An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.
Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study
Ali, Abbod; Sharma, R. K.; Ganesan, P.
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666
NASA Astrophysics Data System (ADS)
Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří
2018-06-01
The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.
Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe
NASA Astrophysics Data System (ADS)
Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.
2018-03-01
The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.
Velocity of mist droplets and suspending gas imaged separately
NASA Astrophysics Data System (ADS)
Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.
2012-03-01
Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
Experimental data for the slug two-phase flow characteristics in horizontal pipeline.
Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H
2018-02-01
The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less
NASA Astrophysics Data System (ADS)
Akhmedagaev, R.; Listratov, Y.
2017-11-01
The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
NASA Astrophysics Data System (ADS)
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
Chill Down Process of Hydrogen Transport Pipelines
NASA Technical Reports Server (NTRS)
Mei, Renwei; Klausner, James
2006-01-01
A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.
Drag reduction of alumina nanofluid in spiral pipe with turbulent flow conditions
NASA Astrophysics Data System (ADS)
Yanuar, Mau, Sealtial; Waskito, Kurniawan T.; Putra, Okky A.; Hanif, Rifqi
2017-03-01
This study was conducted to investigate the effects of nanofluid flows through the spiral pipe on drag reduction in turbulent flow conditions. Al2O3 nanoparticles dispersed into pure water at ratio of 100 ppm, 200 ppm and 300 ppm as well as the duration of the mixing time 30 minutes, 60 minutes and 120 minutes. A circular pipe used as a comparison to spiral pipe and both are mounted horizontally. Spiral pipe ratio is P/Di 10.8 and the inner diameter of circular pipe is 3 mm. Mixing time and composition ratio of nanoparticle in basic fluid influence drag reduction results. Nanofluid flows through the test pipe with Reynolds number between 4.0 × 103 to 2.0 × 104 showed high drag reduction occurred in the spiral pipe is 38%.
NASA Astrophysics Data System (ADS)
Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.
2012-03-01
Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.
Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe
NASA Astrophysics Data System (ADS)
Li, Y. J.; Wu, S. Q.; Jin, T.
2017-12-01
Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
NASA Astrophysics Data System (ADS)
Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko
2017-08-01
A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.
NASA Astrophysics Data System (ADS)
Aksenov, Andrey; Malysheva, Anna
2018-03-01
An exact calculation of the heat exchange of evaporative surfaces is possible only if the physical processes of hydrodynamics of two-phase flows are considered in detail. Especially this task is relevant for the design of refrigeration supply systems for high-rise buildings, where powerful refrigeration equipment and branched networks of refrigerants are used. On the basis of experimental studies and developed mathematical model of asymmetric dispersed-annular flow of steam-water flow in horizontal steam-generating pipes, a calculation formula has been obtained for determining the boundaries of the zone of improved heat transfer and the critical value of the heat flux density. A new theoretical approach to the solution of the problem of the flow structure of a two-phase flow is proposed. The applied method of dissipative characteristics of a two-phase flow in pipes and the principle of a minimum rate of entropy increase in stabilized flows made it possible to obtain formulas that directly reflect the influence of the viscous characteristics of the gas and liquid media on their distribution in the flow. The study showed a significant effect of gravitational forces on the nature of the phase distribution in the cross section of the evaporative tubes. At a mass velocity of a two-phase flow less than 700 kg / m2s, the volume content of the liquid phase near the upper outer generating lines of the tube is almost an order of magnitude lower than the lower one. The calculation of the heat transfer crisis in horizontal evaporative tubes is obtained. The calculated dependence is in good agreement with the experimental data of the author and a number of foreign researchers. The formula generalizes the experimental data for pipes with the diameter of 6-40 mm in the pressure of 2-7 MPa.
Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe
NASA Astrophysics Data System (ADS)
Rawat, K. S.; Pratihar, A. K.
2018-02-01
In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2017-04-01
Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation // SPE Symp. Res. Sim., 1991. DOI: 10.2118/21221-MS.
NASA Astrophysics Data System (ADS)
Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel
2018-06-01
The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.
Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, R.A.; Lo, Y.T.
1977-01-01
A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-10-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005
Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.
2007-01-01
This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by modifying horizontal conductances assembled by the Block-Centered Flow (BCF), Layer-Property Flow (LPF), or Hydrogeologic-Unit Flow Packages (HUF) of MODFLOW-2005. For both conduit flow pipes (CFPM1) and preferential flow layers (CFPM2), critical Reynolds numbers are used to determine if flow is laminar or turbulent. Due to conservation of momentum, flow in a laminar state tends to remain laminar and flow in a turbulent state tends to remain turbulent. This delayed transition between laminar and turbulent flow is introduced in the CFP, which provides an additional benefit of facilitating convergence of the computer algorithm during iterations of transient simulations. Specifically, the user can specify a higher critical Reynolds number to determine when laminar flow within a pipe converts to turbulent flow, and a lower critical Reynolds number for determining when a pipe with turbulent flow switches to laminar flow. With CFPM1, the Hagen-Poiseuille equation is used for laminar flow conditions and the Darcy-Weisbach equation is applied to turbulent flow conditions. With CFPM2, turbulent flow is approximated by reducing the laminar hydraulic conductivity by a nonlinear function of the Reynolds number, once the critical head difference is exceeded. This adjustment approximates the reductions in mean velocity under turbulent ground-water flow conditions.
Turbulence scalings in pipe flows exhibiting polymer-induced drag reduction
NASA Astrophysics Data System (ADS)
Zadrazil, Ivan; Markides, Christos
2014-11-01
Non-intrusive laser based diagnostics technique, namely Particle Image Velocimetry, was used to in detail characterise polymer induced drag reduction in a turbulent pipe flow. The effect of polymer additives was investigated in a pneumatically-driven flow facility featuring a horizontal pipe test section of inner diameter 25.3 mm and length 8 m. Three high molecular weight polymers (2, 4 and 8 MDa) at concentrations of 5 - 250 wppm were used at Reynolds numbers from 35000 to 210000. The PIV derived results show that the level of drag reduction scales with different normalised turbulence parameters, e.g. streamwise and spanwise velocity fluctuations, vorticity or Reynolds stresses. These scalings are dependent of the distance from the wall, however, are independent of the Reynolds numbers range investigated.
1982-07-01
aerospace engineering um~Ŕ" eqe~vswse 0engiee amp snry stem englnerlag. enI~e so ISaCW , meterI scienc Turbulent Swirling Flow Dowstreas of an Abrupt...With the horizontal test section and circumferentially local measurements, the extent of the influence of gravity -induced convection can be determined
Separation dynamics of dense dispersions in laminar pipe flows: An experimental and numerical study
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Jamshidi, Rashid; Zainal Abidin, M. I. I.; Angeli, Panagiota
2017-11-01
The physical mechanisms governing the separation of dense liquid dispersed flows in pipes are not well understood. In this work, both experiments and numerical simulations are performed to investigate these mechanisms. Liquid-liquid dispersions are generated using a static mixer and their evolution is studied along a horizontal pipe (26mm ID) at laminar flow and input dispersed phase volume fractions up to 50%. To conduct optical measurements (PLIF and PIV) in the dense dispersions, the refractive index of both liquids is matched. Measurements are carried out at two axial locations downstream the mixer (15D and 135D, where D is the pipe diameter). Homogeneous dispersions, observed at 15D, segregate at 135D. The packing of the drops results in asymmetric velocity profiles and high slip velocities. The mixture approach is used in the numerical simulations, including gravity and shear-induced diffusion of drops. The predictions on separation and on velocity fields agree well with the experiments. Research funded by Chevron.
Resistance properties of coal-water slurry flowing through local piping fittings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Meng; Duan, Yu Feng
2009-07-15
Local resistance characteristics of coal-water slurry (CWS) flowing through three types of piping components, namely gradual contractions, sudden contractions and 90 horizontal bends, were investigated at a transportation test facility. The results show that CWS exhibits different rheological behaviors, i.e., the shear-thinning, Newtonian, and shear-thicken, at different shear rates. When CWS flows through the gradual contractions, the local pressure loss firstly decreases to a minimum, and then increases as the gradual contraction angle ({theta}) increases. When the CWS flow through the sudden contractions, with the increase of pipe diameter ratio ({beta}), the local pressure loss increases for the two kindsmore » of CWS, SHEN-HUA (S-H) CWS and YAN-ZHOU (Y-Z) CWS whose mass concentration range from 57% to 59% and 59% to 62%, respectively. For 90 horizontal bends, there is an optimal value of the bend diameter ratio (Rc/D) at which the local pressure loss is the least. Furthermore, the local resistance coefficient (K) in the empirical correlations is determined from the experimental data. The correlations show that as Re increases, K of the three fittings declines quickly at first. However, with further increase in Re, K shows different behaviors for the three fittings due to the special rheological property of CWS at higher shear rates. The factors of {theta}, {beta} and Rc/D have minor effects on K. (author)« less
Resistance properties of coal-water slurry flowing through local piping fittings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, L.; Duan, Y.F.
2009-07-15
Local resistance characteristics of coal-water slurry (CWS) flowing through three types of piping components, namely gradual contractions, sudden contractions and 90 horizontal bends, were investigated at a transportation test facility. The results show that CWS exhibits different rheological behaviors, i.e., the shear-thinning, Newtonian, and shear-thicken, at different shear rates. When CWS flows through the gradual contractions, the local pressure loss firstly decreases to a minimum, and then increases as the gradual contraction angle {theta} increases. When the CWS flow through the sudden contractions, with the increase of pipe diameter ratio {beta}, the local pressure loss increases for the two kindsmore » of CWS, SHEN-HUA (S-H) CWS and YAN-ZHOU (Y-Z) CWS whose mass concentration range from 57% to 59% and 59% to 62%, respectively. For 90 horizontal bends, there is an optimal value of the bend diameter ratio (Rc/D) at which the local pressure loss is the least. Furthermore, the local resistance coefficient (K) in the empirical correlations is determined from the experimental data. The correlations show that as Re increases, K of the three fittings declines quickly at first. However, with further increase in Re, K shows different behaviors for the three fittings due to the special rheological property of CWS at higher shear rates. The factors of theta, beta and Rc/D have minor effects on K.« less
Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E
2013-03-01
The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Jiarui; Cao, Yinping; Dou, Yihua; Li, Zhen
2017-10-01
A lab experiment was carried out to study the effects of pipe flow rate, particle concentration and pipe inner diameter ratio on proppant erosion of the reducing wall in hydraulic fracturing. The results show that the erosion rate and erosion distribution are different not only in radial direction but also in circumferential direction of the sample. The upper part of sample always has a minimum erosion rate and erosion area. Besides, the erosion rate of reducing wall is most affected by fluid flow velocity, and the erosion area is most sensitive to the change in the diameter ratio. Meanwhile, the erosion rate of reducing wall in crosslinked fracturing fluid is mainly determined by the fluid flowing state due to the high viscosity of the liquid. In general, the increase in flow velocity and diameter ratio not only cause the expansion of erosion-affected flow region in sudden contraction section, but also lead to more particles impact the wall.
Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method
NASA Astrophysics Data System (ADS)
Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi
2012-03-01
Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.
NASA Astrophysics Data System (ADS)
Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.
2018-03-01
Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.
Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector
NASA Astrophysics Data System (ADS)
Azad, E.
2011-12-01
The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi
2017-01-01
Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.
Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán
2016-11-01
Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.
Oil-Water Flow Investigations using Planar-Laser Induced Fluorescence and Particle Velocimetry
NASA Astrophysics Data System (ADS)
Ibarra, Roberto; Matar, Omar K.; Markides, Christos N.
2017-11-01
The study of the complex behaviour of immiscible liquid-liquid flow in pipes requires the implementation of advanced measurement techniques in order to extract detailed in situ information. Laser-based diagnostic techniques allow the extraction of high-resolution space- and time resolve phase and velocity information, which aims to improve the fundamental understanding of these flows and to validate closure relations for advanced multiphase flow models. This work shows a novel simultaneous planar-laser induced fluorescence and particle velocimetry in stratified oil-water flows using two laser light sheets at two different wavelengths for fluids with different refractive indices at horizontal and upward pipe inclinations (<5°) in stratified flow conditions (i.e. separated layers). Complex flow structures are extracted from 2-D instantaneous velocity fields, which are strongly dependent on the pipe inclination at low velocities. The analysis of mean wall-normal velocity profiles and velocity fluctuations suggests the presence of single- and counter-rotating vortices in the azimuthal direction, especially in the oil layer, which can be attributed to the influence of the interfacial waves. Funding from BP, and the TMF Consortium is gratefully acknowledged.
The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown.
Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob
2016-01-01
Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity.
The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown
Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob
2016-01-01
Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. PMID:28725740
Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor
Gluntz, Douglas M.
1996-01-01
An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.
Flow field and friction factor of slush nitrogen in a horizontal circular pipe
NASA Astrophysics Data System (ADS)
Jin, Tao; Li, Yijian; Wu, Shuqin; Wei, Jianjian
2018-04-01
Slush nitrogen is the low-temperature two-phase fluid with solid nitrogen particle suspended in the liquid nitrogen. The flow characteristics of slush nitrogen in a horizontal pipe with the diameter of 16 mm have been experimentally and numerically investigated, under the operating conditions with the inlet flow velocity of 0-4 m/s and the solid volume fraction of 0-23%. The numerical results for pressure drop agree well with those of the experiments, with the relative errors of ±5%. The experimental and numerical results both show that the pressure drop of slush nitrogen is greater than that of subcooled liquid nitrogen and rises with the increasing particle concentration, under the working conditions in present work. Based on the simulation result, the flow pattern evolution of slush nitrogen with the increasing slush Reynolds number has been discussed, which can be classified into homogenous flow, heterogeneous flow and moving bed. The slush effective viscosity and the slush Reynolds number are calculated with Cheng & Law formula, which includes the effects of particle shape, size and type and has a high accuracy for high concentration slurries. Based on the slush Reynolds number, an experimental empirical correlation considering particle conditions for the friction factor of slush nitrogen flow is obtained.
Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan
2017-11-01
Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.
ERIC Educational Resources Information Center
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments
NASA Astrophysics Data System (ADS)
Etrati, Ali; Alba, Kamran; Frigaard, Ian A.
2018-05-01
We investigate experimentally the density-unstable displacement flow of two miscible fluids along an inclined pipe. This means that the flow is from the top to bottom of the pipe (downwards), with the more dense fluid above the less dense. Whereas past studies have focused on iso-viscous displacements, here we consider viscosity ratios in the range 1/10-10. Our focus is on displacements where the degree of transverse mixing is low-moderate, and thus a two-layer, stratified flow is observed. A wide range of parameters is covered in order to observe the resulting flow regimes and to understand the effect of the viscosity contrast. The inclination of the pipe (β) is varied from near horizontal β = 85° to near vertical β = 10°. At each angle, the flow rate and viscosity ratio are varied at fixed density contrast. Flow regimes are mapped in the (Fr, Re cos β/Fr)-plane, delineated in terms of interfacial instability, front dynamics, and front velocity. Amongst the many observations, we find that viscosifying the less dense fluid tends to significantly destabilize the flow. Different instabilities develop at the interface and in the wall-layers.
Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayers, F.J.; Aziz, K.; Hewett, T.A.
1993-03-10
A number of activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: Progress is being made on the development of a black oil three-phase simulator which will allow the use of a generalized Voronoi grid in the plane perpendicular to a horizontal well. The available analytical solutions in the literature for calculating productivity indices (Inflow Performance) of horizontal wells have been reviewed. The pseudo-steady state analytic model of Goode and Kuchuk has been applied to an examplemore » problem. A general mechanistic two-phase flow model is under development. The model is capable of predicting flow transition boundaries for a horizontal pipe at any inclination angle. It also has the capability of determining pressure drops and holdups for all the flow regimes. A large code incorporating all the features of the model has been programmed and is currently being tested.« less
Flow separation characteristics of unstable dispersions
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Zhai, Lusheng; Angeli, Panagiota
2016-11-01
Drops of a low viscosity oil are introduced through a multi-capillary inlet during the flow of water in a horizontal pipe. The flow rates of the continuous water phase are kept in the turbulent region while the droplets are injected at similar flow rates (with oil fractions ranging from 0.15 to 0.60). The acrylic pipe (ID of 37mm) is approximately 7m long. Measurements are conducted at three different axial locations to illustrate how the flow structures are formed and develop along the pipe. Initial observations are made on the flow patterns through high-speed imaging. Stratification is observed for the flow rates studied, indicating that the turbulent dispersive forces are lower than the gravity ones. These results are complemented with a tomography system acquiring measurements at the same locations and giving the cross-sectional hold-up. The coalescence dynamics are strong in the dense-packed drop layer and thus measurements with a dual-conductance probe are conducted to capture any drop size changes. It is found that the drop size variations depend on the spatial configuration of the drops, the initial drop size along with the continuous and dispersed phase velocities. Project funded under Chevron Energy Technology.
NASA Astrophysics Data System (ADS)
Gao, Meng-chen; Xu, Jing-yu
2018-04-01
The effect of the surfactant additive on the upward intermittent flows in a pipeline-riser system is studied experimentally, in a 3 m long horizontal pipe connected to a Perspex pipe of 2.0 m long and 25 mm in diameter, inclined to the horizontal plane by 7°, followed by the vertical PVC riser of 3.5 m high and 25 mm in diameter, operating at the atmospheric end pressure. Based on the analysis of the pressure signal and the visual observation of the riser, it is shown that the additive of surfactant to the carrying liquid makes bubbles smaller in size but much larger in number in the upward intermittent flows. In addition, the additive of surfactant to a two-phase flow does not have a significant impact on the in-situ gas fraction, the pressure drop and the frequency of the liquid slug, but it reduces significantly the velocity of the liquid slug. When the superficial liquid velocity is set, an exponential relationship between the dimensionless velocity of the liquid slug and the Webber number can be obtained. These results might be used for estimating the characteristic parameters of the upward intermittent flow based upon the input operating conditions.
NASA Astrophysics Data System (ADS)
Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.
2013-01-01
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Hydrothermal alteration of kimberlite by convective flows of external water.
Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.
JAERI instrumented spool piece performance in two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colson, J.B.; Gilbert, J.V.
1979-01-01
Instrumented spool pieces to be installed in horizontal piping on the Cylindrical Core Test Facility (CCTF) at the Japanese Atomic Energy Institute (JAERI) have been designed and tested. The instrumented spool pieces will provide measurements from which mass flow rates can be computed. The primary instruments included in the spool pieces are a full-flow turbine, a full-flow perforated drag plate, and a low energy three-beam photon densitometer. Secondary instruments are provided to measured absolute pressure, fluid temperature, and differential pressure across the full-flow perforated drag plate.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
Optical measurements in evolving dispersed pipe flows
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Angeli, Panagiota
2017-12-01
Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.
Characterization of linear interfacial waves in a turbulent gas-liquid pipe flow
NASA Astrophysics Data System (ADS)
Ayati, A. A.; Farias, P. S. C.; Azevedo, L. F. A.; de Paula, I. B.
2017-06-01
The evolution of interfacial waves on a stratified flow was investigated experimentally for air-water flow in a horizontal pipe. Waves were introduced in the liquid level of stratified flow near the pipe entrance using an oscillating plate. The mean height of liquid layer and the fluctuations superimposed on this mean level were captured using high speed cameras. Digital image processing techniques were used to detect instantaneous interfaces along the pipe. The driving signal of the oscillating plate was controlled by a D/A board that was synchronized with acquisitions. This enabled to perform phase-locked acquisitions and to use ensemble average procedures. Thereby, it was possible to measure the temporal and spatial evolution of the disturbances introduced in the flow. In addition, phase-locked measurements of the velocity field in the liquid layer were performed using standard planar Particle Image Velocimetry (PIV). The velocity fields were extracted at a fixed streamwise location, whereas the measurements of the liquid level were performed at several locations along the pipe. The assessment of the setup was important for validation of the methodology proposed in this work, since it aimed at providing results for further comparisons with theoretical models and numerical simulations. Therefore, the work focuses on validation and characterization of interfacial waves within the linear regime. Results show that under controlled conditions, the wave development can be well captured and reproduced. In addition, linear waves were observed for liquid level oscillations lower than about 1.5% of the pipe diameter. It was not possible to accurately define an amplitude threshold for the appearance of nonlinear effects because it strongly depended on the wave frequency. According to the experimental findings, longer waves display characteristics similar to linear waves, while short ones exhibit a more complex evolution, even for low amplitudes.
Simulation of air velocity in a vertical perforated air distributor
NASA Astrophysics Data System (ADS)
Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.
2016-06-01
Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.
Image processing analysis on the air-water slug two-phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto
2016-06-01
Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.
Preferential Concentration Of Solid Particles In Turbulent Horizontal Circular Pipe Flow
NASA Astrophysics Data System (ADS)
Kim, Jaehee; Yang, Kyung-Soo
2017-11-01
In particle-laden turbulent pipe flow, turbophoresis can lead to a preferential concentration of particles near the wall. To investigate this phenomenon, one-way coupled Direct Numerical Simulation (DNS) has been performed. Fully-developed turbulent pipe flow of the carrier fluid (air) is at Reτ = 200 based on the pipe radius and the mean friction velocity, whereas the Stokes numbers of the particles (solid) are St+ = 0.1 , 1 , 10 based on the mean friction velocity and the kinematic viscosity of the fluid. The computational domain for particle simulation is extended along the axial direction by duplicating the domain of the fluid simulation. By doing so, particle statistics in the spatially developing region as well as in the fully-developed region can be obtained. Accumulation of particles has been noticed at St+ = 1 and 10 mostly in the viscous sublayer, more intensive in the latter case. Compared with other authors' previous results, our results suggest that drag force on the particles should be computed by using an empirical correlation and a higher-order interpolation scheme even in a low-Re regime in order to improve the accuracy of particle simulation. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01002981).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanratty, T.J.; Woods, B.D.
The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscositiesmore » (20 centipoise).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas J. Hanratty
A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such asmore » frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.« less
NASA Astrophysics Data System (ADS)
Lin, Zhe; Zhu, Linhang; Cui, Baoling; Li, Yi; Ruan, Xiaodong
2014-12-01
Gate valve has various placements in the practical usages. Due to the effect of gravity, particle trajectories and erosions are distinct between placements. Thus in this study, gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method. The structure of a gate valve and a simplified structure are investigated. The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow. The results show that for all investigated open degrees and Stokes numbers (St), there are little difference of gas flow properties and flow coefficients between two placements. It is also found that the trajectories of particles for two placements are mostly identical when St « 1, making the erosion independent of placement. With the increase of St, the distinction of trajectories between placements becomes more obvious, leading to an increasing difference of the erosion distributions. Besides, the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250μm.
Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin
2017-01-01
In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308
15. Detail of Well Head Showing Horizontal Release Pipe for ...
15. Detail of Well Head Showing Horizontal Release Pipe for Natural Gas, Looking North - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA
CFD Modeling of Water Flow through Sudden Contraction and Expansion in a Horizontal Pipe
ERIC Educational Resources Information Center
Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K.
2011-01-01
This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…
NASA Astrophysics Data System (ADS)
Weihang, Kong; Lingfu, Kong; Lei, Li; Xingbin, Liu; Tao, Cui
2017-06-01
Water volume fraction is an important parameter of two-phase flow measurement, and it is an urgent task for accurate measurement in horizontal oil field development and optimization of oil production. The previous ring-shaped conductance water-cut meter cannot obtain the response values corresponding to the oil field water conductivity for oil-water two-phase flow in horizontal oil-producing wells characterized by low yield liquid, low velocity and high water cut. Hence, an inserted axisymmetric array structure sensor, i.e. a six-group local-conductance probe (SGLCP), is proposed in this paper. Firstly, the electric field distributions generated by the exciting electrodes of SGLCP are investigated by the finite element method (FEM), and the spatial sensitivity distributions of SGLCP are analyzed from the aspect of different separations between two electrodes and different axial rotation angles respectively. Secondly, the numerical simulation responses of SGLCP in horizontal segregated flow are calculated from the aspect of different water cut and heights of the water layer, respectively. Lastly, an SGLCP-based well logging instrument was developed, and experiments were carried out in a horizontal pipe with an inner diameter of 125 mm on the industrial-scale experimental multiphase flow setup in the Daqing Oilfield, China. In the experiments, the different oil-water two-phase flow, mineralization degree, temperature and pressure were tested. The results obtained from the simulation experiments and simulation well experiments demonstrate that the designed and developed SGLCP-based instrument still has a good response characteristic for measuring water conductivity under the different conditions mentioned above. The validity and reliability of obtaining the response values corresponding to the water conductivity through the designed and developed SGLCP-based instrument are verified by the experimental results. The significance of this work can provide an effective technology for measuring the water volume fraction of oil-water two-phase flow in horizontal oil-producing wells.
2012-11-01
W., and Mudawar , I., "Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks," International Journal of Heat and...Mass Transfer, Vol. 47, No. 10-11, 2004, pp. 2045-2059. 3 Zhang, H., Mudawar , I., and Hasan, M. M., "Photographic Study of High-Flux Subcooled Flow...component Fow in Pipes," Chemical Engineering Progress, Vol. 45, 1949, pp. 39-48. 34 Qu, W., and Mudawar , I., "Measurement and Prediction of Pressure
DOT National Transportation Integrated Search
2015-06-01
Trenchless Technology has become an increasingly popular underground utility construction method, beginning in : the early 1900s with pipe jacking beneath railroad lines. One method, horizontal directional drilling (HDD), became : more common in the ...
NASA Astrophysics Data System (ADS)
Perera, Kshanthi; Kumara, W. A. S.; Hansen, Fredrik; Mylvaganam, Saba; Time, Rune W.
2018-06-01
Measurement techniques are vital for the control and operation of multiphase oil–water flow in pipes. The development of such techniques depends on laboratory experiments involving flow visualization, liquid fraction (‘hold-up’), phase slip and pressure drop measurements. They provide valuable information by revealing the physics, spatial and temporal structures of complex multiphase flow phenomena. This paper presents the hold-up measurement of oil–water flow in pipelines using gamma densitometry and electrical capacitance tomography (ECT) sensors. The experiments were carried out with different pipe inclinations from ‑5° to +6° for selected mixture velocities (0.2–1.5 m s‑1), and at selected watercuts (0.05–0.95). Mineral oil (Exxsol D60) and water were used as test fluids. Nine flow patterns were identified including a new pattern called stratified wavy and mixed interface flow. As a third direct method, visual observations and high-speed videos were used for the flow regime and interface identification. ECT and gamma densitometry hold-up measurements show similar trends for changes in pipeline inclinations. Changing the pipe inclination affected the flow mostly at lower mixture velocities and caused a change of flow patterns, allowing the highest change of hold-up. ECT hold-up measurements overpredict the gamma densitometry measurements at higher input water cuts and underpredict at intermediate water cuts. Gamma hold-up results showed good agreement with the literature results, having a maximum deviation of 6%, while it was as high as 22% for ECT in comparison to gamma densitometry. Uncertainty analysis of the measurement techniques was carried out with single-phase oil flow. This shows that the measurement error associated with gamma densitometry is approximately 3.2%, which includes 1.3% statistical error and 2.9% error identified as electromagnetically induced noise in electronics. Thus, gamma densitometry can predict hold-up with a higher accuracy in comparison to ECT when applied to oil–water systems at minimized electromagnetic noise.
Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.
2010-08-01
The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.
Groundwater dynamics in a two-dimensional aquifer
NASA Astrophysics Data System (ADS)
Jules, Valentin; Devauchelle, Olivier; Lajeunesse, Eric
2017-11-01
During a rain event, water infiltrates into the ground where it flows slowly towards a river. The time scale and the geometry of this flow control the chemical composition and the discharge of the river. We use a tank filled with glass beads to simulate this process in a simplified laboratory experiment. A sprinkler pipe generates rain, which infiltrates into the porous material. Groundwater exits this laboratory aquifer through a side of the tank. Guérin et al. (2014) investigated the case of a quasi-horizontal flow. In nature, however, groundwater often follows non-horizontal flowlines. To create a vertical flow, we place the outlet of our experiment high above its bottom. We find that, during rainfall, the discharge Q increases as the rainfall rate R times the square root of time t (Q Rt 1 / 2). This laboratory aquifer thus responds linearly to the forcing. However, long after the rain has stopped, the discharge decreases as the inverse square of time (Q t-2), although linear systems of finite size typically relax exponentially. We investigate this surprising behavior using a combination of complex analysis and numerical methods.
Experimental study of phase separation in dividing two phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian Yong; Yang Zhilin; Xu Jijun
1996-12-31
Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separationmore » phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.« less
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Modeling of High Capacity Passive Cooling System
2009-03-01
Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat
NASA Astrophysics Data System (ADS)
Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki
Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.
NASA Astrophysics Data System (ADS)
Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou
2018-05-01
Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.
Laser imaging in liquid-liquid flows
NASA Astrophysics Data System (ADS)
Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota
2016-11-01
In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.
NASA Astrophysics Data System (ADS)
Oon, Cheen Sean; Nee Yew, Sin; Chew, Bee Teng; Salim Newaz, Kazi Md; Al-Shamma'a, Ahmed; Shaw, Andy; Amiri, Ahmad
2015-05-01
Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk
2014-04-11
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)
46 CFR 119.425 - Engine exhaust cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (2) Horizontal dry exhaust pipes are...) They are installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (b) The exhaust pipe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, M.J.; Kramer, S.R.; Pittard, G.T.
Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Nicholas Takach; Kaveh Ashenayi
2004-01-31
Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolatemore » both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.« less
Heat Transfer from a Horizontal Cylinder Rotating in Oil
NASA Technical Reports Server (NTRS)
Seban, R. A.; Johnson, H. A.
1959-01-01
Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.
Investigation of growth features in several hydraulic fractures
NASA Astrophysics Data System (ADS)
Bykov, Alexander; Galybin, Alexander; Evdokimov, Alexander; Zavialova, Natalia; Zavialov, Ivan; Negodiaev, Sergey; Perepechkin, Ilia
2017-04-01
In this paper we simulate the growth of three or more interacting hydraulic fractures in the horizontal well with a cross flow of fluid between them. Calculation of the dynamics of cracks is performed in three dimensional space. The computation of the movement of fracturing fluid with proppant is performed in the two-dimensional space (the flow was averaged along crack aperture). For determining the hydraulic pipe resistance coefficient we used a generalization of the Reynolds number for fluids with power rheology and a generalization of the von Karman equation made by Dodge and Meiner. The calculations showed that the first crack was developing faster than the rest in homogeneous medium. During the steady loading the outer cracks pinch the inner cracks and it was shown that only the first and last fracture develop in extreme case. It is also possible to simulate the parameters at which the two developing outer cracks pinch the central one in the horizontal direction. In this case, the central crack may grow in the vertical direction.
Water flow energy harvesters for autonomous flowmeters
NASA Astrophysics Data System (ADS)
Boisseau, Sebastien; Duret, Alexandre-Benoit; Perez, Matthias; Jallas, Emmanuel; Jallas, Eric
2016-11-01
This paper reports on a water flow energy harvester exploiting a horizontal axis turbine with distributed magnets of alternate polarities at the rotor periphery and air coils outside the pipe. The energy harvester operates down to 1.2L/min with an inlet section of 20mm of diameter and up to 25.2mW are provided at 20L/min in a 2.4V NiMH battery through a BQ25504 power management circuit. The pressure loss induced by the insertion of the energy harvester in the hydraulic circuit and by the extraction of energy has been limited to 0.05bars at 30L/min, corresponding to a minor loss coefficient of KEH=3.94.
The effect of surfactant on stratified and stratifying gas-liquid flows
NASA Astrophysics Data System (ADS)
Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar
2013-11-01
We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 177.405(b) and 177.970 of this chapter. (2) Horizontal dry exhaust pipes are permitted only if: (i) They do not pass through living or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuwakietkumjohn, N.; Rittidech, S.
The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis wasmore » established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)« less
Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.
2010-07-01
Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
Experimental study of using wastewater sludge as a new drag reduction agent.
Mohamed, Hadj Djelloul; Mansour, Belhadri; Nasr-Eddine, Boudjenane
2017-07-01
Siltation is considering as a huge risk to the life and security of dams. Forced to preserve their useful volumes, managers use sediment dredging operations through different techniques. The aim of our work is to investigate the wastewater sludge derived from wastewater treatment as a new natural lubricating instrument during transport of sediment in the pipes and to reduce head losses. From an economic and environmental point of view, this technique is more effective than the use of industrial polymers. The rheological study is done using an RS600 rheometer. Head losses and friction reducing are measured on three horizontal pipes (30, 50 and 80 mm). The mud from the dam and sludge are added at different volumes concentrations. The results revealed that the mud follows the Herschel-Bulkley model at 10-20% volume concentration, even after adding wastewater sludge proportions from 0.1- 0.4%. The mud flow head losses in pipes increase with increasing solids concentration. A maximum reduction in yield stress and frictional head loss are observed at 0.25 to 0.35% of sludge concentration, which can be the most effective choice.
Visualization of various working fluids flow regimes in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
NASA Astrophysics Data System (ADS)
Pao, W.; Hon, L.; Saieed, A.; Ban, S.
2017-10-01
A smaller diameter conduit pointing at 12 o’clock position is typically hot-tapped to a horizontal laying production header in offshore platform to tap produced gas for downstream process train. This geometric feature is commonly known as T-junction. The nature of multiphase fluid splitting at the T-junction is a major operational challenge due to unpredictable production environment. Often, excessive liquid carryover occurs in the T-junction, leading to complete platform trip and halt production. This is because the downstream process train is not designed to handle excessive liquid. The objective of this research is to quantify the effect of different diameter ratio on phase separation efficiency in T-junction. The liquid carryover is modelled as two-phase air-water flow using Eulerian Mixture Model coupled with Volume of Fluid Method to mimic the slug flow in the main pipe. The focus in this paper is 0.0254 m (1 inch) diameter horizontal main arm and vertical branch arm with diameter ratio of 1.0, 0.5 and 0.3. The present research narrowed the investigation to only slug flow regime using Baker’s map as reference. The investigation found that, contrary to common believe, smaller diameter ratio T-junction perform worse than larger diameter ratio T-junction.
Characterization of interfacial waves in horizontal core-annular flow
NASA Astrophysics Data System (ADS)
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Walkemeyer, Phillip E. (Inventor); Tosi, Phillipe (Inventor); Corbett, Thomas Gary (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Arrazola, Alvaro Jose (Inventor); Sherrit, Stewart (Inventor); Colonius, Tim (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor)
2016-01-01
A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.
Thermal-hydraulic behavior of Sc-C02 in a horizontal circular straight tube
NASA Astrophysics Data System (ADS)
Tanimizu, Katsuyoshi; Sadr, Reza; Ranjan, Davesh
2011-11-01
Fluids above critical pressure have been practically utilized for 60 years in many applications and their use and interest is still increasing in many areas, especially power generation industries and chemical industries. Above critical pressure, very rapid changes in thermophysical properties take place near the pseudocritical temperature. In this region, the fluid transforms from liquid-like to gas-like behavior when the fluid temperature rises up and passes through the pseudocritical temperature. This allows enormous potential for energy transfer, but also alters the turbulent flow due to changes in the turbulent shear stress brought about by acceleration and buoyancy effects. However, we have not fully understood their dynamic behaviors such as turbulence yet. A supercritical CO2 testing loop has been built at Texas A&M University at Qatar to perform heat transfer and pressure drop measurements and investigate the thermo-physical and dynamic characteristics of supercritical carbon dioxide flow. The results of heat transfer measurements in a super critical fluid conducted in a horizontal pipe are reported and discussed here. Supported by QNRF.
5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...
5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
NASA Astrophysics Data System (ADS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
The flows structure in unsteady gas flow in pipes with different cross-sections
NASA Astrophysics Data System (ADS)
Plotnikov, Leonid; Nevolin, Alexandr; Nikolaev, Dmitrij
2017-10-01
The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of complex configuration. On the basis of experimental researches it is established that the strong oscillatory phenomena exist in the inlet pipe of the piston engine arising after the closing of the intake valve. The placement of the profiled plots (with a cross section of a square or an equilateral triangle) in the intake pipe leads to the damping of the oscillatory phenomena and a more rapid stabilization of pulsating flow. This is due to the stabilizing effect of the vortex structures formed in the corners of this configuration.
Speed of Sound in Metal Pipes: An Inexpensive Lab
ERIC Educational Resources Information Center
Huggins, Elisha
2008-01-01
Our favorite demonstration for sound waves is to set up a compressional pulse on a horizontally stretched Slinky[TM]. One can easily watch the pulse move back and forth at a speed of the order of one meter per second. Watching this demonstration, it occurred to us that the same thing might happen in a steel pipe if you hit the end of the pipe with…
21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Kibar, Ali
2017-02-01
Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.
NASA Astrophysics Data System (ADS)
Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.
2016-08-01
The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.
Asymptotic scalings of developing curved pipe flow
NASA Astrophysics Data System (ADS)
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
71. (Credit JTL) Pipe gallery looking south in basement underneath ...
71. (Credit JTL) Pipe gallery looking south in basement underneath 1910-11 and 1924 filter wing extensions. Note bottoms of converted New York horizontal pressure filters in right background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.
2015-11-01
Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
NASA Astrophysics Data System (ADS)
1990-04-01
The papers presented in this volume describe a rotating cryostat for the simulation of mechanical, thermal, and hydraulic processes in superconducting rotors; the problems of cooling the fully superconducting generator stator; an investigation of natural circulation by optical methods; and a method of calculating void fraction for vapor-liquid or gas-liquid flow conditions. Attention is given to an experimental study of the processes of He-3 boiling and condensation, heat transfer in He II at a slow variation of the heat load, an investigation of He II flow crisis in porous media, and cryogenic heat pipes. Other papers are on the stability of rotating superconducting windings for electric machines, the stability of high-temperature superconductors cooled by liquid nitrogen, a calculation of the transpiration cooling of a cylindrical porous wall, and pressure losses in boiling nitrogen flow through horizontal channels.
NASA Astrophysics Data System (ADS)
Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong
2015-10-01
This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.
Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko
2006-10-01
Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
NASA Astrophysics Data System (ADS)
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
NASA Astrophysics Data System (ADS)
Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin
2018-04-01
Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.
Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage
NASA Technical Reports Server (NTRS)
Kaufman, Harold R; Koffel, William K
1952-01-01
The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.
NASA Technical Reports Server (NTRS)
Sanzi, James L.
2007-01-01
Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.
NASA Technical Reports Server (NTRS)
Sanzi, James L.
2007-01-01
Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.
Measuring the light scattering and orientation of a spheroidal particle using in-line holography.
Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon
2014-07-01
The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.
System and Method for Traversing Pipes
NASA Technical Reports Server (NTRS)
Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)
2017-01-01
A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.
Intelligent Flow Control Valve
NASA Technical Reports Server (NTRS)
Kelley, Anthony R (Inventor)
2015-01-01
The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.
Accounting For Compressibility In Viscous Flow In Pipes
NASA Technical Reports Server (NTRS)
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
USDA-ARS?s Scientific Manuscript database
The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...
Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Im, Hyung Jae; Lee, Jae Hwa
2017-09-01
It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.
Removable feedwater sparger assembly
Challberg, R.C.
1994-10-04
A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.
Removable feedwater sparger assembly
Challberg, Roy C.
1994-01-01
A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.
Flow and evaporation in single micrometer and nanometer scale pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco, A. E.; Yang, C.; Siwy, Z. S.
2014-07-21
We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipemore » in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.« less
Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
NASA Astrophysics Data System (ADS)
Amanowicz, Łukasz; Wojtkowiak, Janusz
2017-11-01
In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.
PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.
2015-09-01
In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
NASA Technical Reports Server (NTRS)
Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.
2014-01-01
When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.
Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom
1998-01-01
Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. A.
In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an activemore » component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].« less
Turbulent flow in a partially filled pipe
NASA Astrophysics Data System (ADS)
Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David
2017-11-01
Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.
The stationary flow in a heterogeneous compliant vessel network
NASA Astrophysics Data System (ADS)
Filoche, Marcel; Florens, Magali
2011-09-01
We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.
NASA Astrophysics Data System (ADS)
Cherdantsev, Andrey; Hann, David; Azzopardi, Barry
2013-11-01
High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).
Flow of High Internal Phase Ratio Emulsions through Pipes
NASA Astrophysics Data System (ADS)
Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.
2015-04-01
The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.
Mixing liquid-liquid stratified flows using transverse jets in cross flows
NASA Astrophysics Data System (ADS)
Wright, Stuart; Matar, Omar K.; Markides, Christos N.
2017-11-01
Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.
Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki
This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.
Isentropic fluid dynamics in a curved pipe
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Holden, Helge
2016-10-01
In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].
Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes
NASA Astrophysics Data System (ADS)
Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.
2018-04-01
A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.
5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...
5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend
NASA Astrophysics Data System (ADS)
Patro, Pandaba; Rout, Ani; Barik, Ashok
2018-06-01
Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.
Multi-stage slurry system used for grinding and polishing materials
Hed, P. Paul; Fuchs, Baruch A.
2001-01-01
A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Zeman, Patrick L.
1991-01-01
The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries
NASA Astrophysics Data System (ADS)
Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind
2007-03-01
Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?
Kristiansen, Ulf R; Mattei, Pierre-Olivier; Pinhede, Cedric; Amielh, Muriel
2011-10-01
It is well known that airflow in a corrugated pipe can excite whistling at the frequencies of the pipe's longitudinal acoustic modes. This short contribution reports on the results of experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the airflow has been added. Depending on the oscillation strength, it has been found that this flow may silence the pipe or move the whistling to higher harmonics. It is also shown that the low frequency oscillation itself may excite higher frequency whistling sounds in the pipe. © 2011 Acoustical Society of America
Modeling of surface roughness effects on Stokes flow in circular pipes
NASA Astrophysics Data System (ADS)
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-20
NOAA/DOE has selected three concepts for a baseline design of the cold water pipe (CWP) for OTEC plants: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physical Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme; (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontalmore » deployment scheme. TRW has developed a baseline design for each of these configurations. This volume of the report includes the following appendices: (A) fiberglass reinforced plastic cold water pipe (specification and drawingss); (B) specification for polyethylene CWP; (C) elastomer pipe drawings; (D) drawings for OTEC 10/40 hull/CWP transitions; (E) structural design of OTEC 10/40 CWP support and CWP transitions; (F) universal transition joint for CWP; (G) dynamic spherical seal of CWP; (H) at-sea deployment loads - surface towing loads; (I) OTEC 10/40 CWP deployment up-ending loads; (J) cost estimates for OTEC 10/40 hull/CWP transitions; and (K) OTEC 10/40 CWP deployment scenario and cost estimate. (WHK)« less
NASA Astrophysics Data System (ADS)
Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul
2018-03-01
Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.
Experimental and analytical study of water pipe's rupture for damage identification purposes
NASA Astrophysics Data System (ADS)
Papakonstantinou, Konstantinos G.; Shinozuka, Masanobu; Beikae, Mohsen
2011-04-01
A malfunction, local damage or sudden pipe break of a pipeline system can trigger significant flow variations. As shown in the paper, pressure variations and pipe vibrations are two strongly correlated parameters. A sudden change in the flow velocity and pressure of a pipeline system can induce pipe vibrations. Thus, based on acceleration data, a rapid detection and localization of a possible damage may be carried out by inexpensive, nonintrusive monitoring techniques. To illustrate this approach, an experiment on a single pipe was conducted in the laboratory. Pressure gauges and accelerometers were installed and their correlation was checked during an artificially created transient flow. The experimental findings validated the correlation between the parameters. The interaction between pressure variations and pipe vibrations was also theoretically justified. The developed analytical model explains the connection among flow pressure, velocity, pressure wave propagation and pipe vibration. The proposed method provides a rapid, efficient and practical way to identify and locate sudden failures of a pipeline system and sets firm foundations for the development and implementation of an advanced, new generation Supervisory Control and Data Acquisition (SCADA) system for continuous health monitoring of pipe networks.
Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator
NASA Astrophysics Data System (ADS)
Moallemi, Nima; Brinkerhoff, Joshua
2016-11-01
The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.
A numerical analysis of high-temperature heat pipe startup from the frozen state
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Computer program determines gas flow rates in piping systems
NASA Technical Reports Server (NTRS)
Franke, R.
1966-01-01
Computer program calculates the steady state flow characteristics of an ideal compressible gas in a complex piping system. The program calculates the stagnation and total temperature, static and total pressure, loss factor, and forces on each element in the piping system.
Turbulent Heat Transfer in Curved Pipe Flow
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Pipe Drafting with CAD. Teacher Edition.
ERIC Educational Resources Information Center
Smithson, Buddy
This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…
Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik
2016-09-01
Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transient Simulation of Accumulating Particle Deposition in Pipe Flow
NASA Astrophysics Data System (ADS)
Hewett, James; Sellier, Mathieu
2015-11-01
Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, D.E.; Corletti, M.M.
1993-11-16
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, Douglas E.; Corletti, Michael M.
1993-01-01
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.
Fiber optic liquid mass flow sensor and method
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)
2010-01-01
A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.
Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe
NASA Astrophysics Data System (ADS)
Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.
2014-03-01
Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.
Mixing at double-Tee junctions with unequal pipe sizes in water distribution systems
Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a water distribution system. Many studies have been conducted on the mixing at the cross junctions. Yet a few have focu...
NASA Astrophysics Data System (ADS)
Dokumaci, E.
1995-05-01
The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
Numerical analysis of the heat transfer and fluid flow in the butt-fusion welding process
NASA Astrophysics Data System (ADS)
Yoo, Jae Hyun; Choi, Sunwoong; Nam, Jaewook; Ahn, Kyung Hyun; Oh, Ju Seok
2017-02-01
Butt-fusion welding is an effective process for welding polymeric pipes. The process can be simplified into two stages. In heat soak stage, the pipe is heated using a hot plate contacted with one end of the pipe. In jointing stage, a pair of heated pipes is compressed against one another so that the melt regions become welded. In previous works, the jointing stage that is highly related to the welding quality was neglected. However, in this study, a finite element simulation is conducted including the jointing stage. The heat and momentum transfer are considered altogether. A new numerical scheme to describe the melt flow and pipe deformation for the butt-fusion welding process is introduced. High density polyethylene (HDPE) is used for the material. Flow via thermal expansion of the heat soak stage, and squeezing and fountain flow of the jointing stage are well reproduced. It is also observed that curling beads are formed and encounter the pipe body. The unique contribution of this study is its capability of directly observing the flow behaviors that occur during the jointing stage and relating them to welding quality.
NASA Astrophysics Data System (ADS)
Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki
The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.
Apparatus for moving a pipe inspection probe through piping
Zollinger, W.T.; Appel, D.K.; Lewis, G.W.
1995-07-18
A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.
Apparatus for moving a pipe inspection probe through piping
Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.
1995-01-01
A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.
Intermittent gravity-driven flow of grains through narrow pipes
NASA Astrophysics Data System (ADS)
Alvarez, Carlos A.; de Moraes Franklin, Erick
2017-01-01
Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.
Tests of Fire Suppression Effectiveness of Damaged Water Mist Systems
2014-05-01
essure the damage pi essure is installed in the test compa Damage pipe no essur Pipe 7 104.9 12.9 31.0 22.0 132.5...pipe is installed in the test compartment, see Figure 68 Damage pipe no. Total [L/ Pr no [ba r u [ba v r [b a ea [L flow min] essure at rth...nozzle r] P so essure at th nozzle r] A p erage essure ar] C l lculated k flow /min] Pipe 4 104 35 23 29 66.9 .6 .8 .7 .5
Vapor Flow Patterns During a Start-Up Transient in Heat Pipes
NASA Technical Reports Server (NTRS)
Issacci, F.; Ghoniem, N, M.; Catton, I.
1996-01-01
The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.
Valve malfunction detection apparatus
NASA Astrophysics Data System (ADS)
Burley, Richard K.
1993-07-01
A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.
Valve malfunction detection apparatus
NASA Technical Reports Server (NTRS)
Burley, Richard K. (Inventor)
1993-01-01
A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.
Axial Flow Conditioning Device for Mitigating Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)
2017-01-01
A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
Development of guided horizontal boring tools. Final report, June 1984-March 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, W.J.; Herben, W.C.; Pittard, G.T.
Maurer Engineering Inc. (MEI), under a contract with the Gas Research Institute (GRI), has led a team of research and manufacturing companies with the goal of developing a guided boring tool for installing gas distribution piping. Studies indicated guided horizontal boring systems can provide gas utilities with a more effective and economical method for installing pipe than conventional techniques with a potential cost savings of at least 15% to 50%. A comprehensive state of technology review of horizontal boring tools identified concepts appropriate to being directionally controlled. Development of a universal system was found impractical because the requirements for shortmore » and extended range systems are significantly different. Concepts for steering and tracking were evaluated through lab and field experiments which progressed from proof of concept tests to cooperative field tests with gas utilities at the various stages of system development. The systems were brought to commercial status with needed modifications and the technology transferred to licensees who would market the systems. The program resulted in the development and commercialization of five distinct guided boring system. Pipe can now be installed more rapidly over longer distances with a minimal amount of excavation required for launching and retrieval. This means increased work crew productivity, reduced disturbance to landscaping and environmentally sensitive areas, and reduced traffic disruption and public inconvenience.« less
Compressed Air/Vacuum Transportation Techniques
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2011-03-01
General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.
NASA Technical Reports Server (NTRS)
Fleming, William A; Wallner, Lewis E
1948-01-01
Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Troy Reed; Ergun Kuru
2004-09-30
The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less
Statespace geometry of puff formation in pipe flow
NASA Astrophysics Data System (ADS)
Budanur, Nazmi Burak; Hof, Bjoern
2017-11-01
Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.
NASA Astrophysics Data System (ADS)
Kacimov, A. R.; Obnosov, Yu. V.
2017-03-01
The Russian engineer Kornev in his 1935 book raised perspectives of subsurface "negative pressure" irrigation, which have been overlooked in modern soil science. Kornev's autoirrigation utilizes wicking of a vacuumed water from a porous pipe into a dry adjacent soil. We link Kornev's technology with a slightly modified Philip (1984)'s analytical solutions for unsaturated flow from a 2-D cylindrical pipe in an infinite domain. Two Darcian flows are considered and connected through continuity of pressure along the pipe-soil contact. The first fragment is a thin porous pipe wall in which water seeps at tension saturation; the hydraulic head is a harmonic function varying purely radially across the wall. The Thiem solution in this fragment gives the boundary condition for azimuthally varying suction pressure in the second fragment, ambient soil, making the exterior of the pipe. The constant head, rather than Philip's isobaricity boundary condition, along the external wall slightly modifies Philip's formulae for the Kirchhoff potential and pressure head in the soil fragment. Flow characteristics (magnitudes of the Darcian velocity, total flow rate, and flow net) are explicitly expressed through series of Macdonald's functions. For a given pipe's external diameter, wall thickness, position of the pipe above a free water datum in the supply tank, saturated conductivities of the wall and soil, and soil's sorptive number, a nonlinear equation with respect to the total discharge from the pipe is obtained and solved by a computer algebra routine. Efficiency of irrigation is evaluated by computation of the moisture content within selected zones surrounding the porous pipe.
Magnetic detection of underground pipe using timed-release marking droplets
Powell, J.R.; Reich, M.
1996-12-17
A system and method are disclosed of detecting an underground pipe by injecting magnetic marking droplets into the underground pipe which coat the inside of the pipe and may be detected from aboveground by a magnetometer. The droplets include a non-adhesive cover which allows free flow through the pipe, with the cover being ablatable for the timed-release of a central core containing magnetic particles which adhere to the inside of the pipe and are detectable from aboveground. The rate of ablation of the droplet covers is selectively variable to control a free flowing incubation zone for the droplets and a subsequent deposition zone in which the magnetic particles are released for coating the pipe. 6 figs.
The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions
NASA Astrophysics Data System (ADS)
Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik
High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.
Internal erosion during soil pipe flow: Role in gully erosion and hillslope instability
USDA-ARS?s Scientific Manuscript database
Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...
Soil pipe flow tracer experiments: 2. Application of a transient storage zone model
USDA-ARS?s Scientific Manuscript database
Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...
Experimental study of geysers through a vent pipe connected to flowing sewers.
Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E
2017-04-01
Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.
30 CFR 291.101 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... horizontal component or riser. Examples include anodes, valves, flanges, fittings, umbilicals, subsea... as a separate entity). Pipeline is the piping, risers, accessories and appurtenances installed for...
Chemical laser exhaust pipe design research
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde
2016-10-01
In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.
Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor
Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2014-01-01
A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879
Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.
Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2014-11-26
A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.
A three-dimensional turbulent compressible flow model for ejector and fluted mixers
NASA Technical Reports Server (NTRS)
Rushmore, W. L.; Zelazny, S. W.
1978-01-01
A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.
NASA Technical Reports Server (NTRS)
Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.
1947-01-01
Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.
Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng
2014-06-01
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi
2015-11-01
Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.
NASA Technical Reports Server (NTRS)
Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.
1988-01-01
The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.
Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System
NASA Astrophysics Data System (ADS)
Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang
2016-11-01
In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.
An Investigation of the Cryogenic Freezing of Water in Non-Metallic Pipelines
NASA Astrophysics Data System (ADS)
Martin, C. I.; Richardson, R. N.; Bowen, R. J.
2004-06-01
Pipe freezing is increasingly used in a range of industries to solve otherwise intractable pipe line maintenance and servicing problems. This paper presents the interim results from an experimental study on deliberate freezing of polymeric pipelines. Previous and contemporary works are reviewed. The object of the current research is to confirm the feasibility of ice plug formation within a polymeric pipe as a method of isolation. Tests have been conducted on a range of polymeric pipes of various sizes. The results reported here all relate to freezing of horizontal pipelines. In each case the process of plug formation was photographed, the frozen plug pressure tested and the pipe inspected for signs of damage resulting from the freeze procedure. The time to freeze was recorded and various temperatures logged. These tests have demonstrated that despite the poor thermal and mechanical properties of the polymers, freezing offers a viable alternative method of isolation in polymeric pipelines.
Project Themis: PIV Measurement of Elbow Flow through a Flow Conditioner
2011-12-01
validation of the component. CFD simulations, using LH2 , showed that the pipe with a VORTAB generated more vorticity at the exit than the pipe without a...using LH2 , showed that the pipe with a Vortab generated more vorticity at the exit than the pipe without a Vortab. PA#11932 4 Particle Image...number Fluid Vortab location Comment 9,000,000 LH2 9D USET installation 32,000 Air 9D For Validation Additional details • Fluent • k-ε
NASA Technical Reports Server (NTRS)
Nikuradse, J
1950-01-01
An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.
Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks
2015-12-31
AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments
An ultrasonic flowmeter for measuring dynamic liquid flow
NASA Technical Reports Server (NTRS)
Carpini, T. D.; Monteith, J. H.
1978-01-01
A novel oscillating pipe system was developed to provide dynamic calibration wherein small sinusoidal signals with amplitudes of 0.5 to 10% of the steady-state flow were added to the steady-state flow by oscillating the flowmeter relative to the fixed pipes in the flow system. Excellent agreement was obtained between the dynamic velocities derived from an accelerometer mounted on the oscillating pipe system and those sensed by the flowmeter at frequencies of 7, 19, and 30 Hz. Also described were the signal processing techniques used to retrieve the small sinusoidal signals which were obscured by the fluid turbulence.
The three-dimensional structure of swirl-switching in bent pipe flow
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...
2017-11-27
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The three-dimensional structure of swirl-switching in bent pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Hainley, Donald C.
1989-01-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Hainley, Donald C.
1989-12-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
Unified pipe network method for simulation of water flow in fractured porous rock
NASA Astrophysics Data System (ADS)
Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua
2017-04-01
Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Differential Impedance Obstacle Detection Sensor (DIOD) - Phase 2
DOT National Transportation Integrated Search
2006-11-01
To minimize excavations and public inconvenience, utilities often use horizontal directional drilling (HDD) to create underground pathways for the installation of pipes, cables, and other utility lines. While HDD provides efficiency improvements over...
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
Magnetic detection of underground pipe using timed-release marking droplets
Powell, James R.; Reich, Morris
1996-12-17
A system 10 and method of detecting an underground pipe 12 injects magnetic marking droplets 16 into the underground pipe 12 which coat the inside of the pipe 12 and may be detected from aboveground by a magnetometer 28. The droplets 16 include a non-adhesive cover 32 which allows free flow thereof through the pipe 12, with the cover 32 being ablatable for the timed-release of a central core 30 containing magnetic particles 30a which adhere to the inside of the pipe 12 and are detectable from aboveground. The rate of ablation of the droplet covers 32 is selectively variable to control a free flowing incubation zone 12a for the droplets 16 and a subsequent deposition zone 12b in which the magnetic particles 30a are released for coating the pipe 12.
A catchment-scale groundwater model including sewer pipe leakage in an urban system
NASA Astrophysics Data System (ADS)
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195-202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.
Study and Control of Scour below Pipelines under unidirectional flow
NASA Astrophysics Data System (ADS)
Kabiri, Shima; Hoseinzadeh Dalir, Ali
2016-04-01
Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.
DEVELOPMENT OF TECHNOLOGY TO REMOTELY NAVIGATE VERTICAL PIPE ARRAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Immel, D.; Vrettos, N.
Situations exist around the Savannah River Site (SRS) and the Department of Energy (DOE) complex where it is advantageous to remotely navigate vertical pipe arrays. Specific examples are waste tanks in the SRS Tank Farms, which contain horizontal cooling coils at the tank bottom, vertical cooling coils throughout and a limited number of access points or ''risers''. These factors limit accessibility to many parts of these tanks by conventional means. Pipe Traveler technology has been developed to address these issues. The Pipe Traveler addresses these issues by using the vertical cooling coils as its medium of travel. The unit operatesmore » by grabbing a pipe using dual grippers located on either side of the equipment. Once securely attached to the pipe a drive wheel is extended to come in contact with the pipe. Rotation of the drive wheel causes the unit to rotate around the pipe. This action is continued until the second set of grippers is aligned with the next pipe. Extension pistons are actuated to extend the second set of grippers in contact with a second pipe. The second set of grippers is then actuated to grasp the pipe. The first set of grippers releases the original pipe and the process is repeated until the unit reaches its desired location. Once at the tool deployment location the desired tool may be used. The current design has proven the concept of pipe-to-pipe navigation. Testing of the Pipe Traveler has proven its ability to transfer itself from one pipe to another.« less
Feasibility study of a V-shaped pipe for passive aeration composting.
Ogunwande, Gbolabo A
2011-03-01
A V-shaped (Vs) pipe was improvised for composting of chicken litter in passive aeration piles. Three piles, equipped with horizontal (Ho), vertical (Ve) and Vs pipes were set up. The three treatments were replicated thrice. The effects of the aeration pipe on the physico-chemical properties of chicken litter and air distribution within the composting piles were investigated during composting. The properties monitored were temperature, pH, electrical conductivity, moisture content, total carbon, total nitrogen, total phosphorus and carbon-to-nitrogen ratio. Moisture level in the piles was replenished fortnightly to 60% during composting. The results of the study showed that all the piles attained the optimum temperature range (40-65°C) for effective composting and satisfied the requirements for sanitation. The non-significant (p > 0.05) temperature difference within the piles with Ve and Vs pipes indicated that these pipes were effective for uniform air distribution within the pile. The aeration pipe had significant (p ≤ 0.05) effect on pile temperature, pre-replenishment moisture content, pH and total phosphorus. In conclusion, the study showed that the Vs pipe is feasible and effective for passive aeration composting.
Development of an Unsaturated Region Below a Perennial River
NASA Astrophysics Data System (ADS)
Su, G. W.; Zhou, Q.; Constantz, J.; Hatch, C.
2004-12-01
Field observations at the Russian River Bank Filtration Facility in Sonoma County, California indicate that an unsaturated region exists below the streambed near two adjacent groundwater pumping wells located along the riverbank. Understanding the conditions that give rise to unsaturated flow below the streambed is critical for improving and optimizing riverbank well pumping operations. To investigate the development of an unsaturated region below a perennial river near pumping wells, a three-dimensional model was developed using the multi-phase subsurface flow model, TOUGH2. The model is based on the region around the two pumping wells in the Russian River Bank Filtration Facility. The pumping wells consist of 9 perforated pipes that are projected horizontally into the aquifer at a depth of approximately 20 m below the land surface. A grid was developed for the TOUGH2 model with finer resolution near the wells to represent individual pipes. The effect of varying the pumping operation and the streambed permeability on the extent of the unsaturated region was investigated with the TOUGH2 model. The formation remained saturated below the streambed when only one of the wells was pumped at a rate of 1600 m3/hr, but an unsaturated region developed below the streambed when the two wells each pumped at a rate of 1600 m3/hr. This unsaturated region was deeper when the permeability of the streambed was lower than the aquifer material compared to when the streambed and aquifer permeabilities were the same.
Production of Ultra-Light Normal Incidence Mirrors
NASA Technical Reports Server (NTRS)
Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert L.; Ila, Daryush; Burdine, Robert V. (Technical Monitor)
2002-01-01
Mirrors fabrication for large aperture telescopes is an important aspect in space exploration programs. One of the cost effective techniques to obtain such mirrors is electroplating of Ni-Co alloys from sulfamate solution. The Center for Irradiation of Materials at Alabama A&M University - Research Institute has been involved in a NASA-MSFC project for producing ultra-light Ni-Co alloy mirrors since the summer of year 2000. The goal of this project is to obtain ultra-light, high strength electroformed large aperture normal incidence replicated mirrors, (weighting less than 5 kg/m2), free of stress, with a good figure and reproducible thickness variation. In order to simplify the control of parameters such as temperature gradient, concentration gradient, distribution of the electric field lines and flow control, the proposed geometry involves a cylindrical main tank contained in another cylindrical tank, which plays the role of a weir. Designs were created to accommodate the new horizontal position of the mandrel and the pipes fitting through the outer tank's lid. The inner tank contains the working electrodes and a series of sensors for monitoring temperature, flow, stress and pH. The outer tank holds the electric heaters, the filters and a part of the piping system. Another two tanks complete the setup and serve for rinsing/preheating and equilibrating the electroplating bath. This paper will describe advantages of the new experimental setup and the parameters achieved in the electroplating bath for the proposed geometry.
NASA Astrophysics Data System (ADS)
Afrin, Samia
The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can increase the operating range of the storage facilities to higher range of temperatures. In this work HitecRTM molten salt is considered as the heat transfer fluid (HTF). The operating temperature of this HTF is 300-500°C. So to increase the thermal properties of this HTF nanomaterial has been added. The effective thermal conductivity and specific heat capacity of the nanofluid were calculated and the thermal effect of this nanofluid was observed from the simulation result.
NASA Astrophysics Data System (ADS)
Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira
2018-03-01
Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.
Zhang, Ling; Liu, Shuming; Liu, Wenjun
2014-02-01
Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC were released under the continuous migration tests.
Mixing at double-Tee junctions with unequal pipe sizes in ...
Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a water distribution system. Many studies have been conducted on the mixing at the cross junctions. Yet a few have focused on double-Tee junctions of unequal pipe sizes. To investigate the solute mixing at double-Tee junctions with unequal pipe sizes, a series of experiments were conducted in a turbulent regime (Re=12500–50000) with different Reynolds number ratios and connecting pipe lengths. It is shown that dimensionless outlet concentrations depended on mixing mechanism at the impinging interface of junctions. Junction with a larger pipe size ratio is associated with more complete mixing. The inlet Reynolds number ratio affects mixing more strongly than the outlet Reynolds number ratio. Furthermore, the dimensionless connecting pipe length in a double-Tee played an important and complicated role in the flow mixing. Based on these results, two-dimensional isopleth maps were developed for the calculation of normalized north outlet concentration. This journal article is to communicate the research results on pipe juncture mixing, a widespread and important phenomena in distribution system water quality analysis. The research outcome improves EPANET modeling capability for safe water supplies. In addition, the research is one of the outputs from the EPA-MOST bilateral cooperative research Project #1
NASA Astrophysics Data System (ADS)
Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin
2014-07-01
Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.
Gravity flow rate of solids through orifices and pipes
NASA Technical Reports Server (NTRS)
Gardner, J. F.; Smith, J. E.; Hobday, J. M.
1977-01-01
Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3.
Numerical modelling of strain in lava tubes
NASA Astrophysics Data System (ADS)
Merle, Olivier
The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.
Catalytic cartridge SO/sub 3/ decomposer
Galloway, T.R.
1980-11-18
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.
Further experiments for mean velocity profile of pipe flow at high Reynolds number
NASA Astrophysics Data System (ADS)
Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.
2018-05-01
This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.
Evolution of turbulence characteristics from straight to curved pipes
NASA Astrophysics Data System (ADS)
El Khoury, George K.; Noorani, Azad; Schlatter, Philipp; Fischer, Paul F.
2012-11-01
Large-scale direct numerical simulations are performed to study turbulent flow in straight and bent pipes at four different Reynolds numbers: Reb = 5300 , 11700 (bent and straight) and 19000 and 37700 (only straight). We consider a pipe of radius R and axial length 25 R with curvature parameter κ taken to be 0 , 0 . 01 and 0 . 1 for zero, mild and strong curvatures, respectively. The code used is Nek5000 based on the spectral element method. In the straight configuration, the obtained DNS data is carefully checked against other recent simulations, highlighting minute differences between the available data. Owing to a centrifugal instability mechanism, the flow in bent pipe (κ ≠ 0) develops counter-rotating vortices, so-called Dean vortices. The presence of the secondary motion thus induces substantial asymmetries both in the mean flow and turbulence characteristics for the bent pipe. These asymmetries tend to damp turbulence along the inner side and correspondingly enhance it along the upper side. The results are validated with recent experiments, and we could confirm the peculiar behaviour of the friction factor for specific curvatures and Re , leading to a lower friction in curved pipes than in straight pipes for the same mass flux.
2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY ...
2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY AT LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Catch Basin, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Hendricks, Charles D.
1990-01-01
Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).
A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment
NASA Technical Reports Server (NTRS)
Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.
1992-01-01
A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.
Laminar Flow Breakdown due to Particle Interactions
2012-08-01
theoretically predicted value of 200x106 in a heated pipe flow experiment – a fact which they attributed to naturally occurring particulates contained in the...the pipe wall, y, to boundary layer thickness, δ, reproduced from Hall [10...12 Figure 5 Estimated critical particle conditions on a heated laminar flow control body at three heating
On the Symmetry of Molecular Flows Through the Pipe of an Arbitrary Shape (I) Diffusive Reflection
NASA Astrophysics Data System (ADS)
Kusumoto, Yoshiro
Molecular gas flows through the pipe of an arbitrary shape is mathematically considered based on a diffusive reflection model. To avoid a perpetual motion, the magnitude of the molecular flow rate must remain invariant under the exchange of inlet and outlet pressures. For this flow symmetry, the cosine law reflection at the pipe wall was found to be sufficient and necessary, on the assumption that the molecular flux is conserved in a collision with the wall. It was also shown that a spontaneous flow occurs in a hemispherical apparatus, if the reflection obeys the n-th power of cosine law with n other than unity. This apparatus could work as a molecular pump with no moving parts.
Computational study of duct and pipe flows using the method of pseudocompressibility
NASA Technical Reports Server (NTRS)
Williams, Robert W.
1991-01-01
A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.
Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A
2004-03-01
Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.
NASA Astrophysics Data System (ADS)
Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub
2010-03-01
Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.
Lee, Jonathan K.; Visser, H.M.; Jenter, H.L.; Duff, M.P.
2000-01-01
U.S. Geological Survey (USGS) hydrologists and ecologist are conducting studies to quantify vegetative flow resistance in order to improve numerical models of surface-water flow in the Florida Everglades. Water-surface slope is perhaps the most difficult of the flow resistance parameters to measure in the Everglades due to the very low gradients of the topography and flow. In an effort to measure these very small slopes, a unique pipe manometer was developed for the local measurement of water-surface slopes on the order of 1 centimeter per kilometer (cm/km). According to theory, a very precise measurement of centerline velocity obtained inside the pipe manometer should serve as a unique proxy for water-surface slope in the direction of the pipe axis. In order to confirm this theoretical relationship and calibrate the pipe manometer, water-surface elevation and pipe centerline velocity data were simultaneously measured in a set of experiments carried out in the tilting flume at the USGS Hydraulic Laboratory Facility at Stennis Space Center, Mississippi. A description of the instrumentation and methods used to evaluate this technique for measuring water-surface slope as well as a summary of the entire data set is presented.
Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry
NASA Astrophysics Data System (ADS)
Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.
2018-04-01
Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.
Divergence instability of pipes conveying fluid with uncertain flow velocity
NASA Astrophysics Data System (ADS)
Rahmati, Mehdi; Mirdamadi, Hamid Reza; Goli, Sareh
2018-02-01
This article deals with investigation of probabilistic stability of pipes conveying fluid with stochastic flow velocity in time domain. As a matter of fact, this study has focused on the randomness effects of flow velocity on stability of pipes conveying fluid while most of research efforts have only focused on the influences of deterministic parameters on the system stability. The Euler-Bernoulli beam and plug flow theory are employed to model pipe structure and internal flow, respectively. In addition, flow velocity is considered as a stationary random process with Gaussian distribution. Afterwards, the stochastic averaging method and Routh's stability criterion are used so as to investigate the stability conditions of system. Consequently, the effects of boundary conditions, viscoelastic damping, mass ratio, and elastic foundation on the stability regions are discussed. Results delineate that the critical mean flow velocity decreases by increasing power spectral density (PSD) of the random velocity. Moreover, by increasing PSD from zero, the type effects of boundary condition and presence of elastic foundation are diminished, while the influences of viscoelastic damping and mass ratio could increase. Finally, to have a more applicable study, regression analysis is utilized to develop design equations and facilitate further analyses for design purposes.
Fully developed turbulence in slugs of pipe flows
NASA Astrophysics Data System (ADS)
Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
Characterization of the secondary flow in hexagonal ducts
NASA Astrophysics Data System (ADS)
Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.
2016-12-01
In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area
Characterization of the secondary flow in hexagonal ducts
Marin, O.; Vinuesa, R.; Obabko, A. V.; ...
2016-12-06
In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Re τ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondarymore » flow integrated over the cross-sectional area < K > yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress uw¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120° aperture of its vertex, whereas in the square duct the 90° corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15 DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90° corner sets the location of a high-speed streak at a distance z + v≃50 from it, whereas in hexagons the 120° aperture leads to a shorter distance of z + v≃38. Finally, at these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.« less
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
NASA Technical Reports Server (NTRS)
Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.
1997-01-01
A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.
Forming of film surface of very viscous liquid flowing with gas in pipes
NASA Astrophysics Data System (ADS)
Czernek, Krystian; Witczak, Stanisław
2017-10-01
The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.
Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian
2017-11-01
We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.
Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters
NASA Astrophysics Data System (ADS)
Chaudhary, Kuldeep; Cardenas, M. Bayani; Deng, Wen; Bennett, Philip C.
2013-02-01
In this article, the effects of different diverging-converging pore geometries were investigated, and the microscale fluid flow and effective hydraulic properties from these pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The flow fields are obtained using computational fluid dynamics, and the comparative analysis is based on a new dimensionless hydraulic shape factor β, which is the "specific surface" scaled by the length of pores. Results from all diverging-converging pores show an inverse pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic conductivity K of all pores is dependent on and can be predicted from β with a power function with an exponent of 3/2. The differences in K are due to the differences in distribution of local friction drag on the pore walls. At Reynolds number (Re) ˜ 0 flows, viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe. Eddies grow when Re → 1 and leads to the failure of Darcy's law. During non-Darcy or Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of eddies, which constricts the bulk flow region. At Re > 1, the rate of decrease in Ka increases, and at Re >> 1, it decreases to where the change in Ka ≈ 0, and flows once again exhibits a Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for pores with increasing β. The nonlinear flow behavior becomes weaker as β increases to its maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy's law stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in pores plays a critical role in modifying the intrapore fluid flow, implying that this property should be incorporated in effective larger-scale models, e.g., pore-network models.
Drag reduction of turbulent pipe flows by circular-wall oscillation
NASA Astrophysics Data System (ADS)
Choi, Kwing-So; Graham, Mark
1998-01-01
An experimental study on turbulent pipe flows was conducted with a view to reduce their friction drag by oscillating a section of the pipe in a circumferential direction. The results indicated that the friction factor of the pipe is reduced by as much as 25% as a result of active manipulation of near-wall turbulence structure by circular-wall oscillation. An increase in the bulk velocity was clearly shown when the pipe was oscillated at a constant head, supporting the measured drag reduction in the present experiment. The percentage reduction in pipe friction was found to be better scaled with the nondimensional velocity of the oscillating wall than with its nondimensional period, confirming a suggestion that the drag reduction seem to be resulted from the realignment of longitudinal vortices into a circumferential direction by the wall oscillation.
Targeting specific azimuthal modes using wall changes in turbulent pipe flow
NASA Astrophysics Data System (ADS)
van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander
2017-11-01
We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.
Water driven turbine/brush pipe cleaner
NASA Technical Reports Server (NTRS)
Werlink, Rudy J. (Inventor)
1995-01-01
Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.
FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS
Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...
On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows
NASA Astrophysics Data System (ADS)
Chung, D.; Marusic, I.; Monty, J. P.; Vallikivi, M.; Smits, A. J.
2015-07-01
Recent experiments in high Reynolds number pipe flow have shown the apparent obfuscation of the behaviour in spectra of streamwise velocity fluctuations (Rosenberg et al. in J Fluid Mech 731:46-63, 2013). These data are further analysed here from the perspective of the behaviour in second-order structure functions, which have been suggested as a more robust diagnostic to assess scaling behaviour. A detailed comparison between pipe flows and boundary layers at friction Reynolds numbers of 5000-20,000 reveals subtle differences. In particular, the slope of the pipe flow structure function decreases with increasing wall distance, departing from the expected slope in a manner that is different to boundary layers. Here, , the slope of the log law in the streamwise turbulence intensity profile at high Reynolds numbers. Nevertheless, the structure functions for both flows recover the slope in the log layer sufficiently close to the wall, provided the Reynolds number is also high enough to remain in the log layer. This universality is further confirmed in very high Reynolds number data from measurements in the neutrally stratified atmospheric surface layer. A simple model that accounts for the `crowding' effect near the pipe axis is proposed in order to interpret the aforementioned differences.
NASA Astrophysics Data System (ADS)
Rossi, R.; Cattani, L.; Mocerino, A.; Bozzoli, F.; Rainieri, S.; Caminati, R.; Pagliarini, G.
2017-11-01
In this paper, we present the numerical analysis of the fully developed ow and heat transfer in pipes equipped with twisted-tape inserts in the laminar to transitional flow regime. The flow Reynolds number ranges from 210 to 3100 based on the pipe diameter, whereas the Prandtl number of the working fluid, a 40% mixture of water and ethylene glycol, is about 45 at the average film temperature. The numerical study is carried out via Scale Adaptive Simulations (SAS) where the k-ω SST model is employed for turbulence modeling. Using SAS and low-dissipation discretization schemes, the present study shows that it is possible to capture the transition from the laminar regime to the pulsating or pseudo-laminar flow regime induced by the twisted-tape at low Reynolds numbers, as well as the transition to moderate turbulent regime at the higher, yet non-turbulent for smooth pipes, range of Reynolds numbers. Numerical results, validated against experiments performed in a dedicated test rig, show very good agreement with measured data and an increase of the friction factor and Nusselt number in the range of 4 to 7 times and 6 to 15 times, respectively, of the values for an empty pipe.
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
An approximate analysis of the diffusing flow in a self-controlled heat pipe.
NASA Technical Reports Server (NTRS)
Somogyi, D.; Yen, H. H.
1973-01-01
Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.
Quasi-2D Unsteady Flow Procedure for Real Fluids
2006-05-17
Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the Churchill correlation7 was used to determine single...methods is discussed to aid in selection for specific applications. Results for the transient flows of gaseous nitrogen and water in a simple pipe ...gaseous nitrogen and water in a simple pipe network are presented to demonstrate the capability of the current techniques and the unsteady flow
Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)
2006-05-17
water /steam/ oil piping networks, refinery systems, gas-turbine secondary flow -path and cooling networks...friction factor, f, which is a function of the local Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the...3.5 4 4.5 Time ( s ) V el oc ity (m / s ) Line 2 Inlet 25% 50% 75% Exit Velocity Figure 4. Water transient viscous pipe flow using
Three dimensional laser Doppler velocimeter turbulence measurements in a pipe flow
NASA Technical Reports Server (NTRS)
Fuller, C. E., III; Cliff, W. C.; Huffaker, R. M.
1973-01-01
The mean and turbulent u, v, and w components of a gaseous fully developed turbulent pipe flow were measured with a laser Doppler velocimeter system. Measurements of important system parameters are presented and discussed in relation to the measurement accuracy. Simultaneous comparisons of the laser Doppler and hot wire anemometer measurements in the turbulent flow provided evidence that the two systems were responding to the same flow phenomena.
Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Costantini, Roberta; Mollicone, Jean-Paul; Battista, Francesco
2018-02-01
The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall. With respect to the classical turbulent pipe flow, a substantial drag reduction is observed which strongly depends on the grooves' dimension and on the solid fraction, i.e., the ratio between the solid wall surface and the total surface of the pipe's circumference. The drag reduction is due to the mean slip velocity at the wall which increases the flow rate at a fixed pressure drop. The enforced boundary conditions also produce peculiar turbulent structures which on the contrary decrease the flow rate. The two concurrent effects provide an overall flow rate increase as demonstrated by means of the mean axial momentum balance. This equation provides the balance between the mean pressure gradient, the Reynolds stress, the mean flow rate, and the mean slip velocity contributions.
NASA Astrophysics Data System (ADS)
Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah
2018-03-01
We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.
Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser
NASA Astrophysics Data System (ADS)
Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki
2012-12-01
An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact potential difference between the PMMA and the stainless steel. Furthermore, the current in air using the dual coaxial glass pipes was less than that using the ejector.
NASA Astrophysics Data System (ADS)
Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand
2018-04-01
The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
High-Capacity Heat-Pipe Evaporator
NASA Technical Reports Server (NTRS)
Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.
1989-01-01
Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.
Nuclear reactor heat transport system component low friction support system
Wade, Elman E.
1980-01-01
A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.
Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian’an
2017-01-01
A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn’t influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT. PMID:29095910
Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian'an; Yang, Lei
2017-01-01
A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn't influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Flow-permeability feedbacks and the development of segregation pipes in volcanic materials
NASA Astrophysics Data System (ADS)
Rust, Alison
2014-05-01
Flow and transformation in volcanic porous media is important for the segregation of melts and aqueous fluids from magmas as well as elutriation of fine ash from pyroclastic flows and vents. The general topic will be discussed in the framework of understanding sets of vertical pipes found in two very different types of volcanic deposits: 1) vesicular (bubbly) cylinders in basalt lava flows and 2) gas escape pipes in pyroclastic flow deposits. In both cases the cylinders can be explained by a flow-permeability feedback where perturbations in porosity and thus permeability cause locally higher flow speeds that in turn locally increase the permeability. For vesicular cylinders in lava flows, the porous medium is a framework of crystals within the magma. Above a critical crystallinity, which depends on the shape and size distribution of the crystals, the crystals form a touching framework. As the water-saturated magma continues to cool, it crystallizes anhydrous minerals, resulting in the exsolution of water vapour bubbles that can drive flow of bubbly melt through the crystal network. It is common to find sets of vertical cylinders of bubby melt in solidified lava flows, with compositions that match the residual melt from 35-50% crystallization of the host basalt. These cylinders resemble chimneys in experiments of crystallising ammonium chloride solution that are explained by reactive flow with porous medium convection. The Rayleigh number for the magmatic case is too low for convection but the growth of steam bubbles as the magma crystallizes induces pore fluid flow up through the permeable crystal pile even if there is no convective instability. This bubble-growth-driven upward flow is reactive and can lead to channelization because of a feedback between velocity and permeability. For the gas escape pipes in pyroclastic flows, the porous medium is a very poorly sorted granular material composed of fragments of solid magma with a huge range of grain sizes from ash (microns to 2 mm) to clasts of decimeters or greater. The vertical gas escape pipes are distinguished from the surrounding pyroclastic flow deposit by the lack of fine ash in the pipes; this missing ash was transported up out of the pyroclastic flow by gas flow, a process called elutriation. Laboratory experiments with beds of binary mixtures of spheres aerated through a porous plate at the base, demonstrate that the size ratio, density ratio, and proportions of the two populations of spheres all affect the pattern and efficiency of segregation. Decompaction of the upper portion of the bed separates the grains and thus facilitated the elutriation of the finer particles, which must be transported up through the spaces between the larger particles. A variety of segregation feature are found including pipes lacking fines that grow down from the top of the bed. These could be explained by channelizing of gas flow due to a feedback between local reduction in fines increasing the local permeability and gas velocity.
Swivel Joint For Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Milner, James F.
1988-01-01
Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.
NASA Astrophysics Data System (ADS)
Boyd, Joshua; Buick, James M.; Green, Simon
2007-09-01
The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear-dependent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are implemented and are used to compare two-dimensional Newtonian and non-Newtonian flows in the context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows, both models exhibit differences in velocity and shear, with the largest differences occurring at low Reynolds and Womersley numbers. Larger differences occur for the Casson model. In the curved pipe Carreau-Yasuda model, moderate differences are observed in the velocities in the central regions of the geometries, and the largest shear rate differences are observed near the geometry walls. These differences may be important for the study of atherosclerotic progression.
Lonely GPFUTV-the movement of water under the action of unknown vacuum
NASA Astrophysics Data System (ADS)
Lin, Weiyi
2013-11-01
In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. The experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under the joint action of an unknown vacuum energy and the formation of non-aerated flow the water flow is full-pipe and continuous, high-speed and non-rotational as distinguished from turbulent flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, experimental study of Torricelli's experiment phenomenon in the vacuum environment, applied study of the potential for GPFUTV to be developed for deep seawater suction technology and lifting technology for deep ocean mining, theoretical study of flow stability and flow resistance under GPFUTV condition, etc. At last, the famous GPFUTV project is illustrated. 12 years of rigorous and independent survey research.
Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica
2016-01-01
The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521
Microwave/Sonic Apparatus Measures Flow and Density in Pipe
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.
2004-01-01
An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.
NASA Astrophysics Data System (ADS)
Huang, W. D.; Fan, H. G.; Chen, N. X.
2012-11-01
To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.
Calibration of nozzle for air mass flow measurement
NASA Astrophysics Data System (ADS)
Uher, Jan; Kanta, Lukáš
2017-09-01
The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.
An asymptotic analysis of the laminar-turbulent transition of yield stress fluids in pipes
NASA Astrophysics Data System (ADS)
Myers, Tim G.; Mitchell, Sarah L.; Slatter, Paul
2017-02-01
The work in this paper concerns the axisymmetric pipe flow of a Herschel-Bulkley fluid, with the aim of determining a relation between the critical velocity (defining the transition between laminar and turbulent flow) and the pipe diameter in terms of the Reynolds number Re 3. The asymptotic behaviour for large and small pipes is examined and simple expressions for the leading order terms are presented. Results are then compared with experimental data. A nonlinear regression analysis shows that for the tested fluids the transition occurs at similar values to the Newtonian case, namely in the range 2100 < Re 3 < 2500.
IMPACT OF FIVE TREATMENT FACTORS ON MUSSEL MORTALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2003-12-08
Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify factors that affect mussel kill. Test results reported herein indicate that mussel kill should not be affected by: (1) air bubbles being carried by currents through power plant pipes; (2) pipe orientation (e.g., vertical or horizontal); (3) whether the bacterial cell concentration during a treatment is constant or slightly varying; (4) whether a treatment is between 3 hr and 12 hr in duration, given that the total quantity of bacteria being applied tomore » the pipe is a constant; and (5) whether the water temperature is between 13 C and 23 C.« less
Pressure Profiles in a Loop Heat Pipe Under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Pressure Profiles in a Loop Heat Pipe under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.
Adair, Alexander; Mastikhin, Igor V; Newling, Benedict
2018-06-01
The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.
System and method for improving performance of a fluid sensor for an internal combustion engine
Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI
2009-03-03
A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.
Experimental study of Large-scale cryogenic Pulsating Heat Pipe
NASA Astrophysics Data System (ADS)
Barba, Maria; Bruce, Romain; Bonelli, Antoine; Baudouy, Bertrand
2017-12-01
Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices consisting of a long capillary tube bent into many U-turns connecting the condenser part to the evaporator part. They are thermally driven by an oscillatory flow of liquid slugs and vapor plugs coming from phase changes and pressure differences along the tube. The coupling of hydrodynamic and thermodynamic effects allows high heat transfer performances. Three closed-loop pulsating heat pipes have been developed by the DACM (Department of Accelerators, Cryogenics and Magnetism) of CEA Paris-Saclay, France. Each PHP measures 3.7 meters long (0.35 m for the condenser and the evaporator and 3 m for the adiabatic part), being almost 20 times longer than the longest cryogenic PHP tested. These PHPs have 36, 22 and 12 parallel channels. Numerous tests have been performed in horizontal position (the closest configuration to non-gravity) using nitrogen as working fluid, operating between 75 and 90 K. The inner and outer diameters of the stainless steel capillary tubes are 1.5 and 2 mm respectively. The PHPs were operated at different filling ratios (20 to 90 %), heat input powers (3 to 20 W) and evaporator and condenser temperatures (75 to 90 K). As a result, the PHP with 36 parallel channels achieves a certain level of stability during more than thirty minutes with an effective thermal conductivity up to 200 kW/m.K at 10 W heat load and during forty minutes with an effective thermal conductivity close to 300 kW/m.K at 5 W heat load.
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1974-01-01
The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.
Turbine-Driven Pipe-Cleaning Brush
NASA Technical Reports Server (NTRS)
Werlink, Rudy J.; Rowell, David E.
1994-01-01
Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.
EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks. A network consists of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in e...
EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. A network can consist of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in...
The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe
NASA Astrophysics Data System (ADS)
Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao
2017-04-01
Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet. The Wang and Rusak (Phys. Fluids 8:1007-1016, 1996. doi: 10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant, three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al. (J. Fluid Mech. 797: 284-321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. The energy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.
Evaluating and Improving Water Treatment Plant Processes at Fixed Army Installations.
1985-05-01
blender with variable speeds to handle different flow rates through the plant. * A coagulant feed system using orifices (facing upstream) may help achieve...cause the pipe to rupture. Tubercules are formed on pipe surfaces when iron ions are oxidized and ferric hydroxide precipitates: 2 + 2Fe + 5H20 + 1/20...2 2Fe (01)3 + 4H + " The tubercules interfere with flow and reduce the carrying capacity of the pipe . Several factors affect the rate of corrosion
Poiseuille equation for steady flow of fractal fluid
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-07-01
Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.
Evaluation of Jet Fuel Induced Hearing Loss in Rats
2011-10-13
flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3
On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers
NASA Technical Reports Server (NTRS)
Pletcher, R. H.; Chen, K.-H.
1993-01-01
The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.
NASA Astrophysics Data System (ADS)
Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming
2018-04-01
The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.
NASA Astrophysics Data System (ADS)
Hu, R.; Liu, Q.
2016-12-01
For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical simulation could provide guidance in this AGF project in the future. ReferenceJeffrey M. McKenzie, et. al. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources 30 966-983 (2007).
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-07-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-02-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
Internal Erosion During Soil PipeFlow: State of Science for Experimental and Numerical Analysis
Many field observations have led to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved, and inconsistent use of terms have exacerbated the problem. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less
Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent
1999-09-28
An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.
Apparatus for in situ installation of underground containment barriers under contaminated lands
Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent
1998-06-16
An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.
Casing pipe damage detection with optical fiber sensors: a case study in oil well constructions
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Huang, Minghua; He, Jun; Ou, Jinping; Chen, Genda
2010-04-01
Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR) and the discrete fiber Bragg grating (FBG) measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber reinforced polymer (FRP) rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In-situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain in tact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multi-pole array acoustic instrument.
Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator
NASA Astrophysics Data System (ADS)
Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.
2014-01-01
This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1961-01-01
A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.
Sagnac-interferometer-based fresnel flow probe.
Tselikov, A; Blake, J
1998-10-01
We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.
NASA Astrophysics Data System (ADS)
Cong, Li; Qifei, Jian; Wu, Shifeng
2017-02-01
An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Convection's enhancement in thermal micro pipes using extra fluid and shape memory material
NASA Astrophysics Data System (ADS)
Mihai, Ioan; Sprinceana, Siviu
2016-12-01
Up to now, there have been developed various applications of thermal micro pipes[1-3], such as refrigerating systems, high heat flux electronics cooling, and biological devices etc., based on vacuum vaporization followed by a convective phenomenon that allows vapor transfer from the vaporization area to the condensation one. This article presents studies carried out on the enhancement of the convective phenomenon taking place in flat thermal micro pipes. The proposed method[4] is aimed at the cooling of power electronics components, such as microprocessors. The conducted research focused on the use of shape memory materials that allow, by a semi-active method, to bring extra fluid in the vaporization area of the thermal micro pipe. The conducted investigations analyzed the variation of the liquid layer thickness in the trapezoidal micro channels and the thermal flow change over time. The modification of liquid flow was studied in correlation with the capacity of the polysynthetic material to retain the most extra fluid in its pores. The enhancement of the convective heat transfer phenomenon in flat thermal micro pipes was investigated in correspondence to the increase of liquid quantity in the vaporization zone. The charts obtained by aid of Mathcad[5] allowed to represent the evolution during a period of time (or with the pipe's length) of the liquid film thickness, the flow and the thermal flow, as a function of the liquid supply variation due to the shape memory materials and the modification of the working temperature.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
Claytor, T.N.; Karplus, H.B.
1983-09-26
Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.
On the formation, growth, and shapes of solution pipes - insights from numerical modeling
NASA Astrophysics Data System (ADS)
Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.
2015-04-01
Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the distances between the pipes as well as their growth rates. The most interesting result is the existence of two different regimes of the piped growth, depending on the flow rate. At high flow rates, well-separated, cyllindrical shafts are formed, of a nearly uniform diameter all along their lengths. They advance quickly into the matrix, with velocities several times larger than that of a unperturbed, planar dissolution front. Conversely, for small flow rates, the pipes are funnel-shaped with parabolic tips and their advancement velocity is of the same order as that of a planar front. The transition between the two forms is abrupt, with no intermediate forms observed. The simulation results are compared with field evidence from limestone quarries in Smerdyna, Poland, where several hundred of solution pipes have been exposed. Interestingly, both forms (shaft-like and tunnel-like) are found in the field, sometimes in close proximity to each other. [1] P. Walsh and I. Morawiecka-Zacharz, A dissolution pipe palaeokarst of mid-Pleistocene age preserved in Miocene limestones near Staszow, Poland, Palaeogeogr. Palaeoclimatol. Palaeoecol., 174 (2001), pp. 327-350. [2] K. G. Grimes, Solution pipes and pinnacles in syngenetic karst. In: Gines A., Knez M., Slabe T., Dreybrodt W. (Eds.), Karst Rock Features: Karren Sculpturing. Ljubljana, ZRC Publishing, (2009), pp. 513-523. [3] J. De Waele, S. E. Lauritzen and M. Parise On the formation of dissolution pipes in Quaternary coastal calcareous arenites in Mediterranean settings. Earth. Surf. Proc. Land" 36, (2011), pp. 143-157.
Exact solution for flow in a porous pipe with unsteady wall suction and/or injection
NASA Astrophysics Data System (ADS)
Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.
2007-10-01
This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.
On the prediction of turbulent secondary flows
NASA Technical Reports Server (NTRS)
Speziale, C. G.; So, R. M. C.; Younis, B. A.
1992-01-01
The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.
NASA Astrophysics Data System (ADS)
Wakimoto, Tatsuro; Araga, Koichi; Katoh, Kenji
2018-03-01
As widely known, the addition of a specific type of surfactant to water reduces drag in a pipe flow. This effect is considered to be a result of the suppression of turbulent transition caused by the ordered structure of rod-like micelles that is referred to as a shear-induced structure (SIS). However, it is typically difficult to determine the SIS since it is necessary to noninvasively detect the SIS with several hundred nanometers in the actual moving flow. In this study, we used the fluorescence probe method to locally determine the SIS in a pipe flow. When hydrophobic fluorescence molecules are added to the surfactant solution, the fluorescence molecules are trapped in micelles. Thus, fluorescence intensity varies based on the change in the micellar structure. We verified the applicability of the fluorescence probe method to the SIS detection and determined the relationship between the micellar structure and the drag reduction in the pipe flow by simultaneously measuring the fluorescence intensity and pipe friction factor. The experimental result demonstrates that the SIS formation in the near-wall region is closely correlated with the drag reduction and suggests that the near-wall SIS suppresses the turbulent transition.
Fully localised nonlinear energy growth optimals in pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.
A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shearmore » flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.« less
Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence
NASA Astrophysics Data System (ADS)
Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.
2014-11-01
Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.
NASA Astrophysics Data System (ADS)
Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu
2012-09-01
SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.
Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.
2001-01-01
Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
Zhao, Yingying; Yang, Y Jeffrey; Shao, Yu; Neal, Jill; Zhang, Tuqiao
2018-04-27
Simultaneous chlorine decay and disinfection byproduct (DBP) formation have been discussed extensively because of their regulatory and operational significance. This study further examines chemical reaction variability in the water quality changes under various hydrodynamic conditions in drinking water distribution. The variations of kinetic constant for overall chlorine decay (k E ) and trihalomethane (THM) formation were determined under stagnant to turbulent flows using three devices of different wall demand and two types of natural organic matters (NOM) in water. The results from the comparative experiments and modeling analyses show the relative importance of wall demand (k w ), DBP-forming chlorine decay (k D ), and other bulk demand (k b ' ) for pipe flows of Re = 0-52500. It is found that chlorine reactivity of virgin NOM is the overriding factor. Secondly, for tap water NOM of lower reactivity, pipe flow properties (Re or u) can significantly affect k E , the THM yield (T), formation potential (Y), and the time to reach the maximum THM concentration (t max ) through their influence on kinetic ratio k D (k b ' +k w ). These observations, corroborating with turbidity variations during experiments, cannot be explained alone by chlorine dispersion to and from the pipe wall. Mass exchanges through deposition and scale detachment, most likely being flow-dependent, may have contributed to the overall chlorine decay and DBP formation rates. Thus for the simultaneous occurrence of chlorine decay and DBP formation, model considerations of NOM reactivity, pipe types (wall demand), flow hydraulics, and their interactions are essential. Copyright © 2018 Elsevier Ltd. All rights reserved.
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
HORIZONTAL HYBRID SOLAR LIGHT PIPE: AN INTEGRATED SYSTEM OF DAYLIGHT AND ELECTRIC LIGHT
This project will test the feasibility of an advanced energy efficient perimeter lighting system that integrates daylighting, electric lighting, and lighting controls to reduce electricity consumption. The system is designed to provide adequate illuminance levels in deep-floor...
NASA Astrophysics Data System (ADS)
Toropov, S. Yu; Toropov, V. S.
2018-05-01
In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.
Heat pipe technology for advanced rocket thrust chambers
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1971-01-01
The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.
NASA Astrophysics Data System (ADS)
Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai
2014-07-01
In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.
Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2011-11-01
Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Acoustic cross-correlation flowmeter for solid-gas flow
Sheen, S.H.; Raptis, A.C.
1984-05-14
Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.
Splitting of turbulent spot in transitional pipe flow
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.
2017-11-01
Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.
Visualisation of flow patterns in straight and C-shape thermosyphons
NASA Astrophysics Data System (ADS)
Ong, K. S.; Tshai, K. H.; Firwana, A.
2017-04-01
A heat pipe is a passive heat transfer device capable of transferring a large quantity of heat effectively and efficiently over a long distance and with a small temperature difference between the heat source and heat sink. A heat pipe consists of a metal pipe initially vacuumed and then filled with a small quantity of fluid inside. The pipe is separated into a heating (evaporator) section and a cooling (condenser) section by an adiabatic section. In a run-around-coil heating, ventilation and air conditioning system, a wrap-around heat pipe heat exchanger could be employed to increase dehumidification and to reduce cooling costs. The thermal performance of a thermosyphon is dependent upon type of fill liquid, fill ratio, power input, pipe inclination and pipe dimensions. The boiling and condensation processes that occur inside a thermosyphon are quite complex. During operation, dry-out, burn-out or boiling limit, entrainment or flooding limit and geysering occur. These phenomena would lead to non-uniform axial wall temperature distribution in the pipe, or worse still, ineffective operation. In order to have a better understanding of the internal heat transfer phenomena, a visual study using transparent glass tubes and high speed camera recording of the internal flow patterns would be most helpful. This paper reports on an experimental investigation conducted to visualise the flow patterns in straight and C-shape thermosyphons. The pictures recorded enabled the internal flow boiling and condensation pattern occurring inside a straight and a C-shape thermosyphon to be observed. The thermosyphons were fabricated from 10 mm O/D × 8 mm I/D × 300 mm long glass tubes and filled with water with fill ratios from 0.5 - 1.5. The evaporator sections of the thermosyphons were immersed into a hot water tank that was electrically heated from cold at ambient temperature till boiling. Cooling of the condenser section was achieved using a fan. Preliminary results showed that dry-out occurred earlier at lower evaporator temperatures with small fill ratios. Further investigations to determine saturation and thermosyphon wall temperatures with various fill liquids and at different fill ratios, inclinations and pipe sizes are necessary with a more sophisticated video recording system.
Method for noninvasive determination of acoustic properties of fluids inside pipes
None
2016-08-02
A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.
Studies on the Startup Transients and Performance of a Gas Loaded Sodium Heat Pipe
1989-06-01
NOTATION Prepared as a doctoral dissertation (Ph.D.) for the University of Dayton, Dayton, Ohio. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse...for his doctoral degree from the University of Dayton. Messrs. J. Tennant and M. 0. Ryan (UES) and D. Reinmuller (APPL) provided the technical support...B55.9 x 9.81 x I.H1’i x 10 ? x I - 158./ N/m2 APA p tg d sin q 0 (for horizontal heat (42) pipe operation) P pm -cm -AP - APA (43) lable 5 lists these
Thermal Analysis of Heat Pipe Radiators with A Rectangular Groove Wick Structure
1990-06-01
heat pipe inside radius r, .... heat pipe vapor core radius R ..... radiosity R, . Reynolds number of vapor flow Rf .... reduction factor t ..... one...The radiosity of the fin element, R(x), consists of the emission from the surface of the fin element plus the reflected irradiation from both...the radiosity received from both heat pipe condensers, i.e., heat pipe condenser 1 and condenser 2. It can 2-12 be expressed as I(x)wedx = l R(O2)Fi
NASA Technical Reports Server (NTRS)
Alario, J. P.; Haslett, R. A.
1986-01-01
Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.
Noise control of waste water pipes
NASA Astrophysics Data System (ADS)
Lilly, Jerry
2005-09-01
Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.
The effect of advanced treatment on chlorine decay in metallic pipes
Experiments were run to measure what effect advanced treatment might have on the kinetics of chlorine decay in water distribution systems. A recirculating loop of 6-inch diameter unlined ductile iron pipe was used to simulate turbulent flow conditions in a pipe with significant c...
On shapes and motion of an elongated bubble in downward liquid pipe flow
NASA Astrophysics Data System (ADS)
Fershtman, A.; Babin, V.; Barnea, D.; Shemer, L.
2017-11-01
In stagnant liquid, or in a steady upward liquid pipe flow, an elongated (Taylor) bubble has a symmetric shape. The translational velocity of the bubble is determined by buoyancy and the liquid velocity profile ahead of it. In downward flow, however, the symmetry of the bubble nose can be lost. Taylor bubble motion in downward flow is important in numerous applications such as chemical plants and cooling systems that often contain countercurrent gas-liquid flow. In the present study, the relation between the Taylor bubble shape and its translational velocity is investigated experimentally in a vertical pipe for various downward liquid flow rates. At higher downward velocities, the bubble may be forced by the background flow to propagate downward against buoyancy. In order to include those cases as well in our experimental analysis, the bubbles were initially injected into stagnant liquid, whereas the downward flow was initiated at a later stage. This experimental procedure allowed us to identify three distinct modes of translational velocities for a given downward background liquid flow; each velocity corresponds to a different bubble shape. Hydrodynamic mechanisms that govern the transition between the modes observed in the present study are discussed.
Transition of unsteady velocity profiles with reverse flow
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
Perchlorate Removal, Destruction, and Field Monitoring Demonstration
2006-10-02
ion exchange unit. A pulsation dampener minimized pressure and flow fluctuations in the ion exchange system and a flow totalizer monitored total...instrumentation and controls, piping , electrical services, site work, service facilities, engineering, construction expenses, and other indirect costs were... Piping 113,750 157,500 Electrical services 48,750 67,500 Site work 65,000 90,000
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
transition to turbulence in pipe flow have been characterized by the creation of puffs and slugs [Wygnanski and Champagne , 1973]. Puffs have been identified...Fluid Mech., 568:55–76, 2006. I. J. Wygnanski and F. H. Champagne . On transition in a pipe. Part 1: The origin of puffs and slugs and the flow in a
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.
2017-11-01
In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.
Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube
NASA Astrophysics Data System (ADS)
Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru
Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.
Assignment of boundary conditions in embedded ground water flow models
Leake, S.A.
1998-01-01
Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.
A steady state pressure drop model for screen channel liquid acquisition devices
NASA Astrophysics Data System (ADS)
Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.
2014-11-01
This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.
Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roitberg, E.; Shemer, L.; Barnea, D.
Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas-liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connectedmore » to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed. (author)« less
Shock wave absorber having a deformable liner
Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.
1983-08-26
This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.
3D Numerical Prediction of Gas-Solid Flow Behavior in CFB Risers for Geldart A and B Particles
NASA Astrophysics Data System (ADS)
Özel, A.; Fede, P.; Simonin, O.
In this study, mono-disperse flows in squared risers conducted with A and B-type particles were simulated by Eulerian n-fluid 3D unsteady code. Two transport equations developed in the frame of kinetic theory of granular media supplemented by the interstitial fluid effect and the interaction with the turbulence (Balzer et al., 1996) are resolved to model the effect of velocity fluctuations and inter-particle collisions on the dispersed phase hydrodynamic. The studied flow geometries are three-dimensional vertical cold channels excluding cyclone, tampon and returning pipe of a typical circulating fluidized bed. For both type of particles, parametric studies were carried out to determine influences of boundary conditions, physical parameters and turbulence modeling. The grid dependency was analyzed with mesh refinement in horizontal and axial directions. For B-type particles, the results are in good qualitative agreement with the experiments and numerical predictions are slightly improved by the mesh refinement. On the contrary, the simulations with A-type particles show a less satisfactory agreement with available measurements and are highly sensitive to mesh refinement. Further studies are carried out to improve the A-type particles by modeling subgrid-scale effects in the frame of large-eddy simulation approach.
Contractor’s Meeting in Turbulence and Rotating Flows
1999-08-18
pipes under turbine cooling conditions. The research results can be used for the design and fabrication of miniature heat pipes in turbine blades. The...heater used to supply the heat to the evaporator of the heat pipe was successfully fabricated . All experimental tests have been successfully completed...California, Los Angeles; D. Parekh, Georgia Tech Research Institute Rotating Miniature Heat Pipes for Turbine Blade Cooling Applications 37 Y. Cao
Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.
Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M
2006-08-01
Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.
Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes
NASA Astrophysics Data System (ADS)
1991-10-01
ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.
Turbulent pipe flows subjected to temporal decelerations
NASA Astrophysics Data System (ADS)
Jeong, Wongwan; Lee, Jae Hwa
2016-11-01
Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Modifications to the Conduit Flow Process Mode 2 for MODFLOW-2005
Reimann, T.; Birk, S.; Rehrl, C.; Shoemaker, W.B.
2012-01-01
As a result of rock dissolution processes, karst aquifers exhibit highly conductive features such as caves and conduits. Within these structures, groundwater flow can become turbulent and therefore be described by nonlinear gradient functions. Some numerical groundwater flow models explicitly account for pipe hydraulics by coupling the continuum model with a pipe network that represents the conduit system. In contrast, the Conduit Flow Process Mode 2 (CFPM2) for MODFLOW-2005 approximates turbulent flow by reducing the hydraulic conductivity within the existing linear head gradient of the MODFLOW continuum model. This approach reduces the practical as well as numerical efforts for simulating turbulence. The original formulation was for large pore aquifers where the onset of turbulence is at low Reynolds numbers (1 to 100) and not for conduits or pipes. In addition, the existing code requires multiple time steps for convergence due to iterative adjustment of the hydraulic conductivity. Modifications to the existing CFPM2 were made by implementing a generalized power function with a user-defined exponent. This allows for matching turbulence in porous media or pipes and eliminates the time steps required for iterative adjustment of hydraulic conductivity. The modified CFPM2 successfully replicated simple benchmark test problems. ?? 2011 The Author(s). Ground Water ?? 2011, National Ground Water Association.
A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.
Xu, Jin; Wang, Xudong
2016-09-01
A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems. © 2016, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.
1980-09-02
A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less
Measurements of the wall-normal velocity component in very high Reynolds number pipe flow
NASA Astrophysics Data System (ADS)
Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.
2012-11-01
Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study
NASA Astrophysics Data System (ADS)
Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.
2015-12-01
Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.
Experimental evidence of a helical, supercritical instability in pipe flow of shear thinning fluids
NASA Astrophysics Data System (ADS)
Picaut, L.; Ronsin, O.; Caroli, C.; Baumberger, T.
2017-08-01
We study experimentally the flow stability of entangled polymer solutions extruded through glass capillaries. We show that the pipe flow becomes linearly unstable beyond a critical value (Wic≃5 ) of the Weissenberg number, via a supercritical bifurcation which results in a helical distortion of the extrudate. We find that the amplitude of the undulation vanishes as the aspect ratio L /R of the capillary tends to zero, and saturates for large L /R , indicating that the instability affects the whole pipe flow, rather than the contraction or exit regions. These results, when compared to previous theoretical and experimental works, lead us to argue that the nature of the instability is controlled by the level of shear thinning of the fluids. In addition, we provide strong hints that the nonlinear development of the instabiilty is mitigated, in our system, by the gradual emergence of gross wall slip.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
Acoustic cross-correlation flowmeter for solid-gas flow
Sheen, Shuh-Haw; Raptis, Apostolos C.
1986-01-01
Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals in response to said first and second detected signals; and means for cross-correlating said first and second output signals.
Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels
NASA Astrophysics Data System (ADS)
Sikora, Małgorzata; Bohdal, Tadeusz
2017-12-01
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
NASA Technical Reports Server (NTRS)
Burbach, T.
1985-01-01
The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.
Dynamical constraints on kimberlite volcanism
NASA Astrophysics Data System (ADS)
Sparks, R. S. J.; Baker, L.; Brown, R. J.; Field, M.; Schumacher, J.; Stripp, G.; Walters, A.
2006-07-01
Kimberlite volcanism involves the ascent of low viscosity (0.1 to 1 Pa s) and volatile-rich (CO 2 and H 2O) ultrabasic magmas from depths of 150 km or greater. Theoretical models and empirical evidence suggest ascent along narrow (˜1 m) dykes at speeds in the range > 4 to 20 m/s. With typical dyke breadths of 1 to 10 km, magma supply rates are estimated in the range 10 2 to 10 5 m 3/s with eruption durations of many hours to months. Based on observations, theory and experiments we propose a four-stage model for kimberlite eruptions to explain the main geological relationships of kimberlites. In stage I magma reaches the Earth's surface along fissures and erupts explosively due to their high volatile content. The early flow exit conditions are overpressured with choked flow conditions; an exit velocity of ˜200 m/s is estimated as representative. Explosive expansion and near surface overpressures initiate crater and pipe formation from the top downwards. In stage II under-pressures (the difference between the lithostatic pressure and pressure of the erupting mixture) develop within the evolving pipe causing rock bursting at depth, undermining overlying rocks and causing down-faulting and crater rim slumping. Rocks falling into the pipe interior are ejected by the strong explosive flows. Stage II is the erosive stage of pipe formation. As the pipe widens and deepens larger under-pressures develop enhancing pipe wall instability. A critical threshold is reached when the exit pressure falls to one atmosphere. As the pipe widens and deepens further the gas exit velocity declines and ejecta becomes trapped within the pipe, initiating stage III. A fluidised bed of pyroclasts develops within the pipe as the eruption wanes to form typical massive volcaniclastic kimberlite. Marginal breccias represent the transition between stages II and III. After the eruption stage IV is a period of hydrothermal metamorphism (principally serpentinisation) and alteration as the pipe cools and meteoric waters infiltrate the hot pipe fill. Following an eruption an open crater can be filled by kimberlite- and country-rock derived sediments, forming the crater-facies.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2018-01-01
Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.
NASA Astrophysics Data System (ADS)
Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz
2017-04-01
Soil erosion is caused not only by overland flow, but also by subsurface flow. Piping which is a process of mechanical removal of soil particles by concentrated subsurface flow is frequently being overlooked and not accounted for in soil erosion studies. However, it seems that it is far more widespread than it has often been supposed. Furthermore, our knowledge about piping dynamics and its quantification currently relies on a limited number of data available for mainly loess-mantled areas and marl badlands. Therefore, this research aims to recognize piping dynamics in mid-altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping-prone soils. The survey was carried out in the Bereźnica Wyżna catchment (305 ha), in the Bieszczady Mts. (the Eastern Carpathians, Poland), where 188 collapsed pipes were mapped. The research was based on the monitoring of selected piping systems located within grasslands (1971-1974, 2013-2016). The development of piping systems is mainly induced by the elongation of pipes and creation of new collapses (closed depressions and sinkholes), rather than by the enlargement of existing piping forms, or the deepening of pipes. It draws attention to the role of dense vegetation (grasslands) in the delay of pipe collapses and, also, to the boundary of pipe development (soil-bedrock interface). The obtained results reveal an episodic, and even stochastic nature of piping activity, expressed by varied one-year and short-term (3 years) erosion rates, and pipe elongation. Changes in soil loss vary significantly between different years (up to 27.36 t ha-1 y-1), reaching the rate of 1.34 t ha-1 y-1 for the 45-year study period. The elongation of pipes also differs, from no changes to 36 m during one year. The results indicate that soil loss due to piping can cause high soil loss even in highly vegetated lands (grasslands), which are generally considered as areas without a significant erosion problem. The scale of piping in the study area is at least by three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under a similar land use (grasslands), and it is comparable to the scale of surface soil erosion on arable lands. It means that piping is an important sediment source for fluvial systems, and it leads to significant soil loss in mid-altitude mountains under a temperate climate. This study is supported by the National Science Centre of Poland, as a part of the first author's project - PRELUDIUM 3 (DEC-2012/05/N/ST10/03926). The first author was also granted the ETIUDA 3 doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland.
Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin
2015-11-01
The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
Viscous Flow through Pipes of Various Cross-Sections
ERIC Educational Resources Information Center
Lekner, John
2007-01-01
An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…
Pipe Flow Simulation Software: A Team Approach to Solve an Engineering Education Problem.
ERIC Educational Resources Information Center
Engel, Renata S.; And Others
1996-01-01
A computer simulation program for use in the study of fluid mechanics is described. The package is an interactive tool to explore the fluid flow characteristics of a pipe system by manipulating the physical construction of the system. The motivation, software design requirements, and specific details on how its objectives were met are presented.…
2007-12-18
COLD FLOW - Liquid oxygen runs through the piping on Stennis Space Center's A-1 Test Stand on Dec. 18 to test the ability of the J-2X engine's Powerpack 1A to withstand the temperature change and pressure. Just visible above and to the right of the test article's nozzle is a frosty pipe, indicating the supercold fuel is flowing as it should.
Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats
2012-01-01
square inch (psi) pressure was attached to the side arm of the Sonomist. At this pressure the spray nozzle developed an air flow of approximately 20...L/min (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an ultrasonic whistle that aerosolized the droplets...pipe contained the spray pattern. The pipe was reduced in size to accept an orifice plate, which was used to measure flow rate by the pressure drop
NASA Technical Reports Server (NTRS)
Khattar, Mukesh K.
1993-01-01
U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.
Non-invasive fluid density and viscosity measurement
Sinha, Dipen N [Los Alamos, NM
2012-05-01
The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.
Turbulence regeneration in pipe flow at moderate Reynolds numbers.
Hof, Björn; van Doorne, Casimir W H; Westerweel, Jerry; Nieuwstadt, Frans T M
2005-11-18
We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.
Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor
NASA Astrophysics Data System (ADS)
Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue
2015-09-01
The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.
Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2018-03-01
In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.
Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust
NASA Astrophysics Data System (ADS)
Peizi, Li; Genhua, Dai; Zhichi, Zhu
1993-11-01
The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.
NASA Astrophysics Data System (ADS)
Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.
2018-03-01
This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.
NASA Astrophysics Data System (ADS)
Wang, Q.; Zhan, H.
2017-12-01
Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while the minimum WSI moved to the well center with time going, following a cubic polynomial function.
An investigation into inflection-point instability in the entrance region of a pulsating pipe flow
Wang, R. H.; Jian, T. W.; Hsu, Y. T.
2017-01-01
This paper investigates the inflection-point instability that governs the flow disturbance initiated in the entrance region of a pulsating pipe flow. Under such a flow condition, the flow instability grows within a certain phase region in a pulsating cycle, during which the inflection point in the unsteady mean flow lifts away from the viscous effect-dominated region known as the Stokes layer. The characteristic frequency of the instability is found to be in agreement with that predicted by the mixing-layer model. In comparison with those cases not falling in this category, it is further verified that the flow phenomenon will take place only if the inflection point lifts away sufficiently from the Stokes layer. PMID:28265188
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
The Collection of Ice in Jet A-1 Fuel Pipes
NASA Astrophysics Data System (ADS)
Maloney, Thomas C.
Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon® and there was a lack of a preferential accumulation region downstream of a pipe bend. A greater heat transfer from the pipe increased ice accumulation for aluminum that was made rough with 80 grit sand paper, and for Teflon®. Water was shown to collect in the pipe system as the number of tests increased and the freeze temperature of either the hard or soft ice was about 0 °C. Finally, results of "stage I" tests showed that stainless steel pipe welds were a preferred sight for ice to accumulate. Repeatability was done first in stage II and the normalized pressure increase for two 3/42 un-insulated pipe tests were within 7%. Normalized pressure increase across a pipe was shown to increase as Reynolds number decreased. A 50% increase in Reynolds number led to a 40% decrease in characteristic normalized pressure increase (CNPI). Tests were done at three temperatures and ice accumulated the most at -11 °C. The CNPI at -11 °C was about three times greater than the CNPI at -7.4 °C and about sixty times greater than the CNPI at -19.4 C. A greater heat transfer from the fuel pipe increased ice accumulation. For the amount of time that the tests ran, the total normalized pressure increase was about .9 greater for an un-insulated pipe than for an insulated pipe. Contamination in the fuel increased the amount of soft ice that collected in the system. The CNPI for the more contaminated fuel was more than double the case with less contaminated fuel. Possible solutions for the prevention or decrease of ice accumulation in aircraft fuel systems based on the results of this study are insulated pipes, a change in the type of pipe material, a higher fuel flow rate and cleaner fuel. The fuel temperature could also be altered to avoid temperatures where the most ice accumulates.
Pipe flow measurements of turbulence and ambiguity using laser-Doppler velocimetry
NASA Technical Reports Server (NTRS)
Berman, N. S.; Dunning, J. W.
1973-01-01
The laser-Doppler ambiguities predicted by George and Lumley (1973) have been verified experimentally for turbulent pipe flows. Experiments were performed at Reynolds numbers from 5000 to 15,000 at the center line and near the wall. Ambiguity levels were measured from power spectral densities of FM demodulated laser signals and were compared with calculations based on the theory. The turbulent spectra for these water flows after accounting for the ambiguity were equivalent to hot-film measurements at similar Reynolds numbers. The feasibility of laser-Doppler measurements very close to the wall in shear flows is demonstrated.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Technical Reports Server (NTRS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-01-01
Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows
NASA Astrophysics Data System (ADS)
Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos
2016-11-01
The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.
Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls
NASA Astrophysics Data System (ADS)
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2017-11-01
The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.
1981-05-01
coating process in Explosives Manufacturing Line 2. The end products of the initial design effort are process flow diagrams, piping and...instrumentation diagrams, motor control schedules, interlock logic diagrams, piping installation drawings, typical instrument Installation details, equipment...structures, equipment, utilities, and process piping extending 1.5 m (5 ft) beyond the building or area were not included in the scope of work. Nitrolysis
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Towards CFD modeling of turbulent pipeline material transportation
NASA Astrophysics Data System (ADS)
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended to generate an optimized LES solver to model turbulent pipe flow for larger Reynolds numbers. The validations are carried out using experiments conducted in Cottbus Large Pipe Test Facility at BTU as a reference [3]. In the mentioned experimental research, evolution of statistical pipe flow quantities, such as turbulence intensity, skewness and flatness are investigated to clarify the development length needed to achieve fully developed turbulence. These observations take place in a relatively large pipe test facility with an inner pipe diameter of Di = 0.19 m and a total length of L = 27 m where a bulk Reynolds number of 8.5×105 can be reached. 1. CO2 pipeline Infrastructure: An analysis of global challenges and opportunities, Final Report For International Energy Agency of Greenhouse Gas Program (2010) 2. J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J.Fluid Mech. 177, 133-166, (1987) 3. F. Zimmer, E.-S. Zanoun and C. Egbers, A study on the influence of triggering pipe flow regarding mean and higher order statistics, Journal of Physics: Conference Series 318 (2011) 032039
2012-04-05
small Industry Standard Object ( ISO ) is a 1-in nominal, 4-in long pipe nipple1 that has been described previously [15]. The SuperISO is similar to...the small ISO , but 8” long2. Table 5-2 – Details of Former Mare Island Naval Shipyard IVS Target Description Easting (m) Northing (m) Depth to...13 Horizontal Along ~320 3 Small ISO 565,255.82 4,215,461.00 10 Horizontal Along ~320 All data sets for each of the emplaced IVS items were
NASA Astrophysics Data System (ADS)
Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.
2017-07-01
We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.
Single- and two-phase flow characterization using optical fiber bragg gratings.
Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M
2015-03-17
Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.
24 CFR 3280.610 - Drainage systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... foot, when a full size cleanout is installed at the upper end. [40 FR 58752, Dec. 18, 1975... shall be designed to provide for a 1/4 inch per foot grade in horizontal piping. (i) Fittings for screw..., correctly located according to the size and type of fixture to be connected. (1) Water closet connection...
Heckman, R. A.
1971-12-14
Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)
Heckman, R.A.
1971-12-14
Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
Cartier, Clément; Doré, Evelyne; Laroche, Laurent; Nour, Shokoufeh; Edwards, Marc; Prévost, Michèle
2013-02-01
Release of lead from 80% partially replaced service lines was compared to full lead service lines using harvested-stabilized lead pipes and field brass connectors. After more than a year of stabilization, lead release was consistent with field samples. Over the relatively short duration partial replacement of lead pipe by copper pipe (3 months), generated high lead release, attributed to galvanic corrosion, resulting in a final outcome for lead release that was even worse than for a full lead pipe. Increased lead release was especially evident at higher flow rates. Orthophosphate reduced lead release from full lead pipes by 64%. For partially replaced samples with copper, lead concentrations were unchanged by phosphate dosing at moderate flow (103 ± 265 vs 169 ± 349 μg/L) and were increased to very high levels when sampled at high flow rates (1001 ± 1808 vs 257 ± 224 μg/L). The increase lead release was in the form of particulate lead (>90%). In comparison to the condition without treatment, increased sulfate treatment had little impact on lead release from 100%-Pb rigs but reduced lead release from partially replaced lead pipes with copper. Our results also raise questions concerning protocols based on short 30 min stagnation (as those used in Canada) due to their incapacity to consider particulate lead release generated mostly after longer stagnation. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhoff, J. F.; Rao, G. V.; Stein, A.
2012-07-01
The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Duemore » to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)« less
Investigation of erosion behavior in different pipe-fitting using Eulerian-Lagrangian approach
NASA Astrophysics Data System (ADS)
Kulkarni, Harshwardhan; Khadamkar, Hrushikesh; Mathpati, Channamallikarjun
2017-11-01
Erosion is a wear mechanism of piping system in which wall thinning occurs because of turbulent flow along with along with impact of solid particle on the pipe wall, because of this pipe ruptures causes costly repair of plant and personal injuries. In this study two way coupled Eulerian-Lagrangian approach is used to solve the liquid solid (water-ferrous suspension) flow in the different pipe fitting namely elbow, t-junction, reducer, orifice and 50% open gate valve. Simulations carried out using incomressible transient solver in OpenFOAM for different Reynolds's number (10k, 25k, 50k) and using WenYu drag model to find out possible higher erosion region in pipe fitting. Used transient solver is a hybrid in nature which is combination of Lagrangian library and pimpleFoam. Result obtained from simulation shows that exit region of elbow specially downstream of straight, extradose of the bend section more affected by erosion. Centrifugal force on solid particle at bend affect the erosion behavior. In case of t-junction erosion occurs below the locus of the projection of branch pipe on the wall. For the case of reducer, orifice and a gate valve reduction area as well as downstream is getting more affected by erosion because of increase in velocities.
Experimental Investigation of Heat Pipe Startup Under Reflux Mode
NASA Technical Reports Server (NTRS)
Ku, Jentung
2018-01-01
In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
Effect of Torsion on the Friction Factor of Helical Pipe Flow
NASA Astrophysics Data System (ADS)
Kumer Datta, Anup; Yanase, Shinichiro; Hayamizu, Yasutaka; Kouchi, Toshinori; Nagata, Yasunori; Yamamoto, Kyoji
2017-06-01
Three-dimensional direct numerical simulations of a viscous incompressible fluid flow through a helical pipe with a circular cross section were conducted for three Reynolds numbers, Re (= 80, 300, and 1000), and two nondimensional curvatures, δ (= 0.1 and 0.05), over a wide range of torsion parameters, β (= nondimensional torsion/√{2δ } ), from 0.02 to 2.8. Well-developed axially invariant regions were obtained where the friction factors were calculated, in good agreement with the experimental data obtained by Yamamoto et al. [https://doi.org/10.1016/0169-5983(95)00022-6, Fluid Dyn. Res. 16, 237 (1995)]. It was found that the friction factor sharply increases as β increases from zero, then decreases after taking a maximum, and finally slowly approaches that of a straight pipe when β tends to infinity. It is interesting that a peak of the friction factor exists in the region 0.2 ≤ β ≤ 0.3 for all the Reynolds numbers and curvatures studied in the present paper, which manifests the importance of the torsion parameter in helical pipe flow.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
Modeling of the Edwards pipe experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiselj, I.; Petelin, S.
1995-12-31
The Edwards pipe experiment is used as one of the basic benchmarks for the two-phase flow codes due to its simple geometry and the wide range of phenomena that it covers. Edwards and O`Brien filled 4-m-long pipe with liquid water at 7 MPa and 502 K and ruptured one end of the tube. They measured pressure and void fraction during the blowdown. Important phenomena observed were pressure rarefaction wave, flashing onset, critical two-phase flow, and void fraction wave. Experimental data were used to analyze the capabilities of the RELAP5/MOD3.1 six-equation two-phase flow model and to examine two different numerical schemes:more » one from the RELAP5/MOD3.1 code and one from our own code, which was based on characteristic upwind discretization.« less
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
A numerical simulation of the action of the current experienced by an electric arc and the rate of gas flow in a pipe of a cross-country gas pipeline on the depth of penetration of the electric arc into the wall of this pipe and on the current and residual stresses arising in the pipe material in the process of electric-arc welding of nonthrough cavity-like defects in it has been carried out for gas pipes with walls of different thickness.
NASA Astrophysics Data System (ADS)
Latz, Michael I.; Rohr, Jim
2013-07-01
Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and BBP. This correlation, when further scaled by pipe diameter, effectively predicted bioluminescence intensity in fully developed turbulent flow in a 0.83-cm i.d. pipe. Determining similar correlations between other bathyphotometer flow agitators and flow fields will allow bioluminescence potential measurements to become a more powerful tool for the oceanographic community.
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Evidence of sublaminar drag naturally occurring in a curved pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noorani, A.; Schlatter, P., E-mail: pschlatt@mech.kth.se
Steady and unsteady flows in a mildly curved pipe for a wide range of Reynolds numbers are examined with direct numerical simulation. It is shown that in a range of Reynolds numbers in the vicinity of Re{sub b} ≈ 3400, based on bulk velocity and pipe diameter, a marginally turbulent flow is established in which the friction drag naturally reduces below the laminar solution at the same Reynolds number. The obtained values for friction drag for the laminar and turbulent (sublaminar) flows turn out to be in excellent agreement with experimental measurements in the literature. Our results are also inmore » agreement with Fukagata et al. [“On the lower bound of net driving power in controlled duct flows,” Phys. D 238, 1082 (2009)], as the lower bound of net power required to drive the flow, i.e., the pressure drop of the Stokes solution, is still lower than our marginally turbulent flow. A large-scale traveling structure that is thought to be responsible for that behaviour is identified in the instantaneous field. This mode could also be extracted using proper orthogonal decomposition. The effect of this mode is to redistribute the mean flow in the circular cross section which leads to lower gradients at the wall compared to the laminar flow.« less
Evidence of sublaminar drag naturally occurring in a curved pipe
NASA Astrophysics Data System (ADS)
Noorani, A.; Schlatter, P.
2015-03-01
Steady and unsteady flows in a mildly curved pipe for a wide range of Reynolds numbers are examined with direct numerical simulation. It is shown that in a range of Reynolds numbers in the vicinity of Reb ≈ 3400, based on bulk velocity and pipe diameter, a marginally turbulent flow is established in which the friction drag naturally reduces below the laminar solution at the same Reynolds number. The obtained values for friction drag for the laminar and turbulent (sublaminar) flows turn out to be in excellent agreement with experimental measurements in the literature. Our results are also in agreement with Fukagata et al. ["On the lower bound of net driving power in controlled duct flows," Phys. D 238, 1082 (2009)], as the lower bound of net power required to drive the flow, i.e., the pressure drop of the Stokes solution, is still lower than our marginally turbulent flow. A large-scale traveling structure that is thought to be responsible for that behaviour is identified in the instantaneous field. This mode could also be extracted using proper orthogonal decomposition. The effect of this mode is to redistribute the mean flow in the circular cross section which leads to lower gradients at the wall compared to the laminar flow.
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Torsion effect on fully developed flow in a helical pipe
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
1987-01-01
Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Astrophysics Data System (ADS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-09-01
Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Lu, Ning; Ge, Shemin
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
Vector Analysis of Ionic Collision on CaCO3 Precipitation Based on Vibration Time History
NASA Astrophysics Data System (ADS)
Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Vibration effects on the piping system can result from the internal factor of fluid or the external factor of the mechanical equipment operation. As the pipe vibrated, the precipitation process of CaCO3 on the inner pipe could be affected. In the previous research, the effect of vibration on CaCO3 precipitation in piping system was clearly verified. This increased the deposition rate and decreased the induction time. However, the mechanism of vibration control in CaCO3 precipitation process as the presence of vibration has not been recognized yet. In the present research, the mechanism of vibration affecting the CaCO3 precipitation was investigated through vector analysis of ionic collision. The ionic vector force was calculated based on the amount of the activation energy and the vibration force was calculated based on the vibration sensor data. The vector resultant of ionic collision based on the vibration time history was analyzed to prove that vibration brings ionic collision randomly to the planar horizontal direction and its collision model was suspected as the cause of the increasing deposition rate.
Resonator coiling in thermoacoustic engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.R.; Swift, G.W.
1995-11-01
Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.
Taylor dispersion of colloidal particles in narrow channels
NASA Astrophysics Data System (ADS)
Sané, Jimaan; Padding, Johan T.; Louis, Ard A.
2015-09-01
We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.
Cascetta, Furio; Palombo, Adolfo; Scalabrini, Gianfranco
2003-04-01
In this paper the metrological behavior of two different insertion flowmeters (magnetic and turbine types) in large water pipes is described. A master-slave calibration was carried out in order to estimate the overall uncertainty of the tested meters. The experimental results show that (i) the magnetic insertion tested flowmeter performs the claimed accuracy (+/- 2%) within all the flow range (20:1); (ii) the insertion turbine tested meter, instead, reaches the claimed accuracy just in the upper zone of the flow range.
Heat transfer in turbulent magneto-fluid-mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andelman, M.P.
1975-12-01
The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less
The "Long Pipe" in CICLoPE: A Design for Detailed Turbulence Measurements
NASA Astrophysics Data System (ADS)
Talamelli, A.; Bellani, G.; Rossetti, A.
A new facility to study high Reynolds number wall bounded turbulent flow has been designed. It will be installed in the laboratory of Center for International Collaboration on Long Pipe Experiments "CICLoPE" in Predappio (Italy). The facility consists of a large pipe, allowing to reach high Reynolds numbers, where all turbulent scales can be resolved with standard measurement techniques. The pipe operates with air at ambient conditions with a maximum speed of 60 m/s in order to avoid any compressibility effect. In order to maintain stable conditions over long period of time the pipe is part of a close loop circuit. The pipe will be located in a tunnel 60 m underground, thus ensuring very low level of external perturbations. The layout resembles an ordinary wind tunnel where the main difference is the long test section, which produces most of the friction losses. This requires the use of a multiple stage axial fan driven by two independent motors. Even though many of the various aerodynamic components are similar to those ordinary used in wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have been designed aiming at obtaining a very good quality of the flow and minimizing the overall pressure losses.
Turbulence intensity's effect on liquid jet breakup from long circular pipes
NASA Astrophysics Data System (ADS)
Trettel, Ben; Ezekoye, Ofodike
2017-11-01
Long pipes which produce fully developed flow are frequently used as a nozzle in jet breakup research. We compiled experimental data from over 20 pipe jet studies for many breakup quantities and developed correlations for these quantities based on existing theories and our own theories. Previous experimental studies often had confounding between some variables (e.g., the Reynolds and Weber numbers), neglected important quantities (e.g., the turbulence intensity), or made apples to oranges comparisons (e.g., different nozzles). By independently tracking the Reynolds number, Weber number, density ratio, and turbulence intensity, and focusing only on pipe jets to keep other variables nearly constant, we minimize these issues. Turbulence is a cause of jet breakup, yet there is little quantitative research on this due to the difficulty of turbulence measurements in free surface flows. To avoid those difficulties, we exploited the fact that adjusting the roughness of a long pipe allows one to quantifiably control the turbulence intensity. We correlated turbulence intensity as a function of the friction factor. Data for rough pipes was used to include turbulence intensity in our study. Comparisons were made with theories for the effect of turbulence intensity on breakup.
Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.
Lee, Ho Min; Sadollah, Ali
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252
Analysis and modeling of localized invariant solutions in pipe flow
NASA Astrophysics Data System (ADS)
Ritter, Paul; Zammert, Stefan; Song, Baofang; Eckhardt, Bruno; Avila, Marc
2018-01-01
Turbulent spots surrounded by laminar flow are a landmark of transitional shear flows, but the dependence of their kinematic properties on spatial structure is poorly understood. We here investigate this dependence in pipe flow for Reynolds numbers between 1500 and 5000. We compute spatially localized relative periodic orbits in long pipes and show that their upstream and downstream fronts decay exponentially towards the laminar profile. This allows us to model the fronts by employing the linearized Navier-Stokes equations, and the resulting model yields the spatial decay rate and the front velocity profiles of the periodic orbits as a function of Reynolds number, azimuthal wave number, and propagation speed. In addition, when applied to a localized turbulent puff, the model is shown to accurately approximate the spatial decay rate of its upstream and downstream tails. Our study provides insight into the relationship between the kinematics and spatial structure of localized turbulence and more generally into the physics of localization.
Measurements of void fraction distribution in cavitating pipe flow using x-ray CT
NASA Astrophysics Data System (ADS)
Bauer, D.; Chaves, H.; Arcoumanis, C.
2012-05-01
Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.
Theoretical research of helium pulsating heat pipe under steady state conditions
NASA Astrophysics Data System (ADS)
Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.
2015-12-01
As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.
NASA Technical Reports Server (NTRS)
Balogun, E. E.
1977-01-01
The interactions between horizontal ambient flow and divergent wind fields, such as those that obtain atop cumulonimbus complexes, were investigated (theoretically) kinematically. The following were observed from the results of the analyses. First, for a particular divergent field, the relative mass flux over the area of the nephsystem decreased as the strength of the horizontal flow increased. Secondly, while in some of the cases analyzed the interaction between the two flows only resulted in the fanning out of streamlines and a slight redistribution in the wind speed, in many cases backflows and a total reorganization of the wind field occurred. Backflows have a blocking effect on the horizontal flow. Some of the computed patterns were compared with upper level cloud vectors (from geostationary satellite photographs). The comparison indicated that the computed resultant wind field could be used to explain some features of such satellite-derived wind fields.
NASA Astrophysics Data System (ADS)
Zhang, Zh.
2016-11-01
Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.
Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Houts, Michael G.
2011-01-01
Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.
Ravizza, Matilde; Giosio, Dean; Henderson, Alan; Hovenden, Mark; Hudson, Monica; Salleh, Sazlina; Sargison, Jane; Shaw, Jennifer L; Walker, Jessica; Hallegraeff, Gustaaf
2016-07-01
Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.
Steady Fluid Flow to a Radial System of Horizontal Wells
NASA Astrophysics Data System (ADS)
Morozov, P. E.
2018-03-01
A semi-analyticalmethod for determining the productivity of a radial system of horizontal wells in an anisotropic reservoir is proposed. Calculation results for the productivity and distribution of fluid flow along the length of the wellbores of the radial system of horizontal wells using the proposed method are compared with the data of experimental studies based on electrolytic simulation and engineering formulas. The effects of the number of wellbores, their location in the reservoir, and the hydraulic pressure loss on the distribution of the fluid flow along the length of horizontal wellbores are investigated.
A high performance cocurrent-flow heat pipe for heat recovery applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hartl, J. C.
1980-01-01
By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.
Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity
NASA Astrophysics Data System (ADS)
Tassone, A.; Nobili, M.; Caruso, G.
2017-11-01
The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20; 40) and M = (10; 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M = 50 and perfectly conducting pipe as a result of the modified currents distribution.
Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99
Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.
2002-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the sluice gate was approximately 267,000 ft3. The mass-balance analysis at Evanston indicated a total inflow volume into chamber 3 of approximately 5,970,000 ft3 during April 21-26, 1999. The outflow volume to the North Shore Channel through the tide gates at Evanston was approximately 2,920,000 ft3; outflow volume to the deep tunnel through the sluice gates was approximately 3,050,000 ft3.
Heat Pipe Vapor Dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Issacci, Farrokh
1990-01-01
The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.
NASA Astrophysics Data System (ADS)
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Liquefied Natural Gas Transfer
NASA Technical Reports Server (NTRS)
1980-01-01
Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
NASA Astrophysics Data System (ADS)
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
Infrasound-array-element frequency response: in-situ measurement and modeling
NASA Astrophysics Data System (ADS)
Gabrielson, T.
2011-12-01
Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command
Analysis of Ballast Water Sampling Port Designs Using Computational Fluid Dynamics
2008-02-01
straight, vertical, upward-flowing pipe having a sample port diameter between 1.5 and 2.0 times the basic isokinetic diameter as defined in this report...water, flow modeling, sample port, sample pipe, particle trajectory, isokinetic sampling 18. Distribution Statement This document is available to...2.0 times the basic isokinetic diameter as defined in this report. Sample ports should use ball valves for isolation purposes and diaphragm or
Phase transition to turbulence in a pipe
NASA Astrophysics Data System (ADS)
Goldenfeld, Nigel
Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.
NASA Astrophysics Data System (ADS)
Wang, Yong; Tao, Zhengwu; Chen, Liang; Ma, Xin
2017-10-01
Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.
Characteristics of a 1.6 W Gifford-McMahon Cryocooler with a Double Pipe Regenerator
NASA Astrophysics Data System (ADS)
Masuyama, S.; Numazawa, T.
2017-12-01
This paper focuses on the second stage regenerator of a 4 K Gifford-McMahon (G-M) cryocooler. A three-layer layout of lead (Pb), HoCu2 and Gd2O2S spheres in the second stage regenerator derives a good performance at 4 K. After some modifications, we confirmed that the cooling power of 1.60 W at 4.2 K was achieved by using this three-layer layout. A two-stage G-M cryocooler is RDK-408D2 (SHI) and a compressor is C300G (SUZUKISHOKAN) with a rated electric input power of 7.3 kW at 60 Hz. In order to further improve, a double pipe regenerator was applied to the second stage regenerator. As a double pipe, a stainless steel pipe with thin wall was inserted in the coaxial direction into the second stage regenerator. The helium flow in the second stage regenerator is expected to be non-uniform flow because of the distribution of helium density and the imperfect packing of regenerator material. The double pipe regenerator is considered to have an effect of restraining the non-uniform flow. From the experimental results, the second stage cooling power of 1.67 W at 4.2 K and the first stage cooling power of 64.9 W at 50 K were achieved.
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu
2015-01-01
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...
NASA Astrophysics Data System (ADS)
Luhar, Mitul
2018-04-01
Turbulence in pipe flows causes substantial friction and economic losses. The solution to appease the flow through pipelines might be, counterintuitively, to initially enhance turbulent mixing and get laminar flow in return.
Dynamics of liquid slug using particle image velocimetry technique
NASA Astrophysics Data System (ADS)
Siddiqui, M. I.; Aziz, A. Rashid A.; Heikal, M. R.
2016-11-01
Two phase liquid-gas slug flow is a source of vibration and fatigue on pipe walls and downstream equipment. This paper examines the effect of inlet conditions on the stream-wise velocity profiles and on the shear stresses induced by the liquid phase on the pipe wall during the slug flow. Instantaneous velocity vector fields of the liquid-gas (water-air) slug flow regime were obtained using particle image velocimetry (PIV) technique at various inlet conditions. A 6-m long Plexiglas pipe having an internal diameter 74-mm with a slight inclination of about 1.16° was considered for the visualization of the flow pattern. Test section was employed at a point 3.5m from the inlet, mounted with optical correction box filled with water to minimize the curvature effect of pipe on the PIV snapshots. Stream-wise velocity profiles are obtained at the wake of the liquid slug and the effect of inlet conditions were analyzed. A direct relationship was observed in between superficial gas velocity and the liquid stream-wise velocity at wake section of the slug flow. Further, the lower wall shear stresses were obtained using PIV velocity profiles at liquid film and the slug wake sections in a unit slug. The wall shear stress remained higher in the liquid slugy body as compared to the liquid film. Moreover, an increase in the wall shear stress was observed by increasing the gas superficial velocities.
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.
2017-11-01
A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
Boundary Layer Theory. Part 2; Turbulent Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.
Venus: No Breaks from an Extended Childhood
NASA Astrophysics Data System (ADS)
Moore, W. B.; Kankanamge, D. G. J.
2017-05-01
High surface temperatures lead to lower heat flow and lower stress as planets transition out of the heat-pipe mode into subsolidus convection. This causes Venus to miss the window for plate tectonics due to an extended heat-pipe childhood.
Water quality of flow through cured-in-place pipe (CIPP).
DOT National Transportation Integrated Search
2017-02-01
Though this study did not include replication, the preponderance of the data from field and simulated-field experiments indicates that Curedin- : Place Pipe (CIPP), with some care in enforcing the Caltrans specification and delaying the reintroductio...
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Prince, William R; Mcaulay, John E
1950-01-01
An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.
Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe
NASA Astrophysics Data System (ADS)
Chongji, Zeng; Yexiang, Xiao; Wei, Xu; Tao, Wu; Jin, Zhang; Zhengwei, Wang; Yongyao, Luo
2016-11-01
In Pelton turbine, the dispersion of cylindrical jet have a great influence on the energy interaction of jet and buckets. This paper simulated the internal flow of nozzle and the downstream free jet flow at 3 different needle strokes. The nozzle model consists of the elbow pipe and the needle rod which supported by 4 ribs. Homogenous model and SST k-ω model were adopted to simulate the unsteady two-phase jet flow. The development of free flow, including a contraction process followed by an expansion process, was analysed detailed as well as the influence of the nozzle geometry on the jet flow pattern. The increase of nozzle opening results in a more dispersion jet, which means a higher hydraulic loss. Upstream bend and ribs induce the secondary flow in the jet and decrease the jet concentration.
Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.
NASA Astrophysics Data System (ADS)
Gavazza, Sergio
Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.
Solution of weakly compressible isothermal flow in landfill gas collection networks
NASA Astrophysics Data System (ADS)
Nec, Y.; Huculak, G.
2017-12-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.
NASA Astrophysics Data System (ADS)
Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi
2016-10-01
Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.
Development of an optical fiber flow velocity sensor.
Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki
2009-01-01
A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.
Developing Turbulent Flow in Strongly Curved Passages of Square and Circular Cross-Section
1984-03-01
laser-velocimetry study known to us for developing tur- bulent flow in curved pipes, Enayet , et al. E113 investigated the motion in a 90* bend with Rc...flows are very similar, being De - Re (D/Rc) 1 / 2 6.8 x 104in Rowe’s bend and 2.6 x 104 in the bend of Enayet , et al., the difference in the maximum...a curved duct of square cross section. In addition to the data taken at three longitudioal stations in the curved pipe, (0 9 300, 60° and 900), Enayet
Testing of a single graded groove variable conductance heat pipe
NASA Astrophysics Data System (ADS)
Kapolnek, Michael R.; Holmes, H. R.; Hager, Brian
1992-07-01
Variable conductance heat pipes (VCHPs) with transport capacities in the 50,000 to 100,000 Watt-inch range will be required to transport the large heat loads anticipated for advanced spacecraft. A high-reliability, nonarterial constant conductance heat pipe with this capacity, the Single Graded Groove (SGG) heat pipe, was developed for NASA's Space Station Freedom. The design and testing of a variable conductance SGG heat pipe are described. Response of the pipe to startup and heat load changes was excellent. After correcting for condenser temperature changes, the evaporator temperature varied by only +/- 4 F for large evaporator heat load changes. The surface tension difference between ends of the gas blocked region was found to measurably affect the performance of the pipe. Performance was negligibly affected by Marangoni flow in the gas blocked region.
Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors
NASA Astrophysics Data System (ADS)
Singh, J. L.; Kumar, Umesh; Kumawat, N.; Kumar, Sunil; Kain, Vivekanand; Anantharaman, S.; Sinha, A. K.
2012-10-01
Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS#2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.
NASA Astrophysics Data System (ADS)
Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda
2009-11-01
In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.
Leak detection system and control using non-rigid bladder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillette, K.P.
1980-11-11
A portable system for early detection of leaks from suspect piping fittings, for example, as used on the ''christmas tree'' portion of a gas well provides an encapsulating bladder which sealably encapsulates the suspect fitting and collects leaks from the fitting. The apparatus provides, in the preferred embodiment, a bladder which can encase any suspect portion of the christmas tree (Or like piping system), such as for example, the choke jacket or other like fittings where maximum turbulence occurs as when gas or oil mixed with sand flows through the fitting. In the preferred embodiment, the collection of a leakmore » within the bladder causes a regulator to operate a control valve and halt the flow of gas, oil, or like flowing material through the piping system of which the suspect fitting is a part. The system can be applied to any other similar existing and operating piping arrangement where the detection of leaks from suspect fittings is desirable. The portable bladder and shut off arrangement of the present invention has particular application in the offshore oil and gas industry, where it can perform a safety function on unmanned gas/oil well platforms.« less
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.
2012-01-01
A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.
Water quality of flow through cured-in-place pipe (CIPP) : final report.
DOT National Transportation Integrated Search
2017-02-01
Though this study did not include replication, the preponderance of the data from field and simulated-field experiments indicates that Curedin-Place : Pipe (CIPP), with some care in enforcing the Caltrans specification and delaying the reintroduction...
EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within drinking water distribution systems. It tracks the flow of water in each pipe, the pressure at each pipe junction, the height of water in each storage tank, and th...
Li, Xin; Gao, Deli; Chen, Xuyue
2017-06-08
Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min ≤ Q r ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min < Q max < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r < Q min < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.
Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.
1983-05-26
A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.
Stratified Shear Flows In Pipe Geometries
NASA Astrophysics Data System (ADS)
Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team
2015-11-01
Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.
Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.
1985-01-01
A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.
NASA Astrophysics Data System (ADS)
Hruschka, R.; Klatt, D.
2018-03-01
The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.
Bianchini, G.M.; McRae, T.G.
1983-06-23
The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.
United Formula for the Friction Factor in the Turbulent Region of Pipe Flow.
Li, Shuolin; Huai, Wenxin
2016-01-01
Friction factor is an important element in both flow simulations and river engineering. In hydraulics, studies on the friction factor in turbulent regions have been based on the concept of three flow regimes, namely, the fully smooth regime, the fully rough regime, and the transitional regime, since the establishment of the Nikuradze's chart. However, this study further demonstrates that combining the friction factor with Reynolds number yields a united formula that can scale the entire turbulent region. This formula is derived by investigating the correlation between friction in turbulent pipe flow and its influencing factors, i.e., Reynolds number and relative roughness. In the present study, the formulae of Blasius and Stricklerare modified to rearrange the implicit model of Tao. In addition, we derive a united explicit formula that can compute the friction factor in the entire turbulent regimes based on the asymptotic behavior of the improved Tao's model. Compared with the reported formulae of Nikuradze, the present formula exhibits higher computational accuracy for the original pipe experiment data of Nikuradze.
Study on pipe deflection by using numerical method
NASA Astrophysics Data System (ADS)
Husaini; Zaki Mubarak, Amir; Agustiar, Rizki
2018-05-01
Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.
Identification of sewer pipes to be cleaned for reduction of CSO pollutant load.
Nagaiwa, Akihiro; Settsu, Katsushi; Nakajima, Fumiyuki; Furumai, Hiroaki
2007-01-01
To reduce the CSO (Combined Sewer Overflow) pollutant discharge, one of the effective options is cleaning of sewer pipes before rainfall events. To maximize the efficiency, identification of pipes to be cleaned is necessary. In this study, we discussed the location of pipe deposit in dry weather in a combined sewer system using a distributed model and investigated the effect of pipe cleaning to reduce the pollutant load from the CSO. First we simulated the dry weather flow in a combined sewer system. The pipe deposit distribution in the network was estimated after 3 days of dry weather period. Several specific pipes with structural defect and upper end pipes tend to have an accumulation of deposit. Wet weather simulations were conducted with and without pipe cleaning in rainfall events with different patterns. The SS loads in CSO with and without the pipe cleaning were compared. The difference in the estimated loads was interpreted as the contribution of wash-off in the cleaned pipe. The effect of pipe cleaning on reduction of the CSO pollutant load was quantitatively evaluated (e.g. the cleaning of one specific pipe could reduce 22% of total CSO load). The CSO simulations containing pipe cleaning options revealed that identification of pipes with accumulated deposit using the distributed model is very useful and informative to evaluate the applicability of pipe cleaning option for CSO pollutant reduction.
Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota
Hayes, Timothy Scott
1999-01-01
Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage
NASA Astrophysics Data System (ADS)
Terekhov, V. I.; Pakhomov, M. A.
2011-12-01
Flow, particles dispersion and heat transfer of dilute gas-droplet turbulent flow downstream of a pipe sudden expansion have been numerically investigated for the conditions of heated dry wall. An Euler two-fluid model with additional turbulence transport equations for gas and particulate phases was employed in the study. Gas phase turbulence was modelled using the elliptic blending Reynolds stress model of Fadai-Ghotbi et al. (2008). Two-way coupling is achieved between the dispersed and carrier phases. The partial equations of Reynolds stresses and temperature fluctuations, and the turbulent heat flux equations in dispersed phase by Zaichik (1999) were applied. Fine droplets get readily entrained with the detached flow, spread throughout the whole pipe cross-section. On the contrary, large particles, due to their inertia, do not appear in the recirculation zone and are presented only in the shear layer region. The presence of fine dispersed droplets in the flow attenuates the gas phase turbulence of up 25 %. Heat transfer in the mist flow increased (more than twice in comparison with the single-phase air flow). Intensification of heat transfer is observed both in the recirculation zone and flow development region in the case of fine particles. Large particles enhanced heat transfer only in the reattachment zone. Comparison between simulated results and experimental data of Hishida et al. (1995) for mist turbulent separated flow behind a backward-facing step shows quite good agreement.
MaxEnt analysis of a water distribution network in Canberra, ACT, Australia
NASA Astrophysics Data System (ADS)
Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.
2015-01-01
A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.
Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao
2017-11-01
The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p < 0.05). The iron release was remarkably correlated to the redox potential, dissolved oxygen, pH, iron-oxidized bacteria and sulfate-reducing bacteria. The cumulative total iron release (r = 0.587, p < 0.05) and total iron release rate (r = 0.71, p < 0.022) were significantly influenced by the changes in flow velocity. In short, they tended first to increase and then to decrease with an increasing flow velocity with the threshold as approximately 40% of the critical laminar flow velocity (1.16 × 10 -3 m/s). For the pipes at the terminus of the drinking water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.
Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe
NASA Astrophysics Data System (ADS)
Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua
2018-03-01
Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Floods of June 4 and 12, 1976, at Culbertson, Montana
Johnson, M.V.
1978-01-01
Runoff from rainfall caused flooding in the town of Culbertson, Montana, on June 4 and 12, 1976. Flood damage was mostly to business and residential structures within Culberston. Two small drainage contributed the peak flows, which at one site exceeded 1,200 cubic feet per second per square mile of contributing area. Flow from the Missouri River tributary No 5 at Culbertson consisted of flow through a pipe-arch at the State Highway 16 crossing and flow that overtopped the right bank of the main channel. Maximum combined pipe-arch and bypass flow for the June 12 flood was 1,30030 cubic feet per second. Flow from Diamond Creek consisted of flow through a culvert at the U.S. Highway 2 crossing west of Culbertson and flow that overtopped a road. Maximum combined culvert and bypass flow for the June 4 flood was 1,320 cubic feet per second. Failure of small dam increased the flow volume of the flood.
Smith, Simeon L.; Titze, Ingo R.
2016-01-01
Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001
NASA Technical Reports Server (NTRS)
Brendley, K.; Chato, J. C.
1982-01-01
The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.