxes underneath cold pools

    DOE PAGES

    Gentine, Pierre; Garelli, Alix; Park, Seung -Bu; ...

    2016-01-05

    In this paper, the role of surface heat fluxes underneath cold pools is investigated using cloud–resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerousmore » and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.« less

  1. Numerical investigation of the thermal behavior of heated natural composite materials

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Mohammed, F. Abbas; Hashim, R.

    2015-11-01

    In the present work numerical investigation was carried out for laminar natural convection heat transfer from natural composite material (NCM). Three types of natural materials such as seed dates, egg shells, and feathers are mixed separately with polyester resin. Natural materials are added with different volume fraction (10%, 20%, and 30%) are heated with different heat flux (1078W/m2, 928W/m2, 750W/m2, 608W/m2, and 457W/m2) at (vertical, inclined, and horizontal) position. Continuity and Navier-Stocks equations are solved numerically in three dimensions using ANSYS FLUENT package 12.1 software commercial program. Numerical results showed the temperature distribution was affected for all types at volume fraction 30% and heat flux is 1078 W/m2, for different position. So, shows that the plumes and temperature behavior are affected by the air and the distance from heat source. Numerical results showed acceptable agreement with the experimental previous results.

  2. Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance

    NASA Astrophysics Data System (ADS)

    Cieśliński, Janusz T.

    2016-06-01

    An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.

  3. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis.

    PubMed

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  5. Numerical simulation of heat and mass transport during space crystal growth with MEPHISTO

    NASA Technical Reports Server (NTRS)

    Yao, Minwu; Raman, Raghu; Degroh, Henry C., III

    1995-01-01

    The MEPHISTO space experiments are collaborative United States and French investigations aimed at understanding the fundamentals of crystal growth. Microgravity experiments were conducted aboard the USMP-1 and -2 missions on STS-52 and 62 in October 1992 and March 1994 respectively. MEPHISTO is a French designed and built Bridgman type furnace which uses the Seebeck technique to monitor the solid/liquid interface temperature and Peltier pulsing to mark the location and shape of the solid/liquid interface. In this paper the Bridgman growth of Sn-Bi and Bi-Sn under terrestrial and microgravity conditions is modeled using the finite element code, FIDAP*. The numerical model considers fully coupled heat and mass transport, fluid motion and solid/liquid phase changes in the crystal growth process. The primary goals of this work are: to provide a quantitative study of the thermal buoyancy-induced convection in the melt for the two flight experiments; to compare the vertical and horizontal growth configurations and systematically evaluate the effects of various gravity levels on the solute segregation. Numerical results of the vertical and horizontal Bridgman growth configurations are presented.

  6. Thermal-hydraulic behavior of Sc-C02 in a horizontal circular straight tube

    NASA Astrophysics Data System (ADS)

    Tanimizu, Katsuyoshi; Sadr, Reza; Ranjan, Davesh

    2011-11-01

    Fluids above critical pressure have been practically utilized for 60 years in many applications and their use and interest is still increasing in many areas, especially power generation industries and chemical industries. Above critical pressure, very rapid changes in thermophysical properties take place near the pseudocritical temperature. In this region, the fluid transforms from liquid-like to gas-like behavior when the fluid temperature rises up and passes through the pseudocritical temperature. This allows enormous potential for energy transfer, but also alters the turbulent flow due to changes in the turbulent shear stress brought about by acceleration and buoyancy effects. However, we have not fully understood their dynamic behaviors such as turbulence yet. A supercritical CO2 testing loop has been built at Texas A&M University at Qatar to perform heat transfer and pressure drop measurements and investigate the thermo-physical and dynamic characteristics of supercritical carbon dioxide flow. The results of heat transfer measurements in a super critical fluid conducted in a horizontal pipe are reported and discussed here. Supported by QNRF.

  7. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  8. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  9. Turbulence characteristics of velocity and scalars in an internal boundary-layer above a lake

    NASA Astrophysics Data System (ADS)

    Sahlee, E.; Rutgersson, A.; Podgrajsek, E.

    2012-12-01

    We analyze turbulence measurements, including methane, from a small island in a Swedish lake. The turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies displayed a daily variation, increasing in the morning and decreasing in the afternoon. We interpret this behavior as a sign of spectral lag, where the low frequency energy, large eddies, originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrates with new surface forcing. However, the larger eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variance of the horizontal velocity is increased by these large eddies however, momentum fluxes and scalar variances and fluxes appear unaffected. The drag coefficient, Stanton number and Dalton number used to parameterize the momentum flux, heat flux and latent heat flux respectively all compare very well with parameterizations developed for open ocean conditions.

  10. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  11. Eddy Correlation Flux Measurement System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less

  12. Project SAGE: solar assisted gas energy. Final report and executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Phase III basic objective was establishment of a technical and economic baseline for proper assessment of the practical potential of solar water heating for apartments. Plans can then be formulated to improve SAGE technical design and performance; reduce SAGE costs; refine SAGE market assessment; and identify policies to encourage the use of SAGE. Two SAGE water heating systems were installed and tested. One system was retrofit onto an existing apartment building; the other was installed in a new apartment building. Each installation required approximately 1000 square feet of collector area tilted to an angle of 37/sup 0/ from themore » horizontal, and each was designed to supply about 70 percent of the energy for heating water for approximately 32 to 40 units of a typical two-story apartment complex in Southern California. Actual contruction costs were carefully compiled, and both installations were equipped with performance monitoring equipment. In addition, the operating and maintenance requirements of each installation was evaluated by gas company maintenance engineers. Upon completion of the installation analysis, the SAGE installation cost was further refined by obtaining firm SAGE construction bids from two plumbing contractors in Southern California. Market penetration was assessed by developing a computer simulation program using the technical and economic analysis from the installation experience. Also, the project examined the public policies required to encourage SAGE and other solar energy options. Results are presented and discussed. (WHK)« less

  13. Studies of heat source driven natural convection

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nagle, M. E.; Cassen, P.

    1974-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.

  14. Parametric study of thermal storage containing rocks or fluid filled cans for solar heating and cooling, phase 2

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    The test data and an analysis of the heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans and standard bricks as energy storage medium are presented. This experimental investigation was initiated to find a usable heat intensive solar thermal storage device other than rock storage and water tank. Four different sizes of soup cans were stacked in a chamber in three different arrangements-vertical, horizontal, and random. Air is used as transfer medium for charging and discharge modes at three different mass flow rates and inlet air temperature respectively. These results are analyzed and compared, which show that a vertical stacking and medium size cans with Length/Diameter (L/D) ratio close to one have better average characteristics of heat transfer and pressure drop.

  15. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  16. Experimental Study on Flow Boiling of Carbon Dioxide in a Horizontal Microfin Tube

    NASA Astrophysics Data System (ADS)

    Kuwahara, Ken; Ikeda, Soshi; Koyama, Shigeru

    This paper deals with the experimental study on flow boiling heat transfer of carbon dioxide in a micro-fin tube. The geometrical parameters of micro-fin tube used in this study are 6.07 mm in outer diameter, 5.24 mm in average inner diameter, 0.256 mm in fin height, 20.4 in helix angle, 52 in number of grooves and 2.35 in area expansion ratio. Flow patterns and heat transfer coefficients were measured at 3-5 MPa in pressure, 300-540 kg/(m2s) in mass velocity and -5 to 15 °C in CO2 temperature. Flow patterns of wavy flow, slug flow and annular flow were observed. The measured heat transfer coefficients of micro-fin tube were 10-40 kW/(m2K). Heat transfer coefficients were strongly influenced by pressure.

  17. Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid Nanofluid in a heated horizontal annulus

    NASA Astrophysics Data System (ADS)

    Benkhedda, Mohamed; Boufendi, Toufik; Touahri, S.

    2018-03-01

    In the present paper, laminar mixed convection in horizontal annulus filled with a TiO2/water nanofluid and Ag-TiO2/water hybrid nanofluid has been numerically studied. The outer cylinder is uniformly heated while the inner cylinder is adiabatic. The governing equations with the appropriate boundary conditions are discretized by the finite volume method with second order precision, and solved by using the SIMPLER and Thomas algorithms. The numerical simulations are performed for various nanoparticles volume fractions, between 0 and 8% and Grashof numbers between 105 and 106. The results shows that for all studied Grashof numbers, the local and average Nusselt numbers, and the bulk temperature increase with the increasing of the volume fraction and the Grashof number. The heat transfer is very enhancement when using a Ag-TiO2/water hybrid nanofluid compared to the similar TiO2/water nanofluid. Moreover, the exploitation of the numerical results that we obtained enabled us to develop two new correlations, which allow the estimation of the average Nusselt number. The results reveal that the numerical data are in a good agreement with the correlation data. The maximum error for nanofluid and hybrid nanofluid was around 2.5% and 4.7% respectively. Hence, among the multitude of the obtained results in this work, it remains that the new correlations developed, especially for the hybrid nanofluid Ag-TiO2 / water, constitute for their originality, the most significant result of this research.

  18. Numerical Simulations of the Natural Thermal Regime and Enhanced Geothermal Systems in the St. Lawrence Lowlands Basin, Quebec, Canad

    NASA Astrophysics Data System (ADS)

    Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.

    2017-12-01

    An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an area of contact of at least 1 km2 between the geofluid and the rock matrix, which would require horizontal and multilateral drilling with hydraulic stimulation, and (3) an initial temperature of at least 150 °C in a conductive geological formation, which would require drilling to depths of 6500 m.

  19. Electromagnetically levitated vibration isolation system for the manufacturing process of silicon monocrystals

    NASA Technical Reports Server (NTRS)

    Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki

    1994-01-01

    This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.

  20. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  1. A model for fluid flow during saturated boiling on a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Kheyrandish, K.; Dalton, C.; Lienhard, J. H.

    1987-01-01

    A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.

  2. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  3. Effect of natural convection in a horizontally oriented cylinder on NMR imaging of the distribution of diffusivity

    PubMed

    Mohoric; Stepisnik

    2000-11-01

    This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.

  4. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a similar methodology but a different sonar system) provide references to the consistency of the methodology. Second, the vertical flow rate measurement made in 2007 at an adjacent vent complex (Dante) using a different acoustic method (acoustic scintillation) can serve as a first order estimation of the plume vertical velocity. Third, another first order estimation can be obtained by combining the plume bending angle with the horizontal current measured by a current meter array deployed to the north of the vent field. Finally, statistical techniques are used to quantify the errors due to the ambient noises, inherent uncertainties of the methodology, and the fluctuation of the plume structure.

  5. Energy transport in cooling device by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  6. The onset of convection in a binary fluid mixture with temperature dependent viscosity and Coriolis force with Soret presence

    NASA Astrophysics Data System (ADS)

    Abidin, Nurul Hafizah Zainal; Mokhtar, Nor Fadzillah Mohd; Majid, Zanariah Abdul; Ghani, Siti Salwa Abd

    2017-11-01

    Temperature dependent viscosity and Coriolis force were applied to the steady Benard-Marangoni convection where the lower boundary of a horizontal layer of the binary mixture is heated from below and cooled from above. The purpose of this paper is to study in detail the onset of convection with these effects. Few cases of boundary conditions are studied which are rigid-rigid, rigid-free and free-free representing the lower-upper boundaries. A detailed numerical calculation of the marginal stability curves was performed by using the Galerkin method and it is showed that temperature dependent viscosity and Soret number destabilize the binary fluid layer system and Taylor number act oppositely.

  7. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Spinhirne, J. D.; Chou, S.-H.; Palm, S. P.

    1985-01-01

    Observations of a convective planetary boundary layer (PBL) were made with an airborne, downward-looking lidar system over the Atlantic Ocean during a cold air outbreak. The lidar data revealed well-organized, regularly spaced cellular convection with dominant spacial scales between two and four times the height of the boundary layer. It is demonstrated that the lidar can accurately measure the structure of the PBL with high vertical and horizontal resolution. Parameters important for PBL modeling such as entrainment zone thickness, entrainment rate, PBL height and relative heat flux can be inferred from the lidar data. It is suggested that wind shear at the PBL top may influence both entrainment and convective cell size.

  8. Influence of surface displacement on solid state flow induced by horizontally heterogeneous Joule heating in the inner core of the Earth

    NASA Astrophysics Data System (ADS)

    Takehiro, Shin-ichi

    2015-04-01

    We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.

  9. Hot Water Propulsion for Horizontal Rocket Assisted Take-Off Systems for Future Reusable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Pilz, N.; Adirim, H.; Lo, R.; Schildknecht, A.

    2004-10-01

    Among other concepts, reusable space transportation systems that comprise winged reusable launch vehicles (RLV) with horizontal take-off and horizontal landing (HTHL) are under worldwide investigation, e.g. the respective concepts within ESA's FESTIP-Study (Future European Space Transportation Integration Program) or the HOPPER concept by EADS-ST. The payload of these RLVs could be significantly increased by means of a ground-based take-off assistance system that would accelerate the vehicle along a horizontal track until it reaches the desired speed to ignite its onboard engines for leaving the ground and launching into orbit. This paper illustrates the advantages of horizontal take-off for winged RLVs and provides an overview of launch-assist options for HTHL RLVs. It presents hot water propulsion for ground-based take-off assistance systems for future RLVs as an attractive choice besides magnetic levitation and acceleration (maglev) technology. Finally, preliminary design concepts are presented for a rocket assisted take-off system (RATOS) with hot water propulsion followed by an analysis of its improvement potential.

  10. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  11. Walks of bubbles on a hot wire in a liquid bath

    NASA Astrophysics Data System (ADS)

    Duchesne, A.; Caps, H.

    2017-05-01

    When a horizontal resistive wire is heated up to the boiling point in a subcooled liquid bath, some vapor bubbles nucleate on its surface. The traditional nucleate boiling theory predicts that bubbles generated from active nucleate sites grow up and depart from the heating surface due to buoyancy and inertia. However, we observed here a different behavior: the bubbles slide along the heated wire. In this situation, unexpected regimes are observed; from the simple sliding motion to bubble clustering. We noticed that bubbles could rapidly change their moving direction and may also interact. Finally, we propose an interpretation for both the attraction between the bubbles and the wire and for the motion of the bubbles on the wire in terms of Marangoni effects.

  12. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  13. Comparative Investigation and Operational Performance Characteristics of a Wick Assisted and Axially Square Grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand

    2018-04-01

    The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.

  14. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    NASA Astrophysics Data System (ADS)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  15. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  16. Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervinen, T.; Riikonen, V.; Ritonummi, T.

    A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less

  17. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consistingmore » of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal isolation. The packer and port completion approach utilizes an open horizontal hole that zonally isolates areas through the use of external packers and a liner. A review of technologies used in these systems was performed to determine if commercially available equipment from the petroleum industry could be used at the temperatures, pressures, and sizes encountered in geothermal settings. The study found no major technical barriers to employing shale gas multi-zonal completion techniques in a horizontal well in a geothermal setting for EGS development. For all techniques considered, temperature limitations of equipment are a concern. Commercially available equipment designed to operate at the high temperatures encountered in geothermal systems are available, but is generally unproven for geothermal applications. Based on the study, further evaluation of adapting oil and gas completion techniques to EGS is warranted.« less

  18. Inductrack configuration

    DOEpatents

    Post, Richard Freeman [Walnut Creek, CA

    2006-08-29

    A simple permanent-magnet-excited maglev geometry provides levitation forces and is stable against vertical displacements from equilibrium but is unstable against horizontal displacements. An Inductrack system is then used in conjunction with this system to effect stabilization against horizontal displacements and to provide centering forces to overcome centrifugal forces when the vehicle is traversing curved sections of a track or when any other transient horizontal force is present. In some proposed embodiments, the Inductrack track elements are also employed as the stator of a linear induction-motor drive and braking system.

  19. Inductrack configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-07

    A simple permanent-magnet-excited maglev geometry provides levitation forces and is stable against vertical displacements from equilibrium but is unstable against horizontal displacements. An Inductrack system is then used in conjunction with this system to effect stabilization against horizontal displacements and to provide centering forces to overcome centrifugal forces when the vehicle is traversing curved sections of a track or when any other transient horizontal force is present. In some proposed embodiments, the Inductrack track elements are also employed as the stator of a linear induction-motor drive and braking system.

  20. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  1. Viscoelasticity and pattern formations in stock market indices

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution of stock index value although they describe different properties. Entropy fluctuates at fast increase and fast fall of index value, and fluctuation becomes very high at minimum values of the index. The curvature of a circle passing from the two ends of the vector and the point of intersection of its horizontal and vertical components designates the reactivity involved in the market and the radius of circle behaves somehow similar to entropy and Wiener noise. The change of entropy and Wiener noise with radius exhibits patterns with four branches.

  2. Enhanced Condensation of R-113 on a Small Bundle of Horizontal Tubes

    DTIC Science & Technology

    1991-12-01

    Anthony J. l lcaley, Ch an )epartment of Mechanic’ Engineering ABSTRACT Condensation of R-113 was studied using an evaporator/condenser test platform. The...IF 7825 FOR I=1 TO Npair5 7830 ENTER @File;Xa,Ya 7835 S×=Sx+Xa 7840 Sy=Sy+Ya 7845 5x2=Sx2+XaŖ 7850 Sxy-Sxy+Xa*Ya 7855 X=(Xa-Xmin)*Sfx 7860 Y-(Ya-Ymin...9th Int. Heat Transfer Conf., Vol. 3, pp. 15-20, 1990. 33. Fujii, T., Wang, W. Ch ., Koyama, Sh. and Y. Shimizu, Heat Transfer Enhancement for Gravity

  3. Influence of thermal stratification and slip conditions on stagnation point flow towards variable thicked Riga plate

    NASA Astrophysics Data System (ADS)

    Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.

    2018-06-01

    This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.

  4. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel.

    PubMed

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    Axial fully-reversed strain-controlled ([Formula: see text]) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17-4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17-4 PH SS.

  5. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel

    PubMed Central

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    Axial fully-reversed strain-controlled (R=−1) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17–4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17–4 PH SS. PMID:26955653

  6. Studies on the Startup Transients and Performance of a Gas Loaded Sodium Heat Pipe

    DTIC Science & Technology

    1989-06-01

    NOTATION Prepared as a doctoral dissertation (Ph.D.) for the University of Dayton, Dayton, Ohio. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse...for his doctoral degree from the University of Dayton. Messrs. J. Tennant and M. 0. Ryan (UES) and D. Reinmuller (APPL) provided the technical support...B55.9 x 9.81 x I.H1’i x 10 ? x I - 158./ N/m2 APA p tg d sin q 0 (for horizontal heat (42) pipe operation) P pm -cm -AP - APA (43) lable 5 lists these

  7. Interfacial nonequilibrium and Bénard-Marangoni instability of a liquid-vapor system

    NASA Astrophysics Data System (ADS)

    Margerit, J.; Colinet, P.; Lebon, G.; Iorio, C. S.; Legros, J. C.

    2003-10-01

    We study Bénard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at each instant for the stability analysis, limited to infinitesimal disturbances (linear regime). We use irreversible thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we consider the possibility of a temperature jump across the interface, as recently measured experimentally. The stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the marginal stability curves is discussed.

  8. Modeling the MJO rain rates using parameterized large scale dynamics: vertical structure, radiation, and horizontal advection of dry air

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sobel, A. H.; Nie, J.

    2015-12-01

    Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.

  9. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    ERIC Educational Resources Information Center

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  10. Three-dimensional Numerical Simulation of Venus' Cloud-level Convection

    NASA Astrophysics Data System (ADS)

    Sugiyama, K. I.; Nakajima, K.; Odaka, M.; Imamura, T.; Hayashi, Y. Y.; Ishiwatari, M.; Kawabata, T.

    2015-12-01

    Although some observational evidences have suggested the occurrence of convection in the lower part of Venus' cloud layer, its structure remains to be clarified. To date, a few numerical studies have examined the structure of convective motion (Baker et al., 1998, 2000; Imamura et al., 2014), but the model they utilized is two-dimensional. Here we report on the results of our numerical calculations performed in order to investigate possible three-dimensional structure of the convection. We use a convection resolving model developed by Sugiyama et al. (2009), which is used in the simulations of the atmospheric convection of Jupiter (Sugiyama et al., 2011,2014) and Mars (Yamashita et al., submitted). We perform two experiments. The first one, which we call Ext.B, is based on Baker et al. (1998). A constant turbulent mixing coefficient is used in the whole domain, and a constant thermal flux is given at the upper and lower boundaries as a substitute for infrared heating. The second one, which we call Exp.I, is based on Imamura et al. (2014). The sub-grid turbulence process is implemented by Klemp and Wilhelmson (1989), and an infrared heating profile obtained in a radiative-convective equilibrium calculation (Ikeda, 2011) is used. In both experiments, the averaged solar heating profile is used. The spatial resolution is 200 m in the horizontal direction and 125 m in the vertical direction. The domain covers 128km x 128km horizontally and altitudes from 40 km to 60 km. Obtained structures of convection moderately differ in the two experiments. Although the depth of convection layer is almost the same, the horizontal cell size of Exp.B is larger than that of Exp.I; the cell sizes in Exp.B and Exp.I are about 40 km and 25 km, respectively. The vertical motion in Exp.B is asymmetric; updrafts are widespread and weak (~3m/s), whereas downdrafts are narrow and strong (~10m/s). On the other hand, the vertical motion in Exp.I is nearly symmetric and weaker (~2m/s) compared with those in Exp.B. The difference of convective structure results from the different vertical distributions of implemented infrared heating. Namely, the intense downdrafts in Exp.B are forced by the strong cooling concentrated near the top of convection layer. In Exp.I, the heating is distributed in a thick layer, so that relatively symmetric vertical motion occurs.

  11. Theoretical aspects of tidal and planetary wave propagation at thermospheric heights

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1977-01-01

    A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.

  12. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  13. Spatial Modeling of the Influence of Mining-Geometric Indices on the Efficiency of Mining

    NASA Astrophysics Data System (ADS)

    Sobolevskyi, Ruslan; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Shlapak, Vladimir

    2017-12-01

    The regularities of the changes of horizontal and sub-horizontal systems of cracks at different locations of Holovyne labradorite deposits are studied. The trend for stress to increase has been established in the quarry LLS "Optima" for Holovyne labradorite deposits in Volodar-Volynsk district, Zhytomyr region at the deepening of excavation. The duration of the working cycle of borehole drilling in a solid and cracked massif is calculated using a new method. The calendar planning method of mining is developed taking into account the dependence of drilling efficiency on horizontal and sub-horizontal systems of cracks.

  14. GIS diagnostics: thermal imaging systems used for poor contact detection

    NASA Astrophysics Data System (ADS)

    Avital, Doron; Brandenbursky, V.; Farber, A.

    2004-04-01

    The reliability of GIS is very high but any failure that occurs can cause extensive damage result and the repair times are considerably long. The consequential losses to system security and economically can be high, especially if the nominal GIS voltage is 420 kV and above. In view of these circumstances, increasing attention is being given to diagnostic techniques for in-service maintenance undertaken to improve the reliability and availability of GIS. Recently considerable progress has been made in diagnostic techniques and they are now used successfully during the service life of the equipment. These diagnostic techniques in general focus on the GIS insulation system and are based on partial discharge (PD) measurements in GIS. There are three main methods for in-service PD detection in GIS: - the chemical method that rely on the detection of cracked gas caused by PD, the acoustic method designed to detect the acoustic emission excited by PD, and, the electrical method which is based on detection of electrical resonance at ultra high frequencies (UHF) up to 1.5 GHz caused by PD excitation in GIS chambers (UHF method). These three dielectric diagnostic methods cannot be used for the detection of poor current carrying contacts in GIS. This problem does not always produce partial discharges and at early stages it does not cause gas cracking. An interesting solution to use two techniques - the current unbalance alarm scheme and partial discharge monitoring was advised by A. Salinas from South California Edison Co. Unfortunately this way is complicated and very expensive. The investigations performed in Japan on standing alone SF6 breaker showed that joule heating of the contact accompanied by released power of 1600 Watt produce temperature difference on the enclosure up to 7 degrees centigrade that could be detected by infra-red Thermal Imaging System. According to CIGRE Joint Working Group 33/23.12 Report, 11% of all GIS failures are due to poor current carrying contacts in GIS. The Israel Electric Company (IEC) in seeking a solution to this problem have undertaken experimental work to examine the possibility of in-service diagnostic of poor contact problem in GIS via direct local heating detection, using a Thermal Imaging System. The experiments were carried out on the part of the GIS with nominal SF6 pressure. The following aspects of the problem were examined: - the range of power released in the defective contact that could give the practical temperature rise on the surface of enclosure; - temperature distribution on the surface of enclosure; - the influence of spacer type (with holes or without) on the heat transfer process; - the influence of the length of SF6 tubes and there position (horizontal or vertical); - the temperature difference between upper and lower parts of the tubes in horizontal position; - practical use of the Thermal Imaging System for detecting poor contact problem in GIS.

  15. Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2007-01-01

    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.

  16. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  17. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    NASA Astrophysics Data System (ADS)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  18. Heat transfer enhancement induced by wall inclination in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  19. Evapotranspiration under advective conditions.

    PubMed

    Figuerola, Patricia I; Berliner, Pedro R

    2005-07-01

    Arid and semi-arid regions are heterogeneous landscapes in which irrigated fields are surrounded by arid areas. The advection of sensible heat flux from dry surfaces is a significant source of energy that has to be taken into consideration when evaluating the evaporation from crops growing in these areas. The basic requirement of most of the common methods for estimating evapotranspiration [Bowen ratio, aerodynamic and Penman-Monteith (PM) equation] is that the horizontal fluxes of sensible and latent heat are negligible when compared to the corresponding vertical fluxes. We carried out measurements above an irrigated tomato field in a desert area. Latent and sensible heat fluxes were measured using a four-level Bowen machine with aspirated psychrometers. Our results indicate that under advective conditions only measurements carried out in the lowest layer are satisfactory for the estimation of latent heat fluxes and that the use of the PM equation with an appropriately parameterized canopy resistance may be preferable.

  20. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.« less

Top