Higashiyama, A
1992-03-01
Three experiments investigated anisotropic perception of visual angle outdoors. In Experiment 1, scales for vertical and horizontal visual angles ranging from 20 degrees to 80 degrees were constructed with the method of angle production (in which the subject reproduced a visual angle with a protractor) and the method of distance production (in which the subject produced a visual angle by adjusting viewing distance). In Experiment 2, scales for vertical and horizontal visual angles of 5 degrees-30 degrees were constructed with the method of angle production and were compared with scales for orientation in the frontal plane. In Experiment 3, vertical and horizontal visual angles of 3 degrees-80 degrees were judged with the method of verbal estimation. The main results of the experiments were as follows: (1) The obtained angles for visual angle are described by a quadratic equation, theta' = a + b theta + c theta 2 (where theta is the visual angle; theta', the obtained angle; a, b, and c, constants). (2) The linear coefficient b is larger than unity and is steeper for vertical direction than for horizontal direction. (3) The quadratic coefficient c is generally smaller than zero and is negatively larger for vertical direction than for horizontal direction. And (4) the obtained angle for visual angle is larger than that for orientation. From these results, it was possible to predict the horizontal-vertical illusion, over-constancy of size, and the moon illusion.
Visual display angles of conventional and a remotely piloted aircraft.
Kamine, Tovy Haber; Bendrick, Gregg A
2009-04-01
Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.
Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station
NASA Technical Reports Server (NTRS)
Bendrick, Gregg A.; Kamine, Tovy Haber
2008-01-01
Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.
Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station
NASA Technical Reports Server (NTRS)
Kamine, Tovy Haber; Bendrick, Gregg A.
2008-01-01
Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement
Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H
2012-05-10
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.
Femoral neck radiography: effect of flexion on visualization.
Garry, Steven C; Jhangri, Gian S; Lambert, Robert G W
2005-06-01
To determine whether flexion improves radiographic visualization of the femoral neck when the femur is externally rotated. Five human femora, with varying neck-shaft and anteversion angles, were measured and immobilized. Degree of flexion required to bring the femoral neck horizontal was measured, varying the rotation. Next, one bone was radiographed in 16 positions, varying rotation in 15 degrees and flexion in 10 degrees increments. Radiographs were presented in randomized blinded fashion to 15 staff radiologists for scoring of femoral neck visualization. Following this, all 5 bones were radiographed in 4 positions of rotation and at 0 degree and 20 degrees flexion, and blinded randomized review of radiographs was repeated. Comparisons between angles and rotations were made using the Mann-Whitney test. The flexion angle required to bring the long axis of the femoral neck horizontal correlated directly with the degree of external rotation (p < 0.05). Visualization of the femoral neck in the extended position progressively deteriorated from 15 degrees internal rotation to 30 degrees external rotation (p < 0.01). However, when 20 degrees flexion was applied to bones in external rotation, visualization significantly improved at 15 degrees (p < 0.05) and 30 degrees (p < 0.01). Flexion of the externally rotated femur can bring the femoral neck into horizontal alignment, and a relatively small amount (20 degrees) of flexion can significantly improve radiographic visualization. This manoeuvre could be useful for radiography of the femoral neck when initial radiographs are inadequate because of external rotation of the leg.
Horizontal tuning for faces originates in high-level Fusiform Face Area.
Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars; Schiltz, Christine; Goebel, Rainer
2016-01-29
Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of the perception of verticality and horizontality with self-paced saccades.
Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A
1998-07-01
We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.
Horizontal visual search in a large field by patients with unilateral spatial neglect.
Nakatani, Ken; Notoya, Masako; Sunahara, Nobuyuki; Takahashi, Shusuke; Inoue, Katsumi
2013-06-01
In this study, we investigated the horizontal visual search ability and pattern of horizontal visual search in a large space performed by patients with unilateral spatial neglect (USN). Subjects included nine patients with right hemisphere damage caused by cerebrovascular disease showing left USN, nine patients with right hemisphere damage but no USN, and six healthy individuals with no history of brain damage who were age-matched to the groups with brain right hemisphere damage. The number of visual search tasks accomplished was recorded in the first experiment. Neck rotation angle was continuously measured during the task and quantitative data of the measurements were collected. There was a strong correlation between the number of visual search tasks accomplished and the total Behavioral Inattention Test Conventional Subtest (BITC) score in subjects with right hemisphere damage. In both USN and control groups, the head position during the visual search task showed a balanced bell-shaped distribution from the central point on the field to the left and right sides. Our results indicate that compensatory strategies, including cervical rotation, may improve visual search capability and achieve balance on the neglected side. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Castro, José J.; Pozo, Antonio M.; Rubiño, Manuel
2013-11-01
In this work we studied the color dependence with a horizontal-viewing angle and colorimetric characterization of two liquid-crystal displays (LCD) using two different backlighting: Cold Cathode Fluorescent Lamps (CCFLs) and light-emitting diodes (LEDs). The LCDs studied had identical resolution, size, and technology (TFT - thin film transistor). The colorimetric measurements were made with the spectroradiometer SpectraScan PR-650 following the procedure recommended in the European guideline EN 61747-6. For each display, we measured at the centre of the screen the chromaticity coordinates at horizontal viewing angles of 0, 20, 40, 60 and 80 degrees for the achromatic (A), red (R), green (G) and blue (B) channels. Results showed a greater color-gamut area for the display with LED backlight, compared with the CCFL backlight, showing a greater range of colors perceptible by human vision. This color-gamut area diminished with viewing angle for both displays. Higher differences between trends for viewing angles were observed in the LED-backlight, especially for the R- and G-channels, demonstrating a higher variability of the chromaticity coordinates with viewing angle. The best additivity was reached by the LED-backlight display (a lower error percentage). LED-backlight display provided better color performance of visualization.
Reviving a neglected celestial underwater polarization compass for aquatic animals.
Waterman, Talbot H
2006-02-01
Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.
Orientation of selective effects of body tilt on visually induced perception of self-motion.
Nakamura, S; Shimojo, S
1998-10-01
We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.
Effects of Retinal Eccentricity on Human Manual Control
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Joseph, T K; Kartha, C P
1982-01-01
Centring of spectacle lenses is much neglected field of ophthalmology. The prismatic effect caused by wrong centring results in a phoria on the eye muscles which in turn causes persistent eyestrain. The theory of visual axis, optical axis and angle alpha is discussed. Using new methods the visual axis and optical axis of 35 subjects were measured. The results were computed for facial asymmetry, parallax error, angle alpha and also decentration for near vision. The results show that decentration is required on account of each of these factors. Considerable correction is needed in the vertical direction, a fact much neglected nowadays; and vertical decentration results in vertical phoria which is more symptomatic than horizontal phorias. Angle Alpha was computed for each of these patients. A new devise called 'The Kerala Decentration Meter' using the pinhole method for measuring the degree of decentration from the datum centre of the frame, and capable of correcting all the factors described above, is shown with diagrams.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Flow structures around a beetle in a tethered flight
NASA Astrophysics Data System (ADS)
Lee, Boogeon; Oh, Sehyeong; Park, Hyungmin; Choi, Haecheon
2017-11-01
In the present study, through a wind-tunnel experiment, we visualize the flow in a tethered flight of a rhinoceros beetle using a smoke-wire visualization technique. Measurements are done at five side planes along the wind span while varying the body angle (angle between the horizontal and the body axis) to investigate the influence of the stroke plane angle that was observed to change depending on the flight mode such as hovering, forward and takeoff flights so on. Observing that a large attached leading-edge vortex is only found on the hindwing, it is inferred that most of the aerodynamic forces would be generated by hindwings (flexible inner wings) compared to the elytra (hard outer wings). In addition, it is observed to use unsteady lift-generating mechanisms such as clap-and-fling, wing-wing interaction and wake capture. Finally, we discuss the relation between the advance ratio and Strouhal number by adjusting free-stream velocity and the body angle (i.e., angle of wake-induced flow). Supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by ADD, Korea (UD130070ID).
Preferred viewing distance and screen angle of electronic paper displays.
Shieh, Kong-King; Lee, Der-Song
2007-09-01
This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.
Takaki, Yasuhiro; Hayashi, Yuki
2008-07-01
The narrow viewing zone angle is one of the problems associated with electronic holography. We propose a technique that enables the ratio of horizontal and vertical resolutions of a spatial light modulator (SLM) to be altered. This technique increases the horizontal resolution of a SLM several times, so that the horizontal viewing zone angle is also increased several times. A SLM illuminated by a slanted point light source array is imaged by a 4f imaging system in which a horizontal slit is located on the Fourier plane. We show that the horizontal resolution was increased four times and that the horizontal viewing zone angle was increased approximately four times.
The Effect of Gaze Angle on Visual Acuity in Infantile Nystagmus.
Dunn, Matt J; Wiggins, Debbie; Woodhouse, J Margaret; Margrain, Tom H; Harris, Christopher M; Erichsen, Jonathan T
2017-01-01
Most individuals with infantile nystagmus (IN) have an idiosyncratic gaze angle at which their nystagmus intensity is minimized. Some adopt an abnormal head posture to use this "null zone," and it has therefore long been assumed that this provides people with nystagmus with improved visual acuity (VA). However, recent studies suggest that improving the nystagmus waveform could have little, if any, influence on VA; that is, VA is fundamentally limited in IN. Here, we examined the impact of the null zone on VA. Visual acuity was measured in eight adults with IN using a psychophysical staircase procedure with reversals at three horizontal gaze angles, including the null zone. As expected, changes in gaze angle affected nystagmus amplitude, frequency, foveation duration, and variability of intercycle foveation position. Across participants, each parameter (except frequency) was significantly correlated with VA. Within any given individual, there was a small but significant improvement in VA (0.08 logMAR) at the null zone as compared with the other gaze angles tested. Despite this, no change in any of the nystagmus waveform parameters was significantly associated with changes in VA within individuals. A strong relationship between VA and nystagmus characteristics exists between individuals with IN. Although significant, the improvement in VA observed within individuals at the null zone is much smaller than might be expected from the occasionally large variations in intensity and foveation dynamics (and anecdotal patient reports of improved vision), suggesting that improvement of other aspects of visual performance may also encourage use of the null zone.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
Effects of Optical Pitch on Oculomotor Control and the Perception of Target Elevation
NASA Technical Reports Server (NTRS)
Cohen, Malcom M.; Ebenholtz, Sheldon M.; Linder, Barry J.
1995-01-01
In two experiments, we used an ISCAN infrared video system to examine the influence of a pitched visual array on gaze elevation and on judgments of visually perceived eye level. In Experiment 1, subjects attempted to direct their gaze to a relaxed or to a horizontal orientation while they were seated in a room whose walls were pitched at various angles with respect to gravity. Gaze elevation was biased in the direction in which the room was pitched. In Experiment 2, subjects looked into a small box that was pitched at various angles while they attempted simply to direct their gaze alone, or to direct their gaze and place a visual target at their apparent horizon. Both gaze elevation and target settings varied systematically with the pitch orientation of the box. Our results suggest that under these conditions, an optostatic response, of which the subject is unaware, is responsible for the changes in both gaze elevation and judgments of target elevation.
Kappa angles in different positions in patients with myopia during LASIK
Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei
2016-01-01
AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734
NASA Technical Reports Server (NTRS)
Yang, T. L.; Dixon, M. W.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1999-01-01
In six experiments we demonstrate that the vertical-horizontal illusion that is evoked when viewing photographs and line drawings is relatively small, whereas the magnitude of this illusion when large objects are viewed is at least twice as great. Furthermore, we show that the illusion is due more to vertical overestimation than horizontal underestimation. The lack of a difference in vertical overestimation between pictures and line drawings suggests that vertical overestimation in pictures depends solely on the perceived physical size of the projection on the picture surface, rather than on what is apparent about an object's represented size. The vertical-horizontal illusion is influenced by perceived physical size. It is greater when viewing large objects than small pictures of these same objects, even when visual angles are equated.
Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements
NASA Technical Reports Server (NTRS)
Angelaki, Dora E.; Dickman, J. David
2003-01-01
Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.
Foster, D H; Westland, S
1998-01-01
Visual search for an edge or line element differing in orientation from a background of other edge or line elements can be performed rapidly and effortlessly. In this study, based on psychophysical measurements with ten human observers, threshold values of the angle between a target and background line elements were obtained as functions of background-element orientation, in brief masked displays. A repeated-loess analysis of the threshold functions suggested the existence of several groups of orientation-selective mechanisms contributing to rapid orientated-line detection; specifically, coarse, intermediate and fine mechanisms with preferred orientations spaced at angles of approximately 90 degrees, 35 degrees, and 10 degrees-25 degrees, respectively. The preferred orientations of coarse and some intermediate mechanisms coincided with the vertical or horizontal of the frontoparallel plane, but the preferred orientations of fine mechanisms varied randomly from observer to observer, possibly reflecting individual variations in neuronal sampling characteristics. PMID:9753784
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Saccadic eye movement during spaceflight
NASA Technical Reports Server (NTRS)
Uri, John J.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.; Thornton, William E.
1989-01-01
Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed.
Receptive fields for smooth pursuit eye movements and motion perception.
Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R
2010-12-01
Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Breslin, Casey M.; Garner, John C.; Rudisill, Mary E.; Parish, Loraine E.; St. Onge, Paul M.; Campbell, Brian J.; Weimar, Wendi H.
2009-01-01
This study determines the effects of three baseballs and softballs of different masses (0.113 kg, 0.198 kg, 0.340 kg) and regulation diameters (22.86 and 30.48 cm, respectively) on the glenohumeral horizontal abduction angle of an overarm throw performed by young children who were novice throwers. Glenohumeral horizontal abduction angle was…
Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D
2017-07-01
The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.
Kinematics of Visually-Guided Eye Movements
Hess, Bernhard J. M.; Thomassen, Jakob S.
2014-01-01
One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.
2000-01-01
The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.
Misslisch, H; Hess, B J M
2002-11-01
This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.
Effect of structured visual environments on apparent eye level.
Stoper, A E; Cohen, M M
1989-11-01
Each of 12 subjects set a binocularly viewed target to apparent eye level; the target was projected on the rear wall of an open box, the floor of which was horizontal or pitched up and down at angles of 7.5 degrees and 15 degrees. Settings of the target were systematically biased by 60% of the pitch angle when the interior of the box was illuminated, but by only 5% when the interior of the box was darkened. Within-subjects variability of the settings was less under illuminated viewing conditions than in the dark, but was independent of box pitch angle. In a second experiment, 11 subjects were tested with an illuminated pitched box, yielding biases of 53% and 49% for binocular and monocular viewing conditions, respectively. The results are discussed in terms of individual and interactive effects of optical, gravitational, and extraretinal eye-position information in determining judgements of eye level.
Hologram generation by horizontal scanning of a high-speed spatial light modulator.
Takaki, Yasuhiro; Okada, Naoya
2009-06-10
In order to increase the image size and the viewing zone angle of a hologram, a high-speed spatial light modulator (SLM) is imaged as a vertically long image by an anamorphic imaging system, and this image is scanned horizontally by a galvano scanner. The reduction in horizontal pixel pitch of the SLM provides a wide viewing zone angle. The increased image height and horizontal scanning increased the image size. We demonstrated the generation of a hologram having a 15 degrees horizontal viewing zone angle and an image size of 3.4 inches with a frame rate of 60 Hz using a digital micromirror device with a frame rate of 13.333 kHz as a high-speed SLM.
Valera, Màrius; Ibáñez, Natalia; Sancho, Rogelio; Llauger, Jaume; Gich, Ignasi
2018-01-01
Acetabular overcoverage promotes hip osteoarthritis causing a pincer-type femoroacetabular impingement. Acetabular coverage in the horizontal plane is usually poorly defined in imaging studies and may be misdiagnosed. The goal of this study was to analyze the role of acetabular overcoverage measured in the frontal plane and in the horizontal plane by CT scan and to determine its relationship with other anatomic features in the onset of hip arthritis in young adults. We compared prospectively CT scans from two groups of adults of 55 years or younger: the patient group (n = 30) consisted of subjects with diagnosis of early hip arthritis (Tönnis Grade I or II) and the control group (n = 31) consisted of subjects with healthy hips. Two independent observers analyzed centre edge angle (CEA), acetabular anteversion angle (AAA), anterior sector acetabular angle (AASA), posterior sector acetabular angle (PASA), horizontal acetabular sector angle (HASA), femoral anteversion angle (FAVA), alpha angle (AA), and Mckibbin Instability Index (MI). Angles measuring the acetabular coverage on the horizontal plane (AASA, PASA and, HASA) were significantly higher in the patient group (p < 0.001, p = 0.03 and p < 0.001, respectively). Pearson's correlation coefficient showed a positive correlation between CEA and HASA in patients (r = 0.628) and in controls (r = 0.660). However, a high CEA (> 35º) was strongly associated with a high HASA (> 160º) in patients (p = 0.024) but not in controls (p = 0.21), suggesting that pincer should be simultaneously present in the horizontal and frontal plane to trigger hip degeneration. No significant association was detected between a high alpha angle (> 60º) and a high CEA (> 35º suggesting that a mixed pincer-cam aetiology was not prevalent in our series. Multivariate regression analysis showed the most significant predictors of degenerative joint disease were HASA (p = 0.008), AA (p = 0.048) and ASAA (p = 0.004). Acetabular overcoverage in the horizontal plane plays an important role in the onset of early hip arthritis. Considering that this condition is usually underdiagnosed, we suggest the anterior sector acetabular angle, the posterior sector acetabular angle, and the horizontal acetabular sector angles be routinely included in decision-making algorithms in hip conservative surgery to better define hips-at-risk of developing early hip osteoarthritis.
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
The use of visual cues in gravity judgements on parabolic motion.
Jörges, Björn; Hagenfeld, Lena; López-Moliner, Joan
2018-06-21
Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s 2 . This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone. Copyright © 2018. Published by Elsevier Ltd.
Relationships between clubshaft motions and clubface orientation during the golf swing.
Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi
2017-09-01
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.
Responses of Cells in the Midbrain Near-Response Area in Monkeys with Strabismus
Das, Vallabh E.
2012-01-01
Purpose. To investigate whether neuronal activity within the supraoculomotor area (SOA—monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus. Methods. Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing. Results. Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals. Conclusions. SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different. PMID:22562519
Experimental Study of Structure of Low Density Jet Impinging on Tilt Plate by LIF and PSP
NASA Astrophysics Data System (ADS)
Fujimoto, Tetsuo; Sato, Kimihiko; Naniwa, Shuji; Inoue, Tomoyuki; Nakashima, Kouji
2000-07-01
The structure of low density jets impinging on a tilt plate is studied by hybrid use of LIF and PSP. The jet through an orifice flows into low pressure chamber of 0.12 Torr and impinges on to the tilt plate with angle from jet axis 45 or 60 or 90. A horizontal plane including the jet axis is visualized by LIF of seeded Iodine molecule, scanning a laser beam along the jet axis. On the other hand, the pressure distribution on the tilt plate is visualized by PSP. In comparing the results of the two methods, the shock wave system is analyzed. Deformation of the Mach disk and the barrel shock are confirmed.
Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)
NASA Astrophysics Data System (ADS)
Alamdar, K.; Ansari, A. H.; Ghorbani, A.
2009-04-01
Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which new ASTA filter determined Andezite boundaries from surrounded more accurately than other filters. Keywords: Horizontal derivative, Vertical derivative, Tilt angle, Analytic signal, ASTA, Sar-Cheshme.
Angle Control on the Optima HE/XE Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Edward; Satoh, Shu
2008-11-03
The Optima HE/XE is the latest generation of high energy ion implanter from Axcelis, combining proven RF linear accelerator technology with new single wafer processing. The architecture of the implanter is designed to provide a parallel beam at the wafer plane over the full range of implant energies and beam currents. One of the advantages of this system is the ability to control both the horizontal and vertical implant angles for each implant. Included in the design is the ability to perform in situ measurements of the horizontal and vertical angles of the beam in real time. The method ofmore » the horizontal and vertical angle measurements is described in this paper.« less
Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography.
Perera, Shamira A; Ho, Ching Lin; Aung, Tin; Baskaran, Mani; Ho, Henrietta; Tun, Tin A; Lee, Tian Loon; Kumar, Rajesh S
2012-04-02
To determine the ability of the RTVue spectral domain optical coherence tomography (SDOCT) to image the anterior chamber angle (ACA). Consecutive subjects, recruited from glaucoma clinics, prospectively underwent ophthalmic evaluation including gonioscopy by an ophthalmologist and anterior chamber imaging with SDOCT, adapted with a corneal lens adapter (cornea anterior module-low magnification [CAM-L]) and anterior segment OCT (ASOCT), both performed by a technician. Two different ophthalmologists, masked to gonioscopy findings, assessed visualization of the scleral spur (SS), Schwalbe's line (SL), and trabecular meshwork (TM) by the two modalities. The ability to detect a closed angle was compared with gonioscopy. The average age (SD) of the 81 subjects enrolled was 64.1 (11.4) years; the majority were Chinese (91.4%) and female (61.7%). SDOCT images revealed the SS in 26.9% (56/324) of quadrants and the SL in 44.1% (143/324) of quadrants; in ASOCT images, the SS could be visualized in 69.1% (224/324) of quadrants (P < 0.0001), but the SL was undetectable. The TM was detected equally well (17.3%, P < 0.92) using either device. The angle status was gradable in only 41.7% images with SDOCT, compared with 71.3% of ASOCT images (P < 0.0001). ACA was classified as closed in 19.3% of quadrants (26/135) with SDOCT images and in 44.2% (102/231) with ASOCT images compared with 37.7% (122/324) on gonioscopy. When analyzing the horizontal quadrants only, both modalities agreed well with gonioscopy, 0.75 and 0.74, respectively (AC1 statistics). The RTVue SDOCT allowed visualization of SL, TM, and SS. However, these landmarks were not detected in a large percentage of images.
New three-dimensional visualization system based on angular image differentiation
NASA Astrophysics Data System (ADS)
Montes, Juan D.; Campoy, Pascual
1995-03-01
This paper presents a new auto-stereoscopic system capable of reproducing static or moving 3D images by projection with horizontal parallax or with horizontal and vertical parallaxes. The working principle is based on the angular differentiation of the images which are projected onto the back side of the new patented screen. The most important features of this new system are: (1) Images can be seen by naked eye, without the use of glasses or any other aid. (2) The 3D view angle is not restricted by the angle of the optics making up the screen. (3) Fine tuning is not necessary, independently of the parallax and of the size of the 3D view angle. (4) Coherent light is not necessary neither in capturing the image nor in its reproduction, but standard cameras and projectors. (5) Since the images are projected, the size and depth of the reproduced scene is unrestricted. (6) Manufacturing cost is not excessive, due to the use of optics of large focal length, to the lack of fine tuning and to the use of the same screen several reproduction systems. (7) This technology can be used for any projection system: slides, movies, TV cannons,... A first prototype of static images has been developed and tested with a 3D view angle of 90 degree(s) and a photographic resolution over a planar screen of 900 mm, of diagonal length. Present developments have success on a dramatic size reduction of the projecting system and of its cost. Simultaneous tasks have been carried out on the development of a prototype of 3D moving images.
Learning to Read Vertical Text in Peripheral Vision
Subramanian, Ahalya; Legge, Gordon E.; Wagoner, Gunther Harrison; Yu, Deyue
2014-01-01
Purpose English–language text is almost always written horizontally. Text can be formatted to run vertically, but this is seldom used. Several studies have found that horizontal text can be read faster than vertical text in the central visual field. No studies have investigated the peripheral visual field. Studies have also concluded that training can improve reading speed in the peripheral visual field for horizontal text. We aimed to establish whether the horizontal vertical differences are maintained and if training can improve vertical reading in the peripheral visual field. Methods Eight normally sighted young adults participated in the first study. Rapid Serial Visual Presentation (RSVP) reading speed was measured for horizontal and vertical text in the central visual field and at 10° eccentricity in the upper or lower (horizontal text), and right or left (vertical text) visual fields. Twenty-one normally sighted young adults split equally between 2 training and 1 control group participated in the second study. Training consisted of RSVP reading either using vertical text in the left visual field or horizontal text in the inferior visual field. Subjects trained daily over 4 days. Pre and post horizontal and vertical RSVP reading speeds were carried out for all groups. For the training groups these measurements were repeated 1 week and 1 month post training. Results Prior to training, RSVP reading speeds were faster for horizontal text in the central and peripheral visual fields when compared to vertical text. Training vertical reading improved vertical reading speeds by an average factor of 2.8. There was partial transfer of training to the opposite (right) hemifield. The training effects were retained for up to a month. Conclusions RSVP training can improve RSVP vertical text reading in peripheral vision. These findings may have implications for patients with macular degeneration or hemianopic field loss. PMID:25062130
Seidensticker, Florian; Reznicek, Lukas; Mann, Thomas; Hübert, Irene; Kampik, Anselm; Ulbig, Michael; Hirneiss, Christoph; Neubauer, Aljoscha S; Kernt, Marcus
2014-01-01
Purpose To assess β-zone peripapillary atrophy (β-PPA) using spectral domain optical coherence tomography (SD-OCT), scanning laser ophthalmoscopy (SLO), and fundus auto-fluorescence (FAF) imaging in patients with primary open-angle glaucoma with advanced glaucomatous visual field defects. Methods A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma were included in this study. All study participants underwent a full ophthalmic examination followed by SD-OCT, wide-field SLO, and FAF imaging of the optic nerve head and the peripapillary region. Results Eighty-four glaucomatous eyes were included in our prospective study. Correlation analyses for horizontally and vertically obtained β-PPA for all three imaging modalities (color SLO, FAF, and SD-OCT) revealed highest correlations between FAF and color SLO (Pearson correlation coefficient: 0.904 [P<0.001] for horizontal β-PPA and 0.786 [P<0.001] for vertical β-PPA). Bland–Altman plotting revealed highest agreements between color SLO and FAF, with −2.1 pixels ±1.96 standard deviation (SD) for horizontal β-PPA, SD: 10.5 pixels and 2.4 pixels ±1.96 SD for vertical β-PPA. Conclusion β-PPA can be assessed using en-face SLO and cross-sectional SD-OCT imaging. Correlation analyses revealed highest correlations between color SLO and FAF imaging, while correlations between SLO and SD-OCT were weak. A more precise structural definition of β-PPA is needed. PMID:25061270
Mechanical krill models for studying coordinated swimming
NASA Astrophysics Data System (ADS)
Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2016-11-01
The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.
Three-dimensional ocular kinematics underlying binocular single vision
Misslisch, H.
2016-01-01
We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F
2018-01-01
The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.
NASA Technical Reports Server (NTRS)
Hieser, Gerald; Reid, Charles F.
1954-01-01
The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
The influence of natural head position on the assessment of facial morphology.
Woźniak, Krzysztof; Piątkowska, Dagmara; Lipski, Mariusz
2012-01-01
Skeletal relationships play a major part in determining occlusal relationships, and that is why they also affect orthodontic treatment. Facial morphology can be assessed by clinical or radiological methods. Soft tissue analysis of the face is accepted as an integral part of orthodontic diagnosis and treatment planning. The aim of the study was to determine the impact of the inclination between the Frankfort horizontal(FH) and the extracranial horizontal (HOR) lines with the head in the natural position (NHP) on the assessment of facial morphology. Lateral facial photographs of 200 young adult males and females were taken with the head in the natural head position and then analyzed. Each image was rotated in order to position the Frankfort line parallel to the extracranial horizontal line. Twelve landmarks on each of the 400 profile photographs (200 originals,200 processed) were identified, and nine linear measurements and three angular measurements were assessed. The inclination angle between the extracranial horizontal line and the Frankfort horizontal line in the NHP varied from -7.1° to 5.6° (mean -1.20°). Significant correlations were found between the inclination angle FH/HOR and both sagittal and vertical morphology predictors such as the sections N-Sn (r = 0.3737, p = 0.0001), Sn-Gn(r = 0.3231, p = 0.0000), and both facial angles (r = 0.9774, p = 0.0000) and proflle angles (r = 0.9654, p = 0.0000). A comparison of soft tissue measurements determined with reference to the Frankfort horizontal and extracranial horizontal lines with the head in the natural position reveals significant differences
Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.
Schmitt, M; Grub, J; Heib, F
2015-06-01
Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Free-fall dynamics of a pair of rigidly linked disks
NASA Astrophysics Data System (ADS)
Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum
2018-03-01
We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.
Fabrication of bismuth superhydrophobic surface on zinc substrate
NASA Astrophysics Data System (ADS)
Yu, Tianlong; Lu, Shixiang; Xu, Wenguo; He, Ge
2018-06-01
The dendritic Bi/Bi2O3/ZnO superhydrophobic surface (SHPS) was facilely obtained on zinc substrate via etching in 0.5 mol L-1 HCl solution for 2 min, immersing in 2 mmol L-1 Bi(NO3)3/0.1 mol L-1 HNO3 solution for 2.5 min and annealing treatment at 180 °C for 2 h. The wetting property results demonstrated that the superhydrophobic sample had excellent water-repellency with a static water contact angle of 160° and sliding angle of 0° under the optimum condition, which can be visually confirmed by the impacting droplet could rebound back immediately and roll off the horizontally placed sample. Moreover, it exhibited remarkable self-cleaning ability, buoyancy, desired stability in long-term storage in air, corrosion resistance in 3.5 wt% NaCl solution, ice-over delay at - 16 °C and durability in lab-simulated abrasion test.
Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn
2017-02-01
This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.
A novel method of measuring spatial rotation angle using MEMS tilt sensors
NASA Astrophysics Data System (ADS)
Cao, Jian'an; Zhu, Xin; Wu, Hao; Zhang, Leping
2017-10-01
This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.
Perception of self-tilt in a true and illusory vertical plane
NASA Technical Reports Server (NTRS)
Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)
2002-01-01
A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.
B-1 AFT Nacelle Flow Visualization Study
NASA Technical Reports Server (NTRS)
Celniker, Robert
1975-01-01
A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.
The role of edges in the selection of a jump target in Mantis religiosa.
Hyden, Karin; Kral, Karl
2005-09-30
Before jumping to a landing object, praying mantids determine the distance, using information obtained from retinal image motion resulting from horizontal peering movements. The present study investigates the peering-jump behaviour of Mantis religiosa larvae with regard to jump targets differing in shape and size. The experimental animals were presented with square, triangular and round target objects with visual extensions of 20 degrees and 40 degrees. The cardboard objects, presented against a uniform white background, were solid black or shaded with a gradation from white to black. It was found that larger objects were preferred to smaller ones as jump targets, and that the square and triangle were preferred to the round disk. When two objects were presented, no preference was exhibited between square and triangular objects. However, when three objects were presented, the square was preferred. For targets with a visual angle of 40 degrees, the amplitude and velocity of the horizontal peering movements were greater for the round disk than for the square or triangle. This amplification of the peering movements suggests that weaker motion signals are generated in the case of curved edges. This may help to account for the preference for the square and triangle as jump targets.
Emam, T A; Hanna, G; Cuschieri, A
2002-02-01
Laparoscopic suturing is technically a demanding skill in laparoscopic surgery. Ergonomic experimental studies provide objective information on the important factors and variables that govern optimal endoscopic suturing. Our objective was to determine the optimum physical alignment, visual display, and direction of intracorporeal laparoscopic bowel suturing using infrared motion analysis and telemetric electromyography (EMG) systems. Ten surgeons participated in the study; each sutured 50-mm porcine small bowel enterotomies toward and away from the surgeon in the vertical and horizontal bowel plane with either isoplanar (image display corresponds with actual lie of the bowel) or nonisoplanar (bowel displayed horizontally but mounted vertically in the trainer and vice versa) display. The end points were the placement error score, execution time, leakage pressure, motion analysis, and telemetric EMG parameters of the surgeon's dominant upper limb. Suturing was demonstrably easier in the vertical than in the horizontal plane, resulting in a better task quality (placement error score, p < 0.0001; leakage pressure, p < 0.005) and shorter execution time (p < 0.05). Nonisoplanar display of the surgical anatomy degrades performance in terms of both task efficiency and task quality. On motion analysis, a wider angle of excursion and lower angular velocity were observed during the vertical suturing with isoplaner display. Compared to horizontal suturing, supination at the wrist was significantly greater during vertical than horizontal suturing (p < 0.05). Within each category (vertical vs horizontal suturing), the direction of suturing (toward/away from the surgeon) did not influence the extent of pronation/ supination at the wrist. In line with the degraded performance, significantly more muscle work was expended during horizontal suturing. This affected the forearm flexors (p < 0.05), arm flexors and extensors (p < 0.005 and p < 0.05, respectively), and deltoid muscles (p < 0.005) and was accompanied by significantly more fatigue in the related muscles. Small bowel enterotomies sutured toward the surgeon in both the vertical and the horizontal planes exhibited less placement error score than when sutured away from the surgeon, with no significant difference in the motion analysis and EMG parameters. Optimal laparoscopic suturing (better task quality and reduced execution time) is achieved with vertical suturing toward the surgeon with isoplanar monitor display of the operative field. The poorer task performance observed during horizontal suturing is accompanied by more muscle work and fatigue, and it is not improved by monitor display of the enterotomy in the vertical plane.
Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon
2013-01-01
There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.
Accommodation measurements of horizontally scanning holographic display.
Takaki, Yasuhiro; Yokouchi, Masahito
2012-02-13
Eye accommodation is considered to function properly for three-dimensional (3D) images generated by holography. We developed a horizontally scanning holographic display technique that enlarges both the screen size and viewing zone angle. A 3D image generated by this technique can be easily seen by both eyes. In this study, we measured the accommodation responses to a 3D image generated by the horizontally scanning holographic display technique that has a horizontal viewing zone angle of 14.6° and screen size of 4.3 in. We found that the accommodation responses to a 3D image displayed within 400 mm from the display screen were similar to those of a real object.
The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application
NASA Astrophysics Data System (ADS)
Prasetyo, H.; Budiana, EP; Tjahjana, DDDP; Hadi, S.
2018-02-01
The design of Horizontal Axis Water Turbine in pico hydro power plants involves many parameters. To simplify that, usually using computer simulation is applied. This research performs simulation process variation on turbine blade number, turbine blade curvature angle, turbine bucket angle and blocking system tilt angle. Those four variations were combined in order to obtain the best design of turbine. The study used Flow Simulation Solidworks application, and obtain data on turbine speed, pressure, force, and torque. However, this research focused on turbine torque value. The best design of turbine was obtained in the turbine with 6 blades, blade curvature angle of 65° and bucket angle of 10°, and blocking system tilt angle of 40°. In the best turbine, the produced torque value was 8.464 Nm.
Chen, Philip Kuo-Ting; Por, Yong-Chen; Liou, Eric Jein-Wein; Chang, Frank Chun-Shin
2015-05-01
Le Fort I maxillary distraction with the rigid external distraction (RED) device is performed to correct severe midface retrusion in cleft patients, but it may adversely affect velopharyngeal function. This study aims to investigate the angular changes in the levator veli palatini (LVP) and its influence on velopharyngeal function after maxillary distraction using 3-dimensional computed tomography (3D CT) scan volume rendered images. This was a retrospective study of 12 patients. Group 1 had no velopharyngeal function deterioration and group 2 had velopharyngeal function deterioration. Preoperative and 1 year postoperative CT scans were analyzed with Mimics v10 software. Segmentation of the LVP and the nasopharyngeal airway was performed and volumetric images were obtained. Six measurements were made: (1) the angle between the levator plane and the Frankfort horizontal, (2) the angle between the levator plane and the soft palate plane, (3) the angle between the 2 LVP muscles, (4) the pharyngeal depth, and (5, 6) the movement of the inferior pharyngeal point with respect to the horizontal and vertical planes. The independent samples t test, Mann-Whitney test, and paired t tests were used for statistical analyses (P < 0.05). Group 2 had statistically significant reduction in the angle between the levator plane and Frankfort horizontal as well as the soft palate plane. Group 1 had a statistically significant increase in the pharyngeal depth and movement of the inferior pharyngeal point with respect to the horizontal plane. A decrease in the angle between the levator plane and the Frankfort horizontal or the soft palate plane was associated with velopharyngeal function deterioration.
Zhao, Yuan; Chen, Taisheng; Wang, Wei; Xu, Kaixu; Wen, Chao; Liu, Qiang; Han, Xi; Li, Shanshan; Li, Xiaojie; Lin, Peng
2016-05-01
To discuss the characteristics of subjective visual gravity (subjective visual vertical/horizontal, SVV/SVH) and assess its clinical application for peripheral unilateral vestibular compensation. 69 cases of acute peripheral unilateral vestibular dysfunction patients (case group) accepted SVV/SVH, spontaneous nystagmus (SN), caloric test (CT) and other vestibular function tests. 49 healthy people (control group) accepted SVV/SVH only. SVV/SVH, SN and unilateral weakness (UW) were selected as for the observation indicators. The correlations between SVV/SVH, SN, UW and courses were investigated respectively, as well as the characteristic of SVV/SVH, SN in period of vestibular compensation. Among case group SVV, SVH positive in 42 patients(60.9%) and 44 patients(63.8%), the absolute values of the skew angle were in the range between 2.1°-20.0°, 2.1°-22.2°. Skew angles of SVV/SVH in control were in the range between -1.5°-2.0° and -2.0°-1.6°, and had no statistical significance with case group(t=5.336 and 5.864, P<0.05). SN-positive 28 cases (40.6%), the range of intensities at 2.4°-17.1°; UW-positive 50 cases (72.5%). In case group, positive correlation between SVV and SVH(r=0.948, P=0.00), negatively correlated between SVV/SVH and SN respectively(r values were -0.720, -0.733, P values were 0.00), no correlation between the skew angle of SVV/SVH, strength of SN and UW value(r values were 0.191, 0.189, and 0.179, P>0.05), there was no correlation between the absolute value of SVV, SVH, SN, UW with the duration (rs values were -0.075, -0.065, -0.212, and 0.126, P>0.05). Subjective visual gravity can be used not only to assess the range of unilateral peripheral vestibular dysfunction, but also help assess the static compensatory of otolithic, guidance and assessment of vestibular rehabilitation.
When It's Not Better to Throw at an Angle
ERIC Educational Resources Information Center
Day, Lawrence
2008-01-01
For the case of objects thrown from an elevated position, students tend to believe an object thrown at an upward angle will always land farther away than one thrown horizontally at the same speed. That this is not always the case comes as a great surprise to many. By analysing the situation of a horizontally-thrown object outdistancing one thrown…
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
NASA Technical Reports Server (NTRS)
Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar
2014-01-01
When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder, to include the torso, knees, ankle, elbows, wrists and neck. Part of this update included adding a representation of 'roll' about an axis, for upper arm and lower leg rotations. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. This visualization method will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development.
Mapping multisensory parietal face and body areas in humans.
Huang, Ruey-Song; Chen, Ching-fu; Tran, Alyssa T; Holstein, Katie L; Sereno, Martin I
2012-10-30
Detection and avoidance of impending obstacles is crucial to preventing head and body injuries in daily life. To safely avoid obstacles, locations of objects approaching the body surface are usually detected via the visual system and then used by the motor system to guide defensive movements. Mediating between visual input and motor output, the posterior parietal cortex plays an important role in integrating multisensory information in peripersonal space. We used functional MRI to map parietal areas that see and feel multisensory stimuli near or on the face and body. Tactile experiments using full-body air-puff stimulation suits revealed somatotopic areas of the face and multiple body parts forming a higher-level homunculus in the superior posterior parietal cortex. Visual experiments using wide-field looming stimuli revealed retinotopic maps that overlap with the parietal face and body areas in the postcentral sulcus at the most anterior border of the dorsal visual pathway. Starting at the parietal face area and moving medially and posteriorly into the lower-body areas, the median of visual polar-angle representations in these somatotopic areas gradually shifts from near the horizontal meridian into the lower visual field. These results suggest the parietal face and body areas fuse multisensory information in peripersonal space to guard an individual from head to toe.
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Perceptual Visual Distortions in Adult Amblyopia and Their Relationship to Clinical Features
Piano, Marianne E. F.; Bex, Peter J.; Simmers, Anita J.
2015-01-01
Purpose Develop a paradigm to map binocular perceptual visual distortions in adult amblyopes and visually normal controls, measure their stability over time, and determine the relationship between strength of binocular single vision and distortion magnitude. Methods Perceptual visual distortions were measured in 24 strabismic, anisometropic, or microtropic amblyopes (interocular acuity difference ≥ 0.200 logMAR or history of amblyopia treatment) and 10 controls (mean age 27.13 ± 10.20 years). The task was mouse-based target alignment on a stereoscopic liquid crystal display monitor, measured binocularly five times during viewing dichoptically through active shutter glasses, amblyopic eye viewing cross-hairs, fellow eye viewing single target dots (16 locations within central 5°), and five times nondichoptically, with all stimuli visible to either eye. Measurements were repeated over time (1 week, 1 month) in eight amblyopic subjects, evaluating test–retest reliability. Measurements were also correlated against logMAR visual acuity, horizontal prism motor fusion range, Frisby/Preschool Randot stereoacuity, and heterophoria/heterotropia prism cover test measurement. Results Sixty-seven percent (16/24) of amblyopes had significant perceptual visual distortions under dichoptic viewing conditions compared to nondichoptic viewing conditions and dichoptic control group performance. Distortions correlated with the strength of motor fusion (r = −0.417, P = 0.043) and log stereoacuity (r = 0.492, P = 0.015), as well as near angle of heterotropic/heterophoric deviation (r = 0.740, P < 0.001), and, marginally, amblyopia depth (r = 0.405, P = 0.049). Global distortion index (GDI, mean displacement) remained, overall, consistent over time (median change in GDI between baseline and 1 week = −0.03°, 1 month = −0.08°; x-axis Z = 4.4256, P < 0.001; y-axis Z = 5.0547, P < 0.001). Conclusions Perceptual visual distortions are stable over time and associated with poorer binocular function, greater amblyopia depth, and larger angles of ocular deviation. Assessment of distortions may be relevant for recent perceptual learning paradigms specifically targeting binocular vision. PMID:26284559
Burka, Jenna M; Bower, Kraig S; Cute, David L; Stutzman, Richard D; Subramanian, Prem S; Rabin, Jeff C
2005-04-01
To compare two methods of limbal marking used during laser refractive surgery for myopic astigmatism. Retrospective chart review. Forty-two eyes of 42 patients who underwent photorefractive keratectomy (PRK) or laser-assisted in-situ keratomileusis (LASIK) for myopic astigmatism were marked preoperatively to identify the horizontal axis. In 18 eyes, marks were placed at the slit lamp (SL) with the slit beam set at 180 degrees as a reference. In 24 eyes, marks were placed in the laser room (LR) immediately before reclining under the laser. All treatments were performed with the Alcon LADARVision excimer laser system. Vector analysis of postoperative cylinder and reduction in cylinder and uncorrected and best-corrected visual acuity were evaluated for both groups. The mean postoperative magnitude of error was -0.19 +/- 0.44 diopters for the LR group and -0.09 +/- 0.42 diopters for the SL group (P = .439, NS). Both groups had a mean angle of error indicating an overall counterclockwise rotation of axis with an angle of error of 6.3 +/- 8.7 degrees for the LR group and 8.0 +/- 10.2 degrees for the SL group (P = .562, NS). We found no significant difference in outcomes with an overall trend toward undercorrection of cylinder in both groups, leaving room for improvement after refractive surgery for myopic astigmatism.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1958-01-01
An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with Mach number of any of the configurations investigated.
Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation
NASA Astrophysics Data System (ADS)
Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul
2018-03-01
The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
One leg lateral jumps - a new test for team players evaluation.
Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E
2013-10-01
We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".
Thumb rule of visual angle: a new confirmation.
Groot, C; Ortega, F; Beltran, F S
1994-02-01
The classical thumb rule of visual angle was reexamined. Hence, the visual angle was measured as a function of a thumb's width and the distance between eye and thumb. The measurement of a thumb's width when held at arm's length was taken on 67 second-year students of psychology. The visual angle was about 2 degrees as R. P. O'Shea confirmed in 1991. Also, we confirmed a linear relationship between the size of a thumb's width at arm's length and the visual angle.
Dorsal light response and changes of its responses under varying acceleration conditions
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takabayashi, A.; Takagi, S.; von Baumgarten, R.; Wetzig, J.
In order to improve our understanding about functions of the gravity sensors, we have conducted four experiments in goldfish: 1) To define the effect of visual information influx on the static labyrinthine response, the dorsal light response (DLR) which had been proposed by von Holst as a model for postural adjustment in fish was reexamined with a newly designed, rotatory illumination device. The fish responded to illumination from the upper half of the visual field and a narrow range around 180 degrees of the lower half visual field. The maximal tilting angle of normal fish was about 40 degrees under horizontal illumination. 2) Under the changes of the gravito-inertial force level produced by a linear sled, the threshold of the gravity sensors was determined from postural adjustment responses. 3) Under hypogravic conditions during the parabolic flight of an airplane, the light-dependent behavior was investigated in intact and labyrinthectomized goldfish. 4) As one of the most likely candidates of the neural centers for the DLR, the valvula cerebelli, which receives its visual information not through the optic tectum but through the pretectal areas, is confirmed by the brain lesion experiments.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1959-01-01
Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.
Characteristics of Upper Quadrant Posture of Young Women with Temporomandibular Disorders
Uritani, Daisuke; Kawakami, Tetsuji; Inoue, Tomohiro; Kirita, Tadaaki
2014-01-01
[Purpose] This study aimed to investigate the characteristics of upper quadrant posture of young women with temporomandibular disorders. [Subjects] The participants were 19 female patients with temporomandibular disorders (patient group: mean age, 30.1 years) and 14 controls (control group: mean age, 24.6 years). [Methods] Outcome measures were the neck inclination angle (formed by a line connecting C7 and the ear tragus with a horizontal line), the angle of the shoulder (formed by a line connecting C7 and the acromial angle with a horizontal line), the cranial rotation angle (formed by a line connecting the ear tragus and the corner of the eye with a horizontal line), and the neck-length/shoulder-width ratio [the ratio of the neck length (from C7 to the tragus) to the width of the shoulder between the acromial angle]. The maximum range of mouth opening was measured using a scale. [Results] The neck inclination angle and maximum range of mouth opening were significantly smaller in the patient group than in the control group. No significant differences were observed in the other outcome measures between the two groups. [Conclusion] Temporomandibular disorders with limited mouth opening in young females are associated with the head position relative to the trunk. PMID:25276038
Superficial Fascia (SF) in the Cheek and Parotid Area: Histology and Magnetic Resonance Image (MRI).
Hwang, Kun; Kim, Hun; Kim, Dae Joong; Kim, Yeo Ju; Kang, Young Hye
2016-08-01
The aim of this study is to compare the superficial fascia (SF) in the cheek and parotid areas histologically and through MRI. An in vitro study included a histological report and an MRI of the cheek of two Korean adult cadavers. The in vivo study included 100 MRI images and three axial image cuts (mandibular condyle, notch, and half the distance between the top of the condyle and the angle). Four angles, one length, and four thicknesses were measured and compared. The MRI results were in concord with the gross specimen or histology. The SF consisted of multilayered horizontal and vertical fibrous connective tissues at all three levels in both the histology and MRI. In the cheek, both histology and MRI showed horizontal fibrous connective tissues which were connected with the zygomaticus major, visualized as a continuous membrane (membranous layer, MSF). MSF divided the SF into the superficial fatty layer (SFS) and the deep fatty layer. The thickness of the SF depended upon the thickness of the SFS since the thickness of the MSF was very similar irrespective of the three levels. The thickness of the SFS was thicker in females than in males. At the condyle level, the AS-PS angle (AP line-the most posterior superficial fascia angle) and AS-PS length increased significantly (p = 0.001, y = 0.15x + 16.19, and p < 0.001, y = 0.33x + 14.68, respectively). We hope the information we have gathered could be useful to provide subcutaneous dissection or sub-SMAS dissection in facelift surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Tucker, Thomas R; Katz, Lawrence C
2003-01-01
To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.
Lee, Jung-hoon; Yoo, Won-gyu
2012-11-01
Kinesio Taping (KT) is a therapeutic method used by physical therapists and athletic trainers in combination with other treatment techniques for various musculoskeletal and neuromuscular problems. However, no research has evaluated the effect of KT in patients with low back pain (LBP). The purpose of this case was to describe the application of posterior pelvic tilt taping (PPTT) with Kinesio tape as a treatment for chronic LBP and to reduce the anterior pelvic tilt angle. Case report. The patien was a 20-year-old female amateur swimmer with a Cobb's angle (L1-S1) of 68°, a sacral horizontal angle of 45°, and pain in both medial buttock areas and sacroiliac joints. We performed PPTT with Kinesio tape for 2 weeks (six times per week for an average of 9 h each time). The patient’s radiographs showed that the Cobb's angle (L1-S1) had decreased from 68° to 47° and that the sacral horizontal angle had decreased from 45° to 31°. Reductions in hypomobility or motion asymmetry, as assessed by the motion palpation test, and in pain, as measured by the pain-provocation tests, were observed. On palpation for both medial buttock areas in the prone position, the patient felt no pain. The patient experienced no pain or stiffness in the low back area while performing forward flexion in the standing position with knees fully extended when washing dishes in the sink. The case study demonstrated that PPTT intervention favourably affected the pelvic inclination and sacral horizontal angle, leading to beneficial effects on sacroiliac joint dysfunction (SIJD) and medial buttock pain. Additional research on the clinical effects of this taping procedure requires greater numbers of athletes with SIJD or LBP who have inappropriate anterior pelvic tilt angles and hyperlordosis.
Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L
2016-08-01
The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
Visualization of UV exposure of the human body based on data from a scanning UV-measuring system.
Hoeppe, P; Oppenrieder, A; Erianto, C; Koepke, P; Reuder, J; Seefeldner, M; Nowak, D
2004-09-01
In general, measurements of UV radition are related to horizontal surfaces, as in the case of the internationally standardized and applied UV index, for example. In order to obtain more relevant information on UV exposure of humans the new measuring system ASCARATIS (Angle SCAnning RAdiometer for determination of erythemally weighted irradiance on TIlted Surfaces) was developed and built. Three systems of ASCARATIS have been in operation at different locations in Bavaria for 3 years, providing erythemally weighted UV irradiation data for 27 differently inclined surfaces every 2 min. On the basis of these data virtual three-dimensional models of the human body surface consisting of about 20,000 triangles could be created and each of these triangles coloured according to its UV irradiation. This allowed the UV exposure of the human body to be visualized for any kind of body posture and spatial orientation on the basis of real measuring data. The results of the UV measurements on inclined surfaces have shown that measuring UV radiation on horizontal surfaces, as done routinely worldwide, often underestimates the UV exposure of the human skin. Especially at times of the day or year with low solar elevations the UV exposure of parts of the human skin can be many times higher than that of the horizontal surface. Examples of three-dimensional modelling of the human UV irradiation are shown for different times of the day and year, altitudes above sea level, body postures and genders. In these examples the UV "hotspots" can be detected and, among other things, used to inform and educate the public about UV radiation.
NASA Astrophysics Data System (ADS)
Gassmann, Ewa
Two distinctive features of underwater light field in the upper ocean were examined: the wave-induced high-frequency light fluctuations within the near-surface layer under sunny skies, and the asymmetry of horizontal radiance within the photic layer of the ocean. To characterize the spatiotemporal statistical properties of the wave-induced light fluctuations, measurements of downward plane irradiance were made with novel instrumentation within the top 10 m layer of the ocean at depths as shallow as 10 cm under sunny skies, different solar zenith angles, and weak to moderate wind speeds. It was found that the maximum intensity of light fluctuations occurs at depths as shallow as 20 cm under the most favorable conditions for wave focusing, which correspond to high sun in a clear sky with weak wind. The strong frequency dependence of light fluctuations at shallow near-surface depths indicates dominant frequency range of 1 -- 3 Hz under favorable conditions that shifts toward lower frequencies with increasing depth. The light fluctuations were found to be spatially correlated over horizontal distances varying from few up to 10 -- 20 cm at temporal scales of 0.3 -- 1 sec (at the dominant frequency of 1 -- 3 Hz). The distance of correlation showed a tendency to increase with increasing depth, solar zenith angle, and wind speed. The observed variations in spatiotemporal statistical properties of underwater light fluctuations with depth and environmental conditions are driven largely by weakening of sunlight focusing which is associated with light scattering within the water column, in the atmosphere and at the air-sea interface. To investigate the underwater horizontal radiance field, measurements of horizontal spectral radiance in two opposite directions (solar and anti-solar azimuths) within the solar principal plane were made within the photic layer of the open ocean. The ratio of these two horizontal radiances represents the asymmetry of horizontal radiance field. In addition to measurements, the radiative transfer simulations were also conducted to examine variations in the asymmetry of horizontal radiance at different light wavelengths as a function of solar zenith angle at different depths within the water column down to 200 m. It was demonstrated that the asymmetry of horizontal radiance increases with increasing solar zenith angle, reaching a maximum at angles of 60° -- 80° under clear skies at shallow depths (1 -- 10 m). At larger depths the maximum of asymmetry occurs at smaller solar zenith angles. The asymmetry was also found to increase with increasing light wavelength. The results from radiative transfer simulations provided evidence that variations in the asymmetry with solar zenith angle are driven largely by the diffuseness of light incident upon the sea surface and the geometry of illumination of the sea surface, both associated with changing position of the sun. In addition to contributions to the field of ocean optics, the findings of this dissertation have relevance for oceanic animal camouflage and vision as well as photosynthesis and other photochemical processes.
Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source
NASA Astrophysics Data System (ADS)
Martínez-Verdú, Francisco; Perales, Esther; Chorro, Elisabet; de Fez, Dolores; Viqueira, Valentín; Gilabert, Eduardo
2007-06-01
We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
NASA Technical Reports Server (NTRS)
Barnhart, B.
1982-01-01
The influence of horizontal tail location on the rotational flow aerodynamics is discussed for a 1/6-scale general aviation airplane model. The model was tested using various horizontal tail positions, with both a high and a low-wing location and for each of two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 to 90 deg, and for clockwise and counter-clockwise rotations covering an Omega b/2V range of 0 to 0.9.
Crew Exploration Vehicle (CEV) Water Landing Simulation
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.
2007-01-01
Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.
Head and cervical posture in patients with temporomandibular disorders.
Armijo-Olivo, Susan; Rappoport, Karen; Fuentes, Jorge; Gadotti, Inae Caroline; Major, Paul W; Warren, Sharon; Thie, Norman M R; Magee, David J
2011-01-01
To determine whether patients with myogenous or mixed (ie, myogeneous plus arthrogeneous) temporomandibular disorders (TMD) had different head and cervical posture measured through angles commonly used in clinical research settings when compared to healthy individuals. One hundred fifty-four persons participated in this study. Of these, 50 subjects were healthy, 55 subjects had myogenous TMD, and 49 subjects had mixed TMD (ie, arthrogenous plus myogenous TMD). A lateral photograph was taken with the head in the self-balanced position. Four angles were measured in the photographs: (1) Eye-Tragus-Horizontal, (2) Tragus-C7-Horizontal, (3) Pogonion-Tragus-C7, and (4) Tragus-C7-Shoulder. Alcimagen software specially designed to measure angles was used in this study. All of the measurements were performed by a single trained rater, a dental specialist in orthodontics, blinded to each subject's group status. The only angle that reached statistical significance among groups was the Eye-Tragus-Horizontal (F = 3.03, P = .040). Pairwise comparisons determined that a mean difference of 3.3 degrees (95% confidence intervals [CI]: 0.15, 6.41) existed when comparing subjects with myogenous TMD and healthy subjects (P = .036). Postural angles were not significantly related to neck disability, jaw disability, or pain intensity. Intrarater and interrater reliability of the measurements were excellent, with intraclass correlation coefficient (ICC) values ranging between 0.996-0.998. The only statistically significant difference in craniocervical posture between patients with myogenous TMD and healthy subjects was for the Eye-Tragus-Horizontal angle, indicating a more extended position of the head. However, the difference was very small (3.3 degrees) and was judged not to be clinically significant.
Splash-cup plants accelerate raindrops to disperse seeds.
Amador, Guillermo J; Yamada, Yasukuni; McCurley, Matthew; Hu, David L
2013-02-01
The conical flowers of splash-cup plants Chrysosplenium and Mazus catch raindrops opportunistically, exploiting the subsequent splash to disperse their seeds. In this combined experimental and theoretical study, we elucidate their mechanism for maximizing dispersal distance. We fabricate conical plant mimics using three-dimensional printing, and use high-speed video to visualize splash profiles and seed travel distance. Drop impacts that strike the cup off-centre achieve the largest dispersal distances of up to 1 m. Such distances are achieved because splash speeds are three to five times faster than incoming drop speeds, and so faster than the traditionally studied splashes occurring upon horizontal surfaces. This anomalous splash speed is because of the superposition of two components of momentum, one associated with a component of the drop's motion parallel to the splash-cup surface, and the other associated with film spreading induced by impact with the splash-cup. Our model incorporating these effects predicts the observed dispersal distance within 6-18% error. According to our experiments, the optimal cone angle for the splash-cup is 40°, a value consistent with the average of five species of splash-cup plants. This optimal angle arises from the competing effects of velocity amplification and projectile launching angle.
Now you see me, now you don't: iridescence increases the efficacy of lizard chromatic signals
NASA Astrophysics Data System (ADS)
Pérez i de Lanuza, Guillem; Font, Enrique
2014-10-01
The selective forces imposed by primary receivers and unintended eavesdroppers of animal signals often act in opposite directions, constraining the development of conspicuous coloration. Because iridescent colours change their chromatic properties with viewer angle, iridescence offers a potential mechanism to relax this trade-off when the relevant observers involved in the evolution of signal design adopt different viewer geometries. We used reflectance spectrophotometry and visual modelling to test if the striking blue head coloration of males of the lizard Lacerta schreibeiri (1) is iridescent and (2) is more conspicuous when viewed from the perspective of conspecifics than from that of the main predators of adult L. schreibeiri (raptors). We demonstrate that the blue heads of L. schreiberi show angle-dependent changes in their chromatic properties. This variation allows the blue heads to be relatively conspicuous to conspecific viewers located in the same horizontal plane as the sender, while simultaneously being relatively cryptic to birds that see it from above. This study is the first to suggest the use of angle-dependent chromatic signals in lizards, and provides the first evidence of the adaptive function of iridescent coloration based on its detectability to different observers.
Spatial effects of shifting prisms on properties of posterior parietal cortex neurons
Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M
2014-01-01
The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions. PMID:24928956
Natural convection and radiation heat transfer from an array of inclined pin fins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessio, M.E.; Kaminski, D.A.
1989-02-01
Natural convection and radiation from an air-cooled, highly populated pin-fin array were studied experimentally. the effects of pin density, pin length, and the angle of the pin to the horizontal were measured. Previous work by Sparrow and Vemuri treated the case of a vertical base plate with horizontal fins. recently, Sparrow and Vemuri (1986) extended their study to include results for vertical fins with a horizontal down-facing base plate, as well as vertical fins with a horizontal up-facing base plate. In this study, the base plate is maintained in a vertical position and the angle of the pins is variedmore » from the horizontal. The main intent of this study was to compare the performance of inclined pin fins with straight pin fins. In all cases studied, the straight, horizontal fins were superior to the inclined fins. It was possible to obtain a single general correlation of the test data. While this correlation is recommended within the range of parameters that were tested here, one significant parameter, the size of the base plate, was not varied.« less
Aksoy, S; Sayin, I; Yazici, Z M; Kayhan, F T; Karahasanoglu, A; Hocaoglu, E; Inci, E
2016-01-01
Chronic otitis media (COM), affecting all over the world and in a wide range of age groups in Turkey, is an important cause of ear discharge and hearing loss. The main clinical manifestations are tympanic membrane perforation, ear, nose and throat problems. On the tympanic membrane perforation becomes persistent and cholesteatoma development, there are a lot of opinions today. Especially in the pathology associated with otitis media with effusion eustachian tube, it is known that COM and cholesteatoma develop. In our study, we interpreted 210 patients' temporal computed tomography (CT). Seventy of these 210 patients had otitis media with cholesteatoma, 70 patients had only otitis media without cholesteatoma, and 70 patients had no otitis media. The eustachian tubes were evaluated using temporal CT multiplanar reconstruction method. Angles with the horizontal plane of the eustachian tube and Reid and tubotympanic angles were measured. The angles between eustachian tube and horizontally oriented Reid plane of the patients with cholesteatoma were found to be significantly lower than the patients with otitis media without cholesteatoma and the patients with no history of otitis media. For the tubotympanic angle, no statistically significant differences were observed between the groups. These results suggest that the decrease in the angle with the horizontal plane of Reid in the eustachian tube in adults may play a significant role in the etiology of cholesteatoma.
Measurement and interpretation of crustal deformation rates associated with postglacial rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1994-01-01
Analysis of Global Positioning System (GPS) data from two sites separated by horizontal distance of only approximately 2.2 m yielded phase residuals exhibiting a systematic elevation angle dependence. One of the two GPS antennas was mounted on an approximately 1 m high concrete pillar, and the other was mounted on a standard wooden tripod. We performed elevation angle cutoff tests with these data, and established that the vertical coordinate of site position was sensitive to the minimum elevation angle (elevation cutoff) of the data analyzed. For example, the vertical coordinate of site position changed by 9.7 plus or minus 0.8 mm when the minimum elevation angle was increased from 10 to 25. We performed simulations based on a simple (ray tracing) multipath model with a single horizontal reflector, and demonstrated that the elevation angle cutoff test results and the pattern of the residual versus elevation angle could be qualitatively reproduced if the reflector were located 0.1-0.2 m beneath the antenna phase center. We therefore, hypothesized that the source of the elevation-angle-dependent error were multipath reflections and scattering and that the horizontal surface of the pillar, located a distance of approximately 0.2 m beneath the antenna phase center, was the primary reflector. We tested this hypothesis by placing microwave absorbing material between the antenna and the pillar in a number of configurations and analyzed the changes in apparent position of the antenna. The results indicate that (1) the horizontal surface of the pillar is indeed the main reflector, (2) both the concrete and the metal plate embedded in the pillar are significant reflectors, and (3) the reflection can be reduced to a great degree by the use of microwave absorbing materials. These results have significant implications for the accuracy of global GPS geodetic tracking networks which use pillar-antenna configuration identical or similar to the one used here (at the Westford WFRD GPS site).
[Visual cuing effect for haptic angle judgment].
Era, Ataru; Yokosawa, Kazuhiko
2009-08-01
We investigated whether visual cues are useful for judging haptic angles. Participants explored three-dimensional angles with a virtual haptic feedback device. For visual cues, we use a location cue, which synchronizes haptic exploration, and a space cue, which specifies the haptic space. In Experiment 1, angles were judged more correctly with both cues, but were overestimated with a location cue only. In Experiment 2, the visual cues emphasized depth, and overestimation with location cues occurred, but space cues had no influence. The results showed that (a) when both cues are presented, haptic angles are judged more correctly. (b) Location cues facilitate only motion information, and not depth information. (c) Haptic angles are apt to be overestimated when there is both haptic and visual information.
Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator
NASA Technical Reports Server (NTRS)
Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio
1996-01-01
The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.
NASA Technical Reports Server (NTRS)
Martin, Andrew; Hunter, Harlo A.
1949-01-01
An investigation was conducted to determine the longitudinal- and lateral-stability characteristics of a 0.5-scale moue1 of the Fairchild Lark missile, The model was tested with 0 deg and with 22.5 deg of roll. Three horizontal wings having NACA 16-009, 16-209, and 64A-209 sections were tested. Pressures were measured on both pointed and blunt noses. The wind-tunnel-test data indicate that rolling the missile 22.5 deg. had no serious effect on the static longitudinal stability. The desired maneuvering acceleration could not be attained with any of the horizontal wings tested, even with the horizontal wing flaps deflected 50 deg. The flaps on the 64A-209 wing (with small trailing-edge angles and flat sides) were effective at all flap deflections, while the flaps on the 16-series wings (with large trailing-edge angles) lost effectiveness at small flap deflections. The data showed that rolling moment existed when the vertical wing flaps were deflected with the model at other than zero angle of attack. A similar rolling moment probably would be found . with the horizontal wing flaps deflected and the model yawed.
A Horizontal Tilt Correction Method for Ship License Numbers Recognition
NASA Astrophysics Data System (ADS)
Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi
2018-02-01
An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.
Figueiredo, Rodrigo V; Amaral, Artur C; Shimano, Antônio C
2012-01-01
To identify whether flight training activities cause postural changes in cadets and pilots of the Brazilian Air Force Academy (AFA). Eighty subjects were assessed through photographic images in anterior and right side views. Four groups of cadets (n=20 per group) divided according to the year since enlistment and a fifth group of fifteen pilots from the Air Demonstration Squadron (ADS) were included. Pictures were analyzed using the Postural Analysis Program (SAPO) and angles related to head vertical alignment (HVA), head horizontal alignment (HHA), acromion horizontal alignment (AHA) and anterior-superior iliac spine horizontal alignment (HAS) were plotted. We did not find statistical significant differences in the angles: HVA, HHA and AHA. However, a significant difference was found for the HAS angle with pilots having lower values than cadets, suggesting greater postural stability for this variable in pilots. The horizontal alignment of the anterior-superior iliac spine was the only measure that showed significant difference in the comparison between pilots and cadets. The remaining alignments were not different, possibility because of the strict criteria used for admission of cadets at the AFA and the efficiency of the physical training that is performed periodically.
NASA Astrophysics Data System (ADS)
Hirohashi, Kensuke; Inamuro, Takaji
2017-08-01
Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
Relhan, N; Jalali, S; Pehre, N; Rao, H L; Manusani, U; Bodduluri, L
2016-01-01
Purpose To characterise and differentiate posterior microphthalmos (PM) and nanophthalmos (NO) using morphometric parameters. Patients and methods Consecutive case database of patients with hyperopia >+7.00 D sphere was analysed retrospectively for clinical and biometric characterisation. Thirty-eight consecutive high-hyperopic subjects (75 eyes) with axial lengths <20.5 mm underwent uniform comprehensive ocular evaluation. Twenty-five subjects were diagnosed as PM and 13 as NO based on the horizontal corneal diameter. Parameters analysed included visual acuity, refraction, horizontal corneal diameter, anterior chamber depth, lens thickness, axial length, fundus changes, and associated ocular pathology. Primary outcome measures: ocular biometry difference between PM and NO. Secondary outcome measures: differences in associated ocular pathologies between PM and NO. Results Hyperopia ranged from +7 to +17 D and was similar in the two groups. Lens thickness was statistically more in NO than in PM group (4.53±0.75 mm vs 3.82±0.48 mm, P <0.001), whereas anterior chamber depth was more in the PM than in NO group (3.26±0.36 mm, vs 2.59±0.37 mm, P<0.001). NO had higher association with angle-closure glaucoma (66.7% vs 0%) and pigmentary retinopathy (38.5 vs 8.0%) but lesser association with macular folds (0% vs 24%) as compared with PM. NO was associated with poorer visual acuity. Conclusion PM and NO have significant differences in lens thickness, anterior chamber depth, prevalence of glaucoma, pigmentary retinopathy, macular pathology, and visual acuity while being similar in hyperopic refraction. PMID:26493039
NASA Astrophysics Data System (ADS)
Chen, Qi; Huang, Shenghai; Ma, Qingkai; Lin, Huiling; Pan, Mengmeng; Liu, Xinting; Lu, Fan; Shen, Meixiao
2017-02-01
The structural characteristics of the outer retinal layers in primary open angle glaucoma (POAG) are still controversial, and these changes, along with those in the inner retinal layers, could have clinical and/or pathophysiological significance. A custom-built ultra-high resolution optical coherence tomography (UHR-OCT) combined with an automated segmentation algorithm can image and measure the eight intra-retinal layers. The purpose of this study is to determine the thickness characteristics of the macular intra-retinal layers, especially the outer layers, in POAG patients. Thirty-four POAG patients (56 eyes) and 33 normal subjects (63 eyes) were enrolled. Thickness profiles of the eight intra-retinal layers along a 6-mm length centred on the fovea at the horizontal and vertical meridians were obtained and the regional thicknesses were compared between two groups. The associations between the thicknesses of each intra-retinal layer and the macular visual field (VF) sensitivity were then analysed. POAG affected not only the inner retinal layers but also the photoreceptor layers and retinal pigment epithelium of the outer retina. However, the VF loss was correlated mainly with the damage of the inner retinal layers. UHR-OCT with automated algorithm is a useful tool in detecting microstructural changes of macula with respect to the progression of glaucoma.
Chouinard, Philippe A.; Peel, Hayden J.; Landry, Oriane
2017-01-01
The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas’ explanation of the vertical-horizontal illusion. PMID:28392764
The extent of visual space inferred from perspective angles
Erkelens, Casper J.
2015-01-01
Retinal images are perspective projections of the visual environment. Perspective projections do not explain why we perceive perspective in 3-D space. Analysis of underlying spatial transformations shows that visual space is a perspective transformation of physical space if parallel lines in physical space vanish at finite distance in visual space. Perspective angles, i.e., the angle perceived between parallel lines in physical space, were estimated for rails of a straight railway track. Perspective angles were also estimated from pictures taken from the same point of view. Perspective angles between rails ranged from 27% to 83% of their angular size in the retinal image. Perspective angles prescribe the distance of vanishing points of visual space. All computed distances were shorter than 6 m. The shallow depth of a hypothetical space inferred from perspective angles does not match the depth of visual space, as it is perceived. Incongruity between the perceived shape of a railway line on the one hand and the experienced ratio between width and length of the line on the other hand is huge, but apparently so unobtrusive that it has remained unnoticed. The incompatibility between perspective angles and perceived distances casts doubt on evidence for a curved visual space that has been presented in the literature and was obtained from combining judgments of distances and angles with physical positions. PMID:26034567
Hwang, Ui-Jae; Kwon, Oh-Yun; Yi, Chung-Hwi; Jeon, Hye-Seon; Weon, Jong-Hyuck; Ha, Sung-Min
2017-06-01
Shoulder pain occurs commonly in food service workers (FSWs) who repetitively perform motions of the upper limbs. Myofascial trigger points (MTrPs) on the upper trapezius (UT) are among the most common musculoskeletal shoulder pain syndromes. This study determined the psychological, posture, mobility, and strength factors associated with pain severity in FSWs with UT pain due to MTrPs.In this cross-sectional study, we measured 17 variables in 163 FSWs with UT pain due to MTrPs: a visual analog scale (VAS) pain score, age, sex, Borg rating of perceived exertion (BRPE) scale, beck depression inventory, forward head posture angle, rounded shoulder angle (RSA), shoulder slope angle, scapular downward rotation ratio, cervical lateral-bending side difference angle, cervical rotation side difference angle, glenohumeral internal rotation angle, shoulder horizontal adduction angle, serratus anterior (SA) strength, lower trapezius (LT) strength, bicep strength, and glenohumeral external rotator strength, in 163 FSWs with UT pain due to MTrPs.The model for factors influencing UT pain with MTrPs included SA strength, age, BRPE, LT strength, and RSA as predictor variables that accounted for 68.7% of the variance in VAS (P < .001) in multiple regression models with a stepwise selection procedure. The following were independent variables influencing the VAS in the order of standardized coefficients: SA strength (β = -0.380), age (β = 0.287), BRPE (β = 0.239), LT strength (β = -0.195), and RSA (β = 0.125).SA strength, age, BRPE, LT strength, and RSA variables should be considered when evaluating and intervening in UT pain with MTrPs in FSWs.
Predictors of upper trapezius pain with myofascial trigger points in food service workers
Hwang, Ui-Jae; Kwon, Oh-Yun; Yi, Chung-Hwi; Jeon, Hye-Seon; Weon, Jong-Hyuck; Ha, Sung-Min
2017-01-01
Abstract Shoulder pain occurs commonly in food service workers (FSWs) who repetitively perform motions of the upper limbs. Myofascial trigger points (MTrPs) on the upper trapezius (UT) are among the most common musculoskeletal shoulder pain syndromes. This study determined the psychological, posture, mobility, and strength factors associated with pain severity in FSWs with UT pain due to MTrPs. In this cross-sectional study, we measured 17 variables in 163 FSWs with UT pain due to MTrPs: a visual analog scale (VAS) pain score, age, sex, Borg rating of perceived exertion (BRPE) scale, beck depression inventory, forward head posture angle, rounded shoulder angle (RSA), shoulder slope angle, scapular downward rotation ratio, cervical lateral-bending side difference angle, cervical rotation side difference angle, glenohumeral internal rotation angle, shoulder horizontal adduction angle, serratus anterior (SA) strength, lower trapezius (LT) strength, bicep strength, and glenohumeral external rotator strength, in 163 FSWs with UT pain due to MTrPs. The model for factors influencing UT pain with MTrPs included SA strength, age, BRPE, LT strength, and RSA as predictor variables that accounted for 68.7% of the variance in VAS (P < .001) in multiple regression models with a stepwise selection procedure. The following were independent variables influencing the VAS in the order of standardized coefficients: SA strength (β = −0.380), age (β = 0.287), BRPE (β = 0.239), LT strength (β = −0.195), and RSA (β = 0.125). SA strength, age, BRPE, LT strength, and RSA variables should be considered when evaluating and intervening in UT pain with MTrPs in FSWs. PMID:28658117
Santander, Hugo; Zúñiga, Claudia; Miralles, Rodolfo; Valenzuela, Saúl; Santander, Montserrat Carolina; Gutiérrez, Mario Felipe; Córdova, Rosa
2014-10-01
A preliminary study to compare cervical lordosis by means of cervical cephalometric analysis, before and after six months of continuous mandibular advancement appliance (MAA) use, and to show how physical therapy posture re-education would improve the cervical lordosis angle. Twenty-two female patients with temporomandibular disorders (TMD) and cervical pain with lordosis <20° were included. Patients had to have a muscle pain history for at least six months, and with an intensity ⩾6, measured by means of a visual analog scale (a horizontal 0-10 numeric rating scale with 0 labeled as 'no pain' and 10 as 'worst imaginable pain'). Patients had to present the angle formed by the posterior tangents to C2 and C7 of equal or less than 20°. Cephalometric and clinical diagnostics were performed initially (baseline) and at the end of the study period (six months). During the third month with MAA treatment, a physical therapist evaluated the postural deficit and performed a program of postural re-education. Angular and linear dimension data presented a normal distribution (P>0·05; Shapiro Wilk Test), so the paired comparison of the cephalometric measurements was made by t-test for dependent samples. Angle 1 (OPT/7CVT); angle 3 (CVT/EVT) and angle 4 (2CL/7CL) showed a significant increase in the cervical lordosis. Angle 2 (MGP/OP), angle 5 (HOR/CVT) and the distances C0-C2 and Pt-VER, presented no significant changes. The increase in cervical lordosis implies that six months of continuous MAA use, together with a program of postural re-education, promotes the homeostasis of the craniocervical system.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex
Huang, Xiaoying; Elyada, Yishai M.; Bosking, William H.; Walker, Theo
2014-01-01
Columnar organization of orientation selectivity and clustered horizontal connections linking orientation columns are two of the distinctive organizational features of primary visual cortex in many mammalian species. However, the functional role of these connections has been harder to characterize. Here we examine the extent and nature of horizontal interactions in V1 of the tree shrew using optical imaging of intrinsic signals, optogenetic stimulation, and multi-unit recording. Surprisingly, we find the effects of optogenetic stimulation depend primarily on distance and not on the specific orientation domains or axes in the cortex, which are stimulated. In addition, across a wide range of variation in both visual and optogenetic stimulation we find linear addition of the two inputs. These results emphasize that the cortex provides a rich substrate for functional interactions that are not limited to the orientation-specific interactions predicted by the monosynaptic distribution of horizontal connections. PMID:24695715
Streepey, Jefferson W; Kenyon, Robert V; Keshner, Emily A
2007-01-01
We previously reported responses to induced postural instability in young healthy individuals viewing visual motion with a narrow (25 degrees in both directions) and wide (90 degrees and 55 degrees in the horizontal and vertical directions) field of view (FOV) as they stood on different sized blocks. Visual motion was achieved using an immersive virtual environment that moved realistically with head motion (natural motion) and translated sinusoidally at 0.1 Hz in the fore-aft direction (augmented motion). We observed that a subset of the subjects (steppers) could not maintain continuous stance on the smallest block when the virtual environment was in motion. We completed a posteriori analyses on the postural responses of the steppers and non-steppers that may inform us about the mechanisms underlying these differences in stability. We found that when viewing augmented motion with a wide FOV, there was a greater effect on the head and whole body center of mass and ankle angle root mean square (RMS) values of the steppers than of the non-steppers. FFT analyses revealed greater power at the frequency of the visual stimulus in the steppers compared to the non-steppers. Whole body COM time lags relative to the augmented visual scene revealed that the time-delay between the scene and the COM was significantly increased in the steppers. The increased responsiveness to visual information suggests a greater visual field-dependency of the steppers and suggests that the thresholds for shifting from a reliance on visual information to somatosensory information can differ even within a healthy population.
Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki
2017-07-01
Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.
Khir, Ashraf William; Bruti, Gianpaolo
2013-07-01
It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Optimal viewing position in vertically and horizontally presented Japanese words.
Kajii, N; Osaka, N
2000-11-01
In the present study, the optimal viewing position (OVP) phenomenon in Japanese Hiragana was investigated, with special reference to a comparison between the vertical and the horizontal meridians in the visual field. In the first experiment, word recognition scores were determined while the eyes were fixating predetermined locations in vertically and horizontally displayed words. Similar to what has been reported for Roman scripts, OVP curves, which were asymmetric with respect to the beginning of words, were observed in both conditions. However, this asymmetry was less pronounced for vertically than for horizontally displayed words. In the second experiment, the visibility of individual characters within strings was examined for the vertical and horizontal meridians. As for Roman characters, letter identification scores were better in the right than in the left visual field. However, identification scores did not differ between the upper and the lower sides of fixation along the vertical meridian. The results showed that the model proposed by Nazir, O'Regan, and Jacobs (1991) cannot entirely account for the OVP phenomenon. A model in which visual and lexical factors are combined is proposed instead.
Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony
2015-01-01
Purpose To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Methods Twenty-six, young, participants (15F, 25 ± 5 years, range: 18–35 years, SE: +0.25 D and −3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Results Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p < 0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. Conclusions The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. PMID:26190684
Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony
2016-01-01
To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Twenty-six, young, participants (15F, 25±5 years, range: 18-35 years, SE: +0.25 D and -3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p<0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Effect of isolated fractures on accelerated flow in unsaturated porous rock
Su, Grace W.; Nimmo, John R.; Dragila, Maria I.
2003-01-01
Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low‐angled isolated fractures compared to high‐angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.
Sinskey, Robert M; Eshete, Almaz
2002-01-01
To evaluate the visual and restoration of normal appearance results of maximal excision of the horizontal rectus muscles in nystagmus patients. Menelik II Hospital, Addis Ababa, Ethiopia and the Sinskey Eye Institute, Santa Monica, California. The medial and lateral rectus muscles were extirpated as far back as possible with an enucleation snare in four patients with horizontal nystagmus. A complete eye examination was performed pre- and postoperatively. Using a camcorder, ocular movements were recorded before surgery, and at postop; days 1 and 40, and months 1, 3 and 10. All four patients had a marked reduction in both abnormal and normal horizontal eye movement, and improvement in objective visual acuity. Postoperative residual intermittent fine horizontal movement was recorded in the left eye in a 6 year old and in both eyes of a 41 year old patient. A residual rotary component was recorded in a 15 year-old patient. The 6 and 9 year-old patients each developed a moderate exotropia. The 15 and 41 year-old patients maintained binocular fusion with some residual ability to converge. Vision increased subjectively in all cases. Subtotal myectomy of the horizontal muscles in horizontal nystagmus with no null point was very effective in improving and/or eliminating horizontal eye movement. Restoration of normal or near normal appearance and improvement in visual acuity occurred in all cases. None of the patients complained of their loss of horizontal gaze and eye movement. More complete myectomy of the muscles should produce total elimination of both normal and abnormal horizontal eye movement including nystagmus.
Splash-cup plants accelerate raindrops to disperse seeds
Amador, Guillermo J.; Yamada, Yasukuni; McCurley, Matthew; Hu, David L.
2013-01-01
The conical flowers of splash-cup plants Chrysosplenium and Mazus catch raindrops opportunistically, exploiting the subsequent splash to disperse their seeds. In this combined experimental and theoretical study, we elucidate their mechanism for maximizing dispersal distance. We fabricate conical plant mimics using three-dimensional printing, and use high-speed video to visualize splash profiles and seed travel distance. Drop impacts that strike the cup off-centre achieve the largest dispersal distances of up to 1 m. Such distances are achieved because splash speeds are three to five times faster than incoming drop speeds, and so faster than the traditionally studied splashes occurring upon horizontal surfaces. This anomalous splash speed is because of the superposition of two components of momentum, one associated with a component of the drop's motion parallel to the splash-cup surface, and the other associated with film spreading induced by impact with the splash-cup. Our model incorporating these effects predicts the observed dispersal distance within 6–18% error. According to our experiments, the optimal cone angle for the splash-cup is 40°, a value consistent with the average of five species of splash-cup plants. This optimal angle arises from the competing effects of velocity amplification and projectile launching angle. PMID:23235266
Angle performance on optima MDxt
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Kamenitsa, Dennis
2012-11-06
Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less
NASA Astrophysics Data System (ADS)
Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.
2013-01-01
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Remeasuring tree heights on permanent plots using rectangular coordinates and one angle per tree
Robert L. Neal
1973-01-01
Heights of permanent sample trees with tops visible from any point can be measured from that point with any clinometer, measuring one vertical angle per tree. Two horizontal angles and one additional vertical angle per observation point are necessary to orient the point to the plot. Permanently recorded coordinates and elevations of tree locations are used with the...
Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography
2018-01-01
The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze. PMID:29304120
Hládek, Ľuboš; Porr, Bernd; Brimijoin, W Owen
2018-01-01
The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.
Does hemipelvis structure and position influence acetabulum orientation?
Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej
2016-03-16
Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.
NASA Astrophysics Data System (ADS)
Baniasadi, Neda; Wang, Mengyu; Wang, Hui; Jin, Qingying; Mahd, Mufeed; Elze, Tobias
2017-02-01
Purpose: To evaluate the effects of four anatomical parameters (angle between superior and inferior temporal retinal arteries [inter-artery angle, IAA], optic disc [OD] rotation, retinal curvature, and central retinal vessel trunk entry point location [CRVTL]) on retinal nerve fiber layer thickness (RNFLT) abnormality marks by OCT machines. Methods: Cirrus OCT circumpapillary RNFLT measurements and Humphrey visual fields (HVF 24-2) of 421 patients from a large glaucoma clinic were included. Ellipses were fitted to the OD borders. Ellipse rotation relative to the vertical axis defined OD rotation. CRVTL was manually marked on the horizontal axis of the ellipse on the OCT fundus image. IAA was calculated between manually marked retinal artery locations at the 1.73mm radius around OD. Retinal curvature was determined by the inner limiting membrane on the horizontal B-scan closest to the OD center. For each location on the circumpapillary scanning area, logistic regression was used to determine if each of the four parameters had a significant impact on RNFLT abnormality marks independent of disease severity. The results are presented on spatial maps of the entire scanning area. Results: Variations in IAA significantly influenced abnormality marks on 38.8% of the total scanning area, followed by CRVTL (19.2%) and retinal curvature (18.7%). The effect of OD rotation was negligible (<1%). Conclusions: A natural variation in IAA, retinal curvature, and CRVTL can affect OCT abnormality ratings, which may bias clinical diagnosis. Our spatial maps may help OCT manufacturers to introduce location specific norms to ensure that abnormality marks indicate ocular disease instead of variations in eye anatomy.
Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B
2013-02-01
Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.
NASA Technical Reports Server (NTRS)
McHenry, M. Q.; Angelaki, D. E.
2000-01-01
To maintain binocular fixation on near targets during fore-aft translational disturbances, largely disjunctive eye movements are elicited the amplitude and direction of which should be tuned to the horizontal and vertical eccentricities of the target. The eye movements generated during this task have been investigated here as trained rhesus monkeys fixated isovergence targets at different horizontal and vertical eccentricities during 10 Hz fore-aft oscillations. The elicited eye movements complied with the geometric requirements for binocular fixation, although not ideally. First, the corresponding vergence angle for which the movement of each eye would be compensatory was consistently less than that dictated by the actual fixation parameters. Second, the eye position with zero sensitivity to translation was not straight ahead, as geometrically required, but rather exhibited a systematic dependence on viewing distance and vergence angle. Third, responses were asymmetric, with gains being larger for abducting and downward compared with adducting and upward gaze directions, respectively. As frequency was varied between 4 and 12 Hz, responses exhibited high-pass filter properties with significant differences between abduction and adduction responses. As a result of these differences, vergence sensitivity increased as a function of frequency with a steeper slope than that of version. Despite largely undercompensatory version responses, vergence sensitivity was closer to ideal. Moreover, the observed dependence of vergence sensitivity on vergence angle, which was varied between 2.5 and 10 MA, was largely linear rather than quadratic (as geometrically predicted). We conclude that the spatial tuning of eye velocity sensitivity as a function of gaze and viewing distance follows the general geometric dependencies required for the maintenance of foveal visual acuity. However, systematic deviations from ideal behavior exist that might reflect asymmetric processing of abduction/adduction responses perhaps because of different functional dependencies of version and vergence eye movement components during translation.
The relationship between forward head posture and temporomandibular disorders.
Lee, W Y; Okeson, J P; Lindroth, J
1995-01-01
This study investigated the relationship between forward head posture and temporomandibular disorder symptoms. Thirty-three temporomandibular disorder patients with predominant complaints of masticatory muscle pain were compared with an age- and gender-matched control group. Head position was measured from photographs taken with a plumb line drawn from the ceiling to the lateral malleolus of the ankle and with a horizontal plane that was perpendicular to the plumb line and that passed through the spinous process of the seventh cervical vertebra. The distances from the plumb line to the ear, to the seventh vertebra, and to the shoulder were measured. Two angles were also measured: (1) ear-seventh cervical vertebra-horizontal plane and (2) eye-ear-seventh cervical vertebra. The only measurement that revealed a statistically significant difference was angle ear-seventh cervical vertebra-horizontal plane. This angle was smaller in the patients with temporomandibular disorders than in the control subjects. In other words, when evaluating the ear position with respect to the seventh cervical vertebra, the head was positioned more forward in the group with temporomandibular disorders than in the control group (P < .05).
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Somers, Jeffrey T.; Feiveson, Alan H.; Leigh, R. John; Wood, Scott J.; Paloski, William H.; Kornilova, Ludmila
2006-01-01
We studied the ability to hold the eyes in eccentric horizontal or vertical gaze angles in 68 normal humans, age range 19-56. Subjects attempted to sustain visual fixation of a briefly flashed target located 30 in the horizontal plane and 15 in the vertical plane in a dark environment. Conventionally, the ability to hold eccentric gaze is estimated by fitting centripetal eye drifts by exponential curves and calculating the time constant (t(sub c)) of these slow phases of gazeevoked nystagmus. Although the distribution of time-constant measurements (t(sub c)) in our normal subjects was extremely skewed due to occasional test runs that exhibited near-perfect stability (large t(sub c) values), we found that log10(tc) was approximately normally distributed within classes of target direction. Therefore, statistical estimation and inference on the effect of target direction was performed on values of z identical with log10t(sub c). Subjects showed considerable variation in their eyedrift performance over repeated trials; nonetheless, statistically significant differences emerged: values of tc were significantly higher for gaze elicited to targets in the horizontal plane than for the vertical plane (P less than 10(exp -5), suggesting eccentric gazeholding is more stable in the horizontal than in the vertical plane. Furthermore, centrifugal eye drifts were observed in 13.3, 16.0 and 55.6% of cases for horizontal, upgaze and downgaze tests, respectively. Fifth percentile values of the time constant were estimated to be 10.2 sec, 3.3 sec and 3.8 sec for horizontal, upward and downward gaze, respectively. The difference between horizontal and vertical gazeholding may be ascribed to separate components of the velocity position neural integrator for eye movements, and to differences in orbital mechanics. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied in a clinical setting to patients who were exposed to environments that may have modified their central integrators and thus require monitoring. Patients with gaze-evoked nystagmus can be flagged by comparing to the above established normative criteria.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Kuhn, P. M.
1985-01-01
The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.
Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.
Telford, L; Seidman, S H; Paige, G D
1997-10-01
Horizontal, vertical, and torsional eye movements were recorded using the magnetic search-coil technique during linear accelerations along the interaural (IA) and dorsoventral (DV) head axes. Four squirrel monkeys were translated sinusoidally over a range of frequencies (0.5-4.0 Hz) and amplitudes (0.1-0.7 g peak acceleration). The linear vestibuloocular reflex (LVOR) was recorded in darkness after brief presentations of visual targets at various distances from the subject. With subjects positioned upright or nose-up relative to gravity, IA translations generated conjugate horizontal (IA horizontal) eye movements, whereas DV translations with the head nose-up or right-side down generated conjugate vertical (DV vertical) responses. Both were compensatory for linear head motion and are thus translational LVOR responses. In concert with geometric requirements, both IA-horizontal and DV-vertical response sensitivities (in deg eye rotation/cm head translation) were related linearly to reciprocal fixation distance as measured by vergence (in m-1, or meter-angles, MA). The relationship was characterized by linear regressions, yielding sensitivity slopes (in deg.cm-1.MA-1) and intercepts (sensitivity at 0 vergence). Sensitivity slopes were greatest at 4.0 Hz, but were only slightly more than half the ideal required to maintain fixation. Slopes declined with decreasing frequency, becoming negligible at 0.5 Hz. Small responses were observed when vergence was zero (intercept), although no response is required. Like sensitivity slope, the intercept was largest at 4.0 Hz and declined with decreasing frequency. Phase lead was near zero (compensatory) at 4.0 Hz, but increased as frequency declined. Changes in head orientation, motion axis (IA vs. DV), and acceleration amplitude produced slight and sporadic changes in LVOR parameters. Translational LVOR response characteristics are consistent with high-pass filtering within LVOR pathways. Along with horizontal eye movements, IA translation generated small torsional responses. In contrast to the translational LVORs, IA-torsional responses were not systematically modulated by vergence angle. The IA-torsional LVOR is not compensatory for translation because it cannot maintain image stability. Rather, it likely compensates for the effective head tilt simulated by translation. When analyzed in terms of effective head tilt, torsional responses were greatest at the lowest frequency and declined as frequency increased, consistent with low-pass filtering of otolith input. It is unlikely that IA-torsional responses compensate for actual head tilt, however, because they were similar for both upright and nose-up head orientations. The IA-torsional and -horizontal LVORs seem to respond only to linear acceleration along the IA head axis, and the DV-vertical LVOR to acceleration along the head's DV axis, regardless of gravity.
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
Measured daylighting potential of a static optical louver system under real sun and sky conditions
Konis, Kyle; Lee, Eleanor S.
2015-05-04
Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less
Face perception is tuned to horizontal orientation in the N170 time window.
Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie
2014-02-07
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.
A web system of virtual morphometric globes for Mars and the Moon
NASA Astrophysics Data System (ADS)
Florinsky, I. V.; Garov, A. S.; Karachevtseva, I. P.
2018-09-01
We developed a web system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15-arc-minutes gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. We derived global digital models of sixteen morphometric variables including horizontal, vertical, minimal, and maximal curvatures, as well as catchment area and topographic index. The morphometric models were integrated into the web system developed as a distributed application consisting of a client front-end and a server back-end. The following main functions are implemented in the system: (1) selection of a morphometric variable; (2) two-dimensional visualization of a calculated global morphometric model; (3) 3D visualization of a calculated global morphometric model on the sphere surface; (4) change of a globe scale; and (5) globe rotation by an arbitrary angle. Free, real-time web access to the system is provided. The web system of virtual morphometric globes can be used for geological and geomorphological studies of Mars and the Moon at the global, continental, and regional scales.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Backstroke start kinematic and kinetic changes due to different feet positioning.
de Jesus, Karla; de Jesus, Kelly; Figueiredo, Pedro; Gonçalves, Pedro; Pereira, Suzana Matheus; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge
2013-01-01
The backstroke swimming start international rules changed in 2005. This study compared two backstroke start variants, both with feet parallel to each other but in complete immersion and emersion. Six elite swimmers performed two sets of 4 maximal 15 m bouts, each set using one of the variants. The starts were videotaped in the sagittal plane with two cameras, providing bi-dimensional dual-media kinematic evaluation, and an underwater force plate and a handgrip instrumented with a load cell collected kinetic data. Backstroke start with feet immerged displayed greater centre-of-mass horizontal starting position, centre-of-mass horizontal velocity at hands-off and take-off angle. Backstroke start with feet emerged showed greater wall contact time, centre-of-mass horizontal and downward vertical velocity at take-off, lower limbs horizontal impulse, and centre-of-mass downward vertical velocity during flight phase. Backstroke start with feet immerged and emerged displayed similar centre-of-mass horizontal water reach, back arc angle and 5 m starting time. Irrespective of the swimmer's feet positioning, coaches should emphasise each variant's mechanical advantages during the wall contact phases. Furthermore, the maintenance of those advantages throughout the flight should be stressed for better backstroke start performance.
Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine
NASA Technical Reports Server (NTRS)
Earle, Sherod L; Dutee, Francis J
1937-01-01
An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.
Polarization sensitive camera for the in vitro diagnostic and monitoring of dental erosion
NASA Astrophysics Data System (ADS)
Bossen, Anke; Rakhmatullina, Ekaterina; Lussi, Adrian; Meier, Christoph
Due to a frequent consumption of acidic food and beverages, the prevalence of dental erosion increases worldwide. In an initial erosion stage, the hard dental tissue is softened due to acidic demineralization. As erosion progresses, a gradual tissue wear occurs resulting in thinning of the enamel. Complete loss of the enamel tissue can be observed in severe clinical cases. Therefore, it is essential to provide a diagnosis tool for an accurate detection and monitoring of dental erosion already at early stages. In this manuscript, we present the development of a polarization sensitive imaging camera for the visualization and quantification of dental erosion. The system consists of two CMOS cameras mounted on two sides of a polarizing beamsplitter. A horizontal linearly polarized light source is positioned orthogonal to the camera to ensure an incidence illumination and detection angles of 45°. The specular reflected light from the enamel surface is collected with an objective lens mounted on the beam splitter and divided into horizontal (H) and vertical (V) components on each associate camera. Images of non-eroded and eroded enamel surfaces at different erosion degrees were recorded and assessed with diagnostic software. The software was designed to generate and display two types of images: distribution of the reflection intensity (V) and a polarization ratio (H-V)/(H+V) throughout the analyzed tissue area. The measurements and visualization of these two optical parameters, i.e. specular reflection intensity and the polarization ratio, allowed detection and quantification of enamel erosion at early stages in vitro.
Kasten, Erich; Bunzenthal, Ulrike; Sabel, Bernhard A
2006-11-25
It has been argued that patients with visual field defects compensate for their deficit by making more frequent eye movements toward the hemianopic field and that visual field enlargements found after vision restoration therapy (VRT) may be an artefact of such eye movements. In order to determine if this was correct, we recorded eye movements in hemianopic subjects before and after VRT. Visual fields were measured in subjects with homonymous visual field defects (n=15) caused by trauma, cerebral ischemia or haemorrhage (lesion age >6 months). Visual field charts were plotted using both high-resolution perimetry (HRP) and conventional perimetry before and after a 3-month period of VRT, with eye movements being recorded with a 2D-eye tracker. This permitted quantification of eye positions and measurements of deviation from fixation. VRT lead to significant visual field enlargements as indicated by an increase of stimulus detection of 3.8% when tested using HRP and about 2.2% (OD) and 3.5% (OS) fewer misses with conventional perimetry. Eye movements were expressed as the standard deviations (S.D.) of the eye position recordings from fixation. Before VRT, the S.D. was +/-0.82 degrees horizontally and +/-1.16 degrees vertically; after VRT, it was +/-0.68 degrees and +/-1.39 degrees , respectively. A cluster analysis of the horizontal eye movements before VRT showed three types of subjects with (i) small (n=7), (ii) medium (n=7) or (iii) large fixation instability (n=1). Saccades were directed equally to the right or the left side; i.e., with no preference toward the blind hemifield. After VRT, many subjects showed a smaller variability of horizontal eye movements. Before VRT, 81.6% of the recorded eye positions were found within a range of 1 degrees horizontally from fixation, whereas after VRT, 88.3% were within that range. In the 2 degrees range, we found 94.8% before and 98.9% after VRT. Subjects moved their eyes 5 degrees or more 0.3% of the time before VRT versus 0.1% after VRT. Thus, in this study, subjects with homonymous visual field defects who were attempting to fixate a central target while their fields were being plotted, typically showed brief horizontal shifts with no preference toward or away from the blind hemifield. These eye movements were usually less than 1 degrees from fixation. Large saccades toward the blind field after VRT were very rare. VRT has no effect on either the direction or the amplitude of horizontal eye movements during visual field testing. These results argue against the theory that the visual field enlargements are artefacts induced by eye movements.
Influence of auditory and audiovisual stimuli on the right-left prevalence effect.
Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim
2014-01-01
When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.
Alavekios, Damon; Peterson, Alexander; Patton, John; McGarry, Michelle H; Lee, Thay Q
2014-11-01
The purpose of this study was to compare the anterior cruciate ligament (ACL) femoral tunnel characteristics between 2 common arthroscopic portals used for ACL reconstruction, a standard anteromedial portal and a far anteromedial portal. Seven cadaveric knees were used. A 1.25-mm Kirschner wire was drilled through the center of the ACL femoral footprint and through the distal femur from the standard anteromedial and far anteromedial portals at knee flexion angles of 100°, 120°, and 140°. No formal tunnels were drilled. Each tunnel exit point was marked with a colored pin. After all tunnels were created, the specimens were digitized with a MicroScribe device (Revware, Raleigh, NC) to measure the tunnel length; distance to the posterior femoral cortical wall (posterior cortical margin); and tunnel orientation in the sagittal, coronal, and axial planes. The standard anteromedial portal resulted in a longer tunnel length, a less horizontal tunnel in the coronal plane, and a greater posterior cortical margin compared with the far anteromedial portal at all knee flexion angles. For both portal locations, the tunnel length and posterior cortical margin increased, and the tunnel position became more horizontal in the coronal plane, more anterior in the sagittal plane, and less horizontal in the transverse plane as knee flexion increased. Portal position affects femoral tunnel characteristics, with results favoring the more laterally positioned standard anteromedial portal at all flexion angles. Increasing the knee flexion angle leads to a longer femoral tunnel length and posterior femoral cortical margin with either portal position. Understanding how portal positioning and knee flexion angle affect femoral tunnel orientation and characteristics may lead to improved surgical outcomes after ACL reconstruction. Published by Elsevier Inc.
Pitch body orientation influences the perception of self-motion direction induced by optic flow.
Bourrelly, A; Vercher, J-L; Bringoux, L
2010-10-04
We studied the effect of static pitch body tilts on the perception of self-motion direction induced by a visual stimulus. Subjects were seated in front of a screen on which was projected a 3D cluster of moving dots visually simulating a forward motion of the observer with upward or downward directional biases (relative to a true earth horizontal direction). The subjects were tilted at various angles relative to gravity and were asked to estimate the direction of the perceived motion (nose-up, as during take-off or nose-down, as during landing). The data showed that body orientation proportionally affected the amount of error in the reported perceived direction (by 40% of body tilt magnitude in a range of +/-20 degrees) and these errors were systematically recorded in the direction of body tilt. As a consequence, a same visual stimulus was differently interpreted depending on body orientation. While the subjects were required to perform the task in a geocentric reference frame (i.e., relative to a gravity-related direction), they were obviously influenced by egocentric references. These results suggest that the perception of self-motion is not elaborated within an exclusive reference frame (either egocentric or geocentric) but rather results from the combined influence of both. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
Integrated large view angle hologram system with multi-slm
NASA Astrophysics Data System (ADS)
Yang, ChengWei; Liu, Juan
2017-10-01
Recently holographic display has attracted much attention for its ability to generate real-time 3D reconstructed image. CGH provides an effective way to produce hologram, and spacial light modulator (SLM) is used to reconstruct the image. However the reconstructing system is usually very heavy and complex, and the view-angle is limited by the pixel size and spatial bandwidth product (SBP) of the SLM. In this paper a light portable holographic display system is proposed by integrating the optical elements and host computer units.Which significantly reduces the space taken in horizontal direction. CGH is produced based on the Fresnel diffraction and point source method. To reduce the memory usage and image distortion, we use an optimized accurate compressed look up table method (AC-LUT) to compute the hologram. In the system, six SLMs are concatenated to a curved plane, each one loading the phase-only hologram in a different angle of the object, the horizontal view-angle of the reconstructed image can be expanded to about 21.8°.
Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle
2018-03-01
The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.
Simulating reservoir lithologies by an actively conditioned Markov chain model
NASA Astrophysics Data System (ADS)
Feng, Runhai; Luthi, Stefan M.; Gisolf, Dries
2018-06-01
The coupled Markov chain model can be used to simulate reservoir lithologies between wells, by conditioning them on the observed data in the cored wells. However, with this method, only the state at the same depth as the current cell is going to be used for conditioning, which may be a problem if the geological layers are dipping. This will cause the simulated lithological layers to be broken or to become discontinuous across the reservoir. In order to address this problem, an actively conditioned process is proposed here, in which a tolerance angle is predefined. The states contained in the region constrained by the tolerance angle will be employed for conditioning in the horizontal chain first, after which a coupling concept with the vertical chain is implemented. In order to use the same horizontal transition matrix for different future states, the tolerance angle has to be small. This allows the method to work in reservoirs without complex structures caused by depositional processes or tectonic deformations. Directional artefacts in the modeling process are avoided through a careful choice of the simulation path. The tolerance angle and dipping direction of the strata can be obtained from a correlation between wells, or from seismic data, which are available in most hydrocarbon reservoirs, either by interpretation or by inversion that can also assist the construction of a horizontal probability matrix.
Lateral interactions in the outer retina
Thoreson, Wallace B.; Mangel, Stuart C.
2012-01-01
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106
Measurement of horizontal air showers with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Kambeitz, Olga
2017-03-01
The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.
Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G
2000-03-01
The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.
Measuring the Radius of the Earth from a Mountain Top Overlooking the Ocean
ERIC Educational Resources Information Center
Gangadharan, Dhevan
2009-01-01
A clear view of the ocean may be used to measure the radius of the Earth. To an observer looking out at the ocean, the horizon will always form some angle [theta] with the local horizontal plane. As the observer's elevation "h" increases, so does the angle [theta]. From measurements of the elevation "h" and the angle [theta],…
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
Hatching success of ostrich eggs in relation to setting, turning and angle of rotation.
van Schalkwyk, S J; Cloete, S W; Brown, C R; Brand, Z
2000-03-01
1. Three trials were designed to study the effects of axis of setting, turning frequency and axis and angle of rotation on the hatching success of ostrich eggs. The joint effects of axis of setting and angle of rotation were investigated in a fourth trial. 2. The hatchability of fertile ostrich eggs artificially incubated in electronic incubators (turned through 60 degrees hourly) was improved substantially in eggs set in horizontal positions for 2 or 3 weeks and vertically for the rest of the time. 3. The hatchability of fertile eggs set in the horizontal position without any turning was very low (27%). It was improved to approximately 60% by manual turning through 180 degrees around the short axis and through 60 degrees around the long axis at 08.00 and 16.00 h. A further improvement to approximately 80% was obtained in eggs automatically turned through 60 degrees around the long axis in the incubator. Additional turning through 180 degrees around the short axis twice daily at 08.00 and 16.00 h resulted in no further improvement. 4. The hatchability of fertile eggs set vertically in electronic incubators and rotated hourly through angles ranging from 60 degrees to 90 degrees around the short axis increased linearly over the range studied. The response amounted to 1.83% for an increase of 10 (R2=0.96). 5. The detrimental effect of rotation through the smaller angle of 60 degrees around the short axis could be compensated for by setting ostrich eggs in the horizontal position for 2 weeks before putting them in the vertical position.
Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.
Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta
2013-07-01
Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.
Compensating for Electro-Osmosis in Electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1987-01-01
Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
Data Images and Other Graphical Displays for Directional Data
NASA Technical Reports Server (NTRS)
Morphet, Bill; Symanzik, Juergen
2005-01-01
Vectors, axes, and periodic phenomena have direction. Directional variation can be expressed as points on a unit circle and is the subject of circular statistics, a relatively new application of statistics. An overview of existing methods for the display of directional data is given. The data image for linear variables is reviewed, then extended to directional variables by displaying direction using a color scale composed of a sequence of four or more color gradients with continuity between sequences and ordered intuitively in a color wheel such that the color of the 0deg angle is the same as the color of the 360deg angle. Cross over, which arose in automating the summarization of historical wind data, and color discontinuity resulting from the use a single color gradient in computational fluid dynamics visualization are eliminated. The new method provides for simultaneous resolution of detail on a small scale and overall structure on a large scale. Example circular data images are given of a global view of average wind direction of El Nino periods, computed rocket motor internal combustion flow, a global view of direction of the horizontal component of earth's main magnetic field on 9/15/2004, and Space Shuttle solid rocket motor nozzle vectoring.
NASA Technical Reports Server (NTRS)
DiZio, P.; Li, W.; Lackner, J. R.; Matin, L.
1997-01-01
Psychophysical measurements of the level at which observers set a small visual target so as to appear at eye level (VPEL) were made on 13 subjects in 1.0 g and 1.5 g environments in the Graybiel Laboratory rotating room while they viewed a pitched visual field or while in total darkness. The gravitoinertial force was parallel to the z-axis of the head and body during the measurements. The visual field consisted of two 58 degrees high, luminous, pitched-from-vertical, bilaterally symmetric, parallel lines, viewed in otherwise total darkness. The lines were horizontally separated by 53 degrees and presented at each of 7 angles of pitch ranging from 30 degrees with the top of the visual field turned away from the subject (top backward) to 30 degrees with the top turned toward the subject (top forward). At 1.5 g, VPEL changed linearly with the pitch of the 2-line stimulus and was depressed with top backward pitch and elevated with top forward pitch as had been reported previously at 1.0 g (1,2); however, the slopes of the VPEL-vs-pitch functions at 1.0 g and 1.5 g were indistinguishable. As reported previously also (3,4), the VPEL in darkness was considerably lower at 1.5 g than at 1.0 g; however, although the y-intercept of the VPEL-vs-pitch function in the presence of the 2-line visual field (visual field erect) was also lower at 1.5 g than at 1.0 g as it was in darkness, the G-related difference was significantly attenuated by the presence of the visual field. The quantitative characteristics of the results are consistent with a model in which VPEL is treated as a consequence of an algebraic weighted average or a vector sum of visual and nonvisual influences although the two combining rules lead to fits that are equally good.
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Leavitt, L. D.
1981-01-01
The tests were conducted at Mach numbers from 0.40 to 0.90, at angles of attack up to 45 deg for the lower Mach numbers, and at angles of sideslip up to 15 deg. The model variations under study included adding a canard surface and deflecting horizontal tails, ailerons, and rudders.
Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
2001-01-01
A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
1995-01-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
Effect of buoyancy on the motion of long bubbles in horizontal tubes
NASA Astrophysics Data System (ADS)
Atasi, Omer; Khodaparast, Sepideh; Scheid, Benoit; Stone, Howard A.
2017-09-01
As a confined long bubble translates along a horizontal liquid-filled tube, a thin film of liquid is formed on the tube wall. For negligible inertial and buoyancy effects, respectively, small Reynolds (Re) and Bond (Bo) numbers, the thickness of the liquid film depends only on the flow capillary number (Ca). However, buoyancy effects are no longer negligible as the diameter of the tube reaches millimeter length scales, which corresponds to finite values of Bo. We perform experiments and theoretical analysis for a long bubble in a horizontal tube to investigate the effect of Bond number (0.05
Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1998-01-01
The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.
Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip
2005-06-01
A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.
When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies
Kane, Suzanne Amador; Fulton, Andrew H.; Rosenthal, Lee J.
2015-01-01
Video filmed by a camera mounted on the head of a Northern Goshawk (Accipiter gentilis) was used to study how the raptor used visual guidance to pursue prey and land on perches. A combination of novel image analysis methods and numerical simulations of mathematical pursuit models was used to determine the goshawk's pursuit strategy. The goshawk flew to intercept targets by fixing the prey at a constant visual angle, using classical pursuit for stationary prey, lures or perches, and usually using constant absolute target direction (CATD) for moving prey. Visual fixation was better maintained along the horizontal than vertical direction. In some cases, we observed oscillations in the visual fix on the prey, suggesting that the goshawk used finite-feedback steering. Video filmed from the ground gave similar results. In most cases, it showed goshawks intercepting prey using a trajectory consistent with CATD, then turning rapidly to attack by classical pursuit; in a few cases, it showed them using curving non-CATD trajectories. Analysis of the prey's evasive tactics indicated that only sharp sideways turns caused the goshawk to lose visual fixation on the prey, supporting a sensory basis for the surprising frequency and effectiveness of this tactic found by previous studies. The dynamics of the prey's looming image also suggested that the goshawk used a tau-based interception strategy. We interpret these results in the context of a concise review of pursuit–evasion in biology, and conjecture that some prey deimatic ‘startle’ displays may exploit tau-based interception. PMID:25609783
PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons
NASA Astrophysics Data System (ADS)
Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre
2017-06-01
We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
Park, Hyungmin; Choi, Haecheon
2012-03-01
In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present study suggests that manipulating the angle of attack during a flapping cycle is the most effective way to control the aerodynamic forces and corresponding power expenditure for a dragonfly-like inclined flapping wing.
Planer orientation of the bilateral semicircular canals in dizzy patients.
Aoki, Sachiko; Takei, Yasuhiko; Suzuki, Kazufumi; Masukawa, Ai; Arai, Yasuko
2012-10-01
Recent development of 3-dimensional analysis of eye movement enabled to detect the eye rotation axis, which is used to determine the responsible semicircular canal(s) in dizzy patients. Therefore, the knowledge of anatomical orientation of bilateral semicircular canals is essential, as all 6 canals influence the eye movements. Employing the new head coordinate system suitable for MR imaging, we calculated the angles of semicircular canal planes of both ears in 11 dizzy patients who had normal caloric response in both ears. The angles between adjacent canal pairs were nearly perpendicular in both ears. The angle between the posterior canal planes and head sagittal plane was 51° and significantly larger the angle between the anterior canal planes and head sagittal plane, which was 35°. The angle between the horizontal canal plane and head sagittal plane was almost orthogonal. Pairs of contralateral synergistic canal planes were not parallel, forming 10° between right and left horizontal canal planes, 17° between right anterior and left posterior canal planes and 19° between the right posterior and left anterior canal planes. Our measurement of the angles of adjacent canal pairs and the angle between each semicircular canal and head sagittal plane coincided with those of previous reports obtained from CT images and skull specimens. However, the angles between contralateral synergistic canal planes were more parallel than those of previous reports. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rynders, Maurice; Lidkea, Bruce; Chisholm, William; Thibos, Larry N.
1995-10-01
Subjective transverse chromatic aberration (sTCA) manifest at the fovea was determined for a population of 85 young adults (19-38 years old) by means of a two-dimensional, two-color, vernier alignment technique. The statistical distribution of sTCA was well fitted by a bivariate Gaussian function with mean values that were not significantly different from zero in either the horizontal or the vertical direction. We conclude from this result that a hypothetical, average eye representing the population mean of human eyes with medium-sized pupils is free of foveal sTCA. However, the absolute magnitude of sTCA for any given individual was often significantly greater than zero and ranged from 0.05 to 2.67 arcmin for the red and the blue lights of a computer monitor (mean wavelengths, 605 and 497 nm, respectively). The statistical distribution of the absolute magnitude of sTCA was well described by a Rayleigh probability distribution with a mean of 0.8 arcmin. A simple device useful for population screening in a clinical setting was also tested and gave concordant results. Assuming that sTCA at the fovea is due to decentering of the pupil with respect to the visual axis, we infer from these results that the pupil is, on average, well centered in human eyes. The average magnitude of pupil decentration in individual eyes is less than 0.5 mm, which corresponds to psi =3 deg for the angle between the achromatic and the visual axes of the eye.
Visual orientation by the crown-of-thorns starfish ( Acanthaster planci)
NASA Astrophysics Data System (ADS)
Petie, Ronald; Hall, Michael R.; Hyldahl, Mia; Garm, Anders
2016-12-01
Photoreception in echinoderms has been known for over 200 years, but their visual capabilities remain poorly understood. As has been reported for some asteroids, the crown-of-thorns starfish ( Acanthaster planci) possess a seemingly advanced eye at the tip of each of its 7-23 arms. With such an array of eyes, the starfish can integrate a wide field of view of its surroundings. We hypothesise that, at close range, orientation and directional movements of the crown-of-thorns starfish are visually guided. In this study, the eyes and vision of A. planci were examined by means of light microscopy, electron microscopy, underwater goniometry, electroretinograms and behavioural experiments in the animals' natural habitat. We found that only animals with intact vision could orient to a nearby coral reef, whereas blinded animals, with olfaction intact, walked in random directions. The eye had peak sensitivity in the blue part (470 nm) of the visual spectrum and a narrow, horizontal visual field of approximately 100° wide and 30° high. With approximately 250 ommatidia in each adult compound eye and average interommatidial angles of 8°, crown-of-thorns starfish have the highest spatial resolution of any starfish studied to date. In addition, they have the slowest vision of all animals examined thus far, with a flicker fusion frequency of only 0.6-0.7 Hz. This may be adaptive as fast vision is not required for the detection of stationary objects such as reefs. In short, the eyes seem optimised for detecting large, dark, stationary objects contrasted against an ocean blue background. Our results show that the visual sense of the crown-of-thorns starfish is much more elaborate than has been thus far appreciated and is essential for orientation and localisation of suitable habitats.
Test technology on divergence angle of laser range finder based on CCD imaging fusion
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao
2016-09-01
Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.
Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang
2013-01-01
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413
NASA Astrophysics Data System (ADS)
Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu
2017-12-01
As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.
An Emprical Point Error Model for Tls Derived Point Clouds
NASA Astrophysics Data System (ADS)
Ozendi, Mustafa; Akca, Devrim; Topan, Hüseyin
2016-06-01
The random error pattern of point clouds has significant effect on the quality of final 3D model. The magnitude and distribution of random errors should be modelled numerically. This work aims at developing such an anisotropic point error model, specifically for the terrestrial laser scanner (TLS) acquired 3D point clouds. A priori precisions of basic TLS observations, which are the range, horizontal angle and vertical angle, are determined by predefined and practical measurement configurations, performed at real-world test environments. A priori precision of horizontal (𝜎𝜃) and vertical (𝜎𝛼) angles are constant for each point of a data set, and can directly be determined through the repetitive scanning of the same environment. In our practical tests, precisions of the horizontal and vertical angles were found as 𝜎𝜃=±36.6𝑐𝑐 and 𝜎𝛼=±17.8𝑐𝑐, respectively. On the other hand, a priori precision of the range observation (𝜎𝜌) is assumed to be a function of range, incidence angle of the incoming laser ray, and reflectivity of object surface. Hence, it is a variable, and computed for each point individually by employing an empirically developed formula varying as 𝜎𝜌=±2-12 𝑚𝑚 for a FARO Focus X330 laser scanner. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. The usability and feasibility of the model was investigated in real world scenarios. These investigations validated the suitability and practicality of the proposed method.
Wind-Tunnel Investigation of the Horizontal Motion of a Wing Near the Ground
NASA Technical Reports Server (NTRS)
Serebrisky, Y. M.; Biachuev, S. A.
1946-01-01
By the method of images the horizontal steady motion of a wing at small heights above the ground was investigated in the wind tunnel, A rectangular wing with Clark Y-H profile was tested with and without flaps. The distance from the trailing edge of the wing to the ground was varied within the limits 0.75 less than or = s/c less than or = 0.25. Measurements were made of the lift, the drag, the pitching moment, and the pressure distribution at one section. For a wing without flaps and one with flaps a considereble decrease in the lift force and a,drop in the drag was obtained at angles of attack below stalling. The flow separation near the ground occurs at smaller angles of attack than is the case for a great height above the ground. At horizontal steady flight for practical values of the height above the ground the maximum lift coefficient for the wing without flaps changes little, but markedly decreases for the wing with flaps. Analysis of these phenomena involves the investigation of the pressure distribution. The pressure distribution curves showed that the changes occurring near the ground are not equivalent to a change in the angle of attack. At the lower surface of the section a very strong increase in the pressures is observed. The pressure changes on the upper surface at angles of attack below stalling are insignificant and lead mainly to an increase in the unfavorable pressure gradient, resulting in the earlier occurrence of separation. For a wing with flaps at large angles of attack for distances from the trailing edge of the flap to the ground less than 0.5 chord, the flow between the wing end the ground is retarded so greatly that the pressure coefficient at the lower surface of the section is very near its limiting value (P = 1), and any further possibility of increase in the pressure is very small. In the application an approximate computation procedure is given of the change of certain aerodynamic characteristics for horizontal steady flight near the ground.
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined by a series of points of contact, with the boat structure, by straight lines at 45 degree angles... the line defined by a series of points of contact with the boat structure, by straight lines at 45 degree angles to the horizontal and contained in a vertical plane normal to the outside edge of the boat...
14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...
14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 10° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...
14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10° 10° to 20° 20° to 110° 40 30 5 A (rear white...
14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 10° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 10° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...
14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 10° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10° 10° to 20° 20° to 110° 40 30 5 A (rear white...
14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (forward red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white...
14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...
Banta, Edward R.; Provost, Alden M.
2008-01-01
This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.
NASA Astrophysics Data System (ADS)
Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios
2018-04-01
In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).
Flow Environment Study Near the Empennage of a 15-Percent Scale Helicopter Model
NASA Technical Reports Server (NTRS)
Gorton, Susan Althoff; Berry, John D.; Hodges, W. Todd; Reis, Deane G.
2000-01-01
Development of advanced rotorcraft configurations has highlighted a need for high-quality experimental data to support the development of flexible and accurate analytical design tools. To provide this type of data, a test program was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to measure the flow near the empennage of a 15-percent scale powered helicopter model with an operating tail fan. Three-component velocity profiles were measured with laser velocimetry (LV) one chord forward of the horizontal tail for four advance ratios to evaluate the effect of the rotor wake impingement on the horizontal tail angle of attack. These velocity data indicate the horizontal tail can experience unsteady angle of attack variations of over 30 degrees due to the rotor wake influence. The horizontal tail is most affected by the rotor wake above advance ratios of 0.10. Velocity measurements of the flow on the inlet side of the tail fan were made for a low-speed flight condition using conventional LV techniques. The velocity data show an accelerated flow near the tail fan duct, and vorticity calculations track the passage of main rotor wake vortices through the measurement plane.
NASA Technical Reports Server (NTRS)
Swanson, Robert S; Crandall, Stewart M
1948-01-01
A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)
Roberts, Tawna L; Kester, Kristi N; Hertle, Richard W
2018-04-01
This study presents test-retest reliability of optotype visual acuity (OVA) across 60° of horizontal gaze position in patients with infantile nystagmus syndrome (INS). Also, the validity of the metric gaze-dependent functional vision space (GDFVS) is shown in patients with INS. In experiment 1, OVA was measured twice in seven horizontal gaze positions from 30° left to right in 10° steps in 20 subjects with INS and 14 without INS. Test-retest reliability was assessed using intraclass correlation coefficient (ICC) in each gaze. OVA area under the curve (AUC) was calculated with horizontal eye position on the x-axis, and logMAR visual acuity on the y-axis and then converted to GDFVS. In experiment 2, validity of GDFVS was determined over 40° horizontal gaze by applying the 95% limits of agreement from experiment 1 to pre- and post-treatment GDFVS values from 85 patients with INS. In experiment 1, test-retest reliability for OVA was high (ICC ≥ 0.88) as the difference in test-retest was on average less than 0.1 logMAR in each gaze position. In experiment 2, as a group, INS subjects had a significant increase (P < 0.001) in the size of their GDFVS that exceeded the 95% limits of agreement found during test-retest. OVA is a reliable measure in INS patients across 60° of horizontal gaze position. GDFVS is a valid clinical method to be used to quantify OVA as a function of eye position in INS patients. This method captures the dynamic nature of OVA in INS patients and may be a valuable measure to quantify visual function patients with INS, particularly in quantifying change as part of clinical studies.
Verkicharla, Pavan K; Suheimat, Marwan; Mallen, Edward A H; Atchison, David A
2014-01-01
The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (± 30°) and, for a subset of eight participants along the vertical visual field (± 25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ± 30° along horizontal and vertical visual fields. Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ± 30° and ± 25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Visual Disability Among Juvenile Open-angle Glaucoma Patients.
Gupta, Viney; Ganesan, Vaitheeswaran L; Kumar, Sandip; Chaurasia, Abadh K; Malhotra, Sumit; Gupta, Shikha
2018-04-01
Juvenile onset primary open-angle glaucoma (JOAG) unlike adult onset primary open-angle glaucoma presents with high intraocular pressure and diffuse visual field loss, which if left untreated leads to severe visual disability. The study aimed to evaluate the extent of visual disability among JOAG patients presenting to a tertiary eye care facility. Visual acuity and perimetry records of unrelated JOAG patients presenting to our Glaucoma facility were analyzed. Low vision and blindness was categorized by the WHO criteria and percentage impairment was calculated as per the guidelines provided by the American Medical Association (AMA). Fifty-two (15%) of the 348 JOAG patients were bilaterally blind at presentation and 32 (9%) had low vision according to WHO criteria. Ninety JOAG patients (26%) had a visual impairment of 75% or more. Visual disability at presentation among JOAG patients is high. This entails a huge economic burden, given their young age and associated social responsibilities.
Analysis of Synthetic Aperture Radar data acquired over a variety of land cover
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
An analysis has been conducted of two-look-angle, multipolarization X-band SAR results. On the basis of the variety of land covers studied, the vertical-vertical polarization (VV) data is judged to contain the highest degree of contrast, while the horizontal-vertical (HV) polarization contained the least. VV polarization data is accordingly recommended for forest vegetation classification in those cases where only one data channel is available. The inclusion of horizontal-horizontal polarization data, however, is noted to be capable of delineating special surface features.
Patient-specific rhytidectomy: finding the angle of maximal rejuvenation.
Jacono, Andrew A; Ransom, Evan R
2012-09-01
Rhytidectomy is fundamentally an operation of tissue release and resuspension, although the manner and direction of suspension are subject to perpetual debate. The authors describe a method for identifying the angle of maximal rejuvenation during rhytidectomy and quantify the resulting angle and its relationship to patient age. Patients were prospectively enrolled; demographic data, history, and operative details were recorded. Rhytidectomies were performed by the senior author (AAJ). After complete elevation, the face-lift flap was rotated in a medially-based arc (0-90°) while attention was given to the submental area, jawline, and midface. The angle of maximal rejuvenation for each hemiface was identified as described, and the flap was resuspended. During redraping, measurements of vertical and horizontal skin excess were recorded in situ. The resulting angle of lift was then calculated for each hemiface using trigonometry. Symmetry between sides was determined, and the effect of patient age on this angle was assessed. Three hundred hemifaces were operated (147 women; 3 men). Mean age was 60 years (range, 37-80 years). Mean resulting angle for the cohort was 60° from horizontal (range, 46-77°). This was inversely correlated with patient age (r = -.3). Younger patients (<50 years, 64°) had a significantly more vertical angle than older patients (≥70 years, 56°; P < .0002). No significant intersubject difference was found between hemifaces (P = .53). The authors present a method for identifying the angle of maximal rejuvenation during rhytidectomy. This angle was more superior than posterior in all cases and is intimately related to patient age. Lasting results demand a detailed anatomical understanding and strict attention to the direction and degree of laxity.
Autonomic straightening after gravitropic curvature of cress roots
NASA Technical Reports Server (NTRS)
Stankovic, B.; Volkmann, D.; Sack, F. D.
1998-01-01
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62 degrees and 88 degrees after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle -36 degrees closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
NASA Technical Reports Server (NTRS)
Queijo, M J; Jaquet, Byron M; Wolhart, Walter D
1954-01-01
Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.
Emittance matching of a slow extracted beam for a rotating gantry
NASA Astrophysics Data System (ADS)
Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.
2017-09-01
The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.
Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M
2014-05-01
Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K
2017-12-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.
Salamh, Paul A; Kolber, Morey J; Hanney, William J
2015-02-01
To evaluate the effect of scapular stabilization during horizontal adduction stretching (cross-body) on posterior shoulder tightness (PST) and passive internal rotation (IR). Randomized controlled trial with single blinding. Athletic club. Asymptomatic volleyball players who are women with glenohumeral internal rotation deficit (N=60). Subjects were randomly assigned to either horizontal adduction stretching with manual scapular stabilization (n=30) or horizontal adduction stretching without stabilization (n=30). Passive stretching was performed for 3- to 30-second holds in both groups. Range of motion measurements of PST and IR were performed on the athlete's dominant shoulder prior to and immediately after the intervention. Baseline mean angular measurements of PST and IR for all athletes involved in the study were 62°±14° and 40°±10°, respectively, with no significant difference between groups (P=.598 and P=.734, respectively). Mean PST measurements were significantly different between groups after the horizontal adduction stretch, with a mean angle of 83°±17° among the scapular stabilization group and 65°±13° among the nonstabilization group (P<.001). Measurements of IR were also significantly different between groups, with a mean angle of 51°±14° among the scapular stabilization group and 43°±9° among the nonstabilization group (P=.006). Horizontal adduction stretches performed with scapular stabilization produced significantly greater improvements in IR and PST than horizontal adduction stretching without scapular stabilization. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
Wu, Jiang Hao; Zhang, Yan Lai; Sun, Mao
2009-10-01
When an insect hovers, the centre of mass of its body oscillates around a point in the air and its body angle oscillates around a mean value, because of the periodically varying aerodynamic and inertial forces of the flapping wings. In the present paper, hover flight including body oscillations is simulated by coupling the equations of motion with the Navier-Stokes equations. The equations are solved numerically; periodical solutions representing the hover flight are obtained by the shooting method. Two model insects are considered, a dronefly and a hawkmoth; the former has relatively high wingbeat frequency (n) and small wing mass to body mass ratio, whilst the latter has relatively low wingbeat frequency and large wing mass to body mass ratio. The main results are as follows. (i) The body mainly has a horizontal oscillation; oscillation in the vertical direction is about 1/6 of that in the horizontal direction and oscillation in pitch angle is relatively small. (ii) For the hawkmoth, the peak-to-peak values of the horizontal velocity, displacement and pitch angle are 0.11 U (U is the mean velocity at the radius of gyration of the wing), 0.22 c=4 mm (c is the mean chord length) and 4 deg., respectively. For the dronefly, the corresponding values are 0.02 U, 0.05 c=0.15 mm and 0.3 deg., much smaller than those of the hawkmoth. (iii) The horizontal motion of the body decreases the relative velocity of the wings by a small amount. As a result, a larger angle of attack of the wing, and hence a larger drag to lift ratio or larger aerodynamic power, is required for hovering, compared with the case of neglecting body oscillations. For the hawkmoth, the angle of attack is about 3.5 deg. larger and the specific power about 9% larger than that in the case of neglecting the body oscillations; for the dronefly, the corresponding values are 0.7 deg. and 2%. (iv) The horizontal oscillation of the body consists of two parts; one (due to wing aerodynamic force) is proportional to 1/cn2 and the other (due to wing inertial force) is proportional to wing mass to body mass ratio. For many insects, the values of 1/cn2 and wing mass to body mass ratio are much smaller than those of the hawkmoth, and the effects of body oscillation would be rather small; thus it is reasonable to neglect the body oscillations in studying their aerodynamics.
Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?
Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M
2010-05-01
The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Haines, R. F.
1973-01-01
Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.
Non-lane-discipline-based car-following model under honk environment
NASA Astrophysics Data System (ADS)
Rong, Ying; Wen, Huiying
2018-04-01
This study proposed a non-lane-discipline-based car-following model by synthetically considering the visual angles and the timid/aggressive characteristics of drivers under honk environment. We firstly derived the neutral stability condition by the linear stability theory. It showed that the parameters related to visual angles and driving characteristics of drivers under honk environment all have significant impact on the stability of non-lane-discipline traffic flow. For better understanding the inner mechanism among these factors, we further analyzed how each parameter affects the traffic flow and gained further insight into how the visual angles information influences other parameters and then influences the non-lane-discipline traffic flow under honk environment. And the results showed that the other aspects such as driving characteristics of drivers or honk effect are all interacted with the "Visual-Angle Factor". And the effect of visual angle is not just to say simply it has larger stable region or not as the existing studies. Finally, to verify the proposed model, we carried out the numerical simulation under the periodic boundary condition. And the results of numerical simulation are agreed well with the theoretical findings.
Flow-visualization study of the X-29A aircraft at high angles of attack using a 1/48-scale model
NASA Technical Reports Server (NTRS)
Cotton, Stacey J.; Bjarke, Lisa J.
1994-01-01
A water-tunnel study on a 1/48-scale model of the X-29A aircraft was performed at the NASA Dryden Flow Visualization Facility. The water-tunnel test enhanced the results of the X-29A flight tests by providing flow-visualization data for comparison and insights into the aerodynamic characteristics of the aircraft. The model was placed in the water tunnel at angles of attack of 20 to 55 deg. and with angles of sideslip from 0 to 5 deg. In general, flow-visualization techniques provided useful information on vortex formation, separation, and breakdown and their role in yaw asymmetries and tail buffeting. Asymmetric forebody vortices were observed at angles of attack greater than 30 deg. with 0 deg. sideslip and greater than 20 deg. with 5 deg. sideslip. While the asymmetric flows observed in the water tunnel did not agree fully with the flight data, they did show some of the same trends. In addition, the flow visualization indicated that the interaction of forebody vortices and the wing wake at angles of attack between 20 and 35 deg. may cause vertical-tail buffeting observed in flight.
ERIC Educational Resources Information Center
Rebilas, Krzysztof
2013-01-01
Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…
Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B
2012-04-01
The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p < 0.05. The radiographic values were on average 4° greater than the values obtained by protrusive interocclusal record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used in programming semi-adjustable articulators. © 2012 by the American College of Prosthodontists.
Biomechanical Study of the Fixation Strength of Anteromedial Plating for Humeral Shaft Fractures.
Zheng, Yin-Feng; Zhou, Jun-Lin; Wang, Xiao-Hong; Shan, Lei; Liu, Yang
2016-08-05
Open reduction and internal fixation with plate and screws are the gold standard for the surgical treatment of humeral shaft fractures, this study was to compare the mechanical properties of anteromedial, anterolateral, and posterior plating for humeral shaft fractures. A distal third humeral shaft fracture model was constructed using fourth-generation sawbones (#3404, composite bone). A total of 24 sawbones with a distal third humeral shaft fracture was randomly divided into three Groups: A, B, and C (n = 8 in each group) for anteromedial, anterolateral, and posterior plating, respectively. All sawbones were subjected to horizontal torsional fatigue tests, horizontal torsional and axial compressive fatigue tests, four-point bending fatigue tests in anteroposterior (AP) and mediolateral (ML) directions and horizontal torsional destructive tests. In the horizontal torsional fatigue tests, the mean torsional angle amplitude in Groups A, B, and C were 6.12°, 6.53°, and 6.81°. In horizontal torsional and axial compressive fatigue tests, the mean torsional angle amplitude in Groups A, B, and C were 5.66°, 5.67°, and 6.36°. The mean plate displacement amplitude was 0.05 mm, 0.08 mm, and 0.10 mm. Group A was smaller than Group C (P < 0.05). In AP four-point bending fatigue tests, the mean plate displacement amplitude was 0.16 mm, 0.13 mm, and 0.20 mm. Group B was smaller than Group C (P < 0.05). In ML four-point bending fatigue tests, the mean plate displacement amplitude were 0.16 mm, 0.19 mm, and 0.17 mm. In horizontal torsional destructive tests, the mean torsional rigidity in Groups A, B, and C was 0.82, 0.75, and 0.76 N·m/deg. The yielding torsional angle was 24.50°, 25.70°, and 23.86°. The mean yielding torque was 18.46, 18.05, and 16.83 N·m, respectively. Anteromedial plating was superior to anterolateral or posterior plating in all mechanical tests except in AP four-point bending fatigue tests compared to the anterolateral plating group. We can suggest that anteromedial plating is a clinically safe and effective way for humeral shaft fractures.
Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S
2010-01-01
The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).
Sidelooking laser altimeter for a flight simulator
NASA Technical Reports Server (NTRS)
Webster, L. D. (Inventor)
1983-01-01
An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.
Edinger, Janick; Pai, Dinesh K; Spering, Miriam
2017-01-01
The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.
Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara
2017-03-01
To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
Task factor usability ratings for different age groups writing Chinese.
Chan, A H S; So, J C Y
2009-11-01
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.
NASA Astrophysics Data System (ADS)
Viertler, Franz; Hajek, Manfred
2015-05-01
To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.
[Possibilities of magnetotherapy in stabilization of visual function in patients with glaucoma].
Bisvas Shutanto Kumar; Listopadova, N A
1996-01-01
Courses of magnetotherapy (MT) using ATOS device with 33 mT magnetic field induction were administered to 31 patients (43 eyes) with primary open-angle glaucoma with compensated intraocular pressure. The operation mode was intermittent, with 1.0 to 1.5 Hz field rotation frequency by 6 radii. The procedure is administered to a patient in a sitting posture with magnetic inductor held before the eye. The duration of a session is 10 min, a course consists of 10 sessions. Untreated eyes (n = 15) of the same patients were examined for control. The patients were examined before and 4 to 5 months after MT course. Vision acuity improved by 0.16 diopters, on an average, in 29 eyes (96.7%) out of 30 with vision acuity below 1.0 before treatment. Visocontrastometry was carried out using Visokontrastometer-DT device with spatial frequency range from 0.4 to 19 cycle/degree (12 frequencies) and 125 x 125 monitor. The orientation of lattices was horizontal and vertical. The contrasts ranged from 0.03 to 0.9 (12 levels). MT brought about an improvement of spatial contrast sensitivity by at least 7 values of 12 levels in 22 (84.6%) out of 26 eyes and was unchanged in 4 eyes. Visual field was examined using Humphry automated analyzer. A 120-point threshold test was used. After a course of MT, visual field deficit decreased by at least 10% in 31 (72%) out of 43 eyes, increased in 3, and was unchanged in 9 eyes; on an average, visual field deficit decreased by 22.4% vs. the initial value. After 4 to 5 months the changes in the vision acuity and visual field deficit were negligible. In controls these parameters did not appreciably change over the entire follow-up period.
Effect of dividing daylight in symmetric prismatic daylight collector
NASA Astrophysics Data System (ADS)
Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin
2017-04-01
This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.
NASA Technical Reports Server (NTRS)
Bartlett, D. W.; Sangiorgio, G.
1975-01-01
An investigation was conducted in the Langley Research Center 8-foot transonic pressure tunnel to determine the effects of the landing gear, speed brake and the major airplane protuberances on the longitudinal aerodynamic characteristics of an 0.087-scale model of the TF-8A supercritical-wing research airplane. For the effects of the landing gear and speed brake, tests were conducted at Mach numbers of 0.25 and 0.35 with a flap deflection of 20 degrees and a horizontal-tail angle of -10 degrees. These conditions simulated those required for take-off and landing. The effects of the protuberances were determined with the model configured for cruise (i.e., horizontal-tail angle of -2.5 degrees and no other control deflection), and these tests were conducted at Mach numbers from 0.50 to 1.00. The angle-of-attack range for all tests varied from about -5 degrees to 12 degrees.
2011-06-01
speeds. Keywords: Pendulum, projectile, maximum range, numerical solution. Resumen Un niño se pone en marcha, agarra el extremo libre colgando...upswing at an angle between 0 and f. As a child lets go of the rope at angle , equating the gain in gravitational potential energy to the loss in...kinetic energy implies that he will be traveling with velocity 20 2gy , (2) at angle relative to the horizontal and at a height of
Surveillance Using Multiple Unmanned Aerial Vehicles
2009-03-01
BATCAM wingspan was 21” vs Jodeh’s 9.1 ft, the BATCAM’s propulsion was electric vs. Jodeh’s gas engine, cameras were body fixed vs. gimballed, and...3.1: BATCAM Camera FOV Angles Angle Front Camera Side Camera Depression Angle 49◦ 39◦ horizontal FOV 48◦ 48◦ vertical FOV 40◦ 40◦ by a quiet electric ...motor. The batteries can be recharged with a car cigarette lighter in less than an hour. Assembly of the wing airframe takes less than a minute, and
Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun
2014-05-01
Surgeon spine angle during surgery was studied ergonomically and the kinematics of the surgeon's spine was related with musculoskeletal fatigue and pain. Spine angles varied depending on operation table height and visualization method, and in a previous paper we showed that the use of a loupe and a table height at the midpoint between the umbilicus and the sternum are optimal for reducing musculoskeletal loading. However, no studies have previously included a microscope as a possible visualization method. The objective of this study is to assess differences in surgeon spine angles depending on operating table height and visualization method, including microscope. We enrolled 18 experienced spine surgeons for this study, who each performed a discectomy using a spine surgery simulator. Three different methods were used to visualize the surgical field (naked eye, loupe, microscope) and three different operating table heights (anterior superior iliac spine, umbilicus, the midpoint between the umbilicus and the sternum) were studied. Whole spine angles were compared for three different views during the discectomy simulation: midline, ipsilateral, and contralateral. A 16-camera optoelectronic motion analysis system was used, and 16 markers were placed from the head to the pelvis. Lumbar lordosis, thoracic kyphosis, cervical lordosis, and occipital angle were compared between the different operating table heights and visualization methods as well as a natural standing position. Whole spine angles differed significantly depending on visualization method. All parameters were closer to natural standing values when discectomy was performed with a microscope, and there were no differences between the naked eye and the loupe. Whole spine angles were also found to differ from the natural standing position depending on operating table height, and became closer to natural standing position values as the operating table height increased, independent of the visualization method. When using a microscope, lumbar lordosis, thoracic kyphosis, and cervical lordosis showed no differences according to table heights above the umbilicus. This study suggests that the use of a microscope and a table height above the umbilicus are optimal for reducing surgeon musculoskeletal fatigue.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Competing Distractors Facilitate Visual Search in Heterogeneous Displays.
Kong, Garry; Alais, David; Van der Burg, Erik
2016-01-01
In the present study, we examine how observers search among complex displays. Participants were asked to search for a big red horizontal line among 119 distractor lines of various sizes, orientations and colours, leading to 36 different feature combinations. To understand how people search in such a heterogeneous display, we evolved the search display by using a genetic algorithm (Experiment 1). The best displays (i.e., displays corresponding to the fastest reaction times) were selected and combined to create new, evolved displays. Search times declined over generations. Results show that items sharing the same colour and orientation as the target disappeared over generations, implying they interfered with search, but items sharing the same colour and were 12.5° different in orientation only interfered if they were also the same size. Furthermore, and inconsistent with most dominant visual search theories, we found that non-red horizontal distractors increased over generations, indicating that these distractors facilitated visual search while participants were searching for a big red horizontally oriented target. In Experiments 2 and 3, we replicated these results using conventional, factorial experiments. Interestingly, in Experiment 4, we found that this facilitation effect was only present when the displays were very heterogeneous. While current models of visual search are able to successfully describe search in homogeneous displays, our results challenge the ability of these models to describe visual search in heterogeneous environments.
Tomiak, Tomasz; Abramovych, Tetiana I.; Gorkovenko, Andriy V.; Vereshchaka, Inna V.; Mishchenko, Viktor S.; Dornowski, Marcin; Kostyukov, Alexander I.
2016-01-01
Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements. PMID:27375496
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
1987-06-01
obtained from: A simple numerical intergration scheme is employed to perform the integral in Equations (B2) and (86) along the dividing streamline. A 11 4...angle of attack was small, the dividing streamline remained almost horizontal in this case. Results of a higher angle of attack case, in which the mesh
1989-08-01
horizontal plane is defined as a plane normal to the geocentric position vector. Inertial Azimuth Heading Angle entries are the angles measured east of north...0CATICN: Enter the areas or locations that are to be staffed with redical perscnel, i.e., Vandenberg AFB Hospital, PMIC; or offshore boats, etc. NUMB
In plane oscillation of a bifilar pendulum
NASA Astrophysics Data System (ADS)
Hinrichsen, Peter F.
2016-11-01
The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.
Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice
2016-11-01
Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.
Multi-step heater deployment in a subsurface formation
Mason, Stanley Leroy [Allen, TX
2012-04-03
A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.
Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.
Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.
Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine
Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
Wind Measurements from Arc Scans with Doppler Wind Lidar
Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...
2015-11-25
When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; ...
2016-07-12
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Traverso, Carlo Enrico; Cutolo, Carlo Alberto
2017-08-01
To investigate the clinical, anatomical, and patient-reported outcomes of phacoemulsification (PE) with intraocular lens implantation performed to treat primary angle closure (PAC) and primary angle-closure glaucoma (PACG). Patients were evaluated at baseline and at 6 months after PE. The examination included visual acuity, intraocular pressure (IOP), visual field, optic nerve head, endothelial cell count (ECC), aqueous depth, and ocular biometric parameters. Patient-reported visual function and health status were assessed. Coprimary outcome measures were IOP changes, angle widening, and patient-reported visual function; secondary outcome measures were visual acuity changes, use of IOP-lowering medications, and complications. Univariate and multivariate analyses were performed to determine the predictors of IOP change. Thirty-nine cases were identified, and postoperative data were analyzed for 59 eyes, 39 with PACG and 20 with PAC. Globally, PE resulted in a mean reduction in IOP of -6.33 mm Hg (95% CI, -8.64 to -4.01, P <.001). Aqueous depth and angle measurements improved ( P <.01), whereas ECC significantly decreased ( P <.001). Both corrected and uncorrected visual acuity improved ( P <.01). The EQ visual analog scale did not change ( P =.16), but VFQ-25 improved ( P <.01). The IOP-lowering effect of PE was greater in the PACG compared to the PAC group ( P =.04). In both groups, preoperative IOP was the most significant predictor of IOP change ( P <.01). No sight-threatening complications were recorded. Our data support the usefulness of PE in lowering the IOP in patients with PAC and PACG. Although PE resulted in several anatomical and patient-reported visual improvements, we observe that a marked decrease in ECC should be carefully weighed before surgery.
NASA Astrophysics Data System (ADS)
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
Passive and active floating torque during swimming.
Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James
2004-10-01
The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.
Gaze and viewing angle influence visual stabilization of upright posture
Ustinova, KI; Perkins, J
2011-01-01
Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978
Comparison of current meters used for stream gaging
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.
1994-01-01
The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.
Horizontal Axis Levitron--A Physics Demonstration
ERIC Educational Resources Information Center
Michaelis, Max M.
2014-01-01
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
Wang, Zhong I; Dell'Osso, Louis F; Tomsak, Robert L; Jacobs, Jonathan B
2007-04-01
To investigate the effects of combined tenotomy and recession procedures on both acquired downbeat nystagmus and horizontal infantile nystagmus. Patient 1 had downbeat nystagmus with a chin-down (upgaze) position, oscillopsia, strabismus, and diplopia. Asymmetric superior rectus recessions and inferior rectus tenotomies reduced right hypertropia and rotated both eyes downward. Patient 2 had horizontal infantile nystagmus, a 20 degrees left-eye exotropia, and alternating (abducting-eye) fixation. Lateral rectus recessions and medial rectus tenotomies were performed. Horizontal and vertical eye movements were recorded pre- and postsurgically using high-speed digital video. The eXpanded Nystagmus Acuity Function (NAFX) and nystagmus amplitudes and frequencies were measured. Patient 1: The NAFX peak moved from 10 degrees up to primary position where NAFX values improved 17% and visual acuity increased 25%. Vertical NAFX increased across the -10 degrees to +5 degrees vertical range. Primary-position right hypertropia decreased approximately 50%; foveation time per cycle increased 102%; vertical amplitude, oscillopsia, and diplopia were reduced, and frequency was unchanged. Patient 2: Two lateral, narrow high-NAFX regions (due to alternating fixation) became one broad region with a 43% increase in primary position (acuity increased approximately 92.3%). Diplopia amplitude decreased; convergence and gaze holding were improved. Primary-position right exotropia was reduced; foveation time per cycle increased 257%; horizontal-component amplitude decreased 45.7%, and frequency remained unchanged. Combining tenotomy with nystagmus or strabismus recession procedures increased NAFX and visual acuities and reduced diplopia and oscillopsia in downbeat nystagmus and infantile nystagmus.
Pan, Qintuo; Yang, Zhengwei; Chen, Xiaomeng; Wei, Wenlong; Ke, Zhisheng; Chen, Ding; Huang, Fang; Cai, Junyong; Zhao, Zhenquan
2018-04-01
To describe the clinical outcomes of traumatic aphakic eyes with corneal astigmatism after using a novel technique for toric intraocular lens suture fixation. In total, 12 eyes of 12 patients who underwent a new scleral suture fixation technique of one-piece toric intraocular lens (SN6AT series, Alcon Inc., TX, USA) were included in our retrospective study. Preoperative patient status, postoperative visual acuity and refractive outcomes, postoperative intraocular lens rotation, tilt, decentration, and complications were analyzed. The mean follow-up was 11.6 ± 1.0 months. The mean preoperative best-corrected visual acuity was 0.55 ± 0.32 in the logarithm of minimum angle of resolution equivalent; the postoperative best-corrected visual acuity was 0.45 ± 0.34. The mean preoperative total corneal astigmatism was 2.51 ± 1.67 D. The mean postoperative residual astigmatism was 0.77 ± 0.54 D. The mean intraocular lens rotation was 3.33° ± 1.37° (range, 1°-6°). The mean intraocular lens tilt in horizontal direction was 3.64° ± 1.02° (range, 2.6°-6.3°) and in vertical direction it was 3.19° ± 1.07 ° (range, 1.6°-5.2°). The mean intraocular lens decentration in horizontal direction was 0.14 ± 0.03 mm (range, 0.089-0.192 mm) and in vertical direction it was 0.15 ± 0.02 mm (range, 0.113-0.181 mm). One patient had mild vitreous hemorrhage and two other patients had high postoperative residual sphere and astigmatism, respectively. But no other serious complications were observed. Scleral suture fixation of foldable toric intraocular lens to correct corneal astigmatism can be a safe and effective alternative technique to manage traumatic aphakic eyes that lack adequate capsular support.
Buresch, Kendra C; Ulmer, Kimberly M; Cramer, Corinne; McAnulty, Sarah; Davison, William; Mäthger, Lydia M; Hanlon, Roger T
2015-10-01
Cuttlefish use multiple camouflage tactics to evade their predators. Two common tactics are background matching (resembling the background to hinder detection) and masquerade (resembling an uninteresting or inanimate object to impede detection or recognition). We investigated how the distance and orientation of visual stimuli affected the choice of these two camouflage tactics. In the current experiments, cuttlefish were presented with three visual cues: 2D horizontal floor, 2D vertical wall, and 3D object. Each was placed at several distances: directly beneath (in a circle whose diameter was one body length (BL); at zero BL [(0BL); i.e., directly beside, but not beneath the cuttlefish]; at 1BL; and at 2BL. Cuttlefish continued to respond to 3D visual cues from a greater distance than to a horizontal or vertical stimulus. It appears that background matching is chosen when visual cues are relevant only in the immediate benthic surroundings. However, for masquerade, objects located multiple body lengths away remained relevant for choice of camouflage. © 2015 Marine Biological Laboratory.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097
Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.
2017-01-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250
Dental and skeletal components of Class II open bite treatment with a modified Thurow appliance
Jacob, Helder Baldi; dos Santos-Pinto, Ary; Buschang, Peter H.
2014-01-01
Introduction Due to the lack of studies that distinguish between dentoalveolar and basal changes caused by the Thurow appliance, this clinical study, carried out by the School of Dentistry - State University of São Paulo/Araraquara, aimed at assessing the dental and skeletal changes induced by modified Thurow appliance. Methods The sample included an experimental group comprising 13 subjects aged between 7 and 10 years old, with Class II malocclusion and anterior open bite, and a control group comprising 22 subjects similar in age, sex and mandibular plane angle. Maxillary/mandibular, horizontal/vertical, dental/skeletal movements (ANS, PNS, U1, U6, Co, Go, Pog, L1, L6) were assessed, based on 14 landmarks, 8 angles (S-N-ANS, SNA, PPA, S-N-Pog, SNB, MPA, PP/MPA, ANB) and 3 linear measures (N-Me, ANS-Me, S-Go). Results Treatment caused significantly greater angle decrease between the palatal and the mandibular plane of the experimental group, primarily due to an increase in the palatal plane angle. ANB, SNA and S-N-ANS angles significantly decreased more in patients from the experimental group. PNS was superiorly remodeled. Lower face height (ANS-Me) decreased in the experimental group and increased in the control group. Conclusions The modified Thurow appliance controlled vertical and horizontal displacements of the maxilla, rotated the maxilla and improved open bite malocclusion, decreasing lower facial height. PMID:24713556
Effect of rain on Ku-band scatterometer wind measurements
NASA Technical Reports Server (NTRS)
Spencer, Michael; Shimada, Masanobu
1991-01-01
The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.
Beam pointing direction changes in a misaligned Porro prism resonator
NASA Astrophysics Data System (ADS)
Lee, Jyh-Fa; Leung, Chung-Yee
1988-07-01
The relative change of the beam pointing direction for a misaligned Porro prism resonator has been analyzed, using an oscillation axis concept for the Porro prism resonator to find the beam direction. Expressions for the beam tilting angles are presented which show that the angular misalignment in the horizontal direction will result in beam tilting in both the horizontal and vertical directions. Good agreement between experimental and theoretical results is found.
Optimizing the Launch of a Projectile to Hit a Target
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2017-12-01
Some teenagers are exploring the outer perimeter of a castle. They notice a spy hole in its wall, across the moat a horizontal distance x and vertically up the wall a distance y. They decide to throw pebbles at the hole. One girl wants to use physics to throw with the minimum speed necessary to hit the hole. What is the required launch speed v and launch angle θ above the horizontal?
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2013-09-01
right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant
An augmented-reality edge enhancement application for Google Glass.
Hwang, Alex D; Peli, Eli
2014-08-01
Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.
The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates
Klein, Ronald; Klein, Barbara E. K.
2013-01-01
Purpose. To examine prevalence of five age-related eye conditions (age-related cataract, AMD, open-angle glaucoma, diabetic retinopathy [DR], and visual impairment) in the United States. Methods. Review of published scientific articles and unpublished research findings. Results. Cataract, AMD, open-angle glaucoma, DR, and visual impairment prevalences are high in four different studies of these conditions, especially in people over 75 years of age. There are disparities among racial/ethnic groups with higher age-specific prevalence of DR, open-angle glaucoma, and visual impairment in Hispanics and blacks compared with whites, higher prevalence of age-related cataract in whites compared with blacks, and higher prevalence of late AMD in whites compared with Hispanics and blacks. The estimates are based on old data and do not reflect recent changes in the distribution of age and race/ethnicity in the United States population. There are no epidemiologic estimates of prevalence for many visually-impairing conditions. Conclusions. Ongoing prevalence surveys designed to provide reliable estimates of visual impairment, AMD, age-related cataract, open-angle glaucoma, and DR are needed. It is important to collect objective data on these and other conditions that affect vision and quality of life in order to plan for health care needs and identify areas for further research. PMID:24335069
Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.
Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea
2017-05-01
Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.
Some experiments on Yaw stability of wind turbines with various coning angles
NASA Technical Reports Server (NTRS)
Bundas, D.; Dugundji, J.
1981-01-01
A horizontal axis wind turbine was constructed to study the effect of coning angle on the yawing moments produced. Coning angles of 0 deg, +10 deg and -10 deg were studied in the upwind and downwind cases. Moment and rotational frequency of the blades at each yaw angle setting were taken. It was found that as the coning angle increased from -10 deg to +10 deg in either the upwind or downwind case the stability decreased. The downwind case was slightly more stable for all coning angles than was the upwind case. It is found that all the previous cases were stable for high rotation speeds, but at lower rotation speeds, they were all unstable and could not self start unless held in the wind.
Saturation of the anisoplanatic error in horizontal imaging scenarios
NASA Astrophysics Data System (ADS)
Beck, Jeffrey; Bos, Jeremy P.
2017-09-01
We evaluate the piston-removed anisoplanatic error for smaller apertures imaging over long horizontal paths. Previous works have shown that the piston and tilt compensated anisoplanatic error saturates to values less than one squared radian. Under these conditions the definition of the isoplanatic angle is unclear. These works focused on nadir pointing telescope systems with aperture sizes between five meters and one half meter. We directly extend this work to horizontal imaging scenarios with aperture sizes smaller than one half meter. We assume turbulence is constant along the imaging path and that the ratio of the aperture size to the atmospheric coherence length is on the order of unity.
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Flow visualization study of the HiMAT RPRV
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1980-01-01
Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.
Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings
NASA Astrophysics Data System (ADS)
Zhu, Dong
2017-10-01
Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.
Yokosawa, Kenta; Sasaki, Kana; Muramatsu, Koichi; Ono, Tomoya; Izawa, Hiroyuki; Hachiya, Yudo
2016-05-01
Anterolateral ligament (ALL) is one of the lateral structures in the knee that contributes to the internal rotational stability of tibia. ALL has been referred to in some recent reports to re-emphasize its importance. We visualized the ALL on 3D-MRI in 32 knees of 27 healthy volunteers (23 male knees, 4 female knees; mean age: 37 years). 3D-MRIs were performed using 1.5-T scanner [T(2) weighted image (WI), SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolutions] in the knee extended positions. The visualization rate of the ALL, the mean angle to the lateral collateral ligament (LCL), and the width and the thickness of the ALL at the joint level were investigated. The visualization rate was 100%. The mean angle to the LCL was 10.6 degrees. The mean width and the mean thickness of the ALL were 6.4 mm and 1.0 mm, respectively. The ALL is a very thin ligament with a somewhat oblique course between the lateral femoral epicondyle and the mid-third area of lateral tibial condyle. Therefore, the slice thickness and the slice angle can easily affect the ALL visualization. 3D-MRI enables acquiring thin-slice imaging data over a relatively short time, and arbitrary sections aligned with the course of the ALL can later be selected.
Rutowski, Ronald L; Warrant, Eric J
2002-02-01
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.
Optimal landing of a helicopter in autorotation
NASA Technical Reports Server (NTRS)
Lee, A. Y. N.
1985-01-01
Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.
Biomechanical Study of the Fixation Strength of Anteromedial Plating for Humeral Shaft Fractures
Zheng, Yin-Feng; Zhou, Jun-Lin; Wang, Xiao-Hong; Shan, Lei; Liu, Yang
2016-01-01
Background: Open reduction and internal fixation with plate and screws are the gold standard for the surgical treatment of humeral shaft fractures, this study was to compare the mechanical properties of anteromedial, anterolateral, and posterior plating for humeral shaft fractures. Methods: A distal third humeral shaft fracture model was constructed using fourth-generation sawbones (#3404, composite bone). A total of 24 sawbones with a distal third humeral shaft fracture was randomly divided into three Groups: A, B, and C (n = 8 in each group) for anteromedial, anterolateral, and posterior plating, respectively. All sawbones were subjected to horizontal torsional fatigue tests, horizontal torsional and axial compressive fatigue tests, four-point bending fatigue tests in anteroposterior (AP) and mediolateral (ML) directions and horizontal torsional destructive tests. Results: In the horizontal torsional fatigue tests, the mean torsional angle amplitude in Groups A, B, and C were 6.12°, 6.53°, and 6.81°. In horizontal torsional and axial compressive fatigue tests, the mean torsional angle amplitude in Groups A, B, and C were 5.66°, 5.67°, and 6.36°. The mean plate displacement amplitude was 0.05 mm, 0.08 mm, and 0.10 mm. Group A was smaller than Group C (P < 0.05). In AP four-point bending fatigue tests, the mean plate displacement amplitude was 0.16 mm, 0.13 mm, and 0.20 mm. Group B was smaller than Group C (P < 0.05). In ML four-point bending fatigue tests, the mean plate displacement amplitude were 0.16 mm, 0.19 mm, and 0.17 mm. In horizontal torsional destructive tests, the mean torsional rigidity in Groups A, B, and C was 0.82, 0.75, and 0.76 N·m/deg. The yielding torsional angle was 24.50°, 25.70°, and 23.86°. The mean yielding torque was 18.46, 18.05, and 16.83 N·m, respectively. Conclusions: Anteromedial plating was superior to anterolateral or posterior plating in all mechanical tests except in AP four-point bending fatigue tests compared to the anterolateral plating group. We can suggest that anteromedial plating is a clinically safe and effective way for humeral shaft fractures. PMID:27453236
ERIC Educational Resources Information Center
Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2009-01-01
The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…
A proposal for a new definition of the axial rotation angle of the shoulder joint.
Masuda, Tadashi; Ishida, Akimasa; Cao, Lili; Morita, Sadao
2008-02-01
The Euler/Cardan angles are commonly used to define the motions of the upper arm with respect to the trunk. This definition, however, has a problem in that the angles of both the horizontal flexion/extension and the axial rotation of the shoulder joint become unstable at the gimbal-lock positions. In this paper, a new definition of the axial rotation angle was proposed. The proposed angle was stable over the entire range of the shoulder motion. With the new definition, the neutral position of the axial rotation agreed with that in the conventional anatomy. The advantage of the new definition was demonstrated by measuring actual complex motions of the shoulder with a three-dimensional motion capture system.
The Role of Visual and Nonvisual Information in the Control of Locomotion
ERIC Educational Resources Information Center
Wilkie, Richard M.; Wann, John P.
2005-01-01
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled…
The Particularity of "Pedagogic Understanding"
ERIC Educational Resources Information Center
Zhengtao, Li
2006-01-01
So far, pedagogy has not formed its own unique visual angle and thinking mode to understand humans and the world in general; consequently, it is always counting upon other subjects, which is the root of the crisis in pedagogy. Focusing on the "visual angle" and "thinking mode", this article puts forward a new proposition…
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli
NASA Technical Reports Server (NTRS)
Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.
1989-01-01
The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).
Planar microlens with front-face angle: design, fabrication, and characterization
NASA Astrophysics Data System (ADS)
Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee
2016-07-01
This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
30 CFR 75.1318 - Loading boreholes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... the borehole; and (2) The explosive cartridges shall be loaded in a manner that provides contact...
CONTINUOUS ROTATION SCATTERING CHAMBER
Verba, J.W.; Hawrylak, R.A.
1963-08-01
An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration
NASA Technical Reports Server (NTRS)
Penland, J. A.
1975-01-01
An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2017-12-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2018-02-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
72-directional display having VGA resolution for high-appearance image generation
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro; Dairiki, Takeshi
2006-02-01
The high-density directional display, which was originally developed in order to realize a natural 3D display, is not only a 3D display but also a high-appearance display. The appearances of objects, such as glare and transparency, are the results of the reflection and the refraction of rays. The faithful reproduction of such appearances of objects is impossible using conventional 2D displays because rays diffuse on the display screen. The high-density directional display precisely controls the horizontal ray directions so that it can reproduce the appearances of objects. The fidelity of the reproduction of object appearances depends on the ray angle sampling pitch. The angle sampling pitch is determined by considering the human eye imaging system. In the present study the high-appearance display which has the resolution of 640×400 and emits rays in 72 different horizontal directions with the angle pitch of 0.38° was constructed. Two 72-directional displays were combined, each of which consisted of a high-resolution LCD panel (3,840×2,400) and a slanted lenticular sheet. Two images produced by two displays were superimposed by a half mirror. A slit array was placed at the focal plane of the lenticular sheet for each display to reduce the horizontal image crosstalk in the combined image. The impression analysis shows that the high-appearance display provides higher appearances and presence than the conventional 2D displays do.
Effects of phencyclidine, secobarbital and diazepam on eye tracking in rhesus monkeys.
Ando, K; Johanson, C E; Levy, D L; Yasillo, N J; Holzman, P S; Schuster, C R
1983-01-01
Rhesus monkeys were trained to track a moving disk using a procedure in which responses on a lever were reinforced with water delivery only when the disk, oscillating in a horizontal plane on a screen at a frequency of 0.4 Hz in a visual angle of 20 degrees, dimmed for a brief period. Pursuit eye movements were recorded by electrooculography (EOG). IM phencyclidine, secobarbital, and diazepam injections decreased the number of reinforced lever presses in a dose-related manner. Both secobarbital and diazepam produced episodic jerky-pursuit eye movements, while phencyclidine had no consistent effects on eye movements. Lever pressing was disrupted at doses which had little effect on the quality of smooth-pursuit eye movements in some monkeys. This separation was particularly pronounced with diazepam. The similarities of the drug effects on smooth-pursuit eye movements between the present study and human studies indicate that the present method using rhesus monkeys may be useful for predicting drug effects on eye tracking and oculomotor function in humans.
Three dimensional force balance of asymmetric droplets
NASA Astrophysics Data System (ADS)
Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook
2016-11-01
An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).
Orthoptic status before and immediately after heroin detoxification
Firth, A Y; Pulling, S; Carr, M P; Beaini, A Y
2004-01-01
Aim: To determine whether changes in orthoptic status take place during withdrawal from heroin and/or methadone. Method: A prospective study of patients, using a repeated measures design, attending a 5 day naltrexone compressed opiate detoxification programme. Results: 83 patients were seen before detoxification (mean age 27.1 (SD 4.6) years) and 69 after detoxification. The horizontal angle of deviation became less exo/more eso at distance (p<0.001) but no significant change was found at near (p = 0.069). Stereoacuity, visual acuity, and convergence were found to be reduced in the immediate post-detoxification period. Prism fusion range, refractive error, subjective accommodation, and objective accommodation at 33 cm did not reduce but a small decrease was found in objective accommodation at 20 cm. Conclusions: The eso trend found in these patients may be responsible for the development of acute concomitant esotropia in some patients undergoing heroin detoxification. However, the mechanism for this trend does not appear to be caused by divergence insufficiency or sixth nerve palsy. PMID:15317713
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator); Latty, R. S.; Dean, E.; Knowlton, D. J.
1980-01-01
Separate holograms of horizontally (HH) and vertically (HV) polarized responses obtained by the APQ-102 side-looking radar were processed through an optical correlator and the resulting image was recorded on positive film from which black and white negative and positive prints were made. Visual comparison of the HH and HV images reveals a distinct dark band in the imagery which covers about 30% of the radar strip. Preliminary evaluaton of the flight line 1 date indicates that various features on the HH and HV images seem to have different response levels. The amount of sidelap due to the look angle between flight lines 1 and 2 is negligible. NASA mission #425 to obtain flightlines of NS-001 MSS data and supporting aerial photography was successfully flown. Flight line 3 data are of very good quality and virtually cloud-free. Results of data analysis for selection of test fields and for evaluation of waveband combination and spatial resolution are presented.
Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor
2006-01-01
We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork. PMID:16769639
Determinants of lens vault and association with narrow angles in patients from Singapore.
Tan, Gavin S; He, Mingguang; Zhao, Wanting; Sakata, Lisandro M; Li, Jialiang; Nongpiur, Monisha E; Lavanya, Raghavan; Friedman, David S; Aung, Tin
2012-07-01
To describe the distribution and determinants of lens vault and to investigate the association of lens vault with narrow angles. Prospective cross-sectional study. Phakic subjects 50 years and older were evaluated at a primary healthcare clinic with gonioscopy, partial laser interferometry, and anterior segment optical coherence tomography (AS-OCT). Narrow angles were defined as posterior trabecular meshwork not visible for ≥2 quadrants on non-indentation gonioscopy. Lens vault was defined as the perpendicular distance between the anterior pole of the crystalline lens and the horizontal line joining the 2 scleral spurs on horizontal AS-OCT scans. Analysis of covariance, multivariate logistic regression, and area under the receiver operating characteristic curves (AUC) were performed. Of the 2047 subjects recruited, 582 were excluded because of poor image quality or inability to locate scleral spurs, leaving 1465 subjects for analysis. Eyes with narrow angles had greater lens vault compared to eyes with open angles (775.6 µm vs 386.5 µm, P < .0001). Women had significantly greater lens vault than men (497.28 µm vs 438.56 µm, P < .001), and lens vault increased significantly with age (P for trend <.001). Adjusted for age and sex, significant associations with greater lens vault were shorter axial length, shallower anterior chamber depth(ACD), higher intraocular pressure, and more hyperopic spherical equivalent (all P < .001). On multivariate analysis, subjects with lens vault >667.6 µm were more likely to have narrow angles (OR 2.201, 95% CI: 1.070-4.526) compared to those with lens vault ≤462.7 µm. The AUC for lens vault (0.816) and ACD (0.822) for detecting narrow angles were similar (P = .582). Lens vault was independently associated with narrow angles and may be useful in screening to detect eyes with narrow angles. Copyright © 2012 Elsevier Inc. All rights reserved.
Influence of gravity on the orientation of vestibular induced quick phases.
Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F
1995-01-01
In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.
Canonical Visual Size for Real-World Objects
Konkle, Talia; Oliva, Aude
2012-01-01
Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required observers to access existing object knowledge, we observed that real-world objects have a consistent visual size at which they are drawn, imagined, and preferentially viewed. Importantly, this visual size is proportional to the logarithm of the assumed size of the object in the world, and is best characterized not as a fixed visual angle, but by the ratio of the object and the frame of space around it. Akin to the previous literature on canonical perspective, we term this consistent visual size information the canonical visual size. PMID:20822298
Lopez, Mandi J; Lewis, Brooke P; Swaab, Megan E; Markel, Mark D
2008-03-01
To evaluate correlations among measurements on radiographic and computed tomography (CT) images with articular cartilage microdamage in lax hip joints of dogs. 12 adult mixed-breed hounds. Pelvic CT and radiography were performed. Hip joints were harvested following euthanasia. Orthopedic Foundation for Animals (OFA) and PennHIP radiograph reports were obtained. Norberg angle (NA) and radiographic percentage femoral head coverage (RPC) were determined. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral acetabular sector angle (VASA), dorsal acetabular sector angle (DASA), horizontal acetabular sector angle (HASA), acetabular index (AI), and CT percentage femoral head coverage (CPC) were measured on 2-dimensional CT images. Femoral head-acetabular shelf percentage was measured on sagittal 3-dimensional CT (SCT) and transverse 3-dimensional CT (TCT) images. Light microscopy was used to score joint cartilage. Relationships of OFA confirmation and PennHIP osteoarthritis scores with radiography, CT, and cartilage variables and relationships of cartilage scores with radiography and CT measurements were evaluated with Spearman rank correlations. Pearson correlation was used for relationships of distraction index (DI) with radiography, CT, and cartilage variables. Significant relationships included PennHIP osteoarthritis score with cartilage score, CEA, HTEA, DASA, AI, CPC, and TCT; OFA confirmation score with cartilage score, NA, RPC, CEA, HTEA, DASA, AI, CPC, and TCT; cartilage score with NA, RPC, CEA, HTEA, DASA, HASA, AI, and TCT; and DI with cartilage score, CEA, HTEA, DASA, HASA, AI, and CPC. CT appeared to be a valuable imaging modality for predicting cartilage microdamage in canine hip joints.
NASA Technical Reports Server (NTRS)
Wehner, R.
1972-01-01
Experimental data, on the visual orientation of desert ants toward astromenotactic courses and horizon landmarks involving the cooperation of different direction finding systems, are given. Attempts were made to: (1) determine if the ants choose a compromise direction between astromenotactic angles and the direction toward horizon landmarks when both angles compete with each other or whether they decide alternatively; (2) analyze adaptations of the visual system to the special demands of direction finding by astromenotactic orientation or pattern recognition; and (3) determine parameters of visual learning behavior. Results show separate orientation mechanisms are responsible for the orientation of the ant toward astromenotactic angles and horizon landmarks. If both systems compete with each other, the ants switch over from one system to the other and do not perform a compromise direction.
Origins of strabismus and loss of binocular vision
Bui Quoc, Emmanuel; Milleret, Chantal
2014-01-01
Strabismus is a frequent ocular disorder that develops early in life in humans. As a general rule, it is characterized by a misalignment of the visual axes which most often appears during the critical period of visual development. However other characteristics of strabismus may vary greatly among subjects, for example, being convergent or divergent, horizontal or vertical, with variable angles of deviation. Binocular vision may also vary greatly. Our main goal here is to develop the idea that such “polymorphy” reflects a wide variety in the possible origins of strabismus. We propose that strabismus must be considered as possibly resulting from abnormal genetic and/or acquired factors, anatomical and/or functional abnormalities, in the sensory and/or the motor systems, both peripherally and/or in the brain itself. We shall particularly develop the possible “central” origins of strabismus. Indeed, we are convinced that it is time now to open this “black box” in order to move forward. All of this will be developed on the basis of both presently available data in literature (including most recent data) and our own experience. Both data in biology and medicine will be referred to. Our conclusions will hopefully help ophthalmologists to better understand strabismus and to develop new therapeutic strategies in the future. Presently, physicians eliminate or limit the negative effects of such pathology both on the development of the visual system and visual perception through the use of optical correction and, in some cases, extraocular muscle surgery. To better circumscribe the problem of the origins of strabismus, including at a cerebral level, may improve its management, in particular with respect to binocular vision, through innovating tools by treating the pathology at the source. PMID:25309358
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion
NASA Technical Reports Server (NTRS)
Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.
1996-01-01
1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.
NASA Astrophysics Data System (ADS)
Zheng, Liang; Zhong, Shiquan; Jin, Peter J.; Ma, Shoufeng
2012-12-01
Due to the poor road markings and irregular driving behaviors, not every vehicle is positioned in the center of the lane. The deviation from the center can cause discomfort to drivers in the neighboring lane, which is referred to as lateral discomfort (or lateral friction). Such lateral discomfort can be incorporated into the driver stimulus-response framework by considering the visual angle and its changing rate from the psychological viewpoint. In this study, a two-lane visual angle based car-following model is proposed and its stability condition is obtained through linear stability theory. Further derivations indicate that the neutral stability line of the model is asymmetry and four factors including the vehicle width and length, the lateral separation and the sensitivity regarding the changing rate of visual angle have large impacts on the stability of traffic flow. Numerical simulations further verify these theoretical results, and demonstrate that the behaviors of diverging, merging and lane changing can break the original steady state and cause traffic fluctuations. However, these fluctuations may be alleviated to some extent by reducing the lateral discomfort.
The development of contour processing: evidence from physiology and psychophysics
Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter
2014-01-01
Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. PMID:25071681
Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K
2015-12-16
The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.
78 FR 78285 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... fittings of fuselage frame FR47. Since we issued AD 2005-23-08, we have received reports of cracks found on the horizontal flange of the Frame 47 internal corner angle fitting while accomplishing the... 78286
NASA Technical Reports Server (NTRS)
Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.
1972-01-01
Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.
NASA Astrophysics Data System (ADS)
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-04-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.
ERIC Educational Resources Information Center
Alverson, Charlotte Y.; Yamamoto, Scott H.
2014-01-01
The purpose of this study was to learn from educational stakeholders what characteristics they like and dislike when viewing graphs of post-school outcomes data. We conducted six, 1-hour focus groups with teachers, administrators, and parents in which we distributed four stimuli graphs--horizontal grouped bars, horizontal stacked bars, vertical…
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2012-10-01
visual nystagmus much more robust. Because the absolute gaze is not measured in our paradigm (this would require a gaze calibration, involving...the dots were also drifting to the right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event...for automated 5 Reflex Stimulus Functions Visual Nystagmus luminance grating low-level motion equiluminant grating color vision contrast gratings at 3
Common Visual Preference for Curved Contours in Humans and Great Apes.
Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos
2015-01-01
Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Judgments of visually perceived eye level (VPEL) in outdoor scenes: effects of slope and height.
O'Shea, Robert P; Ross, Helen E
2007-01-01
When one looks up a hill from below, its peak appears lower than it is; when one looks at a hill across a valley from another peak, the peak of that hill appears higher than it is. These illusions have sometimes been explained by assuming that the subjective horizontal is assimilated to the nearby slope: when looking up a slope, the subjective horizontal is raised, diminishing the height of the peak above the subjective horizontal, and making the peak appear lower than it is. When looking down a slope towards another hill, the subjective horizontal is lowered, increasing the height of that hill above the subjective horizontal, and making its peak appear higher than it is. To determine subjective horizontals we measured visually perceived eye levels (VPELs) in 21 real-world scenes on a range of slopes. We found that VPEL indeed assimilates by about 40% to slopes between 7 degrees downhill and 7 degrees uphill. For larger uphill slopes up to 23 degrees, VPEL asymptotes at about 4.5 degrees. For larger downhill slopes, the assimilation of VPEL diminishes, and at 23 degrees is raised by about 1 degree. These results are consistent with the assimilation explanation of the illusions if we assume that steep downhill slopes lose their effectiveness by being out of view. We also found that VPEL was raised when viewing from a height, in comparison with ground-level views, perhaps because the perceived slope increases with viewing height.
Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration
NASA Technical Reports Server (NTRS)
Hamerman, J. A.
1979-01-01
This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.
Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.
Hang, Giao B; Dan, Yang
2011-01-01
Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.
Andreozzi, Jacqueline M; Brůža, Petr; Tendler, Irwin I; Mooney, Karen E; Jarvis, Lesley A; Cammin, Jochen; Li, Harold; Pogue, Brian W; Gladstone, David J
2018-06-01
The purpose of this study was to identify the optimal treatment geometry for total skin electron therapy (TSET) using a new optimization metric from Cherenkov image analysis, and to investigate the sensitivity of the Cherenkov imaging method to floor scatter effects in this unique treatment setup. Cherenkov imaging using an intensified charge coupled device (ICCD) was employed to measure the relative surface dose distribution as a 2D image in the total skin electron treatment plane. A 1.2 m × 2.2 m × 1 cm white polyethylene sheet was placed vertically at a source to surface distance (SSD) of 300 cm, and irradiated with 6 MeV high dose rate TSET beams. The linear accelerator coordinate system used stipulates 0° is the bottom of the gantry arc, and progresses counterclockwise so that gantry angle 270° produces a horizontal beam orthogonal to the treatment plane. First, all unique pairs of treatment beams were analyzed to determine the performance of the currently recommended symmetric treatment angles (±20° from the horizontal), compared to treatment geometries unconstrained to upholding gantry angle symmetry. This was performed on two medical linear accelerators (linacs). Second, the extent of the floor scatter contributions to measured surface dose at the extended SSD required for TSET were imaged using three gantry angles of incidence: 270° (horizontal), 253° (-17°), and 240° (-30°). Images of the surface dose profile at each angle were compared to the standard concrete floor when steel plates, polyvinyl chloride (PVC), and solid water were placed on the ground at the base of the treatment plane. Postprocessing of these images allowed for comparison of floor material-based scatter profiles with previously published simulation results. Analysis of the symmetric treatment geometry (270 ± 20°) and the identified optimal treatment geometry (270 + 23° and 270 - 17°) showed a 16% increase in the 90% isodose area for the latter field pair on the first linac. The optimal asymmetric pair for the second linac (270 + 25° and 270 - 17°) provided a 52% increase in the 90% isodose area when compared to the symmetric geometry. Difference images between Cherenkov images captured with test materials (steel, PVC, and solid water) and the control (concrete floor) demonstrated relative changes in the two-dimensional (2D) dose profile over a 1 × 1.9 m region of interest (ROI) that were consistent with published simulation data. Qualitative observation of the residual images demonstrates localized increases and decreases with respect to the change in floor material and gantry angle. The most significant changes occurred when the beam was most directly impinging the floor (gantry angle 240°, horizontal -30°), where the PVC floor material decreased scatter dose by 1-3% in 7.2% of the total ROI area, and the steel plate increased scatter dose by 1-3% in 7.0% of the total ROI area. An updated Cherenkov imaging method identified asymmetric, machine-dependent TSET field angle pairs that provided much larger 90% isodose areas than the commonly adopted symmetric geometry suggested by Task Group 30 Report 23. A novel demonstration of scatter dose Cherenkov imaging in the TSET field was established. © 2018 American Association of Physicists in Medicine.
Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.
Parisi, A V; Kimlin, M G
1999-01-01
The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.
Nocturnal insects use optic flow for flight control
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-01-01
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047
Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.
1993-01-01
The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.
Evidence for a shear horizontal resonance in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Manghnani, M. H.; Every, A. G.
2000-07-01
We report evidence for a different type of acoustic film excitation, identified as a shear horizontal resonance, in amorphous silicon oxynitride films on GaAs substrate. Observation of this excitation has been carried out using surface Brillouin scattering of light. A Green's function formalism is used for analyzing the experimental spectra, and successfully simulates the spectral features associated with this mode. The attributes of this mode are described; these include its phase velocity which is nearly equal to that of a bulk shear wave propagating parallel to the surface and is almost independent of film thickness and scattering angle, its localization mainly in the film, and its polarization in the shear horizontal direction.
The modified distal horizontal metatarsal osteotomy for correction of bunionette deformity.
Radl, Roman; Leithner, Andreas; Koehler, Wolfgang; Scheipl, Susanne; Windhager, Reinhard
2005-06-01
Bunionette is a common deformity for which a number of operative procedures have been described. The objective of this study was to evaluate the results of a modified distal horizontal metatarsal osteotomy in the correction of symptomatic bunionette. Metatarsal osteotomies were done in 21 feet in 14 patients (11 females, three males) with an average age of 44 (range 20 to 67) years at the time of operation. The average followup was 32 (range 12 to 52) months. The average Lesser Toe Metatarsophalangeal-Interphalangeal Score of the American Orthopaedic Foot and Ankle Society increased from 42 points (range 24 to 50) preoperatively to 87 points (range 60 to 100) at the last followup. The fifth metatarsophalangeal angle averaged 18 degrees (5 to 38 degrees) preoperatively and 5 degrees (-5 to 26 degrees) at final followup. The 4-5 intermetatarsal angle averaged 14 degrees (10 to 20 degrees) preoperatively and 9 degrees (5 to 12 degrees) at final followup. Hardware was removed from two feet and scheduled for a third foot because of symptomatic skin irritation. The modified distal horizontal metatarsal osteotomy is a stable and reliable method for correction of bunionette. Unsatisfactory results in our patients were related to prominent hardware.
Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion
NASA Astrophysics Data System (ADS)
Jelis, Elias; Hespos, Michael R.; Ravindra, Nuggehalli M.
2018-01-01
Laser powder bed fusion (L-PBF) involves the consolidation of metal powder, layer by layer, through laser melting and solidification. In this study, process parameters are optimized for AISI 4340 steel to produce dense and homogeneous structures. The optimized process parameters produce mechanical properties at the center of the build plate that are comparable to wrought in the vertical and horizontal orientations after heat treatment and machining. Four subsequent builds are filled with specimens to evaluate the mechanical behavior as a function of location and orientation. Variations in the mechanical properties are likely due to recoater blade interactions with the powder and uneven gas flow. The results obtained in this study are analyzed to assess the reliability and reproducibility of the process. A different build evaluates the performance of near-net-shaped tensile specimens angled 35°-90° from the build plate surface (horizontal). Ductility measurements and surface roughness vary significantly as a function of the build angle. In the stress-relieved and as-built conditions, the mechanical behavior of vertically oriented specimens exhibits somewhat lower and more variable ductility than horizontally oriented specimens. Therefore, several process variables affect the mechanical properties of parts produced by the L-PBF process.
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Huffman, J. K.
1974-01-01
An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg.
Tactile mental body parts representation in obesity.
Scarpina, Federica; Castelnuovo, Gianluca; Molinari, Enrico
2014-12-30
Obese people׳s distortions in visually-based mental body-parts representations have been reported in previous studies, but other sensory modalities have largely been neglected. In the present study, we investigated possible differences in tactilely-based body-parts representation between an obese and a healthy-weight group; additionally we explore the possible relationship between the tactile- and the visually-based body representation. Participants were asked to estimate the distance between two tactile stimuli that were simultaneously administered on the arm or on the abdomen, in the absence of visual input. The visually-based body-parts representation was investigated by a visual imagery method in which subjects were instructed to compare the horizontal extension of body part pairs. According to the results, the obese participants overestimated the size of the tactilely-perceived distances more than the healthy-weight group when the arm, and not the abdomen, was stimulated. Moreover, they reported a lower level of accuracy than did the healthy-weight group when estimating horizontal distances relative to their bodies, confirming an inappropriate visually-based mental body representation. Our results imply that body representation disturbance in obese people is not limited to the visual mental domain, but it spreads to the tactilely perceived distances. The inaccuracy was not a generalized tendency but was body-part related. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jeffs, Janelle; Ichida, Jennifer M.; Federer, Frederick
2009-01-01
In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9–1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6–0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the “missing” portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography. PMID:18755777
Kocatürk, Tolga; Bekmez, Sinan; Katrancı, Merve; Çakmak, Harun; Dayanır, Volkan
2015-01-01
To evaluate visual field progression with trend and event analysis in open angle glaucoma patients under treatment. Fifteen year follow-up results of 408 eyes of 217 glaucoma patients who were followed at Adnan Menderes University, Department of Ophthalmology between 1998 and 2013 were analyzed retrospectively. Visual field data were collected for Mean Deviation (MD), Visual Field Index (VFI), and event occurrence. There were 146 primary open-angle glaucoma (POAG), 123 pseudoexfoliative glaucoma (XFG) and 139 normal tension glaucoma (NTG) eyes. MD showed significant change in all diagnostic groups (p<0.001). The difference of VFI between first and last examinations were significantly different in POAG (p<0.001), and XFG (p<0.003) but not in NTG. VFI progression rates were -0.3, -0.43, and -0.2 % loss/year in treated POAG, XFG, and NTG, respectively. The number of empty triangles were statistically different between POAG-NTG (p=0.001), and XFG-NTG (p=0.002) groups. The number of half-filled (p=0.002), and full-filled (p=0.010) triangles were significantly different between XFG-NTG groups. Functional long-term follow-up of glaucoma patients can be monitored with visual field indices. We herein report our fifteen year follow-up results in open angle glaucoma.
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
International transferability of accident modification functions for horizontal curves.
Elvik, Rune
2013-10-01
Studies of the relationship between characteristics of horizontal curves and accident rate have been reported in several countries. The characteristic most often studied is the radius of a horizontal curve. Functions describing the relationship between the radius of horizontal curves and accident rate have been developed in Australia, Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden, and the United States. Other characteristics of horizontal curves that have been studied include deflection angle, curve length, the presence of transition curves, super-elevation in curves and distance to adjacent curves. This paper assesses the international transferability of mathematical functions (accident modification functions) that have been developed to relate the radius of horizontal curves to their accident rate. The main research problem is whether these functions are similar, which enhances international transferability, or dissimilar, which reduces international transferability. Accident modification functions for horizontal curve radius developed in the countries listed above are synthesised. The sensitivity of the functions to other characteristics of curves than radius is examined. Accident modification functions developed in different countries have important similarities. The functions diverge with respect to accident rate in the sharpest curves. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sounds Exaggerate Visual Shape
ERIC Educational Resources Information Center
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Appelbaum, Meghan
2010-01-01
The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.
Holographic Animation Apparatus.
ERIC Educational Resources Information Center
Johnston, Sean F.
1979-01-01
Describes a simple apparatus for producing strip holograms with a number of slit-shaped exposures displaced along the vertical direction. The hologram maintains full horizontal parallax, but the slit aperture reduces the vertical viewing angle of the animated object. (Author/GA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holenemser, K.H.
1995-10-01
This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including thosemore » done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.« less
NASA Astrophysics Data System (ADS)
Maradudin, A. A.; Simonsen, I.
2016-05-01
By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.
NASA Technical Reports Server (NTRS)
Ballin, M. G.
1982-01-01
The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
NASA Astrophysics Data System (ADS)
Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.
2017-12-01
Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.
Daniel, Lorias Espinoza; Tapia, Fernando Montes; Arturo, Minor Martínez; Ricardo, Ordorica Flores
2014-12-01
The ability to handle and adapt to the visual perspectives generated by angled laparoscopes is crucial for skilled laparoscopic surgery. However, the control of the visual work space depends on the ability of the operator of the camera, who is often not the most experienced member of the surgical team. Here, we present a simple, low-cost option for surgical training that challenges the learner with static and dynamic visual perspectives at 30 degrees using a system that emulates the angled laparoscope. A system was developed using a low-cost camera and readily available materials to emulate the angled laparoscope. Nine participants undertook 3 tasks to test spatial adaptation to the static and dynamic visual perspectives at 30 degrees. Completing each task to a predefined satisfactory level ensured precision of execution of the tasks. Associated metrics (time and error rate) were recorded, and the performance of participants were determined. A total of 450 repetitions were performed by 9 residents at various stages of training. All the tasks were performed with a visual perspective of 30 degrees using the system. Junior residents were more proficient than senior residents. This system is a viable and low-cost alternative for developing the basic psychomotor skills necessary for the handling and adaptation to visual perspectives of 30 degrees, without depending on a laparoscopic tower, in junior residents. More advanced skills may then be acquired by other means, such as in the operating theater or through clinical experience.
Powers, P.S.; Chiarle, M.; Savage, W.Z.
1996-01-01
The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Nogueira, Carlos R.; Marques, Fernando O.
2015-04-01
Theoretical and experimental studies on fold-and-thrusts belts (FTB) have shown that, under Coulomb conditions, deformation of brittle thrust wedges above a dry frictional basal contact is characterized by dominant frontward vergent thrusts (forethrusts) with thrust spacing and taper angle being directly influenced by the basal strength (increase in basal strength leading to narrower thrust spacing and higher taper angles); whereas thrust wedges deformed above a weak viscous detachment, such as salt, show a more symmetric thrust style (no prevailing vergence of thrusting) with wider thrust spacing and shallower wedges. However, different deformation patterns can be found on this last group of thrust wedges both in nature and experimentally. Therefore we focused on the strength (friction) of the wedge basal contact, the basal detachment. We used a parallelepiped box with four fixed walls and one mobile that worked as a vertical piston drove by a computer controlled stepping motor. Fine dry sand was used as the analogue of brittle rocks and silicone putty (PDMS) with Newtonian behaviour as analogue of the weak viscous detachment. To investigate the strength of basal contact on thrust wedge deformation, two configurations were used: 1) a horizontal sand pack with a dry frictional basal contact; and 2) a horizontal sand pack above a horizontal PDMS layer, acting as a basal weak viscous contact. Results of the experiments show that: the model with a dry frictional basal detachment support the predictions for the Coulomb wedges, showing a narrow wedge with dominant frontward vergence of thrusting, close spacing between FTs and high taper angle. The model with a weak viscous frictional basal detachment show that: 1) forethrusts (FT) are dominant showing clearly an imbricate asymmetric geometry, with wider spaced thrusts than the dry frictional basal model; 2) after FT initiation, the movement on the thrust can last up to 15% model shortening, leading to great amount of displacement along the FT; 3) intermittent reactivation of FTs also occurs despite the steepening of the FT plane and existence of new FT ahead, creating a high critical taper angle; 4) injection of PDMS from the basal weak layer into the FTs planes also favours to the long living of FTs and to the high critical taper angle; 5) vertical sand thickening in the hanging block also added to the taper angle.
How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them.
Fux, Michal; Eilam, David
2009-09-07
The present study focused on the movements that owls perform before they swoop down on their prey. The working hypothesis was that owl head movements reflect the capacity to efficiently follow visually and auditory a moving prey. To test this hypothesis, five tame barn owls (Tyto alba) were each exposed 10 times to a live vole in a laboratory setting that enabled us to simultaneously record the behavior of both owl and vole. Bi-dimensional analysis of the horizontal and vertical projections of movements revealed that owl head movements increased in amplitude parallel to the vole's direction of movement (sideways or away from/toward the owl). However, the owls also performed relatively large repetitive horizontal head movements when the voles were progressing in any direction, suggesting that these movements were critical for the owl to accurately locate the prey, independent of prey behavior. From the pattern of head movements we conclude that owls orient toward the prospective clash point, and then return to the target itself (the vole) - a pattern that fits an interception rather than a tracking mode of following a moving target. The large horizontal component of head movement in following live prey may indicate that barn owls either have a horizontally narrow fovea or that these movements serve in forming a motion parallax along with preserving image acuity on a horizontally wide fovea.
Dardick, Chris; Callahan, Ann; Horn, Renate; Ruiz, Karina B; Zhebentyayeva, Tetyana; Hollender, Courtney; Whitaker, Michael; Abbott, Albert; Scorza, Ralph
2013-08-01
Trees are capable of tremendous architectural plasticity, allowing them to maximize their light exposure under highly competitive environments. One key component of tree architecture is the branch angle, yet little is known about the molecular basis for the spatial patterning of branches in trees. Here, we report the identification of a candidate gene for the br mutation in Prunus persica (peach) associated with vertically oriented growth of branches, referred to as 'pillar' or 'broomy'. Ppa010082, annotated as hypothetical protein in the peach genome sequence, was identified as a candidate gene for br using a next generation sequence-based mapping approach. Sequence similarity searches identified rice TAC1 (tiller angle control 1) as a putative ortholog, and we thus named it PpeTAC1. In monocots, TAC1 is known to lead to less compact growth by increasing the tiller angle. In Arabidopsis, an attac1 mutant showed more vertical branch growth angles, suggesting that the gene functions universally to promote the horizontal growth of branches. TAC1 genes belong to a gene family (here named IGT for a shared conserved motif) found in all plant genomes, consisting of two clades: one containing TAC1-like genes; the other containing LAZY1, which contains an EAR motif, and promotes vertical shoot growth in Oryza sativa (rice) and Arabidopsis through influencing polar auxin transport. The data suggest that IGT genes are ancient, and play conserved roles in determining shoot growth angles in plants. Understanding how IGT genes modulate branch angles will provide insights into how different architectural growth habits evolved in terrestrial plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Do the angle and length of the eustachian tube influence the development of chronic otitis media?
Dinç, Aykut Erdem; Damar, Murat; Uğur, Mehmet Birol; Öz, Ibrahim Ilker; Eliçora, Sultan Şevik; Bişkin, Sultan; Tutar, Hakan
2015-09-01
To compare the eustachian tube (ET) angle (ETa) and length (ETl) of ears with and without chronic otitis media (COM), and to determine the relationship between ET anatomy and the development of COM. A retrospective case-control study. The study group comprised 125 patients (age range, 8-79 years; 64 males and 61 females) with 124 normal ears and 126 diseased ears, including ears with chronic suppurative otitis media (CSOM) with central perforation, intratympanic tympanosclerosis (ITTS), cholesteatoma, and a tympanic membrane with retraction pockets (TMRP). ET angle and length were measured using computed tomography employing the multiplanar reconstruction technique. The ETa was significantly more horizontal in diseased versus normal ears of all study groups (P = .030), and there was no group difference in ETl (P = .160). ETl was shorter in CSOM versus ITTS ears and normal ears (P = .007 and P = .003, respectively) and in cholesteatoma versus TMRP ears (P = .014). In the unilateral COM group, there were no significant differences in the ETa or ETl of diseased versus contralateral normal ears (P = .155 and P = .710, respectively). The ETa was significantly more horizontal in childhood-onset diseased versus normal ears (P = .027), and there was no group difference in ETl (P = .732). The ETa (P = .002) and ETl (P < .001) were significantly greater in males than females. A more horizontal ETa and shorter ETl could be contributory (though not significantly) etiological factors in the development of COM. 3b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Global dynamics of non-equilibrium gliding in animals.
Yeaton, Isaac J; Socha, John J; Ross, Shane D
2017-03-17
Gliding flight-moving horizontally downward through the air without power-has evolved in a broad diversity of taxa and serves numerous ecologically relevant functions such as predator escape, expanding foraging locations, and finding mates, and has been suggested as an evolutionary pathway to powered flight. Historically, gliding has been conceptualized using the idealized conditions of equilibrium, in which the net aerodynamic force on the glider balances its weight. While this assumption is appealing for its simplicity, recent studies of glide trajectories have shown that equilibrium gliding is not the norm for most species. Furthermore, equilibrium theory neglects the aerodynamic differences between species, as well as how a glider can modify its glide path using control. To investigate non-equilibrium glide behavior, we developed a reduced-order model of gliding that accounts for self-similarity in the equations of motion, such that the lift and drag characteristics alone determine the glide trajectory. From analysis of velocity polar diagrams of horizontal and vertical velocity from several gliding species, we find that pitch angle, the angle between the horizontal and chord line, is a control parameter that can be exploited to modulate glide angle and glide speed. Varying pitch results in changing locations of equilibrium glide configurations in the velocity polar diagram that govern passive glide dynamics. Such analyses provide a new mechanism of interspecies comparison and tools to understand experimentally-measured kinematics data and theory. In addition, this analysis suggests that the lift and drag characteristics of aerial and aquatic autonomous gliders can be engineered to passively alter glide trajectories with minimal control effort.
An Augmented-Reality Edge Enhancement Application for Google Glass
Hwang, Alex D.; Peli, Eli
2014-01-01
Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871
Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V
2015-01-01
The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.
NASA Technical Reports Server (NTRS)
Axelson, J. A.
1977-01-01
The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.
A horse’s locomotor signature: COP path determined by the individual limb
Hobbs, Sarah Jane; Back, Willem
2017-01-01
Introduction Ground reaction forces in sound horses with asymmetric hooves show systematic differences in the horizontal braking force and relative timing of break-over. The Center Of Pressure (COP) path quantifies the dynamic load distribution under the hoof in a moving horse. The objective was to test whether anatomical asymmetry, quantified by the difference in dorsal wall angle between the left and right forelimbs, correlates with asymmetry in the COP path between these limbs. In addition, repeatability of the COP path was investigated. Methods A larger group (n = 31) visually sound horses with various degree of dorsal hoof wall asymmetry trotted three times over a pressure mat. COP path was determined in a hoof-bound coordinate system. A relationship between correlations between left and right COP paths and degree of asymmetry was investigated. Results Using a hoof-bound coordinate system made the COP path highly repeatable and unique for each limb. The craniocaudal patterns are usually highly correlated between left and right, but the mediolateral patterns are not. Some patterns were found between COP path and dorsal wall angle but asymmetry in dorsal wall angle did not necessarily result in asymmetry in COP path and the same could be stated for symmetry. Conclusion This method is a highly sensitive method to quantify the net result of the interaction between all of the forces and torques that occur in the limb and its inertial properties. We argue that changes in motor control, muscle force, inertial properties, kinematics and kinetics can potentially be picked up at an early stage using this method and could therefore be used as an early detection method for changes in the musculoskeletal apparatus. PMID:28196073
Nakamura, S; Shimojo, S
1998-10-01
The effects of the size and eccentricity of the visual stimulus upon visually induced perception of self-motion (vection) were examined with various sizes of central and peripheral visual stimulation. Analysis indicated the strength of vection increased linearly with the size of the area in which the moving pattern was presented, but there was no difference in vection strength between central and peripheral stimuli when stimulus sizes were the same. Thus, the effect of stimulus size is homogeneous across eccentricities in the visual field.
Angle imaging: Advances and challenges
Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin
2011-01-01
Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037
NASA Technical Reports Server (NTRS)
Esparza, V.
1976-01-01
Separation data were obtained at a Mach number of 0.6 and three incidence angles of 4 deg, 6 deg, and 9 deg. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0 deg, 2 deg, and 4 deg while varying orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 deg and 10 deg and horizontal stabilizer deflections of -1 deg and +5 deg. Photographs of tested configurations are shown.
Influence of visual angle on pattern reversal visual evoked potentials
Kothari, Ruchi; Singh, Smita; Singh, Ramji; Shukla, A. K.; Bokariya, Pradeep
2014-01-01
Purpose: The aim of this study was to find whether the visual evoked potential (VEP) latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs). Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females) in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females) in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field) on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II). The statistical analysis was done by One Way Analysis of Variance (ANOVA) using EPI INFO 6. Results: In Group I, the maximum (max.) P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle) has an effect on the PRVEP parameters. Our study found that the 120 is the appropriate (and optimal) check size that can be used for accurate interpretation of PRVEPs. This will help in better assessment of the optic nerve function and integrity of anterior visual pathways. PMID:25378875
Influencing Factors of the Initiation Point in the Parachute-Bomb Dynamic Detonation System
NASA Astrophysics Data System (ADS)
Qizhong, Li; Ye, Wang; Zhongqi, Wang; Chunhua, Bai
2017-12-01
The parachute system has been widely applied in modern armament design, especially for the fuel-air explosives. Because detonation of fuel-air explosives occurs during flight, it is necessary to investigate the influences of the initiation point to ensure successful dynamic detonation. In fact, the initiating position exist the falling area in the fuels, due to the error of influencing factors. In this paper, the major influencing factors of initiation point were explored with airdrop and the regularity between initiation point area and factors were obtained. Based on the regularity, the volume equation of initiation point area was established to predict the range of initiation point in the fuel. The analysis results showed that the initiation point appeared area, scattered on account of the error of attitude angle, secondary initiation charge velocity, and delay time. The attitude angle was the major influencing factors on a horizontal axis. On the contrary, secondary initiation charge velocity and delay time were the major influencing factors on a horizontal axis. Overall, the geometries of initiation point area were sector coupled with the errors of the attitude angle, secondary initiation charge velocity, and delay time.
NASA Astrophysics Data System (ADS)
Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong
2017-05-01
Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
ERIC Educational Resources Information Center
Kaya, Deniz
2017-01-01
The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…
Neural dynamics of image representation in the primary visual cortex
Yan, Xiaogang; Khambhati, Ankit; Liu, Lei; Lee, Tai Sing
2013-01-01
Horizontal connections in the primary visual cortex have been hypothesized to play a number of computational roles: association field for contour completion, surface interpolation, surround suppression, and saliency computation. Here, we argue that horizontal connections might also serve a critical role of computing the appropriate codes for image representation. That the early visual cortex or V1 explicitly represents the image we perceive has been a common assumption on computational theories of efficient coding (Olshausen and Field 1996), yet such a framework for understanding the circuitry in V1 has not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation (Cornelissen et al. 2006, von der Heydt et al. 2003). In this study, we investigated, neurophysiologically, how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be decomposed into three components: a bottom-up feedforward input, an articulation of color tuning and a contextual modulation signal that is inversely proportional to the distance away from the bounding contrast border. We demonstrate through computational simulations that the behaviors of a model for image representation are consistent with many aspects of our neural observations. We conclude that the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests an additional new interpretation of the functional roles of horizontal connections in the primary visual cortex. PMID:22944076
An automatic calibration procedure for remote eye-gaze tracking systems.
Model, Dmitri; Guestrin, Elias D; Eizenman, Moshe
2009-01-01
Remote gaze estimation systems use calibration procedures to estimate subject-specific parameters that are needed for the calculation of the point-of-gaze. In these procedures, subjects are required to fixate on a specific point or points at specific time instances. Advanced remote gaze estimation systems can estimate the optical axis of the eye without any personal calibration procedure, but use a single calibration point to estimate the angle between the optical axis and the visual axis (line-of-sight). This paper presents a novel automatic calibration procedure that does not require active user participation. To estimate the angles between the optical and visual axes of each eye, this procedure minimizes the distance between the intersections of the visual axes of the left and right eyes with the surface of a display while subjects look naturally at the display (e.g., watching a video clip). Simulation results demonstrate that the performance of the algorithm improves as the range of viewing angles increases. For a subject sitting 75 cm in front of an 80 cm x 60 cm display (40" TV) the standard deviation of the error in the estimation of the angles between the optical and visual axes is 0.5 degrees.
Visual Image Sensor Organ Replacement: Implementation
NASA Technical Reports Server (NTRS)
Maluf, A. David (Inventor)
2011-01-01
Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels
NASA Astrophysics Data System (ADS)
Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.
2014-06-01
Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].
Design and Analysis of Horizontal Axial Flow Motor Shroud
NASA Astrophysics Data System (ADS)
Wang, Shiming; Shen, Yu
2018-01-01
The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Unconscious analyses of visual scenes based on feature conjunctions.
Tachibana, Ryosuke; Noguchi, Yasuki
2015-06-01
To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).
Effects of Horizontal Acceleration on Human Visual Acuity and Stereopsis
Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang
2015-01-01
The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy. PMID:25607601
Effects of visual focus and gait speed on walking balance in the frontal plane.
Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle
2015-08-01
We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.
Nocturnal insects use optic flow for flight control.
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-08-23
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-01-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490
Control for small-speed lateral flight in a model insect.
Zhang, Yan Lai; Sun, Mao
2011-09-01
Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.
1980-01-01
The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.
Unified Model for the Overall Efficiency of Inlets Sampling from Horizontal Aerosol Flows
NASA Astrophysics Data System (ADS)
Hangal, Sunil Pralhad
When sampling aerosols from ambient or industrial air environments, the sampled aerosol must be representative of the aerosol in the free stream. The changes that occur during sampling must be assessed quantitatively so that sampling errors can be compensated for. In this study, unified models have been developed for the overall efficiency of tubular sharp-edged inlets sampling from horizontal aerosol flows oriented at 0 to 90^circ relative to the wind direction in the vertical (pitch) and horizontal plane(yaw). In the unified model, based on experimental data, the aspiration efficiency is represented by a single equation with different inertial parameters at 0 to 60^ circ and 45 to 90^circ . Tnt transmission efficiency is separated into two components: one due to gravitational settling in the boundary layer and the other due to impaction. The gravitational settling component is determined by extending a previously developed isoaxial sampling model to nonisoaxial sampling. The impaction component is determined by a new model that quantifies the particle losses caused by wall impaction. The model also quantifies the additional particle losses resulting from turbulent motion in the vena contracta which is formed in the inlet when the inlet velocity is higher than the wind velocity. When sampling aerosols in ambient or industrial environments with an inlet, small changes in wind direction or physical constraints in positioning the inlet in the system necessitates the assessment of sampling efficiency in both the vertical and horizontal plane. The overall sampling efficiency of tubular inlets has been experimentally investigated in yaw and pitch orientations at 0 to 20 ^circ from horizontal aerosol flows using a wind tunnel facility. The model for overall sampling efficiency has been extended to include both yaw and pitch sampling based on the new data. In this model, the difference between yaw and pitch is expressed by the effect of gravity on the impaction process inside the inlet described by a newly developed gravity effect angle. At yaw, the gravity effect angle on the wall impaction process does not change with sampling angle. At pitch, the gravity effect on the impaction process results in particle loss increase for upward and decrease for downward sampling. Using the unified model, graphical representations have been developed for sampling at small angles. These can be used in the field to determine the overall sampling efficiency of inlets at several operating conditions and the operating conditions that result in an acceptable sampling error. Pitch and diameter factors have been introduced for relating the efficiency values over a wide range of conditions to those of a reference condition. The pitch factor determines the overall sampling efficiency at pitch from yaw values, and the diameter factor determines the overall sampling efficiency at different inlet diameters.
ERIC Educational Resources Information Center
Lucie, Pierre
1979-01-01
Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)
Evaluating visual function in cataract.
Elliott, D B
1993-11-01
This paper reviews recent research on the evaluation of visual function in cataract. Visual impairment in cataract is principally caused by increased intraocular forward light scatter. It is assumed that visual acuity (VA) measurements assess the impact of narrow angle light scatter. This also makes the measurement of high spatial frequency contrast sensitivity (CS) unnecessary. However, VA measurements alone are an inadequate assessment of visual impairment in some patients with cataract. In addition, it is suggested that a measurement of wide-angle light scatter is required. This can be evaluated directly using the van den Berg Straylightmeter, or indirectly using low spatial frequency CS or disability glare (DG) tests. The following are discussed: (1) the relative usefulness of these tests; (2) how they can be incorporated into the decision as to when to extract a cataract; and (3) the importance of considering binocular visual function.
Liposculpture 4. Fundamentals of good liposculpture technique.
Fischer, G
1992-03-01
The fundamentals for good liposculpture are discussed. Horizontal tunneling is to be avoided because the more horizontally the tunnel is angled, the more likely the overlying skin will drape in folds, resulting in poor cosmesis. Superficial tunneling (less than 1 cm) is to be avoided. The author believes that it is important to maintain the adhesive forces and lymphatics of the superficial layer of fat because it leads to more even healing and remodelling postoperatively. Liposuction within 3 cm of the subgluteal fold should be avoided because it can lead to ptosis of the buttocks postoperatively.
Instantaneous relationship between solar inertial and local vertical local horizontal attitudes
NASA Technical Reports Server (NTRS)
Vickery, S. A.
1977-01-01
The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.
Development of Relative Disparity Sensitivity in Human Visual Cortex.
Norcia, Anthony M; Gerhard, Holly E; Meredith, Wesley J
2017-06-07
Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age. SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age. Copyright © 2017 the authors 0270-6474/17/375608-12$15.00/0.
Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation
NASA Technical Reports Server (NTRS)
Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott
2010-01-01
The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.
Huang, Ping; Shi, Yan; Wang, Xin; Liu, Mugen; Zhang, Chun
2014-09-01
To compare the interocular asymmetry of visual field loss in newly diagnosed normal-tension glaucoma (NTG), primary open-angle glaucoma (POAG), and chronic angle-closure glaucoma (CACG) patients. Visual field results of 117 newly diagnosed, treatment-naive glaucoma patients (42 NTG, 38 POAG, and 37 CACG) were studied retrospectively. The following 3 visual field defect parameters were used to evaluate the interocular asymmetry: (1) global indices; (2) local mean deviations (MDs) of 6 predefined visual field areas; and (3) stage designated by glaucoma staging system 2. The differences of the above parameters between the trial eye (the eye with greater MDs) and the fellow eye in each subject were defined as interocular asymmetry scores. Interocular asymmetry of visual field loss was presented in all the 3 groups (all P<0.05). CACG group had greater total MD interocular asymmetry score compared with the NTG and POAG groups (among groups, P=0.008; NTG vs. CACG, P=0.005; POAG vs. CACG, P=0.009). CACG also presented with significantly higher local MD interocular asymmetry scores at central, inferior, and temporal areas compared with those of the POAG group and at inferior area compared with that of NTG group. No significant difference in either total or local MDs was detected between NTG and POAG (all P>0.05). Interocular asymmetry scores of glaucoma staging system 2 had no significant difference among the 3 groups (P=0.068). All CACG, POAG, and NTG groups presented with interocular asymmetric visual field loss at the time of diagnosis. CACG had greater interocular asymmetry compared with NTG and POAG. No significant interocular asymmetry difference was observed between NTG and POAG.
Li, Wenxun; Matin, Leonard
2005-03-01
Measurements were made of the accuracy of open-loop manual pointing and height-matching to a visual target whose elevation was perceptually mislocalized. Accuracy increased linearly with distance of the hand from the body, approaching complete accuracy at full extension; with the hand close to the body (within the midfrontal plane), the manual errors equaled the magnitude of the perceptual mislocalization. The visual inducing stimulus responsible for the perceptual errors was a single pitched-from-vertical line that was long (50 degrees), eccentrically-located (25 degrees horizontal), and viewed in otherwise total darkness. The line induced perceptual errors in the elevation of a small, circular visual target set to appear at eye level (VPEL), a setting that changed linearly with the change in the line's visual pitch as has been previously reported (pitch: -30 degrees topbackward to 30 degrees topforward); the elevation errors measured by VPEL settings varied systematically with pitch through an 18 degrees range. In a fourth experiment the visual inducing stimulus responsible for the perceptual errors was shown to induce separately-measured errors in the manual setting of the arm to feel horizontal that were also distance-dependent. The distance-dependence of the visually-induced changes in felt arm position accounts quantitatively for the distance-dependence of the manual errors in pointing/reaching and height matching to the visual target: The near equality of the changes in felt horizontal and changes in pointing/reaching with the finger at the end of the fully extended arm is responsible for the manual accuracy of the fully-extended point; with the finger in the midfrontal plane their large difference is responsible for the inaccuracies of the midfrontal-plane point. The results are inconsistent with the widely-held but controversial theory that visual spatial information employed for perception and action are dissociated and different with no illusory visual influence on action. A different two-system theory, the Proximal/Distal model, employing the same signals from vision and from the body-referenced mechanism with different weights for different hand-to-body distances, accounts for both the perceptual and the manual results in the present experiments.
A Tool for the Analysis of Motion Picture Film or Video Tape.
ERIC Educational Resources Information Center
Ekman, Paul; Friesen, Wallace V.
1969-01-01
A visual information display and retrieval system (VID-R) is described for application to visual records. VID-R searches and retrieves events by time address (location) or by previously stored ovservations or measurements. Fields are labeled by writing discriminable binary addresses on the horizontal lines outside the normal viewing area. The…
Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane
NASA Technical Reports Server (NTRS)
Smith, Charles C., Jr.
1959-01-01
The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.
Analytical and numerical analysis of the slope of von Mises planar trusses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalina, M.; Frantík, P.
2016-06-08
In the present paper, there are presented post-critical stress states which will occur at loading by vertical shift of the top joint in the direction downwards. The formation of certain stress states depends on the size of the angle formed by a straight beam of the von Mises planar truss with horizontal plane. Numerical and analytical methods and their problems with finding the angle were described. The numerical solution applies the method of searching for a minimum of potential energy.
Davydova, N G; Kuznetsova, T P; Borisova, S A; Abdulkadyrova, M Zh
2006-01-01
The paper presents the results of an investigation of the effect of the nootropic agents pantogam and nooclerine on visual functions in patients with primary open-angle glaucoma. These agents have been found to have a beneficial effect on the functional activity of the retina and optic nerve, light sensitivity, hemo- and hydrodynamics of the eye.
Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.
2003-01-01
The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.
Metric analysis of basal sphenoid angle in adult human skulls
Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina
2014-01-01
Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452
PHLUX: Photographic Flux Tools for Solar Glare and Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-12-02
A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less
Improvements, upgrades, and plans for Thomson scattering on DIII-D
NASA Astrophysics Data System (ADS)
Carlstrom, T. N.; Du, D.; Glass, F.; Liu, C.; Watkins, M.; McLean, A. G.
2016-10-01
The Thomson scattering diagnostic on DIII-D consists of 3 beam lines that probe vertically, horizontally, and in the divertor region of the tokamak, with 54 spatial locations, edge spatial resolution down to 5 mm, and 10 Nd:YAG lasers. In its 25-year history, the collection lens optics and interference filters degraded and have been replaced, restoring previous performance. In addition, improved calibrations and detector temperature control (+/- 0.1 C) have reduced systematic errors. Cross calibration with the CO2 interferometer and ECE cut-off have improved the density calibration. Improvements to the beam line and lasers have increased the laser energy delivered to the scattering volume in the plasma. Future plans include moving the divertor system to measure regions of high triangularity using in-vessel mirrors to redirect the laser beam; adding a wide angle lens to the horizontal system to view the entire plasma radius near the plasma mid plane; and reversing the direction of the laser beam on the horizontal system to reduce the scattering angle and compressing the spectrum in wavelength space so that higher central Te measurements (<5 KeV) can be made with improved accuracy. Work supported by the US DOE under DE-FC02-04ER54698 and by LLNL under DE-AC52-07NA27344.
Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277
Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W
2012-08-23
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.
Changes in the bilateral pulse transit time difference with a moving arm.
Jiang, Xinge; Wei, Shoushui; Zheng, Dingchang; Huang, Peng; Liu, Chengyu
2018-04-20
Changes of pulse transit time (PTT) induced by arm position were studied for unilateral arm. However, consistency of the PTT changes was not validated for both arm sides. We aimed to quantify the PTT changes between horizontal and non-horizontal positions from right arm and left arm in order to explore the consistency of both arms. Twenty-four normal subjects aged between 21 and 50 (14 male and 10 female) years were enrolled. Left and right radial artery pulses were synchronously recorded from 24 healthy subjects with one arm (left or right) at five angles (90∘, 45∘, 0∘, -45∘ and -90∘) and the other arm at the horizontal level (0∘) for reference. The overall mean PTT changes at the five angles (from 90∘ to -90∘) in the left arm (right as reference) were 16.1, 12.3, -0.5, -2.5 and -2.6 ms, respectively, and in the right arm (left as reference) were 18.0, 12.6, 1.6, -1.6 and -2.0 ms, respectively. Obvious differences were not found in the PTT changes between the two arms (left arm moving or right arm moving) under each of the five different positions (all P> 0.05).
NASA Technical Reports Server (NTRS)
Burrows, Dale L; Newman, Ernest E
1954-01-01
An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number of 0.88. The data indicated that, at lower angles of attack, the trim range extended to higher angles of sideslip. The total normal-force and hinge-moment coefficients for both horizontal fins were slightly nonlinear with both angle-of-attack and fin deflection. The effect of Mach number was to reduce the slopes of the hinge-moment coefficient with angle of attack and deflection angle. In general, the effort of increasing the sideslip angle was to reduce the values of the fin normal-force and hinge-moment coefficients.
Holló, Gábor
2017-07-01
To present a case of early primary open-angle glaucoma in which retinal nerve fiber layer thickness (RNFLT), ganglion cell complex (GCC), and visual field progression were accompanied with significant progression of peripapillary angioflow vessel density (PAFD) measured with optical coherence tomographic angiography. A 68-year-old female patient who was under topical intraocular pressure (IOP) lowering medication for 20 years for ocular hypertension of the right and preperimetric primary open-angle glaucoma of the left eye (with reproducible inferotemporal and superotemporal neuroretinal rim and RNFL loss) was prospectively imaged with the AngioVue OCT for RNFLT, GCC thickness, and PAFD, and investigated with the Octopus Normal G2 visual field test on the same days at 6-month intervals for 18 months, while the IOP of the left eye escaped from control. IOP of the left eye fluctuated between 14 and 30 mm Hg in the study period. RNFLT, GCC thickness, and peripapillary PAFD all decreased significantly (linear regression analysis, P=0.030, 0.040, and 0.020, respectively), and a significant 2.1 dB/y progression was seen for a superior visual field cluster. The RNFLT, peripapillary PAFD, and visual field of the right eye remained normal and unchanged. In our case IOP elevation, glaucomatous visual field conversion, and structural progression were accompanied with significant progressive decrease of peripapillary PAFD. The simultaneous thinning of RNFLT and GCC and decrease of peripapillary PAFD suggest that PAFD may potentially be an additional indicator of early progression in primary open-angle glaucoma.
The Effect of Training on Accuracy of Angle Estimation.
ERIC Educational Resources Information Center
Waller, T. Gary; Wright, Robert H.
This report describes a study to determine the effect of training on accuracy in estimating angles. The study was part of a research program directed toward improving navigation techniques for low-level flight in Army aircraft and was made to assess the feasibility of visually estimating angles on a map in order to determine angles of drift.…
Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Beyer, M.; Hess, B. J.
2000-01-01
During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.
Directional tendencies of Hebrew, Japanese, and English readers.
Nachson, I; Hatta, T
2001-08-01
Consistent left-right and right-left reading habits are associated with corresponding directional tendencies in the reproduction of horizontally displayed visual stimuli. Inconsistent reading habits should therefore be associated with inconsis tent directional tendencies. This hypothesis was tested on Japanese readers whose reading habits were inconsistent by asking them to reproduce four series of 12-item horizontal stimulus arrays. The hypothesis was partially supported by the data which showed that, like Hebrew readers who also have inconsistent reading habits, the directional tendencies shown by the 68 Japanese readers were significantly weaker on some tasks that those shown by the 16 English readers whose left-right reading habits were consistent. The data were interpreted as showing that acquired reading habits may affect directionality in perception of visual stimuli.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Newsom, W. A., Jr.
1974-01-01
An investigation was conducted to determine the low-speed yawing stability derivatives of a twin-jet fighter airplane model at high angles of attack. Tests were performed in a low-speed tunnel utilizing variable-curvature walls to simulate pure yawing motion. The results of the study showed that at angles of attack below the stall the yawing derivatives were essentially independent of the yawing velocity and sideslip angle. However, at angles of attack above the stall some nonlinear variations were present and the derivatives were strongly dependent upon sideslip angle. The results also showed that the rolling moment due to yawing was primarily due to the wing-fuselage combination, and that at angles of attack below the stall both the vertical and horizontal tails produced significant contributions to the damping in yaw. Additionally, the tests showed that the use of the forced-oscillation data to represent the yawing stability derivatives is questionable, at high angles of attack, due to large effects arising from the acceleration in sideslip derivatives.
Visualization Support for an Army Reconnaissance Mission
1994-02-01
transform an aerial photographic image into an orthophoto image. In this process, the horizontal coordinates and elevation of a point on the ground are...to the corresponding horizontal position on the orthophoto . The result is a new digital image without relief displacement. This orthophoto image will...process, the orthophotos were generated. The generation of one orthophoto for every other photo was sufficient to ensure complete coverage of the test
Open-field arena boundary is a primary object of exploration for Drosophila
Soibam, Benjamin; Mann, Monica; Liu, Lingzhi; Tran, Jessica; Lobaina, Milena; Kang, Yuan Yuan; Gunaratne, Gemunu H; Pletcher, Scott; Roman, Gregg
2012-01-01
Drosophila adults, when placed into a novel open-field arena, initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity and spend a majority of time near the arena edge, executing motions along the walls. In order to determine the environmental features that are responsible for the initial high activity and wall-following behavior exhibited during exploration, we examined wild-type and visually impaired mutants in arenas with different vertical surfaces. These experiments support the conclusion that the wall-following behavior of Drosophila is best characterized by a preference for the arena boundary, and not thigmotaxis or centrophobicity. In circular arenas, Drosophila mostly move in trajectories with low turn angles. Since the boundary preference could derive from highly linear trajectories, we further developed a simulation program to model the effects of turn angle on the boundary preference. In an hourglass-shaped arena with convex-angled walls that forced a straight versus wall-following choice, the simulation with constrained turn angles predicted general movement across a central gap, whereas Drosophila tend to follow the wall. Hence, low turn angled movement does not drive the boundary preference. Lastly, visually impaired Drosophila demonstrate a defect in attenuation of the elevated initial activity. Interestingly, the visually impaired w1118 activity decay defect can be rescued by increasing the contrast of the arena's edge, suggesting that the activity decay relies on visual detection of the boundary. The arena boundary is, therefore, a primary object of exploration for Drosophila. PMID:22574279
Löwenkamp, Christian; Eloka, Owino; Schiller, Florian; Kao, Chung-Shan; Wu, Chaohua; Gao, Xiaorong; Franz, Volker H.
2016-01-01
The SNARC effect refers to an association of numbers and spatial properties of responses that is commonly thought to be amodal and independent of stimulus notation. We tested for a horizontal SNARC effect using Arabic digits, simple-form Chinese characters and Chinese hand signs in participants from Mainland China. We found a horizontal SNARC effect in all notations. This is the first time that a horizontal SNARC effect has been demonstrated in Chinese characters and Chinese hand signs. We tested for the SNARC effect in two experiments (parity judgement and magnitude judgement). The parity judgement task yielded clear, consistent SNARC effects in all notations, whereas results were more mixed in magnitude judgement. Both Chinese characters and Chinese hand signs are represented non-symbolically for low numbers and symbolically for higher numbers, allowing us to contrast within the same notation the effects of heavily learned non-symbolic vs. symbolic representation on the processing of numbers. In addition to finding a horizontal SNARC effect, we also found a robust numerical distance effect in all notations. This is particularly interesting as it persisted when participants reported using purely visual features to solve the task, thereby suggesting that numbers were processed semantically even when the task could be solved without the semantic information. PMID:27684956
Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng
2018-01-01
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606
Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.
2010-01-01
We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789
Sun, Ming-Shen; Zhang, Li; Guo, Ning; Song, Yan-Zheng; Zhang, Feng-Ju
2018-01-01
To evaluate and compare the uniformity of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided ablation of laser in situ keratomileusis (LASIK) by EX500 excimer laser for myopia. Totally 145 cases (290 consecutive eyes )with myopia received LASIK with a target of emmetropia. The ablation for 86 cases (172 eyes) was guided manually based on Oculyzer topography (study group), while the ablation for 59 cases (118 eyes) was guided automatically by Topolyzer Vario topography (control group). Measurement of adjustment values included data respectively in horizontal and vertical direction of cornea. Horizontally, synclastic adjustment between manually actual values (dx manu ) and Oculyzer topography guided data (dx ocu ) accounts 35.5% in study group, with mean dx manu /dx ocu of 0.78±0.48; while in control group, synclastic adjustment between automatically actual values (dx auto ) and Oculyzer topography data (dx ocu ) accounts 54.2%, with mean dx auto /dx ocu of 0.79±0.66. Vertically, synclastic adjustment between dy manu and dy ocu accounts 55.2% in study group, with mean dy manu /dy ocu of 0.61±0.42; while in control group, synclastic adjustment between dy auto and dy ocu accounts 66.1%, with mean dy auto /dy ocu of 0.66±0.65. There was no statistically significant difference in ratio of actual values/Oculyzer topography guided data in horizontal and vertical direction between two groups ( P =0.951, 0.621). There is high consistency in angle Kappa adjustment guided manually by Oculyzer and guided automatically by Topolyzer Vario topography during corneal refractive surgery by WaveLight EX500 excimer laser.
NASA Technical Reports Server (NTRS)
Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1947-01-01
Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.
High angle-of-attack aerodynamic characteristics of crescent and elliptic wings
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1989-01-01
Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.
Comparing artistic and geometrical perspective depictions of space in the visual field
Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert
2014-01-01
Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections. PMID:26034563
Comparing artistic and geometrical perspective depictions of space in the visual field.
Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert
2014-01-01
Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.
Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina).
Weiffen, Michael; Möller, Bettina; Mauck, Björn; Dehnhardt, Guido
2006-05-01
The underwater visual acuity (the angle subtended by the minimal resolvable line width of high contrast square wave gratings at a viewing distance of 2m) of two male harbor seals was determined at different levels of water turbidity. Starting with visual acuity angles of 5.5' and 12.7' in clear water we found visual acuity to decrease rapidly with increasing turbidity at rates of 7.4' and 6.0' per formazin nephelometric unit (FNU). Besides the individual differences in visual performance of the harbor seals tested, our results reveal a dramatic loss of visual acuity even at moderate levels of turbidity. At sites in the German Wadden Sea, where harbor seals are known to roam and forage, we measured turbidity levels exceeding 40FNU. These data suggest that turbidity has to be considered as an important factor in the sensory ecology of pinnipeds.
Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision
NASA Technical Reports Server (NTRS)
Borkenhagen, J. M.
1974-01-01
Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Modulation of high-frequency vestibuloocular reflex during visual tracking in humans
NASA Technical Reports Server (NTRS)
Das, V. E.; Leigh, R. J.; Thomas, C. W.; Averbuch-Heller, L.; Zivotofsky, A. Z.; Discenna, A. O.; Dell'Osso, L. F.
1995-01-01
1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5-40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P < 0.001), with minimal phase changes, such that mean retinal image slip was held below 5 degrees/s. However, no corresponding modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS).
[Principles of the EOS™ X-ray machine and its use in daily orthopedic practice].
Illés, Tamás; Somoskeöy, Szabolcs
2012-02-26
The EOS™ X-ray machine, based on a Nobel prize-winning invention in Physics in the field of particle detection, is capable of simultaneously capturing biplanar X-ray images by slot scanning of the whole body in an upright, physiological load-bearing position, using ultra low radiation doses. The simultaneous capture of spatially calibrated anterioposterior and lateral images allows the performance of a three-dimensional (3D) surface reconstruction of the skeletal system by a special software. Parts of the skeletal system in X-ray images and 3D-reconstructed models appear in true 1:1 scale for size and volume, thus spinal and vertebral parameters, lower limb axis lengths and angles, as well as any relevant clinical parameters in orthopedic practice could be very precisely measured and calculated. Visualization of 3D reconstructed models in various views by the sterEOS 3D software enables the presentation of top view images, through which one can analyze the rotational conditions of lower limbs, joints and spine deformities in horizontal plane and this provides revolutionary novel possibilities in orthopedic surgery, especially in spine surgery.
Hydrodynamics of a three-dimensional self-propelled flexible plate
NASA Astrophysics Data System (ADS)
Ryu, Jaeha; Sung, Hyung Jin
2017-11-01
A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).
Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars
Li, R.; Archinal, B.A.; Arvidson, R. E.; Bell, J.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Di, K.; Duxbury, T.; Golombek, M.P.; Grant, J. A.; Greeley, R.; Guinn, J.; Johnson, Aaron H.; Kirk, R.L.; Maimone, M.; Matthies, L.H.; Malin, M.; Parker, T.; Sims, M.; Thompson, S.; Squyres, S. W.; Soderblom, L.A.
2006-01-01
By sol 440, the Spirit rover has traversed a distance of 3.76 km (actual distance traveled instead of odometry). Localization of the lander and the rover along the traverse has been successfully performed at the Gusev crater landing site. We localized the lander in the Gusev crater using two-way Doppler radio positioning and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were used to verify the determined lander position. Visual odometry and bundle adjustment technologies were applied to compensate for wheel slippage, azimuthal angle drift, and other navigation errors (which were as large as 10.5% in the Husband Hill area). We generated topographic products, including 72 ortho maps and three-dimensional (3-D) digital terrain models, 11 horizontal and vertical traverse profiles, and one 3-D crater model (up to sol 440). Also discussed in this paper are uses of the data for science operations planning, geological traverse surveys, surveys of wind-related features, and other science applications. Copyright 2006 by the American Geophysical Union.
Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia
NASA Astrophysics Data System (ADS)
Abouhashish, Mohamed
2017-06-01
The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.
Sensitivity of vergence responses of 5- to 10-week-old human infants
Seemiller, Eric S.; Wang, Jingyun; Candy, T. Rowan
2016-01-01
Infants have been shown to make vergence eye movements by 1 month of age to stimulation with prisms or targets moving in depth. However, little is currently understood about the threshold sensitivity of the maturing visual system to such stimulation. In this study, 5- to 10-week-old human infants and adults viewed a target moving in depth as a triangle wave of three amplitudes (1.0, 0.5, and 0.25 meter angles). Their horizontal eye position and the refractive state of both eyes were measured simultaneously. The vergence responses of the infants and adults varied at the same frequency as the stimulus at the three tested modulation amplitudes. For a typical infant of this age, the smallest amplitude is equivalent to an interocular change of approximately 2° of retinal disparity, from nearest to farthest points. The infants' accommodation responses only modulated reliably to the largest stimulus, while adults responded to all three amplitudes. Although the accommodative system appears relatively insensitive, the sensitivity of the vergence responses suggests that subtle cues are available to drive vergence in the second month after birth. PMID:26891827
Single-stage surgery for symptomatic small-angle strabismus under topical anaesthesia.
Zou, Leilei; Liu, Rui; Liu, Hong; Huang, Liwen; Liu, Yan; Wang, Aihou
2014-04-01
To report outcomes of single-stage surgery under topical anaesthesia for the treatment of small-angle strabismus. Case series. Thirteen patients, 7 males and 6 females, with a median age of 32 years (range, 20-59 years) were included. Patients with symptomatic small-angle strabismus with stable deviations of no more than 20 prism diopters (PD) in horizontal and 10 PD in vertical were consecutively recruited from the Eye and ENT Hospital of Fudan University between January 2010 and April 2012. Single-stage surgery was performed under topical anaesthesia. Outcome measures were PD, Amblyopia and Strabismus Questionnaire (ASQE) scores, and subjective reduction of symptoms. The median duration of symptoms was 40 months (range, 6-96 months). Nine patients had horizontal deviations, 3 had vertical deviations, and 1 had an exodeviation combined with a vertical deviation. All surgeries were completed without complications, and no patients experienced significant discomfort. All patients reported elimination of symptoms on postoperative day 1. Two patients required a second procedure at 1 week because of a return of symptoms. At 6-month follow-up, no patient reported recurrence of symptoms. The overall ASQE score improved from 70 preoperatively to 96 postoperatively (p = 0.001). These results suggest single-stage surgery under topical anaesthesia is an effective treatment for small-angle strabismus. A large, randomized, prospective study to confirm these findings is warranted. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.
A modified Austin/chevron osteotomy for treatment of hallux valgus and hallux rigidus.
Vasso, Michele; Del Regno, Chiara; D'Amelio, Antonio; Schiavone Panni, Alfredo
2016-03-01
The purpose of this brief paper is to present the preliminary results of a modified Austin/chevron osteotomy for treatment of hallux valgus and hallux rigidus. In this procedure, the dorsal arm of the osteotomy is performed orthogonal to the horizontal plane of the first metatarsal, the main advantage being that this allows much easier and more accurate multiplanar correction of first metatarsal deformities. From 2010 to 2013, 184 consecutive patients with symptomatic hallux valgus and 48 patients with hallux rigidus without severe metatarsophalangeal joint degeneration underwent such modified chevron osteotomy. Mean patient age was 54.9 (range 21-70) years, and mean follow-up duration was 41.7 (range 24-56) months. Ninety-three percent of patients were satisfied with the surgery. Mean American Orthopaedic Foot and Ankle Society (AOFAS) score improved from 56.6 preoperatively to 90.6 at last follow-up, and mean visual analog scale (VAS) pain score decreased from 5.7 preoperatively to 1.6 at final follow-up (p < 0.05). In patients treated for hallux valgus, mean hallux valgus angle decreased from 34.1° preoperatively to 6.2° at final follow-up, and mean intermetatarsal angle decreased from 18.5° preoperatively to 4.1° at final follow-up (p < 0.05). One patient developed postoperative transfer metatarsalgia, treated successfully with second-time percutaneous osteotomy of the minor metatarsals, whilst one patient had wound infection that resolved with systemic antibiotics. Level IV.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.
Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas
2011-05-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations
Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas
2011-01-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Bihari, Brian D.
2008-01-01
Due to mass constraints, the Orion Command Module landing attention system requires that the capsule be oriented in a specific direction with respect to the horizontal surface-relative velocity (Heading) at touchdown in order to keep crew and vehicle loads within specifications. These constraints apply to both land and water landings. In fact, water landings are even more constrained with the addition of impact angle requirements necessary to slice through the water. There are two primary challenges with achieving this touchdown orientation: 1. Navigation knowledge of velocity (needed to determine Heading) with and without GPS, including the effects of the Heading angle itself becoming undefined as horizontal velocity decreases, and 2. Controlling to the desired orientation in the presences of chute torque and wind gusts that may change the Heading just prior to touchdown. This paper will discuss the design and performance of the current Orion navigation and control system used to achieve the desired orientation at touchdown.
NASA Technical Reports Server (NTRS)
1983-01-01
Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.
NASA Astrophysics Data System (ADS)
Toropov, S. Yu; Toropov, V. S.
2018-05-01
In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Guidance system for low angle silicon ribbon growth
Jewett, David N.; Bates, Herbert E.; Milstein, Joseph B.
1986-07-08
In a low angle silicon sheet growth process, a puller mechanism advances a seed crystal and solidified ribbon from a cooled growth zone in a melt at a low angle with respect to the horizontal. The ribbon is supported on a ramp adjacent the puller mechanism. Variations in the vertical position of the ribbon with respect to the ramp are isolated from the growth end of the ribbon by (1) growing the ribbon so that it is extremely thin, preferably less than 0.7 mm, (2) maintaining a large growth zone, preferably one whose length is at least 5.0 cm, and (3) spacing the ramp from the growth zone by at least 15 cm.
NASA Astrophysics Data System (ADS)
Hassanat, Ahmad B. A.; Jassim, Sabah
2010-04-01
In this paper, the automatic lip reading problem is investigated, and an innovative approach to providing solutions to this problem has been proposed. This new VSR approach is dependent on the signature of the word itself, which is obtained from a hybrid feature extraction method dependent on geometric, appearance, and image transform features. The proposed VSR approach is termed "visual words". The visual words approach consists of two main parts, 1) Feature extraction/selection, and 2) Visual speech feature recognition. After localizing face and lips, several visual features for the lips where extracted. Such as the height and width of the mouth, mutual information and the quality measurement between the DWT of the current ROI and the DWT of the previous ROI, the ratio of vertical to horizontal features taken from DWT of ROI, The ratio of vertical edges to horizontal edges of ROI, the appearance of the tongue and the appearance of teeth. Each spoken word is represented by 8 signals, one of each feature. Those signals maintain the dynamic of the spoken word, which contains a good portion of information. The system is then trained on these features using the KNN and DTW. This approach has been evaluated using a large database for different people, and large experiment sets. The evaluation has proved the visual words efficiency, and shown that the VSR is a speaker dependent problem.
Fish allergy causing angioedema and secondary angle-closure glaucoma.
Calder, Donovan; Calder, Jennifer
2013-03-06
A 56-year-old woman with a history of primary angle-closure glaucoma presented with acute generalised swelling, and facial angioedema following a fish meal. She complained of nausea, vomiting, headache, pain in both eyes and acute loss of vision. Her visual acuity was reduced and intraocular pressures (IOP) were elevated. Gonioscopy revealed complete angle closure in the left eye and complete to partial closure in the right eye. Through existing peripheral iridotomies the anterior capsules were seen pressed up against the iris of both eyes. A diagnosis of angle-closure glaucoma was made, medications were started to reduce the elevated intraocular pressure and systemic antihistamine to counter the allergic reaction. She was hospitalised for further management. A follow-up at 2 years revealed her visual acuities and IOP had remained normal.
NASA Technical Reports Server (NTRS)
Zhang, Neng-Li; Chao, David F.
2001-01-01
A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
Mondal, Lakshmikanta; Baidya, Krishnapada; Choudhury, Himadri; Roy, Rupam
2013-06-01
The purpose of the study was to evaluate the progression of glaucomatous field damage in patients with stable primary open angle glaucoma after an attack of myocardial infarction. In this case control study, 62 open angle glaucoma patients were selected and regularly followed up. Among 62 patients, 9 had an attack of myocardial infarction. The intra-ocular pressure and visual field progression of both the groups (myocardial infarction versus no myocardial infarction) were analysed. Three (33.3%) out of 9 patients who had suffered from myocardial infarction showed progressive visual field loss whereas only 9 (16.9%) out of 53 patients who did not suffer from myocardial infarction, showed progressive field changes. Both the groups had stable target intra-ocular pressure between 14 and 16 mm Hg. Myocardial infarction may adversely influence the progression of primary open angle glaucoma which is suspected to result from ischaemia induced neuronal loss and only control of intraocular pressure is not the only solution. We have to look for other drugs that prevents ischaemia induced neuronal damage.
Versatile functional roles of horizontal cells in the retinal circuit.
Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa
2017-07-17
In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.
How, Martin J; Porter, Megan L; Radford, Andrew N; Feller, Kathryn D; Temple, Shelby E; Caldwell, Roy L; Marshall, N Justin; Cronin, Thomas W; Roberts, Nicholas W
2014-10-01
The polarization of light provides information that is used by many animals for a number of different visually guided behaviours. Several marine species, such as stomatopod crustaceans and cephalopod molluscs, communicate using visual signals that contain polarized information, content that is often part of a more complex multi-dimensional visual signal. In this work, we investigate the evolution of polarized signals in species of Haptosquilla, a widespread genus of stomatopod, as well as related protosquillids. We present evidence for a pre-existing bias towards horizontally polarized signal content and demonstrate that the properties of the polarization vision system in these animals increase the signal-to-noise ratio of the signal. Combining these results with the increase in efficacy that polarization provides over intensity and hue in a shallow marine environment, we propose a joint framework for the evolution of the polarized form of these complex signals based on both efficacy-driven (proximate) and content-driven (ultimate) selection pressures. © 2014. Published by The Company of Biologists Ltd.
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-04-14
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work.
Visual and visually mediated haptic illusions with Titchener's ⊥.
Landwehr, Klaus
2014-05-01
For a replication and expansion of a previous experiment of mine, 14 newly recruited participants provided haptic and verbal estimates of the lengths of the two lines that make up Titchener's ⊥. The stimulus was presented at two different orientations (frontoparallel vs. horizontal) and rotated in steps of 45 deg around 2π. Haptically, the divided line of the ⊥ was generally underestimated, especially at a horizontal orientation. Verbal judgments also differed according to presentation condition and to which line was the target, with the overestimation of the undivided line ranging between 6.2 % and 15.3 %. The results are discussed with reference to the two-visual-systems theory of perception and action, neuroscientific accounts, and also recent historical developments (the use of handheld touchscreens, in particular), because the previously reported "haptic induction effect" (the scaling of haptic responses to the divided line of the ⊥, depending on the length of the undivided one) did not replicate.
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?
Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C
2018-06-01
The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.
Surface texture measurement for additive manufacturing
NASA Astrophysics Data System (ADS)
Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.
2015-06-01
The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.
NASA Astrophysics Data System (ADS)
Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul
2018-03-01
Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi
2018-02-01
A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.
Arimura, Eiko; Matsumoto, Chota; Nomoto, Hiroki; Hashimoto, Shigeki; Takada, Sonoko; Okuyama, Sachiko; Shimomura, Yoshikazu
2011-01-05
To assess the correlations between a patient's subjective perception of metamorphopsia and the clinical measurements of metamorphopsia by M-CHARTS and PreView PHP (PHP). The authors designed a 10-item questionnaire focusing on the symptoms of metamorphopsia and verified its validity with a Rasch analysis. M-CHARTS measured the minimum visual angle of a dotted line needed to detect metamorphopsia, and PHP used the hyperacuity function for detection. Subjects were 39 patients with idiopathic epiretinal membrane (ERM), 22 patients with idiopathic macular hole (M-hole), 19 patients with age-related macular degeneration (AMD), and 51 healthy controls. Rasch analysis suggested the elimination of one question. The nine-item questionnaire score significantly correlated to the M-CHARTS score in ERM (r = 0.59; P = 0.0004) but not in M-hole and to the PHP result in AMD (r = -0.29; P = 0.04) but not in ERM. Eighty percent of ERM patients with greater horizontal M-CHARTS score subjectively perceived horizontal metamorphopsia more often. M-CHARTS showed better sensitivities than PHP in both ERM (89% vs. 42%) and AMD (74% vs. 68%) and better specificity (100% vs. 71%) in healthy controls. Rasch analysis indicated that the present form of the questionnaire is better suited for moderate to severe cases of metamorphopsia than for mild cases. The questionnaire appears to be a valid assessment of patient subjective perception of metamorphopsia and can be used to supplement the clinical measurements of metamorphopsia by M-CHARTS and PHP in patients with macular diseases.
Use of EEG to Track Visual Attention in Two Dimensions
2014-05-01
lateralizations of 12Hz and 18Hz activity. A second experiment was then designed to track attention locus as it varied either horizontally or 1...policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office...endogenous lateralizations of 12Hz and 18Hz activity. A second experiment was then designed to track attention locus as it varied either horizontally or
NASA Astrophysics Data System (ADS)
Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.
2000-06-01
We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.
Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayers, F.J.; Aziz, K.; Hewett, T.A.
1993-03-10
A number of activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: Progress is being made on the development of a black oil three-phase simulator which will allow the use of a generalized Voronoi grid in the plane perpendicular to a horizontal well. The available analytical solutions in the literature for calculating productivity indices (Inflow Performance) of horizontal wells have been reviewed. The pseudo-steady state analytic model of Goode and Kuchuk has been applied to an examplemore » problem. A general mechanistic two-phase flow model is under development. The model is capable of predicting flow transition boundaries for a horizontal pipe at any inclination angle. It also has the capability of determining pressure drops and holdups for all the flow regimes. A large code incorporating all the features of the model has been programmed and is currently being tested.« less
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.
1978-01-01
Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.
Horizontally progressive mirror for blind spot detection in automobiles.
Lee, Hocheol; Kim, Dohyun; Yi, Sung
2013-02-01
The blind spot of automobiles has been a critical issue in driving safety performance. Side mirrors that use an aspheric shape to achieve a wider angle rather than conventional spherical or flat mirrors have been recently permitted from European Union safety regulations. However, these mirrors also cause difficulty in perceiving the speed and distance of an approaching vehicle in the aspheric mirror zones with their decreasing radii of curvature. We demonstrated new side mirrors showing a stable vehicle image by inserting a horizontally progressive zone between the two outer spherical zones used for the far and near views.
Matsumoto, Yuji; Takaki, Yasuhiro
2014-06-15
Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.
1991-05-01
long-hull SSN-637 class submarine with a trim of 6 ft (1.83 m) down by the stern vith Rudder Plate A and the moveable sternplanes at 25 dog trailing...TEU 25 TEU 25STEU 25 TEU 25 TEU 4 31.OS 21.05 (2.06)t 7 I32.05 20.0 S (51) 10-25S j______J 10.0s P - Porn S - Starboard Table 6. Horizontal towline...10 22.08 13.OS 14.OS (5.14) _______ ______ _________1________ P - Porn S - Starboard Table 10. Horizontal towline angles for a short-hull
Burmann, Britta; Dehnhardt, Guido; Mauck, Björn
2005-01-01
Mental rotation is a widely accepted concept indicating an image-like mental representation of visual information and an analogue mode of information processing in certain visuospatial tasks. In the task of discriminating between image and mirror-image of rotated figures, human reaction times increase with the angular disparity between the figures. In animals, tests of this kind yield inconsistent results. Pigeons were found to use a time-independent rotational invariance, possibly indicating a non-analogue information processing system that evolved in response to the horizontal plane of reference birds perceive during flight. Despite similar ecological demands concerning the visual reference plane, a sea lion was found to use mental rotation in similar tasks, but its processing speed while rotating three-dimensional stimuli seemed to depend on the axis of rotation in a different way than found for humans in similar tasks. If ecological demands influence the way information processing systems evolve, hominids might have secondarily lost the ability of rotational invariance while retreating from arboreal living and evolving an upright gait in which the vertical reference plane is more important. We therefore conducted mental rotation experiments with an arboreal living primate species, the lion-tailed macaque. Performing a two-alternative matching-to-sample procedure, the animal had to decide between rotated figures representing image and mirror-image of a previously shown upright sample. Although non-rotated stimuli were recognized faster than rotated ones, the animal's mean reaction times did not clearly increase with the angle of rotation. These results are inconsistent with the mental rotation concept but also cannot be explained assuming a mere rotational invariance. Our study thus seems to support the idea of information processing systems evolving gradually in response to specific ecological demands.
Contrasting vertical and horizontal representations of affect in emotional visual search.
Damjanovic, Ljubica; Santiago, Julio
2016-02-01
Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings.
Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.
Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William
2015-06-01
A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be attributed to sagittal malalignment. N/A.
Peripapillary schisis in open-angle glaucoma.
Dhingra, N; Manoharan, R; Gill, S; Nagar, M
2017-03-01
PurposeTo report clinical features, topographic findings and outcome of 10 eyes with peripapillary schisis in open-angle glaucoma.Patients and methodsA retrospective review of patients with open-angle glaucoma who were noted to have peripapillary schisis on optical coherence tomography (OCT) were included. Serial peripapillary and macula infrared and OCT images, visual acuity, visual fields, and schisis appearance were reviewed.ResultsTen eyes of nine patients with open-angle glaucoma were detected to have the presence of peripapillary schisis. Nerve fibre layer schisis was detected in all eyes and one eye had an associated macular schisis. None of the eyes had an acquired pit of the optic nerve or pathological myopia. The mean intraocular pressures at detection was 18.3±4.3 mm Hg and the schisis resolved in four eyes after a mean follow-up of 21.2±8.8 months. Visual field worsening was noted in 4 of the 10 eyes and the resolution of schisis resulted in significant reduction in the retinal nerve fibre layer (RNFL) thickness.ConclusionsPeripapillary schisis detected during the normal course of open-angle glaucoma can resolve spontaneously and rarely involves the macula. Its resolution leads to reduction in RNFL thickness; therefore, caution is advised while interpreting serial scans.
Spatial integration and cortical dynamics.
Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G
1996-01-23
Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.
Differential patterns of 2D location versus depth decoding along the visual hierarchy.
Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D
2017-02-15
Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.
A new illusion of projected three-dimensional space
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Grunwald, Arthur
1987-01-01
When perspective projections of orbital trajectories plotted in local-vertical local-horizontal coordinates are viewed with certain viewing angles, their appearance becomes perceptually unstable. They often lose their trochoidal appearance and reorganize as helices. This reorganization may be due to the viewer's familiarity with coiled springs.
ERIC Educational Resources Information Center
Olson, David A.; Kellum, Mary, Ed.
This document is intended to help teachers prepare students to perform the duties of any member of a surveying party, including those of party chief, in the field and in the office. It contains instructional units on introduction to surveying, safety, horizontal measurements, vertical measurements, angles and directions, angular measurements,…
An evaluation of lithographed forest stereograms.
David A. Bernstein
1961-01-01
Aerial photo stereograms are valuable for showing neophyte photo interpreters the stereoscopic appearance of common objects and conditions. They are also useful for instruction in measuring heights, horizontal distances, and angles on photos. Collections of stereograms of known conditions are worthwhile reference material for interpretation work in unknown areas.
Hoffmann, Errol R; Chan, Alan H S
2017-08-01
Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.
An examination of the degrees of freedom of human jaw motion in speech and mastication.
Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L
1997-12-01
The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.
[Development of polyaxial locking plate screw system of sacroiliac joint].
Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu
2014-09-01
To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P < 0.05), but there was no significant difference between group B and group C (P > 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P < 0.05). The horizontal displacement on angle under the condition of 0-6 N·m torsional load in group B was bigger than that in group C, and the horizontal displacement on angle under the condition of 6-12 N·m torsional load in group B was less than that in group C, but there was no significant difference between group B and group C (P > 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw direction. The simulated application test shows satisfactory fixing effect.
A neural computational model for animal's time-to-collision estimation.
Wang, Ling; Yao, Dezhong
2013-04-17
The time-to-collision (TTC) is the time elapsed before a looming object hits the subject. An accurate estimation of TTC plays a critical role in the survival of animals in nature and acts as an important factor in artificial intelligence systems that depend on judging and avoiding potential dangers. The theoretic formula for TTC is 1/τ≈θ'/sin θ, where θ and θ' are the visual angle and its variation, respectively, and the widely used approximation computational model is θ'/θ. However, both of these measures are too complex to be implemented by a biological neuronal model. We propose a new simple computational model: 1/τ≈Mθ-P/(θ+Q)+N, where M, P, Q, and N are constants that depend on a predefined visual angle. This model, weighted summation of visual angle model (WSVAM), can achieve perfect implementation through a widely accepted biological neuronal model. WSVAM has additional merits, including a natural minimum consumption and simplicity. Thus, it yields a precise and neuronal-implemented estimation for TTC, which provides a simple and convenient implementation for artificial vision, and represents a potential visual brain mechanism.
Flow visualization of mast-mounted-sight/main rotor aerodynamic interactions
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1993-01-01
Flow visualization tests were conducted on a 27 percent-scale AH-64 attack helicopter model fitted with various mast-mounted-sight configurations in an attempt to identify the cause of adverse vibration encountered during full-scale flight tests of an Apache/Longbow configuration. The tests were conducted at the NASA Langley Research Center in the 14- by 22-Foot Subsonic Tunnel. A symmetric and an asymmetric mast-mounted-sight oriented at several skew angles were tested at forward and rearward flight speeds of 30 and 45 knots. A laser light sheet seeded with vaporized propylene glycol was used to visualize the wake of the sight in planes parallel and perpendicular to the freestream flow. Analysis of the flow visualization data identified the frequency of the wake shed from the sight, the angle-of-attack at the sight, and the location where the sight wake crossed the rotor plane. Differences in wake structure were observed between the various sight configurations and slew angles. Postulations into the cause of the adverse vibration found in flight test are given along with considerations for future tests.
Folio, Les R; Fischer, Tatjana; Shogan, Paul; Frew, Michael; Dwyer, Andrew; Provenzale, James M
2011-08-01
The purpose of this study is to determine the agreement with which radiologists identify wound paths in vivo on MDCT and calculate missile trajectories on the basis of Cartesian coordinates using a Cartesian positioning system (CPS). Three radiologists retrospectively identified 25 trajectories on MDCT in 19 casualties who sustained penetrating trauma in Iraq. Trajectories were described qualitatively in terms of directional path descriptors and quantitatively as trajectory vectors. Directional descriptors, trajectory angles, and angles between trajectories were calculated based on Cartesian coordinates of entrance and terminus or exit recorded in x, y image and table space (z) using a Trajectory Calculator created using spreadsheet software. The consistency of qualitative descriptor determinations was assessed in terms of frequency of observer agreement and multirater kappa statistics. Consistency of trajectory vectors was evaluated in terms of distribution of magnitude of the angles between vectors and the differences between their paraaxial and parasagittal angles. In 68% of trajectories, the observers' visual assessment of qualitative descriptors was congruent. Calculated descriptors agreed across observers in 60% of the trajectories. Estimated kappa also showed good agreement (0.65-0.79, p < 0.001); 70% of calculated paraaxial and parasagittal angles were within 20° across observers, and 61.3% of angles between trajectory vectors were within 20° across observers. Results show agreement of visually assessed and calculated qualitative descriptors and trajectory angles among observers. The Trajectory Calculator describes trajectories qualitatively similar to radiologists' visual assessment, showing the potential feasibility of automated trajectory analysis.
Eccentric and concentric muscle performance following 7 days of simulated weightlessness
NASA Technical Reports Server (NTRS)
Hayes, Judith C.; Roper, Mary L.; Mazzocca, Augustus D.; Mcbrine, John J.; Barrows, Linda H.; Harris, Bernard A.; Siconolfi, Steven F.
1992-01-01
Changes in skeletal muscle strength occur in response to chronic disuse or insufficient functional loading. The purpose of this study was to examine changes in muscle performance of the lower extremity and torso prior to and immediately after 7 days of simulated weightlessness (horizontal bed rest). A Biodex was used to determine concentric and eccentric peak torque and angle at peak torque for the back, abdomen, quadriceps, hamstring, soleus, and tibialis anterior. A reference angle of 0 degrees was set at full extension. Data were analyzed by ANOVA.
Orthognathic Surgery and Rhinoplasty to Address Nasomaxillary Hypoplasia.
Veeramani, Anamika; Sawh, Raj; Steinbacher, Derek M
2017-11-01
The treatment of nasomaxillary hypoplasia is challenging. The phenotype of Binder "syndrome" includes the following: midfacial hypoplasia, class III malocclusion, small or absent anterior nasal spine, flattened nose, horizontal nostrils, short columella, acute nasolabial angle, and a flat frontonasal angle. A staged approach is used, with orthognathic surgery to achieve vertical maxillary length and sagittal advancement, followed by rhinoplasty aimed to increase nasal tip projection, rotation, and columellar length. This article details the diagnosis and treatment of nasomaxillary hypoplasia, demonstrating the senior author's (D.M.S.) preferred approach and technical steps. Therapeutic, V.
A Software Architecture for a Small Autonomous Underwater Vehicle Navigation System
1993-06-01
angle consistent with system accuracy objectives for the interim SANS system must be quantified. 12 DEPTH CHAC oCLIMB ANGLE HORIZONTAL DISTANCE Figure...Figure 4.1 illustrates the hardware interface. COMPUTER (ESP-8o80) D IG IT A L B I N A R GYRO SIGNAL BINARY BINARY HEADING DATA "\\DATA DEPTH /RS-232...Mode 3 of the 82C54 provides a square wave through any of the 3 counters in the 82C54. An initial count N is written to the counter control register
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
Designing Visual Methods of Communicating Visual Content with Art History Software.
ERIC Educational Resources Information Center
Schiferl, Ellen
Art history is a hybrid discipline that combines the verbal with the visual, yet the limiting verbal approach traditionally has defined the field. Another problem at the university level is that different types of classes define visually literacy differently; for example, art education programs emphasize perceptual and cognitive angles while art…
Thombare, Ram
2013-01-01
PURPOSE The purpose of this study was to decide the most appropriate point on tragus to be used as a reference point at time of marking ala tragus line while establishing occlusal plane. MATERIALS AND METHODS The data was collected in two groups of subjects: 1) Dentulous 2) Edentulous group having sample size of 30 for each group with equal gender distribution (15 males, 15 females each). Downs analysis was used for base value. Lateral cephalographs were taken for all selected subjects. Three points were marked on tragus as Superior (S), Middle (M), and Inferior (I) and were joined with ala (A) of the nose to form ala-tragus lines. The angle formed by each line (SA plane, MA plane, IA plane) with Frankfort Horizontal (FH) plane was measured by using custom made device and modified protractor in all dentulous and edentulous subjects. Also, in dentulous subjects angle between Frankfort Horizontal plane and natural occlusal plane was measured. The measurements obtained were subjected to the following statistical tests; descriptive analysis, Student's unpaired t-test and Pearson's correlation coefficient. RESULTS The results demonstrated, the mean angle COO (cant of occlusal plane) as 9.76°, inferior point on tragus had given the mean angular value of IFH [Angle between IA plane (plane formed by joining inferior point-I on tragus and ala of nose- A) and FH plane) as 10.40° and 10.56° in dentulous and edentulous subjects respectively which was the closest value to the angle COO and was comparable with the values of angle COO value in Downs analysis. Angulations of ala-tragus line marked from inferior point with occlusal plane in dentulous subject had given the smallest value 2.46° which showed that this ala-tragus line was nearly parallel to occlusal plane. CONCLUSION The inferior point marked on tragus is the most appropriate point for marking ala-tragus line. PMID:23508068
Pettorossi, V E; Errico, P; Ferraresi, A
1997-01-01
Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.
Using Cascading Style Sheets to Design a Fly-Out Menu with Microsoft Visual Studio
ERIC Educational Resources Information Center
Liu, Chang; Downing, Charles
2010-01-01
The menu has become an integrated component within nearly all professionally designed websites. This teaching tip presents a no-code way to design either a vertical or a horizontal fly-out menu by using Cascading Style Sheets (CSS) within Microsoft Visual Studio 2008. The approach described in this tip helps students fully understand how to…
Variable force and visual feedback effects on teleoperator man/machine performance
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Sheridan, Thomas B.
1989-01-01
An experimental study was conducted to determine the effects of various forms of visual and force feedback on human performance for several telemanipulation tasks. Experiments were conducted with varying frame rates and subtended visual angles, with and without force feedback.
Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter
2016-01-01
Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076
The pigeon's distant visual acuity as a function of viewing angle.
Uhlrich, D J; Blough, P M; Blough, D S
1982-01-01
Distant visual acuity was determined for several viewing angles in two restrained White Carneaux pigeons. The behavioral technique was a classical conditioning procedure that paired presentation of sinusoidal gratings with shock. A conditioned heart rate acceleration during the grating presentation indicated resolution of the grating. The bird's acuity was fairly uniform across a large range of their lateral visual field; performance decreased slightly for posterior stimulus placement and sharply for frontal placements. The data suggest that foveal viewing is relatively less advantageous for acuity in pigeons than in humans. The data are also consistent with the current view that pigeons are myopic in frontal vision.
The Ejecta Evolution of Deep Impact: Insight from Experiments
NASA Astrophysics Data System (ADS)
Hermalyn, B.; Schultz, P. H.; Heineck, J. T.
2010-12-01
The Deep Impact (DI) probe impacted comet 9P/Tempel 1 at an angle of ~30° from local horizontal with a velocity of 10.2 km/s. Examination of the resulting ballistic (e.g., non-vapor driven) ejecta revealed phenomena that largely followed expectations from laboratory investigations of oblique impacts into low-density porous material, including a downrange bias, uprange zone of avoidance, and cardioid (curved) rays (Schultz, et al, 2005, 2007). Modeling of the impact based on canonical models and scaling laws (Richardson, et al, 2007) allowed a first-order reconstruction of the event, but did not fully represent the three-dimensional nature of the ejecta flow-field in an oblique impact essential for interpretation of the DI data. In this study, we present new experimental measurements of the early-time ejecta dynamics in oblique impacts that allow a more complete reconstruction of the ballistic ejecta from the impact, including visualization of the DI encounter and predictions for the upcoming re-encounter with Tempel 1. A suite of hypervelocity 30° impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR) for the purpose of interpreting the Deep Impact event. A technique based on Particle Tracking Velocimetry (PTV) permitted non-intrusive measurement of the ejecta velocity within the ejecta curtain. The PTV system developed at the AVGR utilizes a laser light sheet projected parallel to the impact surface to illuminate horizontal “slices” of the ejecta curtain that are then recorded by multiple cameras. Particle displacement between successive frames and cameras allows determination of the three-component velocity of the ejecta curtain. Pioneering efforts with a similar technique (Anderson, et al, 2003, 2006) characterized the main-stage ejecta velocity distributions and demonstrated that asymmetries in velocity and ejection angle persist well into the far-field for oblique impacts. In this study, high-speed cameras capture the time-resolved ejecta flow field in a regime much earlier than prior investigations, which permits reconstruction of the event in a temporal (rather than spatial) fashion. Preliminary results for 30° impacts into sand (Hermalyn, et al, 2010) show asymmetric, time-varying ejection angles throughout measurement of crater growth. The downrange component of ejecta initially has the lowest ejection angle. Incomplete coupling at early times forms the zone of avoidance uprange; once the curtain fully closes, this component exhibits a higher angle of ejection than the lateral or downrange regions. The convolution of the decreasing ejection velocities and coupling time leads to the appearance of “curved” rays in the uprange direction (Schultz, et al, 2009). All azimuths approach the same velocity trend towards the end of crater growth, as seen by Anderson, et al (2003). Reconstruction of the DI event by placing the scaled ejecta distribution from the experiments on the shape model (Thomas, et al, 2007) and matching the trajectory and view of the DI spacecraft permit comparison to the DI event. Investigation of the effect of target porosity and layering on the ejecta dynamics constrains the true nature of the impact conditions and surface structure of Tempel 1.
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
Hsi, Wen C; Law, Aaron; Schreuder, Andreas N; Zeidan, Omar A
2014-08-01
An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso was assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ± 30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, Wen C., E-mail: Wen.Hsi@Mclaren.org, E-mail: Wenchien.hsi@sphic.org.cn; Zeidan, Omar A., E-mail: omar.zeidan@orlandohealth.com; Law, Aaron
Purpose: An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. Methods: The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso wasmore » assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. Results: For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ±30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. Conclusions: The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.« less
NASA Astrophysics Data System (ADS)
Layton, William
2013-03-01
A popular demonstration involves placing a yo-yo on a level table and gently pulling the string horizontally when it is wrapped to come out below the center of the yo-yo's axis. Students are then asked to predict which way the yo-yo will move. A similar demonstration is performed with a tricycle by pulling forward on a pedal with the pedal down in its lowest position.2,3 As well as pulling the yo-yo horizontally, often the string is lifted until the angle it makes with the table causes no motion. This occurs when the line extended from the string intersects the point of contact of the yo-yo with the table.4 This paper describes an apparatus that extends these demonstrations to the situation where the force pulling the yo-yo is still horizontal yet is below the level of the table.