Science.gov

Sample records for hormonal induced spermiation

  1. Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal induced spermiation (Amphibia, Anura, Dendrobatidae).

    PubMed

    Lipke, Christian; Meinecke-Tillmann, Sabine; Meyer, Wilfried; Meinecke, Burkhard

    2009-07-01

    Few ultrastructural studies have been performed on members of the Dendrobatidae, although such investigations can be useful for the understanding of reproductive patterns, as a diagnostic method for males in breeding programs for endangered amphibians and for phylogenetic analysis. The sperm ultrastructure of the Green Poison Frog, Dendrobates auratus, from Panama is described following induced spermiation in living animals. To date only testicular spermatozoa in other dendrobatid frogs have been analysed. Moreover, an electron microscopic preparation method (transmission and scanning electron microscopy) for dendrobatid sperm cells in low concentration is presented. Sperm cells from stimulated frogs (100 IU human chorionic gonadotropin, hCG, twice at an interval of 1h) were recovered via cloaca lavage using 600 microl isotonic phosphate-free amphibian saline (IPS). Centrifuged flushings (5 min, 173 x g) were deposited on microscopic slides. Adherent spermatozoa were treated with Karnovsky fixative (overnight, 4 degrees C). After postfixation (2h, 1% osmium tetroxide), samples were dehydrated in series of ascending acetones (30-100%). For transmission electron microscopy sperm cells were encapsulated using Epon and 1.5% 2,4,6-tris(dimethylaminomethyl)phenol (DMP 30). Ultrathin sections (70 nm) were cut and stained with uranyl acetate (30 min) and lead citrate (5 min). Sperm cells are filiform with a 21.1+/-2.7 microm long and arcuated head and a single tail (35.0+/-4.2 microm length). Their acrosomal complex is located at the anterior portion of the head and consists of the acrosomal vesicle which has low electron density, and the subjacent electron-dense subacrosomal cone. In transverse section, the nucleus is circular (1.9+/-0.2 microm diameter) and conical in longitudinal section. It is surrounded by several groups of mitochondria. The chromatin is highly condensed and electron-dense but shows numerous electron-lucent inclusions. A short midpiece has a

  2. Effects of lamprey gonadotropin-releasing hormone-III on steroidogenesis and spermiation in male sea lampreys.

    PubMed

    Deragon, K L; Sower, S A

    1994-09-01

    The biological activities of lamprey gonadotropin-releasing hormone-III (GnRH-III) were determined in the adult male sea lamprey, Petromyzon marinus. One injection of lamprey GnRH-III at 0.1 or 0.2 microgram/g body wt stimulated plasma estradiol and progesterone levels in adult male sea lampreys undergoing final maturation. Four successive injections of lamprey GnRH-III at 0.1 microgram/g of lamprey GnRH-1 at 0.2 microgram/g induced spermiation in 78 or 30% of the lampreys, respectively, compared to 0% in controls by Day 16. In summary, lamprey GnRH-III is biologically active in stimulating the pituitary-gonadal axis in adult male lampreys.

  3. Hormonal induction of Brycon cephalus (Characiformes, Characidae) to spermiation using D-ala6, pro9net-mGnRH + metoclopramide.

    PubMed

    Bashiyo-Silva, Cristiane; Costa, Raphael da Silva; Ribeiro, Douglas de Castro; Senhorini, José Augusto; Veríssimo-Silveira, Rosicleire; Ninhaus-Silveira, Alexandre

    2016-06-01

    This study aimed to establish a hormonal induction protocol for spermiation of Brycon cephalus males, using Ala6, Pro9Net-mGnRH + metoclopramide (Ovopel®). Thus, 20 males were used divided into three inductor treatments [⅓ pellet/kg (T1), ⅔ pellet/kg (T2) and 1⅓ pellet/kg (T3)] and one control group (CO), which only received physiological solution applications (0.9% NaCl). All treatments were applied in a single dose. For evaluation of the availability of the treatment, the following seminal parameters were analyzed: seminal volume, subjective spermatic motility, duration of motility, pH, osmolality and spermatic concentration. T3 showed the highest seminal volume (4.66 ± 1.52 ml), and was significantly different in comparison with T1 (2.0 ± 0.9 ml), T2 (3.5 ± 1.3 ml) and CO (2.3 ± 1.2 ml). In relation to spermatic motility, T2 and T3 showed significantly higher levels [5, (81-100%)]. However, T3 showed significantly lower average sperm motility duration than T1, T2 and CO (30 ± 7 s; 28 ± 6 s; 32 ± 8 s, respectively). With regard to the seminal parameters of spermatic concentration, pH and osmolality, no significant variation was verified among treatments. In conclusion, mGnRH + metoclopramide used for hormonal induction of B. cephalus reproduction does not induce changes related to spermatic concentration, pH and osmolality parameters of the seminal fluid and the most adequate doses among tested treatments were ⅔ pellet/kg live fish.

  4. A comparison of human chorionic gonadotropin and luteinizing hormone releasing hormone on the induction of spermiation and amplexus in the American toad (Anaxyrus americanus)

    PubMed Central

    2012-01-01

    Background Captive breeding programs for endangered amphibian species often utilize exogenous hormones for species that are difficult to breed. The purpose of our study was to compare the efficacy of two different hormones at various concentrations on sperm production, quantity and quality over time in order to optimize assisted breeding. Methods Male American toads (Anaxyrus americanus) were divided into three separate treatment groups, with animals in each group rotated through different concentrations of luteinizing hormone releasing hormone analog (LHRH; 0.1, 1.0, 4.0 and 32 micrograms/toad), human chorionic gonadotropin (hCG; 50, 100, 200, and 300 IU), or the control over 24 hours. We evaluated the number of males that respond by producing spermic urine, the sperm concentration, percent motility, and quality of forward progression. We also evaluated the effects of hCG and LHRH on reproductive behavior as assessed by amplexus. Data were analyzed using the Generalized Estimating Equations incorporating repeated measures over time and including the main effects of treatment and time, and the treatment by time interaction. Results The hormone hCG was significantly more effective at stimulating spermiation in male Anaxyrus americanus than LHRH and showed a dose-dependent response in the number of animals producing sperm. At the most effective hCG dose (300 IU), 100% of the male toads produced sperm, compared to only 35% for the best LHRH dose tested (4.0 micrograms). In addition to having a greater number of responders (P < 0.05), the 300 IU hCG treatment group had a much higher average sperm concentration (P < 0.05) than the treatment group receiving 4.0 micrograms LHRH. In contrast, these two treatments did not result in significant differences in sperm motility or quality of forward progressive motility. However, more males went into amplexus when treated with LHRH vs. hCG (90% vs. 75%) by nine hours post-administration. Conclusion There is a clear

  5. Sperm characteristics and androgens in Acipenser ruthenus after induction of spermiation by carp pituitary extract or GnRHa implants.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Hatef, Azadeh; Mylonas, Constantinos C; Gela, David; Papadaki, Maria; Rodina, Marek; Kašpar, Vojtech; Pšenička, Martin; Podhorec, Peter; Linhart, Otomar

    2012-12-01

    Spermiation and changes in androgen (testosterone, T and 11-ketotestosterone, 11-KT) levels were studied in sterlet (Acipenser ruthenus) treated with GnRH agonist implants (DAla(6)-Pro(9)-LHRHa) at 25 and 75 μg kg(-1) b.w. and compared with those males treated with 4 mg kg(-1) b.w. of carp pituitary extract (CPE) and 3 pellets of Ovopel kg(-1) b.w., which contains DAla(6)-Pro(9)NEt-mGnRH and metoclopramide. Sperm quality (sperm mass, spermatozoa concentration and sperm motility and velocity) was evaluated 24, 48 and 72 h after hormonal treatments. Males did not release sperm in the control group injected with physiological solution, while sperm could not be collected 7 days after treatments in all hormonally treated groups. Spermiation rates were 100 % in the CPE and Ovopel groups and 25-50 % in the GnRHa-treated groups. Sperm production was significantly lower in the GnRHa-treated groups than in the CPE and Ovopel groups and decreased 72 h after hormonal treatment. Sperm motility and velocity were higher in the Ovopel and GnRHa (75 μg) groups compared to the CPE and GnRHa (25 μg) groups and decreased 72 h after hormonal treatment. Androgens were only affected in spermiating males and changed in the Ovopel and GnRHa (75 μg) after hormonal treatment. Significant correlations were observed between sperm production, sperm motility and sperm velocity, but not androgens. The present study suggests involvement of dopamine in sturgeon spawning. Additionally, better sperm quality observed in the Ovopel group and particularly sperm motility in the GnRHa (75 μg) suggests enhancement of sperm quality in sturgeon treated with GnRHa. Therefore, further study is needed to induce fully spermiation using GnRHa implants in combination with a dopamine inhibitor.

  6. High Serum Estradiol and Heavy Metals Responsible for Human Spermiation Defect-A Pilot Study

    PubMed Central

    Jain, Manish; Kalsi, Amanpreet Kaur; Srivastava, Amita; Gupta, Yogendra Kumar

    2016-01-01

    Introduction Spermiation is a process of releasing sperm into the lumen of seminiferous tubules. Failure in releasing sperm into the lumen is designated as spermiation defect. Spermiation defect cases present as oligo-azoospermia or azoospermia despite normal gonadotropins and testicular histology/cytology. Human spermiation defect never got attention to investigate infertility practice. Most of the information on spermiation defect, so far is from animal experiments. We assume some cases of non-obstructive azoospermia with normal gonadotropins and testicular histology/cytology could be due to spermiation defect. Aim The aim of the study was to find out the underlying aetiology in cases of human spermiation defect. Materials and Methods A total of 13 cases of spermiation defect and 20 fertile men as control constituted study material. Cases were studied for chromosomal abnormalities by conventional karyotyping, sex chromosome mosaicism by interphase XY FISH, Yq microdeletion by STS PCR, sertoli cell quality (function) and quantity (numbers) by serum Anti-Mullerian Hormone (AMH) and inhibin B besides other hormones like Follicular Stimulating Hormone (FSH), prolactin, testosterone and estradiol. Vitamin A concentration in serum was also measured. Presence of heavy metal was investigated by elemental electron microscopy in seminal cells (eight cases) & by spectrometry in serum as well as seminal plasma. Results Chromosomal and Yq microdeletion study failed to detect any abnormalities. AMH, inhibin B and vitamin A were also normal. Estradiol level was high in 6 out of 13 cases (46%) while platinum in seminal cells was high in 4 cases (50%). High (four times or more) serum level of lead and nickel was observed in 11 (85%) and 6 (46%) cases, respectively. Conclusion High serum concentration of heavy metals like lead & nickel or high platinum accumulation in seminal cells or high serum estradiol alone or in combinations may be underlying aetiologic factors in human

  7. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  8. Effects of luteinizing hormone-releasing hormone and arginine-vasotocin on the sperm-release response of Günther's Toadlet, Pseudophryne guentheri

    PubMed Central

    2010-01-01

    Background Luteinizing hormone-releasing hormone (LHRH) is an exogenous hormone commonly used to induce spermiation in anuran amphibians. Over the past few decades, the LHRH dose administered to individuals and the frequency of injection has been highly variable. The sperm-release responses reported have been correspondingly diverse, highlighting a need to quantify dose-response relationships on a species-specific basis. This study on the Australian anuran Pseudophryne guentheri first evaluated the spermiation response of males administered one of five LHRHa doses, and second, determined whether AVT administered in combination with the optimal LHRHa dose improved sperm-release. Methods Male toadlets were administered a single dose of 0, 1, 2, 4 or 8 micrograms/g body weight of LHRHa. A 4 micrograms/g dose of AVT was administered alone or in combination with 2 micrograms/g LHRHa. Spermiation responses were evaluated at 3, 7 and 12 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Results LHRHa administration was highly effective at inducing spermiation in P. guentheri, with 100% of hormone-treated males producing sperm during the experimental period. The number of sperm released in response to 2 micrograms/g LHRHa was greater than all other doses administered and sperm viability was highest in the 1 microgram/g treatment. The administration of AVT alone or in combination with LHRHa resulted in the release of significantly lower sperm numbers. Conclusion Overall, results from this study suggest that in P. guentheri, LHRHa is effective at inducing spermiation, but that AVT inhibits sperm-release. PMID:21059269

  9. Induction of spermatogenesis and spermiation by a single injection of human chorionic gonadotropin in intact and hypophysectomized immature European eel (Anguilla anguilla L.).

    PubMed

    Khan, I A; Lopez, E; Leloup-Hâtey, J

    1987-10-01

    Intact and hypophysectomized male silver eels (Anguilla anguilla) in fresh water received a single injection of human chorionic gonadotropin (hCG) (250 C) or solvent (0.15 M NaCl). No effect of solvent was observed. Spermatogonia proliferated in testis of hCG-treated intact or hypophysectomized eels. One month after the injection, primary and secondary spermatocytes were found. After 3 months, numerous spermatozoa were present. In hypophysectomized eels, hCG was also effective even though maturing germ cells were less numerous and spermiation was less frequent than in intact animals. Within 1 week after hCG injection, plasma levels of free and glucuroconjugated androgens (testosterone and 11-oxotestosterone) rose significantly in intact and hypophysectomized fish. The highest values were observed within 1 month, and then plasma levels decreased to pretreatment values. The most important changes were observed in the case of free 11-oxotestosterone. The long-term effects of hCG can be explained partly by the long half-life of this hormone. The effects of hypophysectomy on the response of testis to hCG caused us to think that some endogenous pituitary secretions must interfere in the intact fish so that maximal effects of hCG, especially on the induction of spermiation, are obtained.

  10. Evidence that progestins play an important role in spermiation and pheromone production in male sea lamprey (Petromyzon marinus).

    PubMed

    Bryan, Mara Beth; Chung-Davidson, Yu-Wen; Ren, Jianfeng; Bowman, Stephen; Scott, Alexander P; Huertas, Mar; Connolly, Michael Patrick; Li, Weiming

    2015-02-01

    Progestins (progestogens, C21 steroids) have been shown to regulate key physiological activities for reproduction in both sexes in all classes of vertebrates except for Agnathans. Progesterone (P) and 15α-hydroxyprogesterone (15α-P) have been detected in sea lamprey (Petromyzon marinus) plasma, but the expression patterns and functions of putative progestin receptor genes have not yet been investigated. The first objective of this study was to determine the differences in mRNA expression levels of nuclear progestin receptor (nPR) and the membrane receptor adaptor protein 'progesterone receptor membrane component 1' (pgrmc1) in putative target tissues in males at different life stages, with and without lamprey GnRH-I and -III treatment. The second objective was to demonstrate the function of progestins by implanting prespermiating males (PSM) with time-release pellets of P and measuring the latency to the onset of spermiation and plasma concentrations of sex pheromones and steroids. The third objective was to measure the binding affinity of P in the nuclear and membrane fractions of the target tissues. Expression levels of nPR and pgrmc1 differed between life stages and tissues, and in some cases were differentially responsive to lamprey GnRH-I and -III. Increases in nPR and pgrmc1 gene expressions were correlated to the late stages of sexual maturation in males. The highest expression levels of these genes were found in the liver and gill of spermiating males. These organs are, respectively, the site of production and release of the sex pheromone 3 keto-petromyzonol sulfate (3kPZS). The hypothesis that pheromone production may be under hormonal control was tested in vivo by implanting PSM with time-release pellets of P. Concentrations of 3kPZS in plasma after 1week were 50-fold higher than in controls or in males that had been implanted with androstenedione, supporting the hypothesis that P is responsible for regulating the production of the sex pheromone. P

  11. Stimulation of Spermiation by Human Chorionic Gonadotropin and Carp Pituitary Extract in Grass Puffer, Takifugu niphobles

    PubMed Central

    Goo, In Bon; Park, In-Seok; Gil, Hyun Woo; Im, Jae Hyun

    2015-01-01

    Spermiation was stimulated in the mature grass puffer, Takifugu niphobles, with an injection of human chorionic gonadotropin (HCG) or carp pituitary extract (CPE). Spermatocrit and sperm density were reduced, but milt production was increased in both the HCG and CPE treatment groups relative to those in the control group (P <0.05). These results should be useful for increasing the fertilization efficiency in grass puffer breeding programs. PMID:26973977

  12. Stimulation of Spermiation by Human Chorionic Gonadotropin and Carp Pituitary Extract in Grass Puffer, Takifugu niphobles.

    PubMed

    Goo, In Bon; Park, In-Seok; Gil, Hyun Woo; Im, Jae Hyun

    2015-12-01

    Spermiation was stimulated in the mature grass puffer, Takifugu niphobles, with an injection of human chorionic gonadotropin (HCG) or carp pituitary extract (CPE). Spermatocrit and sperm density were reduced, but milt production was increased in both the HCG and CPE treatment groups relative to those in the control group (P <0.05). These results should be useful for increasing the fertilization efficiency in grass puffer breeding programs.

  13. Thyroid hormones induce browning of white fat

    PubMed Central

    Martínez-Sánchez, Noelia; Moreno-Navarrete, José M; Contreras, Cristina; Rial-Pensado, Eva; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos

    2016-01-01

    The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3′,5,5′ tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3′,5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4. Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance. PMID:27913573

  14. Asprosin, a fasting-induced glucogenic protein hormone

    USDA-ARS?s Scientific Manuscript database

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...

  15. Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian.

    PubMed

    Chianese, Rosanna; Ciaramella, Vincenza; Fasano, Silvia; Pierantoni, Riccardo; Meccariello, Rosaria

    2017-10-01

    Kisspeptin (Kp) system has a recognized role in the control of gonadotropic axis, at multiple levels. Recently, a major focus of research has been to assess any direct activity of this system on testis physiology. Using the amphibian anuran, Pelophylax esculentus, as animal model, we demonstrate - for the first time in non-mammalian vertebrate - that testis expresses both Kiss-1 and Gpr54 proteins during the annual sexual cycle and that ex vivo 17B-estradiol (E2, 10(-6) M) increases both proteins over control group. Since the interstitium is the main site of localization of both ligand and receptor, its possible involvement in the regulation of steroidogenesis has been evaluated by ex vivo treatment of testis pieces with increasing doses of Kp-10 (10(-9)-10(-6) M). Treatments have been carried out in February - when a new wave of spermatogenesis occurs - and affect the expression of key enzymes of steroidogenesis inducing opposite effects on testosterone and estradiol intratesticular levels. Morphological analysis of Kp-treated testes reveals higher number of tubules with spermatozoa detached from Sertoli cells than control group and the expression of connexin 43, the main junctional protein in testis, is deeply affected by the treatment. In spite of the effects on spermatozoa observed ex vivo, in vivo administration of Kp-10 has been unable to induce sperm release in cloacal fluid. In conclusion, we demonstrate Kp-10 effects on steroidogenesis with possible involvement in the balance between testosterone and estradiol levels, and report new Kp-10 activities on spermatozoa-Sertoli cell interaction. © 2017 Society for Reproduction and Fertility.

  16. Deficiency of Mkrn2 causes abnormal spermiogenesis and spermiation, and impairs male fertility

    PubMed Central

    Qian, Xu; Wang, Lin; Zheng, Bo; Shi, Zhu-Mei; Ge, Xin; Jiang, Cheng-Fei; Qian, Ying-Chen; Li, Dong-Mei; Li, Wei; Liu, Xue; Yin, Yu; Zheng, Ji-Tai; Shen, Hua; Wang, Min; Guo, Xue-Jiang; He, Jun; Lin, Marie; Liu, Ling-Zhi; Sha, Jia-Hao; Jiang, Bing-Hua

    2016-01-01

    Although recent studies have shed insights on some of the potential causes of male infertility, new underlining molecular mechanisms still remain to be elucidated. Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. We developed an Mrkn2 knockout mouse model to study the role of this gene, and found that deletion of Mkrn2 in mice led to male infertility. Mkrn2 knockout mice produced abnormal sperms characterized by low number, poor motility, and aberrant morphology. Disruption of Mkrn2 also caused failure of sperm release (spermiation failure) and misarrangement of ectoplasmic specialization (ES) in testes, thus impairing spermiogenesis and spermiation. To understand the molecular mechanism, we found that expression of Odf2, a vital protein in spermatogenesis, was significantly decreased. In addition, we found that expression levels of Odf2 were decreased in Mkrn2 knockout mice. We also found that MKRN2 was prominently expressed in the sperm of normal men, but was significantly reduced in infertile men. This result indicates that our finding is clinically relevant. The results of our study provided insights into a new mechanism of male infertility caused by the MKRN2 downregulation. PMID:28008940

  17. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats.

    PubMed

    Jin, Jin; Hashizume, Tsutomu

    2015-06-01

    The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.

  18. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis.

    PubMed

    Furlow, J David; Neff, Eric S

    2006-03-01

    Thyroid hormone induces the complete metamorphosis of anuran tadpoles into juvenile frogs. Arguably, anuran metamorphosis is the most dramatic effect of a hormone in any vertebrate. Recent advances in pharmacology and molecular biology have made the study of this remarkable process in the frog Xenopus laevis attractive to developmental biologists and endocrinologists alike. In particular, the availability of a straightforward transgenesis assay and the near completion of the Xenopus tropicalis genome are enabling significant advances to be made in our understanding of the major remaining problems of metamorphosis: the extraordinary tissue specificity of responses, the precise timing of morphological changes, the degree of cell autonomy of hormone responses and developmental competence. We argue that X. laevis metamorphosis presents an exciting opportunity for understanding the role of thyroid hormone in vertebrate development.

  19. Thyrotrophin-releasing hormone induces growth hormone secretion in adult hypothyroid fowl.

    PubMed

    Harvey, S; Scanes, C G; Klandorf, H

    1988-02-01

    While thyrotrophin-releasing hormone (TRH) stimulated growth hormone (GH) secretion in adult anesthetized cockerels, the GH response was blocked in anesthetized birds pretreated with thyroxine (T4) or triiodothyronine (T3). Moreover, whereas GH secretion in conscious adult birds was poorly responsive to TRH stimulation, conscious birds made hypothyroid by goitrogen pretreatment (with propylthiouracil, methimazole, or thiourea) were responsive to TRH challenge. Basal circulating GH concentrations in the goitrogen-pretreated birds were also higher than in the vehicle-injected controls. Surgical thyroidectomy similarly increased the basal GH concentration in adult birds and promoted TRH-induced GH secretion. These results demonstrate inhibitory effects of the thyroid hormones on basal and stimulated GH secretion in adult domestic fowl and suggest that GH release in adults is partly under tonic thyroidal inhibition.

  20. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization.

    PubMed

    Stojadinovic, Olivera; Gordon, Katherine A; Lebrun, Elizabeth; Tomic-Canic, Marjana

    2012-02-01

    Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing.

  1. Asprosin, a Fasting-Induced Glucogenic Protein Hormone.

    PubMed

    Romere, Chase; Duerrschmid, Clemens; Bournat, Juan; Constable, Petra; Jain, Mahim; Xia, Fan; Saha, Pradip K; Del Solar, Maria; Zhu, Bokai; York, Brian; Sarkar, Poonam; Rendon, David A; Gaber, M Waleed; LeMaire, Scott A; Coselli, Joseph S; Milewicz, Dianna M; Sutton, V Reid; Butte, Nancy F; Moore, David D; Chopra, Atul R

    2016-04-21

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.

  2. CYP1B1 and hormone-induced cancer.

    PubMed

    Gajjar, Ketan; Martin-Hirsch, Pierre L; Martin, Francis L

    2012-11-01

    Cancers in hormone-responsive tissues (e.g., breast, ovary, endometrium, prostate) occur at high incidence rates worldwide. However, their genetic basis remains poorly understood. Studies to date suggest that endogenous/exogenous oestrogen and environmental carcinogens may play a role in development and/or progression of hormone-induced cancers via oxidative oestrogen metabolism. Cytochrome P450 1B1 is a key enzyme in its oestrogen metabolism pathway, giving rise to hydroxylation and conjugation. Although CYP1B1 is expressed in many cancers, particularly high levels of expression are observed in oestrogen-mediated disease. CYP1B1 is more readily found in tumour tissue compared to normal. Given the role of CYP1B1 in pro-carcinogen and oestrogen metabolism, polymorphisms in CYP1B1 could result in modifications in its enzyme activity and subsequently lead to hormone-mediated carcinogenesis. CYP1B1 may also be involved in progression of the disease by altering the tissue response to hormones and clinical response to chemotherapy. The exact mechanism behind these events is complex and unclear. Only a few functional single nucleotide polymorphisms of CYP1B1 are known to result in amino acid substitutions and have been extensively investigated. Studies examining the contribution of different CYP1B1 alleles to hormone-mediated cancer risks are inconsistent. The main focus of this review is to appraise the available studies linking the pathogenesis of the hormone-induced cancers to various CYP1B1 polymorphisms. Additionally, we explore the role of a neuronal protein, γ-synuclein, in CYP1B1-mediated pathogenesis.

  3. Hormonal induction of spermatozoa from amphibians with Rana temporaria and Bufo bufo as anuran models.

    PubMed

    Uteshev, V K; Shishova, N V; Kaurova, S A; Browne, R K; Gakhova, E N

    2012-01-01

    The use of hormonally induced spermatozoa expressed in urine (HISu) is a valuable component of reproduction technologies for amphibians. Five protocols for sampling HISu from the European common frog (Rana temporaria) were compared: (1) pituitary extracts, (2) 0.12 µg g⁻¹ luteinising hormone-releasing hormone analogue (LHRHa), (3) 1.20 µg g⁻¹ LHRHa, (4) 11.7 IU g⁻¹ human chorionic gonadotrophin (hCG) and (5) 23.4 IU g⁻¹ hCG (g⁻¹ = per gram bodyweight). From 1 to 24h after administration we assessed the number and concentration of spermatozoa in spermic urine and in holding water, and in urine the percentage of motile spermatozoa and their progressive motility. The protocol using 1.20 µg g⁻¹ LHRHa gave the highest total sperm numbers (650 × 10⁶) and the highest percentage (40%) of samples with sperm concentrations above 200 × 10⁶ mL⁻¹. The percentage motility and progressive motility was similar from all protocols. Considerable amounts of spermatozoa were expressed by R. temporaria into their holding water. We tested hormonal priming and spermiation in the common toad (Bufo bufo) using 0.13 µg g⁻¹ LHRHa administered 24h before a final spermiating dose of 12.8 IU g⁻¹ hCG. No spermatozoa were expressed in holding water. Priming resulted in 35% more spermatozoa than without; however, there were no differences in sperm concentrations. Primed B. bufo produced spermatozoa with significantly higher percentage motility, but not progressive motility, membrane integrity, or abnormal spermatozoa than unprimed males.

  4. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response.

  5. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  6. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  7. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells.

    PubMed

    Al Menhali, Asma; Keeley, Theresa M; Demitrack, Elise S; Samuelson, Linda C

    2017-06-01

    Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of Pthlh(LacZ/+) knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and

  8. Gravity-induced asymmetric distribution of a plant growth hormone

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  9. Gravity-induced asymmetric distribution of a plant growth hormone

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  10. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization

    PubMed Central

    Stojadinovic, Olivera; Gordon, Katherine A.; Lebrun, Elizabeth; Tomic-Canic, Marjana

    2012-01-01

    Background Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. The Problem After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Basic/Clinical Science Advances Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Clinical Care Relevance Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Conclusion Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing. PMID:24527275

  11. Spermiogenesis and spermiation in a monotreme mammal, the platypus, Ornithorhynchus anatinus.

    PubMed

    Lin, M; Jones, R C

    2000-02-01

    Spermatogenesis in the platypus (Ornithorhynchus anatinus) is of considerable biological interest as the structure of its gametes more closely resemble that of reptiles and birds than marsupial or eutherian mammals. The ultrastructure of 16 steps of spermatid development is described and provides a basis for determining the kinetics of spermatogenesis. Steps 1-3 correspond to the Golgi phase of spermatid development, steps 4-8 correspond to the cap phase, steps 9-12 are the acrosomal phase, and steps 13-16 are the maturation phase. Acrosomal development follows the reptilian model and no acrosomal granule is formed. Most other features of spermiogenesis are similar to processes in reptiles and birds. However, some are unique to mammals. For example, a thin, lateral margin of the acrosome of platypus sperm expands over the nucleus as in other mammals, and more than in reptiles and birds. Also, a tubulobulbar complex develops around the spermatid head, a feature which appears to be unique to mammals. Further, during spermiation the residual body is released from the caudal end of the nucleus of platypus sperm leaving a cytoplasmic droplet located at the proximal end of the middle piece as in marsupial and eutherian mammals. Other features of spermiogenesis in platypus appear to be unique to monotremes. For example, nuclear condensation involves the formation of a layer of chromatin granules under the nucleolemma, and development of the fibrous sheath of the principal piece starts much later in the platypus than in birds or eutherian mammals.

  12. Spermiogenesis and spermiation in a monotreme mammal, the platypus, Ornithorhynchus anatinus

    PubMed Central

    LIN, MINJIE; JONES, RUSSELL C.

    2000-01-01

    Spermatogenesis in the platypus (Ornithorhynchus anatinus) is of considerable biological interest as the structure of its gametes more closely resemble that of reptiles and birds than marsupial or eutherian mammals. The ultrastructure of 16 steps of spermatid development is described and provides a basis for determining the kinetics of spermatogenesis. Steps 1–3 correspond to the Golgi phase of spermatid development, steps 4–8 correspond to the cap phase, steps 9–12 are the acrosomal phase, and steps 13–16 are the maturation phase. Acrosomal development follows the reptilian model and no acrosomal granule is formed. Most other features of spermiogenesis are similar to processes in reptiles and birds. However, some are unique to mammals. For example, a thin, lateral margin of the acrosome of platypus sperm expands over the nucleus as in other mammals, and more than in reptiles and birds. Also, a tubulobulbar complex develops around the spermatid head, a feature which appears to be unique to mammals. Further, during spermiation the residual body is released from the caudal end of the nucleus of platypus sperm leaving a cytoplasmic droplet located at the proximal end of the middle piece as in marsupial and eutherian mammals. Other features of spermiogenesis in platypus appear to be unique to monotremes. For example, nuclear condensation involves the formation of a layer of chromatin granules under the nucleolemma, and development of the fibrous sheath of the principal piece starts much later in the platypus than in birds or eutherian mammals. PMID:10739018

  13. SERUM HORMONE CHARACTERIZATION AND EXOGENEOUS HORMONE RESCUE OF BROMODICHLOROMETHANE-INDUCED PREGNANCY LOSS IN THE F344 RAT

    EPA Science Inventory

    SERUM HORMONE CHARACTERIZATION AND EXOGENEOUS HORMONE RESCUE OF BROMODICHLOROMETHANE-INDUCED
    PREGNANCY LOSS IN THE F344 RAT
    Susan R. Bielmeier*, Deborah S. Best^, and Michael G. Narotsky^

    ABSTRACT
    Previously, we demonstrated that bromodichloromethane (BDCM), a d...

  14. SERUM HORMONE CHARACTERIZATION AND EXOGENEOUS HORMONE RESCUE OF BROMODICHLOROMETHANE-INDUCED PREGNANCY LOSS IN THE F344 RAT

    EPA Science Inventory

    SERUM HORMONE CHARACTERIZATION AND EXOGENEOUS HORMONE RESCUE OF BROMODICHLOROMETHANE-INDUCED
    PREGNANCY LOSS IN THE F344 RAT
    Susan R. Bielmeier*, Deborah S. Best^, and Michael G. Narotsky^

    ABSTRACT
    Previously, we demonstrated that bromodichloromethane (BDCM), a d...

  15. Quetiapine-Induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone.

    PubMed

    Koufakis, Theocharis

    2016-01-01

    The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) can be induced by various conditions, including malignant neoplasms, infections, central nervous system disorders, and numerous drugs. We here report a case of a 65-year-old female patient, treated with quetiapine for schizophrenia, who presented with generalized tonic-clonic seizures and was finally diagnosed with quetiapine-induced SIADH. Quetiapine-associated hyponatremia is extremely uncommon and only a few, relevant reports can be found in the literature. This case underlines the fact that patients on antipsychotic medication and more specifically on quetiapine should be closely monitored and routinely tested for electrolyte disorders.

  16. Adrenal-derived stress hormones modulate ozone-induced ...

    EPA Pesticide Factsheets

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  17. Corticotropin-releasing hormone mediates alpha-melanocyte-stimulating hormone-induced anorexigenic action in goldfish.

    PubMed

    Matsuda, Kouhei; Kojima, Kenji; Shimakura, Sei-Ichi; Wada, Kohei; Maruyama, Keisuke; Uchiyama, Minoru; Kikuyama, Sakae; Shioda, Seiji

    2008-11-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH) both suppress food intake, and the alpha-MSH- or CRH-signaling pathway has possible potency to mediate anorexigenic actions induced by most other neuropeptides in goldfish. Therefore, using specific receptor antagonists, we examined whether the anorexigenic actions of alpha-MSH and CRH mutually interact. The inhibitory effect of ICV injection of the alpha-MSH agonist, melanotan II (MT II), on food intake was abolished by treatment with a CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), whereas the anorexigenic action of ICV-injected CRH was not affected by treatment with a melanocortin 4 receptor antagonist, HS024. This led us to investigate whether alpha-MSH-containing neurons in the goldfish brain have direct inputs to CRH-containing neurons, using confocal laser scanning microscopy. alpha-MSH- and CRH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. alpha-MSH-containing nerve fibers or endings lay in close apposition to CRH-containing neurons in a region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These results indicate that, in goldfish, alpha-MSH-induced anorexigenic action is mediated by the CRH-signaling pathway, and that CRH plays a crucial role in the regulation of feeding behavior as an integrated anorexigenic neuropeptide in this species.

  18. Atherogenic diet induced diabetes mellitus: involvement of thyroid hormones.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2007-09-10

    An investigation was made to reveal the possible involvement of thyroid hormones in the progression of diabetes mellitus in response to an atherogenic diet; CCT (4% cholesterol, 1% cholic acid and 0.5% 2-thiouracil). Following the intake of CCT diet for 14 consecutive days a decrease in the serum levels of insulin, both the thyroid hormones, triiodothyronine (T(3)) and thyroxine (T(4)); hepatic glycogen content, hepatic type-1 iodothyronine 5'-mono-deiodinase (5'D) and serum alpha-amylase activities were observed, while there was an increase in the levels of serum glucose and nitrite and in lipid peroxidation of heart, liver and kidney tissues as well as in serum. However, simultaneous administration of L-thyroxine (500 microg/kg/day, s.c.) to CCT-diet fed animals resulted in the amelioration of all the aforesaid adverse changes including that of serum glucose, insulin, alpha-amylase, hepatic glycogen content and nitrite levels, suggesting the involvement of thyroid hormones in the progression of CCT-diet induced diabetes mellitus.

  19. Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species.

    PubMed

    Shishova, N R; Uteshev, V K; Kaurova, S A; Browne, R K; Gakhova, E N

    2011-01-15

    The survival of hundreds of threatened amphibian species is increasingly dependent on conservation breeding programs (CBPs). However, there is an ongoing loss of genetic variation in CBPs for most amphibians, reptiles, birds, and mammals. Low genetic variation results in the failure of CBPs to provide genetically competent individuals for release in supplementation or rehabitation programs. In contrast, in the aquaculture of fish the perpetuation of genetic variation and the production of large numbers of genetically competent individuals for release is accomplished through the cryopreservation of sperm. Successful protocols for the cryopreservation of amphibian sperm from excised testes, and the use of motile frozen then thawed sperm for fertilisation, have been adapted from those used with fish. However, there have been no protocols published for the cryopreservation of amphibian hormonally induced sperm (HIS) that have achieved fertility. We investigated protocols for the cryopreservation of amphibian HIS with the European common frog (Rana temporaria) as a model research species. We induced spermiation in R. temporaria through the intraperitoneal administration of 50 μg LHRHa and sampled HIS through expression in spermic urine. Highly motile HIS at a concentration of 200 × 10(6)/mL was then mixed 1:1 with cryodiluents to form cryosuspensions. Initial studies showed that; 1) concentrations of ∼15 × 10(6)/mL of HIS achieve maximum fertilisation, 2) TRIS buffer in cryodiluents did not improve the recovery of sperm after cryopreservation, and 3) high concentrations of DMSO (dimethylsulphoxide) cryoprotectant reduce egg and larval survival. We then compared four optimised cryopreservation protocols for HIS with the final concentrations of cryodiluents in cryosuspensions of; 1) DMSO, (½ Ringer Solution (RS), 10% sucrose, 12% DMSO); 2) DMSO/egg yolk, (½ RS, 10% sucrose, 12% DMSO, 10% egg yolk), 3) DMFA, (½ RS, 10% sucrose, 12% dimethylformamide (DMFA)), and 4

  20. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells.

    PubMed

    Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan

    2017-09-01

    Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin αv β3 for nonpeptide hormones. Interaction between hormones and integrin αv β3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin αv β3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin αv β3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.

  1. Fasting-induced hormonal regulation of lysosomal function

    PubMed Central

    Chen, Liqun; Wang, Ke; Long, Aijun; Jia, Liangjie; Zhang, Yuanyuan; Deng, Haiteng; Li, Yu; Han, Jinbo; Wang, Yiguo

    2017-01-01

    Lysosomes are centers for nutrient sensing and recycling that allow mammals to adapt to starvation. Regulation of lysosome dynamics by internal nutrient signaling is well described, but the mechanisms by which external cues modulate lysosomal function are unclear. Here, we describe an essential role of the fasting-induced hormone fibroblast growth factor 21 (FGF21) in lysosome homeostasis in mice. Fgf21 deficiency impairs hepatic lysosomal function by blocking transcription factor EB (TFEB), a master regulator of lysosome biogenesis and autophagy. FGF21 induces mobilization of calcium from the endoplasmic reticulum, which activates the transcriptional repressor downstream regulatory element antagonist modulator (DREAM), and thereby inhibits expression of Mid1 (encoding the E3 ligase Midline-1). Protein phosphatase PP2A, a substrate of MID1, accumulates and dephosphorylates TFEB, thereby upregulating genes involved in lysosome biogenesis, autophagy and lipid metabolism. Thus, an FGF21-TFEB signaling axis links lysosome homeostasis with extracellular hormonal signaling to orchestrate lipid metabolism during fasting. PMID:28374748

  2. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy.

    PubMed

    Keane, Fergus; Egan, Aoife M; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare.Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas.GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma.

  3. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  4. Thyroid Hormone T3 Counteracts STZ Induced Diabetes in Mouse

    PubMed Central

    Madaro, Luca; Ranieri, Danilo; Lupoi, Lorenzo; Stigliano, Antonio; Torrisi, Maria Rosaria; Bouchè, Marina; Toscano, Vincenzo; Misiti, Silvia

    2011-01-01

    This study intended to demonstrate that the thyroid hormone T3 counteracts the onset of a Streptozotocin (STZ) induced diabetes in wild type mice. To test our hypothesis diabetes has been induced in Balb/c male mice by multiple low dose Streptozotocin injection; and a group of mice was contemporaneously injected with T3. After 48 h mice were tested for glucose tolerance test, insulin serum levels and then sacrified. Whole pancreata were utilized for morphological and biochemical analyses, while protein extracts and RNA were utilized for expression analyses of specific molecules. The results showed that islets from T3 treated mice were comparable to age- and sex-matched control, untreated mice in number, shape, dimension, consistency, ultrastructure, insulin and glucagon levels, Tunel positivity and caspases activation, while all the cited parameters and molecules were altered by STZ alone. The T3-induced pro survival effect was associated with a strong increase in phosphorylated Akt. Moreover, T3 administration prevented the STZ-dependent alterations in glucose blood level, both during fasting and after glucose challenge, as well as in insulin serum level. In conclusion we demonstrated that T3 could act as a protective factor against STZ induced diabetes. PMID:21637761

  5. Role of hormone imbalance in transplacental carcinogenesis induced in Syrian golden hamsters by sex hormones.

    PubMed

    Rustia, M

    1979-05-01

    Data are presented from studies on Syrian golden hamsters with the ENU precursors, EU, and NaNO2, given transplacentally and in adulthood, and with transplacentally administered DES. Hormone modification by gonadectomy of offspring prenatally exposed to ENU caused a significantly greater incidence and multiplicity of PNS neoplasms and other tumor types in orchidectomized males, compared with intact males, and in ovariectomized and intact females. That PNS tumors in gonadectomized males appeared within a significantly shorter latency period indicated that endogenously generated androgens inhibited neoplastic development. The endocrine imbalance also induced a higher incidence of neoplasia in other tissues and organs, e.g., skin melanomas, thyroid and adrenal cortex tumors, and notably gliomas in the CNS of ovariectomized female siblings. Exposure to single doses of ENU on days 12, 13, 14, and/or 15 caused PNS tumors predominantly in females and with an increased frequency in progeny treated during the final days of gestation. The spectrum of neoplasms was greater and their incidence significant in ENU-treated adult hamsters; the tumor types different from those of transplacentally treated animals (i.e., vascular, vaginal, and ovarian tumors and fore-stomach papillomas were seen). Determining factors in carcinogenesis at the time of carcinogen treatment possibly included stage of ontogenic development, degree of cell differentiation, hormone state of host, age, total dose, and duration of treatment. DES results indicated that the haster may be a useful model for reproducing lesions similar to those observed in children of mothers treated with this drug during pregnancy.

  6. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    PubMed

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our

  7. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  8. Antioxidant vitamins and adrenocorticotrophic hormone-induced hypertension in rats.

    PubMed

    Schyvens, Christopher G; Andrews, Miles C; Tam, Rachel; Mori, Trevor A; Croft, Kevin D; McKenzie, Katja U S; Whitworth, Judith A; Zhang, Yi

    2007-10-01

    This study examined whether the anti-oxidants ascorbic acid, alpha- or gamma-tocopherol, could modify adrenocorticotrophic hormone (ACTH)-hypertension in Sprague-Dawley rats, a model associated with increased oxidative stress. Systolic blood pressure (SBP) was measured by the tail-cuff method. After four days of ascorbic acid (AA) (200 mg/kg/day drinking) or alpha-tocopherol (500 mg/kg/d i.p. or feed), rats were co-administered ACTH (0.2 mg/kg/day s.c.) or saline for 11 days (prevention studies). In reversal studies, ACTH/saline was administered for 15 days, and from day 9, alpha- or gamma-tocopherol (20 mg/kg/day) was added. ACTH increased SBP compared to saline (p < 0.05). AA or alpha-tocopherol failed to prevent and alpha- or gamma-tocopherol failed to reverse ACTH-induced hypertension. Thus, neither vitamin C (water soluble) nor E (lipid soluble) modified ACTH-induced hypertension in the rat.

  9. The rat mammary gland: morphologic changes as an indicator of systemic hormonal perturbations induced by xenobiotics.

    PubMed

    Lucas, Julia N; Rudmann, Daniel G; Credille, Kelly M; Irizarry, Armando R; Peter, Augustine; Snyder, Paul W

    2007-02-01

    The development and morphology of the rat mammary gland are dependent upon several hormones including estrogens, androgens, progesterone, growth hormone and prolactin. In toxicology studies, treatment with xenobiotics may alter these hormones resulting in changes in the morphology of reproductive tissues such as the mammary gland. In the rat, male and female mammary glands exhibit striking morphologic differences that can be altered secondary to hormonal perturbations. Recognizing these morphologic changes can help the pathologist predict potential xenobiotic-induced perturbations in the systemic hormonal milieu. This review examines the development of the rat mammary gland and the influence of sex hormones on the morphology of the adult male and female rat mammary gland. Specific case examples from the literature and data from our laboratory highlight the dynamic nature of the rat mammary gland in response to hormonal changes.

  10. Hormone induced changes in lactase glycosylation in developing rat intestine.

    PubMed

    Chaudhry, Kamaljit Kaur; Mahmood, Safrun; Mahmood, Akhtar

    2008-11-01

    Lactase exists in both soluble and membrane-bound forms in suckling rat intestine. The distribution of lactase and its glycosylated isoforms in response to thyroxine or cortisone administration has been studied in suckling rats. 75% of lactase activity was detected, associated with brush borders, compared to 24% in the soluble fraction of 8-day-old rats. Thyroxine treatment enhanced soluble lactase activity to 34%, whereas particulate fraction was reduced to 67% compared to controls. Cortisone administration reduced soluble lactase activity from 24% in controls to 12% with a concomitant increase in membrane-bound activity to 89%. Western blot analysis revealed lactase signal, corresponding to 220 kDa in both the soluble and membrane fractions, which corroborated the enzyme activity data. The elution pattern of papain solubilized lactase from agarose-Wheat Germ agglutinin, or Concanavalin A or Jacalin agglutinin columns was different in the suckling and adult rat intestines. Also the elution profile of lactase activity from agarose-lectin columns was modulated in cortisone, thyroxine, and insulin injected pups, which suggests differences in glycosylated isoforms of lactase under these conditions. These findings suggest the role of these hormones in inducing changes in lactase glycosylation during postnatal development of intestine, which may contribute to adult-type hypolactasia in rats.

  11. Attenuation of kindling-induced decreases in NT-3 mRNA by thyroid hormone depletion.

    PubMed

    Kim, S Y; Smith, M A; Post, R M; Rosen, J B

    1998-02-01

    The expression of neurotrophins is altered by amygdala kindled seizures. Because thyroid hormone can regulate the transcription of neurotrophins, we asked whether thyroid hormone regulates neurotrophin mRNA expression following amygdala kindling. Rats with electrodes implanted in the basolateral nucleus of the amygdala were either depleted of thyroid hormone or given excess thyroid hormone. The rats were then kindled daily until they had one generalized seizure. The brains were removed 4 h after the seizure and processed for in situ hybridization of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) mRNAs. In non-kindled rats, thyroid hormone depletion increased the levels of BDNF mRNA in the paraventricular nucleus of the hypothalamus and the pituitary gland. NGF and NT-3 mRNA expression was not altered. In addition, thyroid hormone manipulations had no effect on kindling or on kindling-induced BDNF and NGF mRNA. However, the kindling-induced decrease in NT-3 mRNA expression in the dentate gyrus granule cell layer was significantly attenuated by thyroid hormone depletion. These effects were reversed by thyroid hormone replacement. The results indicate that thyroid hormone plays a modulatory role in the seizure-induced changes of NT-3 mRNA expression found in the dentate gyrus.

  12. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    SciTech Connect

    Campell, B.R.; Persinger, S.M.; Town, C.D. )

    1989-04-01

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines.

  13. Codeine-induced syndrome of inappropriate antidiuretic hormone: case report.

    PubMed

    Karahan, Samet; Karagöz, Hatice; Erden, Abdulsamet; Avcı, Deniz; Esmeray, Kübra

    2014-03-01

    The syndrome of inappropriate antidiuretic hormone was first described in 1957 by Schwartz, and is characterised by hyponatraemia, inappropriately increased urine osmolality and urine sodium, and decreased serum osmolality in a euvolemic patient without edema. A patient with the syndrome of inappropriate antidiuretic hormone should have normal cardiac, renal, adrenal, hepatic, and thyroid functions and should not take any diuretics. We present a case of the syndrome of inappropriate antidiuretic hormone caused by codeine and associated with reduced urine volume, increased urine sodium, and decreased serum sodium concentration. The syndrome of inappropriate antidiuretic hormone is a disease that can lead to morbidity and even mortality. Clinicians should measure serum electrolytes intermittently in order to avoid missing the diagnosis of the syndrome of inappropriate antidiuretic hormone in patients using opioid.

  14. Exercise-Induced growth hormone during acute sleep deprivation.

    PubMed

    Ritsche, Kevin; Nindl, Bradly C; Wideman, Laurie

    2014-10-01

    The effect of acute (24-h) sleep deprivation on exercise-induced growth hormone (GH) and insulin-like growth factor-1 (IGF-1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24-h sessions including a brief, high-intensity exercise bout following either a night of sleep (SLEEP) or (24-h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30-sec Wingate sprints on a cycle ergometer. Self-reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P = 0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P = 0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise-induced peak GH concentration (TTP), or free IGF-1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P < 0.01), exercise-induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P < 0.01) and ΔGH (peak GH - resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P < 0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise-induced GH response was significantly augmented in sleep-deprived individuals.

  15. Exercise‐Induced growth hormone during acute sleep deprivation

    PubMed Central

    Ritsche, Kevin; Nindl, Bradly C.; Wideman, Laurie

    2014-01-01

    Abstract The effect of acute (24‐h) sleep deprivation on exercise‐induced growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24‐h sessions including a brief, high‐intensity exercise bout following either a night of sleep (SLEEP) or (24‐h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30‐sec Wingate sprints on a cycle ergometer. Self‐reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P =0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P =0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise‐induced peak GH concentration (TTP), or free IGF‐1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P <0.01), exercise‐induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P <0.01) and ΔGH (peak GH – resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P <0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise‐induced GH response was significantly augmented in sleep‐deprived individuals. PMID:25281616

  16. The Hormone Ghrelin Prevents Traumatic Brain Injury Induced Intestinal Dysfunction

    PubMed Central

    Bansal, Vishal; Ryu, Seok Yong; Blow, Chelsea; Costantini, Todd; Loomis, William; Eliceiri, Brian; Baird, Andrew; Wolf, Paul

    2010-01-01

    Abstract Intestinal barrier breakdown following traumatic brain injury (TBI) is characterized by increased intestinal permeability, leading to bacterial translocation, and inflammation. The hormone ghrelin may prevent intestinal injury and have anti-inflammatory properties. We hypothesized that exogenous ghrelin prevents intestinal injury following TBI. A weight-drop model created severe TBI in three groups of anesthetized Balb/c mice. Group TBI: animals underwent TBI only; Group TBI/ghrelin: animals were given 10 μg of ghrelin intraperitoneally prior and 1 h following TBI; Group sham: no TBI or ghrelin injection. Intestinal permeability was measured 6 h following TBI by detecting serum levels of FITC-Dextran after injection into the intact ileum. The terminal ileum was harvested for histology, expression of the tight junction protein MLCK and inflammatory cytokine TNF-α. Permeability increased in the TBI group compared to the sham group (109.7 ± 21.8 μg/mL vs. 32.2 ± 10.1 μg/mL; p < 0.002). Ghrelin prevented TBI-induced permeability (28.3 ± 4.2 μg/mL vs. 109.7 ± 21.8 μg/mL; p < 0.001). The intestines of the TBI group showed blunting and necrosis of villi compared to the sham group, while ghrelin injection preserved intestinal architecture. Intestinal MLCK increased 73% compared to the sham group (p < 0.03). Ghrelin prevented TBI-induced MLCK expression to sham levels. Intestinal TNF-α increased following TBI compared to the sham group (46.2 ± 7.1 pg/mL vs. 24.4 ± 2.2 pg/mL p < 0.001). Ghrelin reduced TNF-α to sham levels (29.2 ± 5.0 pg/mL; p = NS). We therefore conclude that ghrelin prevents TBI-induced injury, as determined by intestinal permeability, histology, and intestinal levels of TNF-α. The mechanism for ghrelin mediating intestinal protection is likely multifactorial, and further studies are needed to delineate these possibilities. PMID:20858122

  17. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  18. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  19. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    PubMed

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  20. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  1. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  2. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  3. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  4. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    AD Award Number: W81XWH-04-1-0719 TITLE: Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse 5b. GRANT NUMBER Mammary Epithelium...SUPPLEMENTARY NOTES 14. ABSTRACT SEE PAGE 4 15. SUBJECT TERMS Stem Cells , Stem Cell niche, Immunohistochemistry, mammary gland, breast cancer 16

  5. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  6. Gastrointestinal Hormones and Bariatric Surgery-induced Weight Loss

    PubMed Central

    Ionut, Viorica; Burch, Miguel; Youdim, Adrienne; Bergman, Richard N.

    2015-01-01

    Obesity continues to be a major public health problem in the United States and worldwide. While recent statistics have demonstrated that obesity rates have begun to plateau, more severe classes of obesity are accelerating at a faster pace with important implications in regards to treatment. Bariatric surgery has a profound and durable effect on weight loss, being to date one of the most successful interventions for obesity. Objective To provide updates to the possible role of gut hormones in post bariatric surgery weight loss and weight loss maintenance. Design and Methods The current review examines the changes in gastro-intestinal hormones with bariatric surgery and the potential mechanisms by which these changes could result in decreased weight and adiposity. Results The mechanism by which bariatric surgery results in body weight changes is incompletely elucidated, but it clearly goes beyond caloric restriction and malabsorption. Conclusion Changes in gastro-intestinal hormones, including increases in GLP-1, PYY, and oxyntomodulin, decreases in GIP and ghrelin, or the combined action of all these hormones might play a role in induction and long-term maintenance of weight loss. PMID:23512841

  7. Normal breast physiology: the reasons hormonal contraceptives and induced abortion increase breast-cancer risk.

    PubMed

    Lanfranchi, Angela

    2014-01-01

    A woman gains protection from breast cancer by completing a full-term pregnancy. In utero, her offspring produce hormones that mature 85 percent of the mother's breast tissue into cancer-resistant breast tissue. If the pregnancy ends through an induced abortion or a premature birth before thirty-two weeks, the mother's breasts will have only partially matured, retaining even more cancer-susceptible breast tissue than when the pregnancy began. This increased amount of immature breast tissue will leave the mother with more sites for cancer initiation, thereby increasing her risk of breast cancer. Hormonal contraceptives increase breast-cancer risk by their proliferative effect on breast tissue and their direct carcinogenic effects on DNA. Hormonal contraceptives include estrogen-progestin combination drugs prescribed in any manner of delivery: orally, transdermally, vaginally, or intrauterine. This article provides the detailed physiology and data that elucidate the mechanisms through which induced abortion and hormonal contraceptives increase breast-cancer risk.

  8. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction.

    PubMed

    Beldade, Ricardo; Blandin, Agathe; O'Donnell, Rory; Mills, Suzanne C

    2017-10-10

    Organisms can behaviorally, physiologically, and morphologically adjust to environmental variation via integrative hormonal mechanisms, ultimately allowing animals to cope with environmental change. The stress response to environmental and social changes commonly promotes survival at the expense of reproduction. However, despite climate change impacts on population declines and diversity loss, few studies have attributed hormonal stress responses, or their regulatory effects, to climate change in the wild. Here, we report hormonal and fitness responses of individual wild fish to a recent large-scale sea warming event that caused widespread bleaching on coral reefs. This 14-month monitoring study shows a strong correlation between anemone bleaching (zooxanthellae loss), anemonefish stress response, and reproductive hormones that decreased fecundity by 73%. These findings suggest that hormone stress responses play a crucial role in changes to population demography following climate change and plasticity in hormonal responsiveness may be a key mechanism enabling individual acclimation to climate change.Elevated temperatures can cause anemones to bleach, with unknown effects on their associated symbiotic fish. Here, Beldade and colleagues show that climate-induced bleaching alters anemonefish hormonal stress response, resulting in decreased reproductive hormones and severely impacted reproduction.

  9. (−)-Epigallocatechin-3-gallate induces secretion of anorexigenic gut hormones

    PubMed Central

    Song, Won-Young; Aihara, Yoshiko; Hashimoto, Takashi; Kanazawa, Kazuki; Mizuno, Masashi

    2015-01-01

    The anorexigenic gut hormones, cholecystokinin (CCK), glucagon-like peptide (GLP)-1 and peptide tyrosine-tyrosine (PYY), are released in response to food intake from the intestines. Dietary nutrients have been shown to stimulate these hormones. Some non-nutrients such as polyphenols show anorexigenic effects on humans. In the present study, we examined whether dietary polyphenols can stimulate secretion of these gut hormones. Caco-2 cells expressed mRNA of the gut hormones, CCK, PC1 (prohormone convertase 1), GCG (glucagon) and PYY. CCK, GLP-1 and PYY were secreted from Caco-2 cells after adding sugars, amino acids or fatty acids. Using Caco-2 cells, epigallocatechin-3-gallate (EGCG), chlorogenic acid and ferulic acid induced secretion of anorexigenic gut hormones. Particularly, EGCG induced secretion of all three hormones. In an ex vivo assay using murine intestines, EGCG also released CCK from the duodenum, and GLP-1 from the ileum. These results suggest that EGCG may affect appetite via gut hormones. PMID:26388676

  10. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    SciTech Connect

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. )

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  11. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep.

  12. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    PubMed

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  13. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis

    PubMed Central

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-01-01

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis. PMID:26309374

  14. Sensations induced by medium and long chain triglycerides: role of gastric tone and hormones

    PubMed Central

    Barbera, R; Peracchi, M; Brighenti, F; Cesana, B; Bianchi, P; Basilisco, G

    2000-01-01

    BACKGROUND—The relative roles of gastric relaxation and the neuroendocrine signals released by the small intestine in the perception of nutrient induced sensations are controversial. The different effects of long chain (LCT) and medium chain (MCT) triglyceride ingestion on perception, gastric relaxation, and hormonal release may help to elucidate the mechanisms underlying nutrient induced sensations.
AIMS—To compare the effects of intraduodenal LCT and MCT infusions on perception, gastric tone, and plasma gut hormone levels in healthy subjects.
SUBJECTS—Nine fasting healthy volunteers.
METHODS—The subjects received duodenal infusions of saline followed by LCTs and MCTs in a randomised order on two different days. The sensations were rated on a visual analogue scale. Gastric tone was measured using a barostat, and plasma gut hormone levels by radioimmunoassay.
RESULTS—LCT infusion increased satiation scores, reduced gastric tone, and increased the levels of plasma cholecystokinin, gastric inhibitory polypeptide, neurotensin, and pancreatic polypeptide. MCT infusion reduced gastric tone but did not significantly affect perception or plasma gut hormone levels. LCTs produced greater gastric relaxation than MCTs.
CONCLUSIONS—The satiation induced by intraduodenal LCT infusion seems to involve changes in gastric tone and plasma gut hormone levels. The gastric relaxation induced by MCT infusion, together with the absence of any significant change in satiation scores and plasma hormone levels, suggests that, at least up to a certain level, gastric relaxation is not sufficient to induce satiation and that nutrient induced gastric relaxation may occur through cholecystokinin independent mechanisms.


Keywords: gastric tone; triglyceride; hormones; satiation; cholecystokinin; nutrients PMID:10601051

  15. Reimbursement of hormonal contraceptives and the frequency of induced abortion among teenagers in Sweden.

    PubMed

    Sydsjö, Adam; Sydsjö, Gunilla; Bladh, Marie; Josefsson, Ann

    2014-05-29

    Reduction in costs of hormonal contraceptives is often proposed to reduce rates of induced abortion among young women. This study investigates the relationship between rates of induced abortion and reimbursement of dispensed hormonal contraceptives among young women in Sweden. Comparisons are made with the Nordic countries Finland, Norway and Denmark. Official statistics on induced abortion and numbers of prescribed and dispensed hormonal contraceptives presented as "Defined Daily Dose/thousand women" (DDD/T) aged 15-19 years were compiled and related to levels of reimbursement in all Swedish counties by using public official data. The Swedish numbers of induced abortion were compared to those of Finland, Norway and Denmark. The main outcome measure was rates of induced abortion and DDD/T. No correlation was observed between rates of abortion and reimbursement among Swedish counties. Nor was any correlation found between sales of hormonal contraceptives and the rates of abortion. In a Nordic perspective, Finland and Denmark, which have no reimbursement at all, and Norway all have lower rates of induced abortion than Sweden. Reimbursement does not seem to be enough in order to reduce rates of induced abortion. Evidently, other factors such as attitudes, education, religion, tradition or cultural differences in each of Swedish counties as well as in the Nordic countries may be of importance. A more innovative approach is needed in order to facilitate safe sex and to protect young women from unwanted pregnancies.

  16. Reimbursement of hormonal contraceptives and the frequency of induced abortion among teenagers in Sweden

    PubMed Central

    2014-01-01

    Background Reduction in costs of hormonal contraceptives is often proposed to reduce rates of induced abortion among young women. This study investigates the relationship between rates of induced abortion and reimbursement of dispensed hormonal contraceptives among young women in Sweden. Comparisons are made with the Nordic countries Finland, Norway and Denmark. Methods Official statistics on induced abortion and numbers of prescribed and dispensed hormonal contraceptives presented as “Defined Daily Dose/thousand women” (DDD/T) aged 15-19 years were compiled and related to levels of reimbursement in all Swedish counties by using public official data. The Swedish numbers of induced abortion were compared to those of Finland, Norway and Denmark. The main outcome measure was rates of induced abortion and DDD/T. Results No correlation was observed between rates of abortion and reimbursement among Swedish counties. Nor was any correlation found between sales of hormonal contraceptives and the rates of abortion. In a Nordic perspective, Finland and Denmark, which have no reimbursement at all, and Norway all have lower rates of induced abortion than Sweden. Conclusions Reimbursement does not seem to be enough in order to reduce rates of induced abortion. Evidently, other factors such as attitudes, education, religion, tradition or cultural differences in each of Swedish counties as well as in the Nordic countries may be of importance. A more innovative approach is needed in order to facilitate safe sex and to protect young women from unwanted pregnancies. PMID:24884539

  17. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: Preliminary observations

    SciTech Connect

    Ataya, K.; Pydyn, E.; Ramahi-Ataya

    1995-03-01

    With the advent of cancer therapy, increasing numbers of cancer patients are achieving long term survival. Impaired ovarian function after radiation therapy has been reported in several studies. Some investigators have suggested that luteinizing hormone-releasing hormone agonists (LHRHa) can prevent radiation-induced ovarian injury in rodents. Adult female rhesus monkeys were given either vehicle or Leuprolide acetate before, during, and after radiation. Radiation was given in a dose of 200 rads/day for a total of 4000 rads to the ovaries. Frequent serum samples were assayed for estradiol (E{sub 2}) and FSH. Ovariectomy was performed later. Ovaries were processed and serially sectioned. Follicle count and size distribution were determined. Shortly after radiation started, E{sub 2} dropped to low levels, at which it remained, whereas serum FSH level, which was low before radiation, rose soon after starting radiation. In monkeys treated with a combination of LHRHa and radiation, FSH started rising soon after the LHRHa-loaded minipump was removed (after the end of radiation). Serum E{sub 2} increased after the end of LHRHa treatment in the non-irradiated monkey, but not in the irradiated monkey. Follicle counts were not preserved in the LHRHa-treated monkeys that received radiation. The data demonstrated no protective effect of LHRHa treatment against radiation-induced ovarian injury in this rhesus monkey model. 58 refs., 2 figs., 1 tab.

  18. Growth hormone release induced by growth hormone-releasing hexapeptide is not mediated by thyrotropin-releasing hormone in neonatal rats.

    PubMed

    Kacsóh, B; Kacsóh, G; Guzzardo, M B; Black, A C; Bisat, T

    1997-02-01

    GH-releasing hexapeptide (GHRP-6) and nursing stimulate GH secretion in rat pups via GH-releasing factors (GRFs: distinct from GH-releasing hormone (GHRH). It was determined whether GH secretion induced by GHRP-6 or nursing was mediated by TSH-releasing hormone (TRH) in 2-d-old rats. In vitro. GHRP-6 and TRH stimulated GH secretion of neonatal pituitary glands. At their maximally effective doses, GHRP-6 and TRH evoked approximately equal GH responses. Treatment with a combination of the maximally effective doses of GHRP-6 and TRH resulted in a GH response comparable to that evoked by either treatment alone. GHRP-6 in vivo induced a greater GH response than did TRH. Treatment in vivo with a combination of the maximally effective doses of GHRP-6 and TRH synergistically increased serum GH levels. Unlike GHRP-6 TRH was an effective stimulus of prolactin secretion either in vitro or in vivo. Nursing was an effective stimulus for GH secretion, but only marginally increased serum prolactin levels. The effects of either of the peptides and nursing on GH secretion were additive. These results suggest that GHRP-6 stimulates GH secretion both by acting directly on the pituitary gland and indirectly via a hypothalamic GRF. The indirect effect appears to be greater. The alternative GRFs released by GHRP-6 or nursing are distinct from each other and from TRH. These findings suggest that alternative GRFs play a significant role in the regulation of GH secretion in neonatal rats.

  19. Seasonal effect of gonadotrophin inhibitory hormone on gonadotrophin-releasing hormone-induced gonadotroph functions in the goldfish pituitary.

    PubMed

    Moussavi, M; Wlasichuk, M; Chang, J P; Habibi, H R

    2013-05-01

    We have shown that native goldfish gonadotrophin inhibitory hormone (gGnIH) differentially regulates luteinsing hormone (LH)-β and follicle-stimulating hormone (FSH)-β expression. To further understand the functions of gGnIH, we examined its interactions with two native goldfish gonadotrophin-releasing hormones, salmon gonadotrophin-releasing hormone (sGnRH) and chicken (c)GnRH-II in vivo and in vitro. Intraperitoneal injections of gGnIH alone reduced serum LH levels in fish in early and mid gonadal recrudescence; this inhibition was also seen in fish co-injected with either sGnRH or cGnRH-II during early recrudescence. Injection of gGnIH alone elevated pituitary LH-β and FSH-β mRNA levels at early and mid recrudescence, and FSH-β mRNA at late recrudescence. Co-injection of gGnIH attenuated the stimulatory influences of sGnRH on LH-β in early recrudescence, and LH-β and FSH-β mRNA levels in mid and late recrudescence, as well as the cGnRH-II-elicited increase in LH-β, but not FSH-β, mRNA expression at mid and late recrudescence. sGnRH and cGnRH-II injection increased pituitary gGnIH-R mRNA expression in mid and late recrudescence but gGnIH reduced gGnIH-R mRNA levels in late recrudescence. gGnIH did not affect basal LH release from perifused pituitary cells and continual exposure to gGnIH did not alter the LH responses to acute applications of GnRH. However, a short 5-min GnIH treatment in the middle of a 60-min GnRH perifusion selectively reduced the cGnRH-II-induced release of LH. These novel results indicate that, in goldfish, gGnIH and GnRH modulate pituitary GnIH-R expression and gGnIH differentially affects sGnRH and cGnRH-II regulation of LH secretion and gonadotrophin subunit mRNA levels. Furthermore, these actions are manifested in a reproductive stage-dependent manner.

  20. Aripiprazole-induced syndrome of inappropriate antidiuretic hormone secretion (SIADH).

    PubMed

    Bachu, Kalyan; Godkar, Darshan; Gasparyan, Anna; Sircar, Padmini; Yakoby, Mila; Niranjan, Selvanayagam

    2006-01-01

    Aripiprazole is a newer atypical antipsychotic agent used for effective treatment of schizophrenia. It significantly reduces unwanted side effects of older typical antipsychotics by targeting, with high affinity, dopamine D2/D3 and serotonin 5-HT1A/5-HT-2A receptors. Its documented mechanism of action makes it an unlikely agent to cause syndrome of inappropriate antidiuretic hormone secretion (SIADH). We present the first reported case of SIADH caused by aripiprazole in a patient with history of schizophrenia without other precipitating factors to explain hyponatremia or SIADH.

  1. Benzodiazepines antagonize central corticotropin releasing hormone-induced suppression of natural killer cell activity.

    PubMed

    Irwin, M; Hauger, R L; Britton, K

    1993-12-17

    Benzodiazepines have anxiolytic properties and attenuate behavioral stress responses induced by corticotropin releasing hormone (CRH). To evaluate the effect of benzodiazepines on CRH-induced immune suppression, potent centrally acting benzodiazepines were administered prior to central infusion of CRH (i.c.v.; 1.0 microgram). CRH induced a significant (P < 0.01) reduction of splenic natural killer cell activity which was completely antagonized by pretreatment with either diazepam or alprazolam.

  2. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  3. A histological investigation of the maturation of the acorn worm, an inhabitant of the Sea of Japan, and a suggestion about the relationship between synchronized spawning/spermiation and the tidal level.

    PubMed

    Ogiso, Shouzo; Sakai, Kei-ichi; Matada, Masahiro; Sasayama, Yuichi

    2005-05-01

    One species of Hemichordata, Balanoglossus misakiensis, is then acorn worm originally reported from the intertidal zone of the Miura Peninsula on the Pacific Ocean side of Japan. We histologically examined the reproductive cycle of the population of this species, which inhabits only the sublittoral zone in the Sea of Japan. Testes and ovaries began to develop at the beginning of May 2003 and were almost mature in the latter half of June in males and in the first half of July in females in the same year. Subsequently, spermiation and spawning followed in the latter half of July in males and in the first half of August in females. Progress in maturation appeared to be related to increases in the water temperature. Although some experiments were conducted in aquariums to identify the conditions responsible for the synchronization of the occurrence of spontaneous spawning/spermiation, no clues were obtained. During the experiments, however, 11, 2, and 4 individuals out of the 67 used achieved spawning/spermiation on separate days. The occurrence of spawning/spermiation in the laboratory corresponded to the latter half of the switch from high tide to low tide on those days. Also in the field, it was known that they released the gametes according to this specific schedule. Therefore, it was suggested that, in the Japan Sea population of this species, the tide level may be a condition for synchronized spawning/spermiation.

  4. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    SciTech Connect

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  5. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis

    PubMed Central

    Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio

    2016-01-01

    Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284

  6. Growth hormone and nutrition as protective agents against methotrexate induced enteritis.

    PubMed

    Ortega, M; de Segura, I A; Vázquez, I; López, J M; De Miguel, E

    2001-03-01

    To determine whether exogenously administered growth hormone can reduce or prevent chemotherapy-induced intestinal mucosa injury. The expected results will allow to consider its potential clinical use. Experimental and randomized study. Experimental Surgery Service, La Paz University Hospital. Adult Wistar rats weighing 250-300 g. A chemotherapy protocol with methotrexate (MTX) (120 mg/kg) was employed. Animals fed either with a normoproteic or a hyperproteic liquid diet were treated with either saline or growth hormone (1 mg/kg/day) since three days before until four days after chemotherapy. Animals were sacrificed seven days after MTX administration for tissue sampling. Co-administration of growth hormone and a hyperproteic diet increased intestinal crypt proliferation and reduced MTX-induced apoptosis. Jejunal mucosal structure (morphometry), proliferation (Ki-67) and apoptosis (TUNNEL) were assessed.

  7. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    EPA Science Inventory

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  8. Peptidal Sex Hormones Inducing Conjugation Tube Formation in Compatible Mating-Type Cells of Tremella mesenterica.

    PubMed

    Sakagami, Y; Yoshida, M; Isogai, A; Suzuki, A

    1981-06-26

    The pair of peptidal sex hormones (tremerogen A-10 and tremerogen a-13) that induce conjugation tube formation in compatible type cells (A and a types) of Tremella mesenterica were isolated. Tremerogen A-10 is a dodecapeptide and tremerogen a-13, a tridecapeptide. In both peptides, the sulfiydryl group of the cysteines at the carboxyl terminus was blocked by farnesyl moieties.

  9. Treatment of nitrosamine-induced pancreatic tumors in hamsters with analogs of somatostatin and luteinizing hormone-releasing hormone

    SciTech Connect

    Paz-Bouza, J.I.; Redding, T.W.; Schally, A.V.

    1987-02-01

    Pancreatic ductal adenocarcinoma was induced in female Syrian golden hamsters by injecting N-nitrosobis(2-oxopropyl)amine (BOP) once a week at a dose of 10 mg per kg of body weight for 18 weeks. Hamsters were then treated with somatostatin analog (RC-160) or with (6-D-tryptophan)luteinizing hormone-releasing hormone ((D-Trp/sup 6/)LH-RH) delayed delivery systems. After 18 weeks of BOP administration, the hamsters were divided into three groups of 10-20 animals each. Group I consisted of untreated controls, group II was injected with RC-160, and group III was injected with (D-Trp/sub 2/)LH-RH. A striking decrease in tumor weight and volume was obtained in animals treated with (D-Trp/sup 6/)LH-RH or with the somatostatin analog RC-160. After 45 days of treatment with either analog, the survival rate was significantly higher in groups II and III (70%), as compared with the control group (35%). The studies, done by light microscopy, high-resolution microscopy, and electron microscopy, showed a decrease in the total number of cancer cells and changes in the epithelium, connective tissue, and cellular organelles in groups II and III treated with the hypothalamic analogs as compared to controls. These results in female hamsters with induced ductal pancreatic tumors confirm and extend the authors findings, obtained in male animals with transplanted tumors, that (D-Trp/sub 6/)LH-RH and somatostatin analogs inhibit the growth of pancreatic cancers.

  10. [Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii].

    PubMed

    Huang, Jie; Tu, Dong-ping; Ma, Xiao-jun; Mo, Chang-ming; Pan, Li-mei; Bai, Long-hua; Feng, Shi-xin

    2015-09-01

    To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination.

  11. New approaches to male non-hormonal contraception

    PubMed Central

    Nya-Ngatchou, Jean-Jacques; Amory, John K.

    2012-01-01

    A non-hormonal male contraceptive is a contraceptive that does not involve the administration of hormones or hormone blockers. This review will focus on the use of lonidamine derivatives and inhibitors of retinoic acid biosynthesis and function as approaches to male non-hormonal contraception. Two current lonidamine derivatives, Adjudin and H2-gamendazole, are in development as male contraceptives. These potent anti-spermatogenic compounds impair the integrity of the apical ectoplasmic specialization, resulting in premature spermiation and infertility. Another approach to male contraceptive development is the inhibition of retinoic acid in the testes, as retinoic acid signaling is necessary for spermatogenesis. The administration of the retinoic acid receptor antagonist BMS-189453 reversibly inhibits spermatogenesis in mice. Similarly, oral dosing of WIN 18,446, which inhibits testicular retinoic acid biosynthesis, effectively contracepts rabbits. Hopefully, one of these approaches to non-hormonal male contraception will prove to be safe and effective in future clinical trials. PMID:22995542

  12. New approaches to male non-hormonal contraception.

    PubMed

    Nya-Ngatchou, Jean-Jacques; Amory, John K

    2013-03-01

    A non-hormonal male contraceptive is a contraceptive that does not involve the administration of hormones or hormone blockers. This review will focus on the use of lonidamine derivatives and inhibitors of retinoic acid biosynthesis and function as approaches to male non-hormonal contraception. Two current lonidamine derivatives, adjudin and H2-gamendazole, are in development as male contraceptives. These potent anti-spermatogenic compounds impair the integrity of the apical ectoplasmic specialization, resulting in premature spermiation and infertility. Another approach to male contraceptive development is the inhibition of retinoic acid in the testes, as retinoic acid signaling is necessary for spermatogenesis. The administration of the retinoic acid receptor antagonist BMS-189453 reversibly inhibits spermatogenesis in mice. Similarly, oral dosing of WIN 18,446, which inhibits testicular retinoic acid biosynthesis, effectively contracepts rabbits. Hopefully, one of these approaches to non-hormonal male contraception will prove to be safe and effective in future clinical trials.

  13. [Molecular-cellular and hormonal mechanisms of induced brain tolerance of extreme factors].

    PubMed

    Samoĭlov, M O; Rybnikova, E A

    2012-01-01

    This review includes results of own studies and literature data on the topical problem of neurobiology and medicine: discovery of the mechanisms of increased brain resistance to extreme exposures. The emphasis is made on the molecular-cellular and hormonal mechanisms of hypoxic preconditioning-induced brain tolerance to injurious hypoxia, psychoemotional and traumatic stress. A role of basic hormonal and intracellular cascade pro-adaptive processes mediating the neuroprotective action of hypoxic preconditioning is reviewed. A dynamics of the mechanisms of development of induced susceptible brain areas (hippocampus, neocortex) tolerance which includes phases of induction, transformation and expression, is presented. New data on preconditioning-induced cross-tolerance providing increased brain resistance not only to hypoxia but also to other stresses are reported. For the first time neuroprotective effects of hypoxic postconditioning are described.

  14. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    PubMed

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO.

  15. Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism.

    PubMed

    Klaassen, C D; Hood, A M

    2001-01-01

    The effects of microsomal enzyme inducers on thyroid hormone homeostasis and the thyroid gland are of concern. We have investigated the effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism in rats. We have shown that small increases in serum TSH can result in large increases in thyroid follicular cell proliferation. Furthermore, only those microsomal enzyme inducers that increase serum TSH--that is, phenobarbital (PB) and pregnenolone-16alpha-carbonitrile (PCN)-increase thyroid follicular cell proliferation, whereas those microsomal enzyme inducers that do not increase serum TSH--that is, 3-methylcholanthrene (3MC) and Aroclor 1254 (PCB)-do not increase thyroid follicular cell proliferation. Deiodination does not appear to be the reason why serum T3 concentrations are maintained in microsomal enzyme inducer-treated rats. We have also shown that those microsomal enzyme inducers that increase serum TSH increase T3 UDP-glucuronosyltransferase (UGT) activity, whereas those microsomal enzyme inducers that do not increase serum TSH do not increase T3 UGT activity. This finding suggests that induction of T3 glucuronidation, rather than T4 glucuronidation, mediates increases in serum TSH of microsomal enzyme inducer treated rats.

  16. Secretion of adrenocorticotropic hormone induced by allergen inhalation in patients with atopic asthma.

    PubMed

    Yokoyama, A; Kohno, N; Sakai, K; Kondo, K; Hamada, H; Hiwada, K

    2000-09-01

    Allergen inhalation in atopic patients results in cytokines production or release of preformed cytokines, some of which are known to induce adrenocorticotropic hormone (ACTH) secretion in experimental conditions. We examined whether allergen inhalation can induce ACTH secretion in vivo. A significant elevation of ACTH levels was observed in 2 and 24 hr after allergen inhalation challenge. However, methacholine challenge with the same degree of airflow limitation did not induce ACTH elevation, indicating that this may not be due to bronchoconstriction per se. Our results indicate that allergen inhalation can trigger ACTH secretion in patients with atopic asthma.

  17. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato.

    PubMed

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J; Jung, Sabine C; Pascual, Jose A; Pozo, María J

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development.

  18. Retinoic Acid Induces Expression of the Thyroid Hormone Transporter, Monocarboxylate Transporter 8 (Mct8)*

    PubMed Central

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L.; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A.

    2010-01-01

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5′-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter. PMID:20573951

  19. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  20. Early thyroid hormone-induced gene expression changes in N2a-β neuroblastoma cells.

    PubMed

    Bedó, Gabriela; Pascual, Angel; Aranda, Ana

    2011-10-01

    Thyroid hormone has long been known to regulate neural development. Hypothyroidism during pregnancy and early postnatal period has severe neurological consequences including even mental retardation. The purpose of this study was to characterize gene expression pattern during thyroid hormone-induced differentiation of neuro-2a β cells in order to select "direct response genes" for further analysis. In this neuroblastoma cell line, thyroid hormone blocks proliferation and induces differentiation. Changes in gene expression level were examined after a T3 treatment of 3 and 24 h using cDNA arrays. Sixteen genes were significantly up-regulated and 79 down-regulated by T3 treatment. Five up-regulated genes not previously described as regulated by thyroid hormone and selected for their putative significance to understand T3 action on cell differentiation, were verified by RT-PCR analysis. The transcription factors Phox2a and basic helix-loop-helix domain containing, class B2 mRNAs exhibited a clear increase after 3- and 24-h treatment. The guanine-nucleotide exchange factor RalGDS was greatly up-regulated after 3-h treatment but not 24 h after. The results suggest an early involvement of these genes in T3 action during neuroblastoma cell differentiation probably mediating later changes in gene expression pattern.

  1. Effects of alprazolam on increases in hormonal and anxiety levels induced by meta-chlorophenylpiperazine.

    PubMed

    Sevy, S; Brown, S L; Wetzler, S; Kotler, M; Molcho, A; Plutchik, R; van Praag, H M

    1994-09-01

    The effects of alprazolam, a triazolobenzodiazepine, on hormonal and behavioral responses induced by meta-chlorophenylpiperazine (MCPP), a serotonin receptor agonist, were investigated in 10 healthy men. Alprazolam (0.5 mg) or placebo was given 1 hour before MCPP (0.5 mg/kg) or placebo. Cortisol, prolactin, and growth hormone (GH) release, MCPP and alprazolam plasma levels, anxiety level, and panic symptoms were measured over 210 minutes. MCPP was found to increase cortisol, prolactin, GH, and anxiety levels. Alprazolam decreased cortisol and GH levels but had no effect on prolactin. When used in combination with MCPP, alprazolam blunted MCPP-induced cortisol and GH release, and it blocked the anxiogenic effects of MCPP.

  2. Different intracellular signalling properties induced by human and porcine growth hormone.

    PubMed

    Hong, Pan; Lan, Hainan; Li, Yumeng; Fu, Zhiling; Zheng, Xin

    2016-04-01

    Growth hormone (GH) is reportedly species-specific. Primate growth hormone can trigger non-primate growth hormone receptor (GHR), but primates GHR cannot be activated by non-primate GH. However, it is also unclear that why primate GH and non-primate GH have different biological activities. Thus, we analysed primate growth hormone (human growth hormone (hGH)) or non-primate GH (porcine growth hormone (pGH))-induced intracellular signalling in 3T3-F442A cells and rat hepatocytes in a dose- and time-dependent manner to explore the different biological activities between them. The results revealed that both hGH and pGH can activate Janus kinase 2 (JAK2), Signal transducers and activators of transcription 1, 3 and 5 (STATs 1, 3 and 5) and extracellular signal-regulated kinase 1/2 (ERK1/2). There were no significant differences in JAK2 or ERK1/2 tyrosine phosphorylation after hGH and pGH treatment, but there were different between hGH and pGH in STAT/1/3/5 tyrosine phosphorylation, and JAK2, STAT/1/3/5 tyrosine phosphorylation was time-dependent and dose-dependent, whereas ERK1/2 was not. Both hGH and pGH demonstrated similar kinetics for STATs 1, 3 and 5 phosphorylation, but the pGH-mediated tyrosine phosphorylation was weaker than that mediated by hGH. Our observations indicated that the levels of main signalling proteins phosphorylation triggered by hGH or pGH were not exactly the same, which may explain the different biological activities showed by primate GH and non-primate GH. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear

    PubMed Central

    Meyer, Retsina M.; Burgos-Robles, Anthony; Liu, Elizabeth; Correia, Susana S.; Goosens, Ki A.

    2014-01-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is not a clear relationship between the levels of these hormones and stress-associated mental illnesses such as post-traumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin releasing factor (CRF) or corticosterone. Repeated intra-amygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was increased by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin

  4. Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis.

    PubMed

    Deshpande, Sagar S; Gallagher, Katherine K; Donneys, Alexis; Tchanque-Fossuo, Catherine N; Sarhaddi, Deniz; Nelson, Noah S; Chepeha, Douglas B; Buchman, Steven R

    2013-07-01

    Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 µg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Parathyroid hormone-treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration-approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction.

  5. Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori.

    PubMed

    Matsumoto, Hitoshi; Ueno, Chihiro; Nakamura, Yuki; Kinjoh, Terunori; Ito, Yuka; Shimura, Sachiko; Noda, Hiroaki; Imanishi, Shigeo; Mita, Kazuei; Fujiwara, Haruhiko; Hiruma, Kiyoshi; Shinoda, Tetsuro; Kamimura, Manabu

    2015-09-01

    Juvenile hormone (JH) regulates many physiological processes in insects. However, the signal cascades in which JH is active have not yet been fully elucidated, particularly in comparison to another major hormone ecdysteroid. Here we identified two JH inducible transcription factors as candidate components of JH signaling pathways in the silkworm, Bombyx mori. DNA microarray analysis showed that expression of two transcription factor genes, E75 and Enhancer of split mβ (E(spl)mβ), was induced by juvenile hormone I (JH I) in NIAS-Bm-aff3 cells. Real time RT-PCR analysis confirmed that expression of four E75 isoforms (E75A, E75B, E75C and E75D) and E(spl)mβ was 3-8 times greater after JH I addition. Addition of the protein synthesis inhibitor cycloheximide did not suppress JH-induced expression of the genes, indicating that they were directly induced by JH. JH-induced expression of E75 and E(spl)mβ was also observed in four other B. mori cell lines and in larval hemocytes of final instar larvae. Notably, E75A expression was induced very strongly in larval hemocytes by topical application of the JH analog fenoxycarb; the level of induced expression was comparable to that produced by feeding larvae with 20-hydroxyecdysone. These results suggest that E75 and E(spl)mβ are general and direct target genes of JH and that the transcription factors encoded by these genes play important roles in JH signaling.

  6. Hormonal changes accompanying cigarette smoke-induced preterm births in a mouse model.

    PubMed

    Ng, Sheung P; Steinetz, Bernard G; Lasano, Salamia G; Zelikoff, Judith T

    2006-09-01

    Epidemiologic evidence indicates that maternal smoking increases the risk of preterm birth. While a number of plausible mechanisms for early delivery have been offered, the role of gestational hormones in this smoke-induced outcome is uncertain. Thus, a toxicologic study was performed to examine the effects and underlying hormonal mechanisms of mainstream cigarette smoke (MCS) exposure on gestational duration. Pregnant B6C3F1 mice were exposed by inhalation to MCS for 5 days/week (4 hrs/day) from Gestational Day (GD) 4 to parturition. Smoke-induced effects on gestational length, interpubic ligament length, maternal hormone secretion patterns (estradiol-17beta, progesterone, prolactin, and relaxin), body weight gain, postimplantation loss, litter size, and offspring sex ratio were examined. Dams exposed to MCS at a concentration equivalent to smoking less than one pack of cigarettes/day (carbon monoxide = 25 parts per million, total suspended particulates = 16 mg/m3) demonstrated a significant (P < 0.05) shortening of gestational duration (compared with pregnant, air-exposed mice). In addition, MCS-exposed mice sacrificed on GD 18 had significantly (P < 0.05) increased interpubic ligament length, elevated serum estrogen levels, and a reduced progesterone to estradiol-17beta ratio (compared with air-exposed controls); levels of progesterone and prolactin were only modestly decreased and increased, respectively, in the MCS-exposed mice. Smoke exposure had no significant effects on maternal relaxin levels, body weight gain, postimplantation loss, litter size, or sex ratio. Results of this study demonstrate that inhalation exposure of pregnant mice to a low dose of MCS shortens gestation and alters hormone secretory patterns, which are important for maintaining pregnancy and inducing parturition. These findings support the view that pregnant women who smoke (even modestly) may be at increased risk for preterm birth, and that early delivery may be related (at least

  7. Aging-induced alterations in female rat colon smooth muscle: the protective effects of hormonal therapy.

    PubMed

    Pascua, P; Camello-Almaraz, C; Pozo, M J; Martin-Cano, F E; Vara, E; Fernández-Tresguerres, J A; Camello, P J

    2012-06-01

    Aging is associated to oxidative damage and alterations in inflammatory and apoptotic pathways. Aging impairs secretion of several hormones, including melatonin and estrogens. However, the mechanisms involved in aging of smooth muscle are poorly known. We have studied the changes induced by aging in the colonic smooth muscle layer of female rats and the protective effect of hormonal therapy. We used young, aged, and ovariectomized aged female rats. Two groups of ovariectomized rats (22 months old) were treated either with melatonin or with estrogen for 10 weeks before sacrifice. Aging induced oxidative imbalance, evidenced by H(2)O(2) accumulation, lipid peroxidation, and decreased catalase activity. The oxidative damage was enhanced by ovariectomy. In addition, aged colonic muscle showed enhanced expression of the pro-inflammatory enzyme cyclooxygenase 2. Expression of the activated forms of caspases 3 and 9 was also enhanced in aged colon. Melatonin and estrogen treatment prevented the oxidative damage and the activation of caspases. In conclusion, aging of colonic smooth muscle induces oxidative imbalance and activation of apoptotic and pro-inflammatory pathways. Hormonal therapy has beneficial effects on the oxidative and apoptotic changes associated to aging in this model.

  8. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish.

    PubMed

    Toraya, Tetsuo; Kida, Tetsuo; Kuyama, Atsushi; Matsuda, Shinjiro; Tanaka, Seiichi; Komatsu, Yo; Tsurukai, Taro

    2017-03-25

    Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N(6)-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised against a 1-MeAde hapten, a single band with Mr of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog.

    PubMed

    Oda, Shigeto; Kato, Yasuhiko; Watanabe, Hajime; Tatarazako, Norihisa; Iguchi, Taisen

    2011-01-01

    Terpenoid hormones in insects (i.e., juvenile hormones) have various effects on physiology, morphology, and behavior, producing a wide range of phenotypic variation. Recent studies have shown that sex determination in cladoceran crustaceans is under the strong control of a major terpenoid hormone of crustaceans, methyl farnesoatote (MF). It can be easily conceived that MF is also a major determinant of other traits in cladocerans. In the present study, morphological changes known as antipredatory responses in a cladoceran Daphnia galeata in response to exposure to MF and a juvenile hormone-mimicking pesticide, fenoxycarb, were investigated. Morphological change was studied using neonates less than 24 h old, exposed either to MF at the concentrations from 1.9 to 30 µg/L, or fenoxycarb at the concentrations from 13 to 200 ng/L, for 6 d. Animals developed a longer helmet at 1.9 µg/L of MF and 25 ng/L of fenoxycarb, and showed a concentration-dependent elongation. However, the tail spine was reduced in size in a concentration-dependent manner. Results of the present study not only give new insight into the mechanisms of inducible defenses in cladocerans, but also provide invaluable information to understand ecological and evolutionary consequences of endocrine disruption through the shift in biological interaction between predator and prey.

  10. Hormone control of total plasminogen activator activity is specific to malignant DMBA-induced rat mammary tumours.

    PubMed Central

    Inada, K.; Yamashita, J.; Matsuo, S.; Nakashima, Y.; Yamashita, S.; Ogawa, M.

    1992-01-01

    Hormonal regulation of plasminogen activator expression in 7,12-dimethylbenz[a]anthracene (DMBA)--induced rat mammary carcinomas was studied both in vivo and in vitro and was compared to that in DMBA-mammary dysplasia induced in neonatally androgenised rats. The plasminogen activator activity in DMBA-mammary carcinomas, but not in DMBA-mammary dysplasia, was regulated by oestrogen. This suggests that expression of this enzyme is hormonally regulated in carcinoma cells. Furthermore, in two of six DMBA-mammary carcinoma groups classified in terms of hormonal treatment, plasminogen activator activity was not under the control of oestrogen. Thus, the present results suggest that at the time of carcinogenesis, the hormonal milieu determines the hormone sensitivities of the malignant cells. PMID:1562466

  11. Hormonal control of germ cell development and spermatogenesis.

    PubMed

    O'Shaughnessy, Peter J

    2014-05-01

    Spermatogenesis is completely dependent on the pituitary hormone follicle-stimulating hormone (FSH) and androgens locally produced in response to luteinising hormone (LH). This dual control has been known since the 1930s and 1940s but more recent work, particularly using transgenic mice, has allowed us to determine which parts of the spermatogenic pathway are regulated by each hormone. During the first spermatogenic cycle after puberty both FSH and androgen act to limit the massive wave of germ cell apoptosis which occurs at this time. The established role of FSH in all cycles is to increase spermatogonial and subsequent spermatocyte numbers with a likely effect also on spermiation. Mice lacking FSH or its receptor are fertile, albeit with reduced germ cell numbers, and so this hormone is not an essential regulator of spermatogenesis but acts to optimise germ cell production Androgens also appear to regulate spermatogonial proliferation but, crucially, they are also required to allow spermatocytes to complete meiosis and form spermatids. Animals lacking androgen receptors fail to generate post-meiotic germ cells, therefore, and are infertile. There is also strong evidence that androgens act to ensure appropriate spermiation of mature spermatids. Androgen regulation of spermatogenesis is dependent upon action on the Sertoli cell but recent studies have shown that androgenic stimulation of the peritubular myoid cells is also essential for normal germ cells development. While FSH or androgen alone will both stimulate germ cell development, together they act synergistically to maximise germ cell number. The other hormones/local factors which can regulate spermatogenesis include activins and estrogens although their role in normal physiological regulation of this process needs to be more clearly established. Regulation of spermatogenesis in primates appears to be similar to that in rodents although the role of FSH may be greater. While our knowledge of hormone function

  12. Effect of posterior hypothalamic knife cuts on the baroreflex and hemorrhage-induced hormonal responses.

    PubMed

    Makino, S; Hashimoto, K; Ota, Z

    1990-04-01

    We made posterior hypothalamic knife cuts in rats to transect the fibers of the medial forebrain bundle (MFB) at the level of the mammillary body. The role of the MFB in the baroreflex and hemorrhage-induced hormonal responses was then examined in the unanesthetized, freely moving condition. The slopes for the relationship between changes in pulse interval and mean arterial pressure (MAP) in the posterior-cut group were significantly steeper than those in the sham-cut group both when there were phenylephrine-induced increases in MAP (1.13 +/- 0.07 vs 0.86 +/- 0.10 msec/mmHg) and nitroprusside-induced decreases in MAP (1.16 +/- 0.10 vs 0.77 +/- 0.05 msec/mmHg). This result indicates that posterior cuts elevated baroreflex sensitivity when MAP was increased or decreased. The resting MAP was not changed, but the resting heart rate (HR) was lowered by the posterior cuts. Furthermore, the posterior cuts augmented hypotensive hemorrhage-induced bradycardia. Hypotensive hemorrhage (16-17 ml/kg) caused elevation of the plasma catecholamine, ACTH and vasopressin (AVP) levels, but the posterior cuts attenuated these hormonal responses. These results indicate that the fibers in the MFB have a tonic inhibitory effect on the baroreflex in the resting condition, and play a stimulatory role in hemorrhage-induced catecholamine, ACTH and AVP responses.

  13. Naringenin and 17beta-estradiol coadministration prevents hormone-induced human cancer cell growth.

    PubMed

    Bulzomi, Pamela; Bolli, Alessandro; Galluzzo, Paola; Leone, Stefano; Acconcia, Filippo; Marino, Maria

    2010-01-01

    Flavonoids have been described as health-promoting, disease-preventing dietary components. In vivo and in vitro experiments also support a protective effect of flavonoids to reduce the incidence of certain hormone-responsive cancers. In particular, our previous results indicate that the flavanone naringenin (Nar), decoupling estrogen receptor alpha (ERalpha) action mechanisms, drives cancer cells to apoptosis. Because these studies were conducted in the absence of the endogenous hormone 17beta-estradiol (E2), the physiological relevance of these findings is not clear. We investigate whether the antiproliferative Nar effect persists in the presence of physiological E2 concentration (i.e. 10 nM), using both ERalpha-transfected (HeLa cells) and ERalpha-containing (HepG2 cells) cancer cell lines. Ligand saturation experiments indicate that Nar decreases the binding of E2 to ERalpha without impairing the estrogen response element (ERE)-driven reporter plasmid activity. In contrast, Nar stimulation prevents E2-induced extracellular regulated kinases (ERK1/2) and AKT activation and still induces the activation of p38, the proapoptotic member of mitogen-activating protein kinase (MAPK) family. As a consequence, Nar stimulation impedes the E2-induced transcription of cyclin D1 promoter and reverts the E2-induced cell proliferation, driving cancer cell to apoptosis. Thus, these results suggest that coexposure to this low-affinity, low-potency ligand for ERalpha specifically antagonizes the E2-induced ERalpha-dependent rapid signals by reducing the effect of the endogenous hormone in promoting cellular proliferation. As a whole, these data indicate that Nar is an excellent candidate as a chemopreventive agent in E2-dependent cancers.

  14. Effect of thyroid hormone status and concomitant medication on statin induced adverse effects in hyperlipidemic patients.

    PubMed

    Berta, E; Harangi, M; Zsíros, N; Nagy, E V; Paragh, G; Bodor, M

    2014-06-01

    Statins are effective treatment for the prevention of cardiovascular diseases and used extensively worldwide. However, adverse effects induced by statins are the major barrier of maximalizing cardiovascular risk reduction. Hypothyroidism and administration of drugs metabolized on the same cytochrome P450 (CYPP450) pathways where statin biotransformation occurs represent a significant risk factor for statin induced adverse effects including myopathy. Simvastatin, atorvastatin and lovastatin are metabolized by CYP3A4, fluvastatin by CYP2C9, while rosuvastatin by CYP2C9 and 2C19. We investigated the levels of the free thyroid hormones and CYP metabolism of concomitant medication in 101 hyperlipidemic patients (age 61.3 +/- 9.9 ys) with statin induced adverse effects including myopathy (56 cases; 55.4%), hepatopathy (39 cases; 38.6%) and gastrointestinal adverse effects (24 cases; 23.8%). Abnormal thyroid hormone levels were found in 5 patients (4.95%); clinical hypothyroidism in 2 and hyperthyroidism in 3 cases. 11 patients had a positive history for hypothyroidism (10.9%). Myopathy occured in one patient with hypothyroidism and two patients with hyperthyroidism. There were no significant differences in the TSH, fT4 and fT3 levels between patients with statin induced myopathy and patients with other types of adverse effects. 78 patients (77.2%) were administered drugs metabolized by CYP isoforms also used by statins (3A4: 66 cases (65.3%); 2C9: 67 cases (66.3%); 2C19: 54 cases (53.5%)). Patients with myopathy took significantly more drugs metabolized by CYP3A4 compared to patients with other types of adverse effects (p < 0.05). More myopathy cases were found in patients on simvastatin treatment (52% vs. 38%, ns.), while significantly less patients with myopathy were on fluvastatin treatment (13% vs. 33%, p < 0.05) compared to patients with other types of statin induced adverse effects. Both abnormal thyroid hormone status and administration of drugs metabolized by CYP

  15. Hormone-induced ovulation in Ambystoma tigrinum: influence of prolactin and thyroxine.

    PubMed

    Norris, D O; Duvall, D

    1981-04-01

    Treatment of hypophysectomized or intact neotenic tiger salamander larvae (Ambystoma tigrinum) with ovine prolactin (PRL) increased sensitivity of the ovary to the ovulation-inducing hormones, human chorionic gonadotropin and luteinizing hormone (LH). Effects of pretreatment in vivo with PRL or thyroxine (T4) on the responsiveness of ovarian fragments in vitro to ovulation-inducing agents, LH, or progesterone (PROG) in the presence or absence of PRL were observed. In November (prior to normal spawning occurring from January through May) in vivo and in vitro treatment with PRL increased the number of oocytes producing polar bodies and the number of eggs ovulated in vitro. In April addition of PRL in vitro increased polar body formation and ovulations in response to LH or PROG, but in vivo pretreatment with PRL had no effect. Pretreatment in vivo with T4 blocked the in vitro enhancement observed with PRL. Thus, endogenous PRL may play a role in the development of ovarian sensitivity to ovulatory hormones at the level of the oocyte, and T4 may inhibit this action.

  16. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes.

    PubMed

    Singh, Brijesh Kumar; Sinha, Rohit Anthony; Zhou, Jin; Xie, Sherwin Ying; You, Seo-Hee; Gauthier, Karine; Yen, Paul Michael

    2013-10-18

    Hepatic gluconeogenesis is a concerted process that integrates transcriptional regulation with hormonal signals. A major regulator is thyroid hormone (TH), which acts through its nuclear receptor (TR) to induce the expression of the hepatic gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC). Forkhead transcription factor FoxO1 also is an important regulator of these genes; however, its functional interactions with TR are not known. Here, we report that TR-mediated transcriptional activation of PCK1 and G6PC in human hepatic cells and mouse liver was FoxO1-dependent and furthermore required FoxO1 deacetylation by the NAD(+)-dependent deacetylase, SirT1. siRNA knockdown of FoxO1 decreased, whereas overexpression of FoxO1 increased, TH-dependent transcriptional activation of PCK1 and G6PC in cultured hepatic cells. FoxO1 siRNA knockdown also decreased TH-mediated transcription in vivo. Additionally, TH was unable to induce FoxO1 deacetylation or hepatic PCK1 gene expression in TH receptor β-null (TRβ(-/-)) mice. Moreover, TH stimulated FoxO1 recruitment to the PCK1 and G6PC gene promoters in a SirT1-dependent manner. In summary, our results show that TH-dependent deacetylation of a second metabolically regulated transcription factor represents a novel mechanism for transcriptional integration of nuclear hormone action with cellular energy status.

  17. Deletion of ovarian hormones induces a sickness behavior in rats comparable to the effect of lipopolysaccharide.

    PubMed

    Azizi-Malekabadi, Hamid; Hosseini, Mahmoud; Pourganji, Masoume; Zabihi, Hoda; Saeedjalali, Mohsen; Anaeigoudari, Akbar

    2015-01-01

    Neuroimmune factors have been proposed as the contributors to the pathogenesis of sickness behaviors. The effects of female gonadal hormones on both neuroinflammation and depression have also been well considered. In the present study, the capability of deletion of ovarian hormones to induce sickness-like behaviors in rats was compared with the effect lipopolysaccharide (LPS). The groups were including Sham, OVX, Sham-LPS, and OVX-LPS. The Sham-LPS and OVX-LPS groups were treated with LPS (250 μg/kg) two hours before conducting the behavioral tests. In the forced swimming (FST), the immobility times in both OVX and Sham-LPS groups were higher than that of Sham (P < 0.001). In open-field (OP) test, the central crossing number by OVX and Sham-LPS groups were lower than Sham (P < 0.001) while there were no significant differences between OVX-LPS and OVX groups. In elevated plus maze (EPM), the percent of entries to the open arm by both OVX and Sham-LPS groups was lower than that of Sham group (P < 0.001). The results of present study showed that deletion of ovarian hormones induced sickness behaviors in rats which were comparable to the effects of LPS. Moreover, further investigations are required in order to better understand the mechanism(s) involved.

  18. Parathyroid Hormone Therapy Mollifies Radiation-Induced Biomechanical Degradation in Murine Distraction Osteogenesis

    PubMed Central

    Deshpande, Sagar S.; Gallagher, Katherine K.; Donneys, Alexis; Tchanque-Fossuo, Catherine N.; Sarhaddi, Deniz; Nelson, Noah S.; Chepeha, Douglas B.; Buchman, Steven R.

    2015-01-01

    Objective Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Methods Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 μg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Results Parathyroid hormone–treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. Conclusions The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration–approved drug on formulary, significantly improve outcomes in a model of

  19. Effect of Naloxon on Counter Insulin Hormone Secretion in Insulin-Induced Hypoglycemia

    PubMed Central

    Ju, Yeong Shil; Kim, Sung Woon; Yang, In Myung; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1987-01-01

    To investigate the normal physiologic role of endogenous opiates in glucose homeostasis and as a preliminary study for clarifying the association of endogenous opites with pathophysilogy of NIDDM, we obseved the changes in the secretion of counter-insulin hormones in response to insulin-induced hypoglycemia with or without naloxone. The results were as follows: Blood glucose was decreased significantly more rapidly with naloxone infusion than after insulin alone, which seems to play a role in the early responses of ACTH and GH.Not only was the more rapid response of ACTH and GH, but also the prolonged secretion of ACTH and Cortisol were observed after administration of insulin and naloxone. We concluded that endogenous opiates may be involved in the feedback regulation of secretion of ACTH and GH during hypoglycemia either at hypophysis or hypothalamus, and involved in glucose homeostasis via a certain direct mechanism other than regulation of counter hormone secretion. PMID:2856480

  20. Resveratrol alleviates ethanol-induced hormonal and metabolic disturbances in the rat.

    PubMed

    Szkudelska, K; Deniziak, M; Roś, P; Gwóźdź, K; Szkudelski, T

    2017-03-31

    Resveratrol is a polyphenol found in different plant species and having numerous health-promoting properties in animals and humans. However, its protective action against deleterious effects of ethanol is poorly elucidated. In the present study, the influence of resveratrol (10 mg/kg/day) on some hormones and metabolic parameters was determined in rats ingesting 10 % ethanol solution for two weeks. Blood levels of insulin, glucagon and adiponectin were affected by ethanol, however, resveratrol partially ameliorated these changes. Moreover, in ethanol drinking rats, liver lipid accumulation was increased, whereas resveratrol was capable of reducing liver lipid content, probably due to decrease in fatty acid synthesis. Resveratrol decreased also blood levels of triglycerides and free fatty acids and reduced gamma-glutamyl transferase activity in animals ingesting ethanol. These results show that resveratrol, already at low dose, alleviates hormonal and metabolic changes induced by ethanol in the rat and may be useful in preventing and treating some consequences of alcohol consumption.

  1. Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells.

    PubMed

    Fabbri, Francesco; Amadori, Dino; Carloni, Silvia; Brigliadori, Giovanni; Tesei, Anna; Ulivi, Paola; Rosetti, Marco; Vannini, Ivan; Arienti, Chiara; Zoli, Wainer; Silvestrini, Rosella

    2008-11-01

    Studies performed in different experimental and clinical settings have shown that Docetaxel (Doc) is effective in a wide range of tumors and that it exerts its activity through multiple mechanisms of action. However, the sequence of events induced by Doc which leads to cell death is still not fully understood. Moreover, it is not completely clear how Doc induces mitotic catastrophe and whether this process is an end event or followed by apoptosis or necrosis. We investigated the mechanisms by which Doc triggers cell death in hormone-refractory prostate cancer cells by analyzing cell cycle perturbations, apoptosis-related marker expression, and morphologic cell alterations. Doc induced a transient increase in G2/M phase followed by the appearance of G0/1 hypo- and hyperdiploid cells and increased p21 expression. Time- and concentration-dependent apoptosis was induced in up to 70% of cells, in concomitance with Bcl-2 phosphorylation, which was followed by caspase-2 and -3 activation. In conclusion, Doc would seem to trigger apoptosis in hormone-refractory prostate cancer cells via mitotic catastrophe through two forms of mitotic exit, in concomitance with increased p21 expression and caspase-2 activation.

  2. Gentamicin Induced Nephrotoxicity: The Role of Sex Hormones in Gonadectomized Male and Female Rats

    PubMed Central

    Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir; Moslemi, Fatemeh

    2016-01-01

    Background. Gentamicin (GM) induced nephrotoxicity may be sex hormones related. The effects of sex hormones on GM induced nephrotoxicity in gonadectomized rats were investigated. Methods. Ovariectomized rats received 0.25, 0.5, or 1 mg/kg/week of estradiol (ES) alone or accompanied with 10 mg/kg/week of progesterone (Pro) for two weeks followed by GM (100 mg/kg/day) for 9 days. Castrated rats were also treated with 10, 50, or 100 mg/kg/week of testosterone (TS) for two weeks and then received GM. In addition, a single castrated group received 0.25 mg/kg/week of ES plus GM. Results. GM increased the serum levels of blood urea nitrogen (BUN) and creatinine (Cr) and kidney tissue damage score (KTDS) (P < 0.05). TS had no effect on the serum levels of BUN and Cr and KTDS, while low dose of ES intensified these parameters in male (P < 0.05). ES (0.5 mg/kg) without Pro ameliorated KTDS in female (P < 0.05) while ES (1 mg/kg) with or without Pro exacerbated the BUN values and Cr values, KTDS, and body weight loss (P < 0.05). Conclusion. ES (0.5 mg/kg) without Pro ameliorated kidney damage induced by GM in female while neither TS nor ES had beneficial effect on nephrotoxicity induced by GM in male, although ES aggravated it. PMID:27213082

  3. Syndrome of inappropriate antidiuretic hormone-induced hyponatremia associated with amiodarone.

    PubMed

    Patel, Gourang P; Kasiar, Jennifer B

    2002-05-01

    The syndrome of inappropriate antidiuretic hormone (SIADH), the most common cause of euvolemic hyponatremia, is due to nonphysiologic release of arginine vasopressin from the posterior pituitary. Hyponatremia induced by SIADH can be caused by several conditions, such as central nervous system disorders, malignancies, various nonmalignant lung diseases, hypoadrenalism, and hypothyroidism. A 67-year-old man developed hyponatremia consistent with SIADH. Although common comorbid conditions associated with SIADH were excluded as possible causes, his medical history and drug regimen were extensive. However, he had been taking spironolactone, amiodarone, and simvastatin for less than 3 months. Amiodarone was discontinued based on a case report suggesting that this drug can cause SIADH-induced hyponatremia. The patient's serum sodium level began to rise within 3 days of discontinuation and returned to normal within 1 month. Although SIADH-induced hyponatremia occurs only rarely, it should be recognized as a possible adverse effect of amiodarone.

  4. Workgroup report: National Toxicology Program workshop on Hormonally Induced Reproductive Tumors - Relevance of Rodent Bioassays.

    PubMed

    Thayer, Kristina A; Foster, Paul M

    2007-09-01

    The National Toxicology Program (NTP) is currently reviewing its research portfolio as part of its efforts to implement the NTP Roadmap to achieve the NTP Vision for the 21st century. This review includes a recent workshop, "Hormonally Induced Reproductive Tumors-Relevance of Rodent Bioassays," held 22-24 May 2006, that was organized to determine the adequacy and relevance to human disease outcome of rodent models currently used in the 2-year bioassay for four types of hormonally induced reproductive tumors (ovary, mammary gland, prostate, and testis). In brief, none of the workshop's breakout groups felt the currently used models are sufficient. For some types of tumors such as prostate, no adequate animal models exist, and for others such as ovary, the predominant tumors in humans are of different cellular origins than those induced by chemicals in rodents. This inadequacy of current models also applies to the testis, although our more complete understanding of the responses of Leydig cells to hormonal changes in rats may prove predictive for effects in humans other than cancer. All breakout groups recommended that the NTP consider modifying its testing protocols (i.e., age at exposure, additional end points, etc.) and/or using alternative models (i.e., genetically engineered models, in vitro systems, etc.) to improve sensitivity. In this article we briefly review the workshop's outcome and outline some next steps forward in pursuing the workshop's recommendations. Breakout group reports and additional information on the workshop, including participants, presentations, public comments and background materials, are posted on the NTP website.

  5. Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

    PubMed

    Lehotai, Nóra; Kolbert, Zsuzsanna; Peto, Andrea; Feigl, Gábor; Ördög, Attila; Kumar, Devanand; Tari, Irma; Erdei, László

    2012-09-01

    Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.

  6. Differentiation of human myeloid leukemia cells by plant redifferentiation-inducing hormones.

    PubMed

    Honma, Yoshio; Ishii, Yuki

    2002-09-01

    Although differentiation therapy for patients with acute promyelocytic leukemia (APL) using all-trans retinoic acid (ATRA) has now been established, acute myeloid leukemia (AML) patients with other than APL only show a limited clinical response to ATRA. We must consider novel therapeutic drugs against other AML to develop a differentiation therapy for leukemia. Regulators that play an important role in the differentiation and development of plants may also affect the differentiation of human leukemia cells through a common signal transduction system, and might be clinically useful for treating AML. Cytokinins are important purine derivatives that serve as hormones that control many processes in plants. Cytokinins such as kinetin, isopentenyladenine (IPA) and benzyladenine were very effective at inducing nitroblue tetrazolium (NBT) reduction and morphological changes in human myeloid leukemia cells into mature granulocytes. On the other hand, cytokinin ribosides such as kinetin riboside, isopentenyladenosine (IPAR) and benzyladenine riboside were the most potent for inhibiting growth and inducing apoptosis. When the cells were incubated with cytokinin ribosides in the presence of an O2- scavenger, antioxidant or caspase inhibitor, apoptosis was significantly reduced and differentiation was greatly enhanced. These results suggest that both cytokinins and cytokinin ribosides can induce the granulocytic differentiation of HL-60 cells, but cytokinin ribosides also induce apoptosis prior to differentiation. Cotylenin A has been isolated as a plant growth regulator exhibits cytokinin-like activity. Although it has a different structure than cytokinins, it also induces the differentiation of human myeloid leukemia cells. These results suggest that there is an association between the action of plant redifferentiation-inducing hormones and the mechanism of the differentiation of human leukemia cells.

  7. The effect of Anethum graveolens L. (dill) on corticosteroid induced diabetes mellitus: involvement of thyroid hormones.

    PubMed

    Panda, Sunanda

    2008-12-01

    An investigation was made to evaluate the role of Anethum graveolens L. (dill) leaf extract in the regulation of corticosteroid-induced type 2 diabetes mellitus in female rats. In dexamethasone-treated animals (1 mg/kg for 22 days) an increase in serum concentration of insulin and glucose and in hepatic lipid peroxidation (LPO) was observed. However, there was a decrease in serum concentration of thyroid hormones and in the endogenous antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) in liver. In animals treated with an equivalent amount of dexamethasone for a similar period (22 days) when received the leaf extract (100 mg/kg b.wt/d.) for last 15 days a decrease in the concentration of both serum glucose and insulin was observed, indicating the potential of the plant extract in the regulation of corticosteroid-induced diabetes. Dexamethasone-induced alterations in the levels of thyroid hormones as well as in hepatic LPO, SOD, CAT and GSH were also reversed by the plant extract. (c) 2008 John Wiley & Sons, Ltd.

  8. Physiology of Hormone Autonomous Tissue Lines Derived From Radiation-Induced Tumors of Arabidopsis thaliana 1

    PubMed Central

    Campell, Bruce R.; Town, Christopher D.

    1991-01-01

    γ-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms· (gram fresh weight)−1 free indoleacetic acid (IAA), 150 nanograms· (gram fresh weight)−1 ester-conjugated IAA, and 10 to 20 micrograms· (gram fresh weight)−1 amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms· (gram fresh weight)−1 of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to

  9. A Case Report of Syndrome of Inappropriate Antidiuretic Hormone Induced by Pregabalin

    PubMed Central

    Jung, Youn Joo; Lee, Dong-Young; Kim, Hae Won; Park, Hyun Sun

    2016-01-01

    The syndrome of inappropriate antidiuretic hormone secretion (SIADH) is the most common cause of euvolemic hyponatremia, and many medications have been associated with SIADH. Pregabalin is a drug used for the treatment of neuropathic pain, though common adverse effects include central nervous system disturbance, peripheral edema, and weight gain. However, hyponatremia caused by pregabalin has been rarely reported. Here we report a patient with pregabalin-induced hyponatremia who met the criteria for SIADH; after discontinuation of the drug, his condition rapidly improved. This case can help clinicians diagnose and treat new-onset hyponatremia in patients who recently initiated pregabalin therapy. PMID:28275386

  10. A Case Report of Syndrome of Inappropriate Antidiuretic Hormone Induced by Pregabalin.

    PubMed

    Jung, Youn Joo; Lee, Dong-Young; Kim, Hae Won; Park, Hyun Sun; Kim, Beom

    2016-12-01

    The syndrome of inappropriate antidiuretic hormone secretion (SIADH) is the most common cause of euvolemic hyponatremia, and many medications have been associated with SIADH. Pregabalin is a drug used for the treatment of neuropathic pain, though common adverse effects include central nervous system disturbance, peripheral edema, and weight gain. However, hyponatremia caused by pregabalin has been rarely reported. Here we report a patient with pregabalin-induced hyponatremia who met the criteria for SIADH; after discontinuation of the drug, his condition rapidly improved. This case can help clinicians diagnose and treat new-onset hyponatremia in patients who recently initiated pregabalin therapy.

  11. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    PubMed

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  12. Lipopolysaccharide stimulation of trophoblasts induces corticotropin-releasing hormone expression through MyD88.

    PubMed

    Uh, Andy; Nicholson, Richard C; Gonzalez, Gustavo V; Simmons, Charles F; Gombart, Adrian; Smith, Roger; Equils, Ozlem

    2008-09-01

    We hypothesized that intrauterine infection may lead to placental corticotrophin-releasing hormone (CRH) expression via Toll-like receptor signaling. To test this hypothesis JEG3 cells were stimulated with lipopolysaccharide (LPS), chlamydial heat shock protein 60, and interleukin (IL)-1. CRH expression was assessed by reverse transcription polymerase chain reaction (RT-PCR). The signaling mechanisms that were involved were examined in transient transfection experiments with beta-galactosidase, CRH-luciferase, cyclic adenosine monophosphate (AMP) response element-luciferase, dominant-negative (DN)-myeloid differentiation primary response gene (MyD88) and DN-toll-IL-1-receptor domain containing adapter inducing interferon (TRIF) vectors. Luciferase activity was determined by luciferase assay. Beta-galactosidase assay was performed to determine transfection efficiency. LPS, chlamydial heat shock protein 60, and IL-1 stimulation led to CRH expression in the JEG3 cells. LPS-induced CRH expression was not due to the autocrine effect of LPS-induced IL-1 because the supernatant from LPS-conditioned JEG3 cells did not induce CRH expression in the naïve cells. DN-MyD88, but not DN-TRIF, blocked the LPS-induced CRH expression. The cAMP response element did not play a role in LPS-induced CRH expression. Toll-like receptor signaling 4 may induce placental CRH expression through MyD88.

  13. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation.

    PubMed

    Henriquez, Andres; House, John; Miller, Desinia B; Snow, Samantha J; Fisher, Anna; Ren, Hongzu; Schladweiler, Mette C; Ledbetter, Allen D; Wright, Fred; Kodavanti, Urmila P

    2017-08-15

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response. Published by Elsevier Inc.

  14. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    SciTech Connect

    Pirih, Flavia Q. . E-mail: fqpirih@ucla.edu; Aghaloo, Tara L. . E-mail: taghaloo@ucla.edu; Bezouglaia, Olga . E-mail: obezougl@ucla.edu; Nervina, Jeanne M. . E-mail: jnervina@ucla.edu; Tetradis, Sotirios; E-mail: sotirist@dent.ucla.edu

    2005-07-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.

  15. Megestrol attenuates the hormonal response to CCK-4-induced panic attacks.

    PubMed

    Raedler, Thomas J; Jahn, Holger; Goedeken, Birgit; Gescher, Dorothee M; Kellner, Michael; Wiedemann, Klaus

    2006-01-01

    Progestational hormones may have anxiolytic properties. CCK-4 (cholecystokinin tetrapeptide) can be used pharmacologically to induce panic attacks both in normal controls and patients suffering from panic disorder. In this study we compared the effects of pretreatment with the progestational hormone megestrol and placebo on CCK-4-induced panic attacks and stress hormone release in healthy male controls. Using a double-blind balanced design, we pretreated 10 medically and psychiatrically healthy male controls with placebo or megestrol 160 mg at 11 p.m. and 8 a.m. (sigma=320 mg) prior to the experiment. Following 1 h of rest, 12 blood samples were drawn between 1,000 h and 1,300 h and analyzed for ACTH and cortisol levels. At 1,100 h, subjects received an intravenous injection of 50 microg CCK-4. Clinical ratings were performed at 1,045 h and 1,110 h, and included the Acute Panic Inventory (API), International Diagnostic Checklist (IDCL), as well as a visual analog scale (VAS) for anxiety and tension. CCK-4 significantly increased anxiety and tension. Pretreatment with megestrol showed no significant effect on clinical ratings. Baseline ACTH and cortisol levels, as well as ACTH and cortisol levels after administration of CCK-4, were significantly reduced after pretreatment with megestrol. In a sample of healthy male controls, pretreatment with megestrol had a profound effect on the hypothalamic-pituitary-adrenal (HPA) axis, whereas the clinical effects on panic attacks were weak. Further studies in a larger sample of subjects, including both females and patients suffering from panic disorder, seem warranted.

  16. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    PubMed

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (p<0.05). Growth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (p<0.05) by osteocalcin-induced MA-10 cells. Osteocalcin injection also promoted hepatic expression of growth hormone receptor and insulin-like growth factor-1 (p<0.05), as demonstrated by real-time polymerase chain reaction and Western blotting. Similarly, osteocalcin-induced MA-10 cells promoted growth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities.

  17. Olanzapine-induced changes in glucose metabolism are independent of the melanin-concentrating hormone system.

    PubMed

    Girault, Elodie M; Toonen, Pim W; Eggels, Leslie; Foppen, Ewout; Ackermans, Mariëtte T; la Fleur, Susanne E; Fliers, Eric; Kalsbeek, Andries

    2013-11-01

    Atypical antipsychotic drugs such as Olanzapine (Ola) induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying these undesired side-effects are currently unknown. Chagnon et al. showed that the common allele rs7973796 of the prepro-melanin-concentrating hormone (PMCH) gene is associated with a greater body mass index in Ola-treated schizophrenic patients. As PMCH encodes for the orexigenic neuropeptide melanin-concentrating hormone (MCH), it was hypothesized that MCH is involved in Ola-induced metabolic changes. We have recently reported that the intragastric infusion of Ola results in hyperglycaemia and insulin resistance in male rats. In order to test in vivo the possible involvement of the PMCH gene in the pathogenesis of Ola side-effects, we administered Ola intragastrically in wild-type (WT) and PMCH knock-out (KO) rats. Our results show that glucose and corticosterone levels, as well as endogenous glucose production, are elevated by the infusion of Ola in both WT and KO animals. Thus, the lack of MCH does not seem to affect the acute effects of Ola on glucose metabolism. On the other hand, these effects might be obliterated by compensatory changes in other hypothalamic systems. In addition, possible modulatory effects of the MCH KO on the long term effects of Ola, i.e. increased adiposity, body weight gain, have not been investigated yet.

  18. [Effect of dexamethasone on indomethacin-induced gastric erosion formation upon duration of the hormonal action].

    PubMed

    Podvigina, T T; Morozova, O Iu; Bagaeva, T R; Filaretova, L P

    2009-07-01

    The aim of the study was to verify a dependence of dexamethasone effect on the gastric erosion formation upon duration of the hormonal action. Gastric erosions were induced by indometha cin (35 mg/kg, sc) in male rats after 24-hour fasting. The rats were given a single injection of dexamethasone at a dose of 1 mg/kg and they underwent the ulcerogenic stimulus (indomethacin) at va rious time points after the hormonal injection (1, 6, 12, 18, 24 hours as well as 3, 5, 7 days). The control rats were given dexamethasone vehicle. In 4 hours after indomethacin injection gastric erosions, corticosterone and blood glucose levels, as well as body and thymus weights were examined. The results obtained demonstrate a dependence ofdexamethasone effect on the gastric erosion formation upon duration of its action: dexamethasone attenuated or aggravated indomethacin-induced gastric erosions depending on the time of its injection. Gastroprotective action of dexamethasone was observed in the case of its injection 1, 6, and 12 hours before indomethacin. The further increase in the time interval caused transformation of gastroprotective action of dexamethasone against ulcerogenic effect. The data obtained suggest that a disturbance of carbohydrate regulation accompanied with the signs of catabolic effects of the glucocorticoid may be responsible for the ulcerogenic action of dexamethasone.

  19. Bisphenol A induces corticotropin-releasing hormone expression in the placental cells JEG-3.

    PubMed

    Huang, Hui; Tan, Wenjuan; Wang, C C; Leung, Lai K

    2012-11-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproduction. Placental corticotrophin-releasing hormone (CRH) is a peptide hormone which is involved in fetal development. Increased plasma CRH is associated with elevated risk of premature delivery. In the present study, we demonstrated that bisphenol A increased CRH mRNA expression in the placental JEG-3 cells at or above 25μM. Reporter gene assay also demonstrated that bisphenol A could induce CRH gene transactivity. Since cyclic AMP response element (CRE) is a major regulatory element located in CRH promoter, the sequence-specific binding activity was investigated by using electrophoretic mobility shift assay. Our data indicated that bisphenol A increased the CRE binding activity. Western analysis further illustrated that PKA could be the signal triggering the CRE binding and CRH gene transactivation. In summary, the present study demonstrated that bisphenol A could induce CRH expression in placental cells and the underlying signal transduction pathway was also described.

  20. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  1. Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.

    PubMed

    Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M

    2004-10-01

    Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.

  2. Hormone replacement therapy in morphine-induced hypogonadic male chronic pain patients

    PubMed Central

    2011-01-01

    Background In male patients suffering from chronic pain, opioid administration induces severe hypogonadism, leading to impaired physical and psychological conditions such as fatigue, anaemia and depression. Hormone replacement therapy is rarely considered for these hypogonadic patients, notwithstanding the various pharmacological solutions available. Methods To treat hypogonadism and to evaluate the consequent endocrine, physical and psychological changes in male chronic pain patients treated with morphine (epidural route), we tested the administration of testosterone via a gel formulation for one year. Hormonal (total testosterone, estradiol, free testosterone, DHT, cortisol), pain (VAS and other pain questionnaires), andrological (Ageing Males' Symptoms Scale - AMS) and psychological (POMS, CES-D and SF-36) parameters were evaluated at baseline (T0) and after 3, 6 and 12 months (T3, T6, T12 respectively). Results The daily administration of testosterone increased total and free testosterone and DHT at T3, and the levels remained high until T12. Pain rating indexes (QUID) progressively improved from T3 to T12 while the other pain parameters (VAS, Area%) remained unchanged. The AMS sexual dimension and SF-36 Mental Index displayed a significant improvement over time. Conclusions In conclusion, our results suggest that a constant, long-term supply of testosterone can induce a general improvement of the male chronic pain patient's quality of life, an important clinical aspect of pain management. PMID:21332999

  3. Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes.

    PubMed

    Chang, Ling-Hua; Wu, Shun-Cheng; Chen, Chung-Hwan; Wang, Gwo-Jaw; Chang, Je-Ken; Ho, Mei-Ling

    2016-08-10

    Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.

  4. Hormonal responses to exercise after partial sleep deprivation and after a hypnotic drug-induced sleep.

    PubMed

    Mougin, F; Bourdin, H; Simon-Rigaud, M L; Nguyen, N U; Kantelip, J P; Davenne, D

    2001-02-01

    The aim of this study was to determine the hormonal responses, which are dependent on the sleep wake cycle, to strenuous physical exercise. Exercise was performed after different nocturnal regimens: (i) a baseline night preceded by a habituation night; (ii) two nights of partial sleep deprivation caused by a delayed bedtime or by an early awakening; and (iii) two nights of sleep after administration of either a hypnotic compound (10 mg zolpidem) or a placebo. Eight well-trained male endurance athletes with a maximal oxygen uptake of 63.5 +/- 3.8 ml x kg(-1) x min(-1) (mean value +/- s(x)) were selected on the basis of their sleeping habits and their physical training. Polygraphic recordings of EEG showed that both nights with partial sleep loss led to a decrease (P< 0.01) in stage 2 and rapid eye movement sleep. A delayed bedtime also led to a decrease (P < 0.05) in stage 1 sleep. Zolpidem had no effect on the different stages of sleep. During the afternoon after an experimental night, exercise was performed on a cycle ergometer. After a 10-min warm-up, the participants performed 30 min steady-state cycling at 75% VO(2-max) followed by a progressively increased workload until exhaustion. The recovery period lasted 30 min. Plasma growth hormone, prolactin, cortisol, catecholamine and lactate concentrations were measured at rest, during exercise and after recovery. The concentration of plasma growth hormone and catecholamine were not affected by partial sleep deprivation, whereas that of plasma prolactin was higher (P < 0.05) during the trial after an early awakening. Plasma cortisol was lower (P < 0.05) during recovery after both sleep deprivation conditions. Blood lactate was higher (P < 0.05) during submaximal exercise performed after both a delayed bedtime and an early awakening. Zolpidem-induced sleep did not affect the hormonal and metabolic responses to subsequent exercise. Our results demonstrate only minor alterations in the hormonal responses to exercise

  5. Illness-induced changes in thyroid hormone metabolism: focus on the tissue level.

    PubMed

    Kwakkel, J; Fliers, E; Boelen, A

    2011-05-01

    During illness changes in thyroid hormone metabolism occur, collectively known as the non-thyroidal illness syndrome (NTIS). NTIS is characterised by low serum thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. Recent studies have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the net effect of which may be either activation or inhibition of thyroid hormone action. In this review we discuss systemic and local changes in thyroid hormone metabolism during illness, highlighting their physiological implications in terms of disease course.

  6. Growth Hormone Induces Recurrence of Infantile Hemangiomas After Apparent Involution: Evidence of Growth Hormone Receptors in Infantile Hemangioma.

    PubMed

    Munabi, Naikhoba C O; Tan, Qian Kun; Garzon, Maria C; Behr, Gerald G; Shawber, Carrie J; Wu, June K

    2015-01-01

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, characterized by a natural history of early proliferation in the first months of life to eventual involution during childhood, often with residual fibrofatty tissue. Once involution has been achieved, IHs do not typically recur. We present two cases of exogenous growth hormone therapy resulting in the recurrence of IHs in late childhood, supported by radiological, immunohistochemical, in vitro, and in vivo evidence.

  7. Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study.

    PubMed

    Trifunović, Svetlana; Manojlović-Stojanoski, Milica; Ristić, Nataša; Nestorović, Nataša; Medigović, Ivana; Živanović, Jasmina; Milošević, Verica

    2016-12-01

    Genistein is a plant-derived estrogenic isoflavone commonly found in dietary and therapeutic supplements, due to its potential health benefits. Growth hormone-releasing hormone (GHRH) and somatostatin (SS) are neurosecretory peptides synthesized in neurons of the hypothalamus and regulate the growth hormone secretion. Early reports indicate that estrogens have highly involved in the regulation of GHRH and SS secretions. Since little is known about the potential effects of genistein on GHRH and SS neurons, we exposed rats to genistein. Genistein were administered to adult rats in dose of 30 mg/kg, for 3 weeks. The estradiol-dipropionate treatment was used as the adequate controls to genistein. Using applied stereology on histological sections of hypothalamus, we obtained the quantitative information on arcuate (Arc) and periventricular (Pe) nucleus volume and volume density of GHRH neurons and SS neurons. Image analyses were used to obtain GHRH and SS contents in the median eminence (ME). Administration of estradiol-dipropionate caused the increase of Arc and Pe nucleus volume, SS neuron volume density, GHRH and SS staining intensity in the ME, when compared with control. Genistein treatment increased: Arc nucleus volume and the volume density of GHRH neurons (by 26%) and SS neurons (1.5 fold), accompanied by higher GHRH and SS staining intensity in the ME, when compared to the orhidectomized group. These results suggest that genistein has a significant effect on hypothalamic region, involved in the regulation of somatotropic system function, and could contribute to the understanding of genistein as substance that alter the hormonal balance.

  8. Exercise induced hypercoagulability, increased von Willebrand factor and decreased thyroid hormone concentrations in sled dogs.

    PubMed

    Krogh, Anne K H; Legind, Pernille; Kjelgaard-Hansen, Mads; Bochsen, Louise; Kristensen, Annemarie T

    2014-02-07

    Sled dogs performing endurance races have been reported to have a high incidence of gastric erosions or ulcerations and an increased risk of gastro intestinal bleeding leading to death in some cases. In addition, these dogs also become hypothyroid during training and exercise. Canine hypothyroidism has been shown to correlate with decreased von Willebrand factor antigen and potentially increased bleeding tendency. Whether increased gastro intestinal bleeding risk is exacerbated due to changes in the hemostatic balance is unknown. The aim of this study was to investigate the hemostatic balance in sled dogs before and after exercise and in addition evaluate any correlation to thyroid status. Twenty sled dogs have been assessed in untrained and trained condition and immediately after exercise. The first sample was collected in the autumn following a resting period, and subsequently the dogs were exposed to increased intensity of training. After four months the peak of physical condition was reached and a 68 km long sled pulling exercise was performed. Samples were collected before and immediately after the exercise. Evaluated parameters were: plasma thromboelastographic (TEG) R, SP, α and MA, activated partial thromboplastin time (aPTT), prothrombin time (PT), fibrinogen, von Willebrand factor (vWf), D-dimer, platelet number, thyroid hormones, hematocrit and C-reactive protein (CRP). Exercise induced an overall hypercoagulable state characterized by significant decreases of TEG R and SP and an increase of α, increased concentrations of plasma vWf and decreased aPTT. In addition, a proinflammatory status was seen by a significant increase of serum CRP concentrations. Thyroid status was confirmed to be hypothyroid as training and exercise induced significant decrease of thyroxin (T4), free thyroxin (fT4) and thyroxin stimulating hormone (TSH) concentrations. Fibrinogen decreased significantly and PT increased. The training-induced changes showed correlation between T

  9. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells.

    PubMed

    Grey, Caleb L; Chang, John P

    2013-06-01

    Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    PubMed Central

    Elnakish, Mohammad T.; Ahmed, Amany A. E.; Mohler, Peter J.; Janssen, Paul M. L.

    2015-01-01

    Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models. PMID:26146529

  11. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training.

    PubMed

    West, Daniel W D; Phillips, Stuart M

    2012-07-01

    The purpose of this study was to investigate associations between acute exercise-induced hormone responses and adaptations to high intensity resistance training in a large cohort (n = 56) of young men. Acute post-exercise serum growth hormone (GH), free testosterone (fT), insulin-like growth factor (IGF-1) and cortisol responses were determined following an acute intense leg resistance exercise routine at the midpoint of a 12-week resistance exercise training study. Acute hormonal responses were correlated with gains in lean body mass (LBM), muscle fibre cross-sectional area (CSA) and leg press strength. There were no significant correlations between the exercise-induced elevations (area under the curve-AUC) of GH, fT and IGF-1 and gains in LBM or leg press strength. Significant correlations were found for cortisol, usually assumed to be a hormone indicative of catabolic drive, AUC with change in LBM (r = 0.29, P < 0.05) and type II fibre CSA (r = 0.35, P < 0.01) as well as GH AUC and gain in fibre area (type I: r = 0.36, P = 0.006; type II: r = 0.28, P = 0.04, but not lean mass). No correlations with strength were observed. We report that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.

  12. Parents' adulthood stress induces behavioral and hormonal alterations in male rat offspring.

    PubMed

    Niknazar, Somayeh; Nahavandi, Arezo; Najafi, Rezvan; Danialy, Samira; Zare Mehrjerdi, Fatemeh; Karimi, Mohsen

    2013-09-01

    Exposure to stress can influence hypothalamo-pituitary-adrenal (HPA) axis in mammals and impair their behavioral/hormonal development. Stress during fetal or early life may have wide range effects on the offspring phenotype in rodents. Since the role of parents' adulthood stress before mating is not fully understood yet, we investigated the effects of parents' adulthood stress on behavioral and hormonal parameters in 10- and 30-day-old male offspring. To induce stress in the adult male and female rats, a repeated forced swimming paradigm was employed daily over the course of 21 days. Then, they were categorized into four parental breeding groups: stressed parents (SP), stressed mother (SM), stressed father (SF) and non-stressed parents (NSP). Anxiety-like behavior was tested in adult rats and 30-day-old male pups, using the elevated plus maze (EPM). The level of serum corticosterone was measured by ELISA in all groups. Stressed adult rats showed enhanced serum corticosterone concentration and anxiety-like behavior. Serum corticosterone level of the 10- and 30-day-old pups of the SP, SM and SF groups was significantly higher than pups from the non-stressed group. Furthermore, 30-day-old pups of the SP, SM and SF groups had lower time spent in the open arms compared to the control group, but stress had no significant effects on the percent of entries into the open arms. In addition, serum corticosterone level in 30-day-old pups were raised by a stressed mother was markedly more than 10-day-old pups. These findings revealed that parents' adulthood stress have negative impacts on behavioral and hormonal responses of their male offspring. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    NASA Astrophysics Data System (ADS)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  14. Thyroid hormone induces constitutive keratin gene expression during Xenopus laevis development.

    PubMed Central

    Mathisen, P M; Miller, L

    1989-01-01

    We have used in vitro explant cultures of Xenopus laevis skin to investigate the role that the thyroid hormone triiodothyronine (T3) plays in activating the 63-kilodalton (kDa) keratin genes. The activation of these genes in vivo requires two distinct steps, one independent of T3 and one dependent on T3. In this report we have shown that the same two steps are required to fully activate the 63-kDa keratin genes in skin explant cultures, and we have characterized the T3-mediated step in greater detail. Unlike the induction of transcription by T3 or steroid hormones in adult tissues, there was a long latent period of approximately 2 days between the addition of T3 to skin cultures and an increase in concentration of keratin mRNA. While the T3 induction of 63-kDa keratin gene transcription cannot occur until age 48, a short transient exposure of stage 40 skin cultures to T3 resulted in high-level expression of these genes 5 days later, when normal siblings had reached stage 48. This result indicates that T3 induces a stable change in epidermal cells which can be expressed much later, after extensive cell proliferation has occurred in the absence of T3. Once the 63-kDa keratin genes were induced, they were stably expressed, and by the end of metamorphosis T3 had no further effect on their expression. The results suggest that T3 induces constitutive expression of the 63-kDa keratin genes during metamorphosis. Images PMID:2473388

  15. α-Melanocyte-stimulating hormone: a protective peptide against chemotherapy-induced hair follicle damage?

    PubMed

    Böhm, M; Bodó, E; Funk, W; Paus, R

    2014-04-01

    Effective, safe and well-tolerated therapeutic and/or preventive regimens for chemotherapy-induced alopecia (CIA) still remain to be developed. Because α-melanocyte-stimulating hormone (α-MSH) exerts a number of cytoprotective effects and is well tolerated, we hypothesized that it may be a candidate CIA-protective agent. To explore, using a human in vitro model for chemotherapy-induced hair follicle (HF) dystrophy that employs the key cyclophosphamide metabolite (4-hydroperoxy-cyclophosphamide, 4-HC), whether α-MSH protects from 4-HC-induced HF dystrophy. Microdissected human scalp HFs from four individuals were treated with 4-HC, α-MSH and 4-HC plus α-MSH. Changes in HF cycling, melanin distribution and hair matrix keratinocyte proliferation/apoptosis were examined by quantitative (immune-) morphometry. Expression of the cytoprotective enzyme haem oxygenase-1 (HO-1) was determined by real-time reverse transcriptase-polymerase chain reaction in HF of two individuals. In 50% of the individuals α-MSH reduced melanin clumping as an early sign of 4-HC-induced disruption of follicular pigmentation. α-MSH reduced 4-HC-induced apoptosis in the HFs of one female patient. These protective effects of α-MSH were not associated with changes in 4-HC-induced catagen induction. α-MSH and 4-HC both increased HO-1 mRNA expression, while the combination of both agents had additive effects on HO-1 transcription. Exogenous α-MSH exerts moderate HF-protective effects against 4-HC-induced human scalp HF damage and upregulates the intrafollicular expression of a key cytoprotective enzyme. However, as substantial interindividual response variations were found, further studies are needed to probe α-MSH as a candidate CIA-protective agent. © 2013 British Association of Dermatologists.

  16. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion.

    PubMed

    Zhou, Cuiqi; Jiao, Yonghui; Wang, Renzhi; Ren, Song-Guang; Wawrowsky, Kolja; Melmed, Shlomo

    2015-04-01

    Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however, regulatory mechanisms that promote GH hypersecretion remain elusive. Here, we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover, STAT3 and GH expression were concordant in a somatotroph adenoma tissue array. Promoter and expression analysis in a GH-secreting rat cell line (GH3) revealed that STAT3 specifically binds the Gh promoter and induces transcription. Stable expression of STAT3 in GH3 cells induced expression of endogenous GH, and expression of a constitutively active STAT3 further enhanced GH production. Conversely, expression of dominant-negative STAT3 abrogated GH expression. In primary human somatotroph adenoma-derived cell cultures, STAT3 suppression with the specific inhibitor S3I-201 attenuated GH transcription and reduced GH secretion in the majority of derivative cultures. In addition, S3I-201 attenuated somatotroph tumor growth and GH secretion in a rat xenograft model. GH induced STAT3 phosphorylation and nuclear translocation, indicating a positive feedback loop between STAT3 and GH in somatotroph tumor cells. Together, these results indicate that adenoma GH hypersecretion is the result of STAT3-dependent GH induction, which in turn promotes STAT3 expression, and suggest STAT3 as a potential therapeutic target for pituitary somatotroph adenomas.

  17. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion*

    PubMed Central

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G.

    2013-01-01

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  18. Ribonucleic Acid Synthesis by Cucumber Chromatin: Developmental and Hormone-induced Changes.

    PubMed

    Johnson, K D; Purves, W K

    1970-10-01

    When intact etiolated 2-day cucumber (Cucumis sativus) embryos were treated with indoleacetic acid (IAA), gibberellin A(7) (GA(7)), or kinetin, chromatin derived from the embryonic axes exhibited an increased capacity to support RNA synthesis in either the presence or the absence of bacterial RNA polymerase. An IAA effect on cucumber RNA polymerase activity was evident after 4 hours of hormone treatment; the IAA effect on DNA template activity (bacterial RNA polymerase added) occurred after longer treatments (12 hours). GA(7) also promoted template activity, but again only after a prior stimulation of endogenous chromatin activity. After 12 hours of kinetin treatment, both endogenous chromatin and DNA template activities were substantially above control values, but longer kinetin treatments caused these activities to decline in magnitude. When chromatin was prepared from hypocotyl segments that were floated on a GA(7) solution, a GA-induced increase in endogenous chromatin activity occurred, but only if cotyledon tissue was left attached to the segments during the period of hormone treatment.Age of the seedling tissue had a profound influence on the chromatin characteristics. With progression of development from the 2-day to the 4-day stage, the endogenous chromatin activity declined while the DNA template activity increased.

  19. Adipokinetic hormone induces changes in the fat body lipid composition of the beetle Zophobas atratus.

    PubMed

    Gołębiowski, Marek; Cerkowniak, Magdalena; Urbanek, Aleksandra; Słocińska, Małgorzata; Rosiński, Grzegorz; Stepnowski, Piotr

    2014-08-01

    In insects, neuropeptide adipokinetic hormone (AKH) released from the corpora cardiaca mobilizes lipids and carbohydrates in the fat body. We examined the developmental differences in the action of Tenmo-AKH, a bioanalogue belonging to the adipokinetic/hypertrahelosemic family (AKH/HrTH), on the lipid composition of larval and pupal fat bodies in the beetle Zophobas atratus. Tenmo-AKH was administered to the beetle larvae and pupae either as a single dose or as two doses of 20 pmol during a 24h interval. Extracts of fat bodies were used to analyse the lipid composition by gas chromatography (GC) combined with mass spectrometry (GC-MS). Control extracts were analyzed using the same method. Fatty acids (FA) and fatty acid methyl esters (FAME) were the most abundant compounds in the fat bodies from both developmental stages. We observed significant differences in their concentrations following hormonal treatment. Tenmo-AKH also induced a distinct increase in larval sterols, fatty alcohols and benzoic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Percutaneous delivery of α-melanocyte-stimulating hormone for the treatment of imiquimod-induced psoriasis.

    PubMed

    Shah, Punit P; Desai, Pinaki R; Boakye, Cedar H A; Patlolla, Ram; Kikwai, Loice C; Babu, R Jayachandra; Singh, Mandip

    2016-01-01

    α-Melanocyte-stimulating hormone (α-MSH) is an endogenous peptide hormone with anti-inflammatory responses. We developed topical formulation(s) of α-MSH to reduce psoriasis-related inflammation. Transcutol (TC) and n-methyl 2-pyrrolidone (NMP) were used to formulate a gel for α-MSH. Skin permeation and dermal microdialysis of the solution and optimized gel were performed. The inflammatory response of α-MSH gel was investigated in imiquimod-induced psoriasis mouse model. Histology and immunohistochemistry were then performed on treated skin. Solution comprising 50%w/w TC and 10%w/w NMP showed higher (p < 0.05) skin retention (0.27 ± 0.024 µg of α-MSH/mg of skin) than solutions containing either 50% w/w TC or 10% w/w NMP at 24 h. Dispersion of α-MSH in Carbopol Ultrez 10 produced a uniform dispersion. α-MSH gel showed pseudoplastic flow with thixotropic behavior. Dermal microdialysis results suggested that skin permeation of gel after 5 h was 1.9-folds higher than the solution. Further, gel-treated psoriatic-like plaque skin sections showed significant (p < 0.05) decrease in the expression of a melanocortin receptor, in the psoriasis area and severity index score and transepidermal water loss compared to the solution. TC, NMP and Carbopol Ultrez 10 form a stable gel with improved skin permeation of α-MSH for a reduction in psoriasis-associated inflammation.

  1. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae.

    PubMed

    Gabrieli, Paolo; Kakani, Evdoxia G; Mitchell, Sara N; Mameli, Enzo; Want, Elizabeth J; Mariezcurrena Anton, Ainhoa; Serrao, Aurelio; Baldini, Francesco; Catteruccia, Flaminia

    2014-11-18

    Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.

  2. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    PubMed

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.

  3. Chemotherapy-induced prospective memory impairment in breast cancer patients with different hormone receptor expression

    PubMed Central

    Li, Wen; Gan, Chen; Lv, Yue; Wang, Shanghu; Cheng, Huaidong

    2017-01-01

    Abstract This study aimed to investigate prospective memory impairment in patients with breast cancer with different expression of hormone receptors, including the estrogen receptor (ER) and the progesterone receptor (PR). A total of 120 patients with breast cancer who underwent chemotherapy following surgery were divided into 2 groups. The A group included 60 patients with ER−/PR− status, and the B group included 60 patients with ER+/PR+ status. After 6 cycles of postoperative adjuvant chemotherapy, all patients were administered neuropsychological and prospective memory tests, such as the Mini-Mental State Examination (MMSE), verbal fluency test (VFT), and digit span test (DST), as well as examination of event-based prospective memory (EBPM) and time-based prospective memory (TBPM). As the neuropsychological background test results showed, there were no significant differences in MMSE, DST, and TBPM scores (∗:P > 0.05) between patients with breast cancer in the ER−/PR− and ER+/PR+ groups, while the VFT and EBPM scores were significantly greater in patients with breast cancer with ER+/PR+ status than in those with ER−/PR− status (∗∗: P < 0.01), indicating that patients with ER−/PR− status have significant impairment in EBPM, although not in TBPM. The results of the present study indicate that different hormone receptor expression in patients with breast cancer may be associated with heterogeneity of chemotherapy-induced prospective memory impairment. PMID:28353608

  4. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae

    PubMed Central

    Gabrieli, Paolo; Kakani, Evdoxia G.; Mitchell, Sara N.; Mameli, Enzo; Want, Elizabeth J.; Mariezcurrena Anton, Ainhoa; Serrao, Aurelio; Baldini, Francesco; Catteruccia, Flaminia

    2014-01-01

    Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors. PMID:25368171

  5. Cytoplasmic kinases downstream of GPR30 suppress gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone secretion from bovine anterior pituitary cells.

    PubMed

    Rudolf, Faidiban O; Kadokawa, Hiroya

    2016-01-01

    GPR30 is known as a membrane receptor for picomolar concentrations of estradiol. The GPR30-specific agonist G1 causes a rapid, non-genomic suppression of gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion from bovine anterior pituitary (AP) cells. A few studies have recently clarified that protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (pERK) might be involved in cytoplasmic signaling pathways of GPR30 in other cells. Therefore, we tested the hypothesis that PKA and ERK kinase (MEK) are important cytoplasmic mediators for GPR30-associated non-genomic suppression of GnRH-induced LH secretion from bovine AP cells. Bovine AP cells (n = 8) were cultured for 3 days under steroid-free conditions. The AP cells were previously treated for 30 min with one of the following: 5000 nM of PKA inhibitor (H89), 1000 nM of MEK inhibitor (U0126), or a combination of H89 and U0126. Next, the AP cells were treated with 0.01 nM estradiol for 5 min before GnRH stimulation. Estradiol treatment without inhibitor pretreatment significantly suppressed GnRH-induced LH secretion (P < 0.01). In contrast, estradiol treatment after pretreatment with H89, U0126 or their combination had no suppressive effect on GnRH-induced LH secretion. The inhibitors also inhibited the G1 suppression of GnRH-induced LH secretion. Therefore, these data supported the hypothesis that PKA and MEK (thus, also pERK) are the intracellular mediators downstream of GPR30 that induce the non-genomic suppression of GnRH-induced LH secretion from bovine AP cells by estradiol or G1.

  6. Plasma levels of trace elements and exercise induced stress hormones in well-trained athletes.

    PubMed

    Soria, Marisol; González-Haro, Carlos; Ansón, Miguel; López-Colón, José L; Escanero, Jesús F

    2015-01-01

    This study analyzed the variation and relationship of several trace elements, metabolic substrates and stress hormones activated by exercise during incremental exercise. Seventeen well-trained endurance athletes performed a cycle ergometer test: after a warm-up of 10 min at 2.0 W kg(-1), the workload was increased by 0.5 W kg(-1) every 10 min until exhaustion. Prior diet, activity patterns, and levels of exercise training were controlled, and tests timed to minimize variations due to the circadian rhythm. Oxygen uptake, blood lactate concentration, plasma ions (Zn, Se, Mn and Co), serum glucose, non-esterified fatty acids (NEFAs) and several hormones were measured at rest, at the end of each stage and 3, 5 and 7 min post-exercise. Urine specific gravity was measured before and after the test, and participants drank water ad libitum. Significant differences were found in plasma Zn and Se levels as a function of exercise intensity. Zn was significantly correlated with epinephrine, norepinephrine and cortisol (r = 0.884, P < 0.01; r = 0.871, P < 0.01; and r = 0.808, P = 0.05); and Se showed significant positive correlations whit epinephrine and cortisol (r = 0.743, P < 0.05; and r = 0.776, P < 0.05). Neither Zn nor Se levels were associated with insulin or glucagon, and neither Mn nor Co levels were associated with any of the hormones or substrate metabolites studied. Further, while Zn levels were found to be associated only with lactate, plasma Se was significantly correlated with lactate and glucose (respectively for Zn: r = 0.891, P < 0.01; and for Se: r = 0.743, P < 0.05; r = 0.831, P < 0.05). In conclusion, our data suggest that there is a positive correlation between the increases in plasma Zn or Se and stress hormones variations induced by exercise along different submaximal intensities in well-hydrated well-trained endurance athletes.

  7. Influence of gonadotropic hormone-releasing hormone analog (GnRH-A) on plasma sex steroid profiles and milt production in male winter flounder, Pseudopleuronectes americanus (Walbaum).

    PubMed

    Harmin, S A; Crim, L W

    1993-03-01

    The effects of gonadotropic hormone-releasing hormone analog (GnRH-A) treatment on the onset and duration of increases in plasma sex steroids and milt production (milt volume and number of spermatozoa) were investigated in prespawning male winter flounder. After treatment of maturing males during the winter with a single injection of either 20 or 200 μg/kg [D-Ala(6), Pro(9)-NHEt]LHRH (GnRH-A), plasma levels of testosterone and 11-ketotestosterone were increased within 12h and the steroid hormone levels remained elevated for long periods lasting several days. The androgenic steroid response of males was delayed after the administration of a lower dose of GnRH-A (2 μg/kg). Although a single GnRH-A injection in December or January advanced the onset of spermiation in some males, only small amounts (<50 μl) of milt could be collected. By March, all males were in spermiating condition following GnRH-A treatment; however, significant increases in sperm production, particularly increases in milt volume, occurred in fish twice treated with GnRH-A.

  8. Sex- and hormone-dependent alterations in alcohol withdrawal-induced anxiety and corticolimbic endocannabinoid signaling.

    PubMed

    Henricks, Angela M; Berger, Anthony L; Lugo, Janelle M; Baxter-Potter, Lydia N; Bieniasz, Kennedy V; Petrie, Gavin; Sticht, Martin A; Hill, Matthew N; McLaughlin, Ryan J

    2017-09-15

    Alcohol dependence is associated with anxiety during withdrawal. The endocannabinoid (ECB) system participates in the neuroendocrine and behavioral response to stress and changes in corticolimbic ECB signaling may contribute to alcohol withdrawal-induced anxiety. Moreover, symptoms of alcohol withdrawal differ between sexes and sexual dimorphism in withdrawal-induced ECB recruitment may be a contributing factor. Herein, we exposed intact male and female rats and ovariectomized (OVX) female rats with or without estradiol (E2) replacement to 6 weeks of chronic intermittent alcohol vapor and measured anxiety-like behavior, ECB content, and ECB-related mRNA in the basolateral amygdala (BLA) and ventromedial prefrontal cortex (vmPFC). Acute alcohol withdrawal increased anxiety-like behavior, produced widespread disturbances in ECB-related mRNA, and reduced anandamide (AEA) content in the BLA and 2-arachidonoylglycerol (2-AG) content in the vmPFC of male, but not female rats. Similar to males, alcohol-exposed OVX females showed reductions in Napepld mRNA in the BLA, decreased AEA content in the BLA and vmPFC, and reductions in all ECB-related genes measured in the vmPFC. Importantly, E2 replacement prevented withdrawal-induced alterations in ECB content (but not mRNA) in OVX females, and although alcohol-exposed OVX females failed to exhibit more anxiety compared to their respective control, chronic alcohol exposure abolished the anxiolytic properties of E2 in OVX rats. These data indicate that ovarian sex hormones (but not E2 alone) protect against withdrawal-induced alterations in corticolimbic ECB signaling but do not impart resilience to withdrawal-induced anxiety. Thus, the mechanisms implicated in the manifestation of alcohol withdrawal-induced anxiety are most likely sex-specific. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Published by Elsevier Ltd.

  9. Role of growth hormone-releasing hormone in sleep and growth impairments induced by upper airway obstruction in rats.

    PubMed

    Tarasiuk, A; Berdugo-Boura, N; Troib, A; Segev, Y

    2011-10-01

    Upper airway obstruction (UAO) can lead to abnormal growth hormone (GH) homeostasis and growth retardation but the mechanisms are unclear. We explored the effect of UAO on hypothalamic GH-releasing hormone (GHRH), which has a role in both sleep and GH regulation. The tracheae of 22-day-old rats were narrowed; UAO and sham-operated animals were sacrificed 16 days post-surgery. To stimulate slow-wave sleep (SWS) and GH secretion, rats were treated with ritanserin (5-HT(2) receptor antagonist). Sleep was measured with a telemetric system. Hypothalamic GHRH, hypothalamic GHRH receptor (GHRHR) and GH receptor, and orexin were analysed using ELISA, real-time PCR and Western blot. UAO decreased hypothalamic GHRH, GHRHR and GH receptor levels, while orexin mRNA increased (p<0.01). In UAO rats, the duration of wakefulness was elevated and the duration of SWS, paradoxical sleep and slow-wave activity was reduced (p<0.001). Ritanserin alleviated these effects, i.e. normalised hypothalamic GHRH content, decreased wake duration, increased duration and depth of SWS, and attenuated growth impairment (p<0.001). Here, we present evidence that growth retardation in UAO is associated with a reduction in hypothalamic GHRH content. Our findings show that abnormalities in the GHRH/GH axis underlie both growth retardation and SWS-disorder UAO.

  10. Nicotine decreases ethanol-induced dopamine signaling and increases self-administration via stress hormones.

    PubMed

    Doyon, William M; Dong, Yu; Ostroumov, Alexey; Thomas, Alyse M; Zhang, Tao A; Dani, John A

    2013-08-07

    Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement involve common neural circuitry, including the mesolimbic dopamine system. We demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration and decreases alcohol-induced dopamine responses. The blunted dopamine response was due to increased inhibitory synaptic transmission onto dopamine neurons. Blocking stress hormone receptors prior to nicotine exposure prevented all interactions with alcohol that we measured, including the increased inhibition onto dopamine neurons, the decreased dopamine responses, and the increased alcohol self-administration. These results indicate that nicotine recruits neuroendocrine systems to influence neurotransmission and behavior associated with alcohol reinforcement.

  11. Hormone-regulatable neoplastic transformation induced by a Jun-estrogen receptor chimera

    PubMed Central

    Kruse, Ulrich; Iacovoni, Jason S.; Goller, Martin E.; Vogt, Peter K.

    1997-01-01

    The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation. PMID:9356460

  12. Nicotine Decreases Ethanol-induced Dopamine Signaling and Increases Self-administration via Stress Hormones

    PubMed Central

    Doyon, William M.; Dong, Yu; Ostroumov, Alexey; Thomas, Alyse M.; Zhang, Tao A.; Dani, John A.

    2013-01-01

    SUMMARY Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement involve common neural circuitry, including the mesolimbic dopamine system. We demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration and decreases alcohol-induced dopamine responses. The blunted dopamine response was due to increased inhibitory synaptic transmission onto dopamine neurons. Blocking stress hormone receptors prior to nicotine exposure prevented all interactions with alcohol that we measured, including the increased inhibition onto dopamine neurons, the decreased dopamine responses, and the increased alcohol self-administration. These results indicate that nicotine recruits neuroendocrine systems to influence neurotransmission and behavior associated with alcohol reinforcement. PMID:23871233

  13. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  14. Nmp4/CIZ Suppresses Parathyroid Hormone-Induced Increases in Trabecular Bone

    PubMed Central

    ROBLING, ALEXANDER G.; CHILDRESS, PAUL; YU, JUN; COTTE, JESSICA; HELLER, AARON; PHILIP, BINU K.; BIDWELL, JOSEPH P.

    2009-01-01

    The nucleocytoplasmic shuttling transcription factor Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc finger protein) is a ubiquitously expressed protein that regulates both cytoplasmic and nuclear activities. In the nucleus, Nmp4/CIZ represses transcription of genes crucial to osteoblast differentiation and genes activated by various anabolic stimuli, including parathyroid hormone (PTH). We investigated the role of Nmp4/CIZ in the PTH-induced increase in bone by engineering mice with loss-of-function mutations in the Nmp4/CIZ gene, and treating 10-week-old female mice with anabolic doses of human PTH (1–34) at 30 μg/kg/day, 7 day/week, for 7 weeks or vehicle control. The untreated, baseline phenotype of the Nmp4-null mice between 8 and 16 weeks of age included a modest but significant increase in bone mineral density (BMD) and bone mineral content (BMC) compared to wild-type (WT) mice. Type I collagen mRNA expression was moderately elevated in the femurs of the Nmp4-null mice. The Nmp4 mutant alleles decreased body weight by 4% when expressed on a mixed background but the same alleles on a pure B6 background yielded a significant, 15% increase in body weight among the KO mice, compared to their WT controls. Hormone treatment equally enhanced BMD and BMC over vehicle-treated mice in both the WT and Nmp4-null groups but Nmp4-KO mice exhibited a significantly greater PTH-induced acquisition of femoral trabecular bone as compared to WT mice. These data support our hypothesis that Nmp4/CIZ is a transcriptional attenuator that suppresses osteoid synthesis and PTH-mediated acquisition of cancellous bone. PMID:19189321

  15. Affinity chromatography of a binder of 1-methyladenine, the maturation-inducing hormone for starfish oocytes.

    PubMed

    Toraya, Tetsuo; Kuyama, Atsushi; Tanaka, Seiichi; Yamamoto, Masatoyo; Ohmiya, Tadamasa; Saito, Yuri; Tanabe, Tomoko

    2017-05-13

    Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary. They resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the maturation-inducing hormone for starfish oocytes. Putative 1-MeAde receptors have been suggested to be present on the oocyte surface, but not yet been characterized biochemically. As reported recently (T. Toraya, T. Kida, A. Kuyama, S. Matsuda, S. Tanaka, Y. Komatsu, T. Tsurukai, Biochem. Biophys. Res. Commun. 485 (2017) 41-46), it became possible to detect unknown 1-MeAde binders of starfish oocytes by immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection. We designed and synthesized water-soluble and insoluble polymer-bound 1-MeAde derivatives. A water-soluble polymer-bound 1-MeAde derivative, in which 1-MeAde is bound to dextran through an N(6)-substituent, triggered the germinal-vesicle breakdown toward follicle-free oocytes, dejellied oocytes, and denuded oocytes. This is consistent with the idea that putative 1-MeAde receptors are located on the cell surface of starfish oocytes. A water-insoluble polymer-bound 1-MeAde derivative, in which 1-MeAde is bound to Sepharose 4B through an N(6)-substituent, served as an effective affinity adsorbent for the partial purification of a 1-MeAde binder with Mr of 47.5 K that might be a possible candidate of the maturation-inducing hormone receptors of starfish oocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  17. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  18. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  19. Effects of mental resilience on neuroendocrine hormones level changes induced by sleep deprivation in servicemen.

    PubMed

    Sun, Xinyang; Dai, Xuyan; Yang, Tingshu; Song, Hongtao; Yang, Jialin; Bai, Jing; Zhang, Liyi

    2014-12-01

    The aim of this study was to investigate the effects of mental resilience on the changes of serum rennin, angiotensin, and cortisol level induced by sleep deprivation in servicemen. By random cluster sampling, a total of 160 servicemen, aged from 18 to 30, were selected to undergo 24-hour total sleep deprivation and administered the military personnel mental resilience scale after the deprivation procedure. The sleep deprivation procedure started at 8 a.m. on Day 8 and ended at 8 a.m. on Day 9 after 7 days of normal sleep for baseline preparation. Blood samples were drawn from the 160 participants at 8 a.m. respectively on Day 8 and Day 9 for hormonal measurements. All blood samples were analyzed using radioimmunoassay. As hypothesized, serum rennin, angiotensin II, and cortisol level of the participants after sleep deprivation were significantly higher than those before (P < 0.05). The changes of serum rennin and cortisol in the lower mental resilience subgroup were significantly greater (P < 0.05); problem-solving skill and willpower were the leading influence factors for the increases of serum rennin and cortisol respectively induced by sleep deprivation. We conclude that mental resilience plays a significant role in alleviating the changes of neurohormones level induced by sleep deprivation in servicemen.

  20. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats.

    PubMed

    Rao, T Lakshmi; Kokare, Dadasaheb M; Sarkar, Sumit; Khisti, Rahul T; Chopde, Chandrabhan T; Subhedar, Nishikant

    2003-12-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a hypothalamic peptide believed to play a tonic inhibitory role in feeding and energy homeostasis. Systemic administration of alpha-MSH is known to produce anorexia and anxiety. Since synaptic contacts between gamma-aminobutyric acid (GABA)ergic terminals and alpha-MSH neurons in the hypothalamus have been reported, the present work was undertaken to refine our knowledge on the role of GABAergic systems in anxiety and anorexia induced by intracerebroventricular (icv) administration of alpha-MSH in rats. The anxiety was assessed by elevated plus maze, and spontaneous food consumption was monitored during dark cycle. Prior administration of diazepam and muscimol that promote the function of GABA(A) receptors reversed the anxiogenic response and decreased food intake elicited by alpha-MSH. In contrast, bicuculline, the GABA(A) receptor antagonist, not only enhanced the effects of alpha-MSH but also prevented the influence of GABAergic drugs on alpha-MSH-induced anorexia and anxiety. These findings suggest that alpha-MSH-induced anxiety and anorexia are due to its negative influence on GABAergic system.

  1. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  2. Epigenetic Upregulation of Corticotrophin-Releasing Hormone Mediates Postnatal Maternal Separation-Induced Memory Deficiency

    PubMed Central

    Wang, Aiyun; Nie, Wenying; Li, Haixia; Hou, Yuhua; Yu, Zhen; Fan, Qing; Sun, Ruopeng

    2014-01-01

    Accumulating evidences demonstrated that early postnatal maternal separation induced remarkable social and memory defects in the adult rodents. Early-life stress induced long-lasting functional adaptation of neuroendocrine hypothalamic-pituitary-adrenal axis, including neuropeptide corticotrophin-releasing hormone (CRH) in the brain. In the present study, a significantly increased hippocampal CRH was observed in the adult rats with postnatal maternal separation, and blockade of CRHR1 signaling significantly attenuated the hippocampal synaptic dysfunction and memory defects in the modeled rats. Postnatal maternal separation enduringly increased histone H3 acetylation and decreased cytosine methylation in Crh promoter region, resulting from the functional adaptation of several transcriptional factors, in the hippocampal CA1 of the modeled rats. Enriched environment reversed the epigenetic upregulation of CRH, and ameliorated the hippocampal synaptic dysfunction and memory defects in the adult rats with postnatal maternal separation. This study provided novel insights into the epigenetic mechanism underlying postnatal maternal separation-induced memory deficiency, and suggested environment enrichment as a potential approach for the treatment of this disorder. PMID:24718660

  3. Plant hormones increase efficiency of reprogramming mouse somatic cells to induced pluripotent stem cells and reduce tumorigenicity.

    PubMed

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Edel, Michael J

    2014-03-15

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for over 30 years. The plant hormones responsible for cell reprogramming to pluripotency, indole-3-acetic acid (IAA) and isopentenyl adenosine (IPA), are present in human cells, leading to the exciting possibility that plant hormones might reprogram mammalian cells without genetic factors. We found that plant hormones on their own could not reprogram mammalian cells but increase the efficiency of the early formation of iPS cells combined with three defined genetic factors during the first 3 weeks of reprogramming by accelerating the cell cycle and regulating pluripotency genes. Moreover, the cytokinin IPA, a known human anticancer agent, reduced the threat of cancer of iPS cell in vitro by regulating key cancer and stem cell-related genes, most notably c-Myc and Igf-1. In conclusion, the plant hormones, auxin and cytokinin, are new small chemicals useful for enhancing early reprogramming efficiency of mammalian cells and reducing the threat of cancer from iPS cells. These findings suggest a novel role for plant hormones in the biology of mammalian cell plasticity.

  4. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Pascual, Jose Antonio; Pérez-Alfocea, Francisco; Albacete, Alfonso; Roldán, Antonio

    2010-07-01

    The plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) are known to play crucial roles in plant disease and pest resistance. Changes in the concentrations of these plant hormones in melon plant shoots, as a consequence of the interaction between the plant, the pathogen Fusarium oxysporum, the antagonistic microorganism Trichoderma harzianum, and the arbuscular mycorrhizal fungus Glomus intraradices were investigated. Attack by F. oxysporum activated a defensive response in the plant, mediated by the plant hormones SA, JA, ET, and ABA, similar to the one produced by T. harzianum. When inoculated with the pathogen, both T. harzianum and G. intraradices attenuated the plant response mediated by the hormones ABA and ET elicited by the pathogen attack. T. harzianum was also able to attenuate the SA-mediated response. In the three-way interaction (F. oxysporum-T. harzianum-G. intraradices), although a synergistic effect in reducing disease incidence was found, no synergistic effect on the modulation of the hormone disruption induced by the pathogen was observed. These results suggest that the induction of plant basal resistance and the attenuation of the hormonal disruption caused by F. oxysporum are both mechanisms by which T. harzianum can control Fusarium wilt in melon plants; while the mechanisms involving G. intraradices seem to be independent of SA and JA signaling.

  5. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period.

    PubMed

    Zhang, Mao; Zhan, Xiao L; Ma, Zi Y; Chen, Xing S; Cai, Qi Y; Yao, Zhong X

    2015-09-01

    Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.

  6. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN.

  7. Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion.

    PubMed

    Rosso, Lia; Peteri-Brunbäck, Brigitta; Poujeol, Philippe; Hussy, Nicolas; Mienville, Jean-Marc

    2004-02-01

    Previous work on the whole neurohypophysis has shown that hypotonic conditions increase release of taurine from neurohypophysial astrocytes (pituicytes). The present work confirms that taurine is present in cultured pituicytes, and that its specific release increases in response to a hypotonic shock. We next show that vasopressin (VP) and oxytocin (OT) also specifically release taurine from pituicytes. With an EC(50) of approximately 2 nm, VP is much more potent than OT, and the effects of both hormones are blocked by SR 49059, a V(1a) receptor antagonist. This pharmacological profile matches the one for VP- and OT-evoked calcium signals in pituicytes, consistent with the fact that VP-induced taurine efflux is blocked by BAPTA-AM. However, BAPTA-AM also blocks the taurine efflux induced by a 270 mosmol l(-1) challenge, which per se does not evoke any calcium signal, suggesting a permissive role for calcium in this case. Nevertheless, the fact that structurally unrelated calcium-mobilizing agents and ionomycin are able to induce taurine efflux suggests that calcium may also play a signalling role in this event. It is widely accepted that in hypotonic conditions taurine exits cells through anionic channels. Antagonism by the chloride channel inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) suggests the same pathway for VP-induced taurine efflux, which is also blocked in hypertonic conditions (330 mosmol l(-1)). Moreover, it is likely that the osmosensitivity of the taurine channel is up-regulated by calcium. These results, together with our in situ experiments showing stimulation of taurine release by endogenous VP, strengthen the concept of a glial control of neurohormone output.

  8. Prolonged exercise following diuretic-induced hypohydration effects on fluid and electrolyte hormones.

    PubMed

    Roy, B D; Green, H J; Burnett, M

    2001-09-01

    To investigate the hypothesis that a reduction in plasma volume (PV) induced by diuretic administration would result in an increase in the fluid and electrolyte hormonal response to exercise, ten untrained males (VO(2) peak = 3.96 +/- 0.14 l/min) performed 60 min of cycle ergometry at 61 % VO(2) peak twice. The test was carried out once under control conditions (CON) (placebo) and once after 4 days of diuretic administration (DIU) (Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). Calculated resting PV decreased by 14.6 +/- 3.3 % (p < 0.05) with DIU. No difference in plasma osmolality was observed between conditions. For the hormones measured, differences (p < 0.05) between conditions at rest were noted for plasma renin activity (PRA) (0.62 +/- 0.09 vs. 5.61 +/- 0.94 ng/ml/h), angiotensin I (ANG 1) (0.26 +/- 0.03 vs. 0.56 +/- 0.08 ng/ml), aldosterone (ALD) (143 +/- 14 vs. 1603 +/- 302 pg/ml), arginine vasopressin (AVP) (4.13 +/- 1.1 vs. 9.58 +/- 1.6 pg/ml) and atrial natriuretic peptide (alpha-ANP) (11.5 +/- 2.8 vs. 6.33 +/- 1.0 pg/ml). The exercise resulted in increases (p < 0.05) in PRA, ANG I, ALD, AVP, alpha-ANP. DIU led to higher levels of PRA, ANG I, and ALD (p < 0.05) and lower levels of alpha-ANP (p < 0.05) compared to CON. Arginine vasopressin was not affected by the loss of PV. For the catecholamines--norepinephrine (NE) and epinephrine (EPI)--only NE was higher during exercise with DIU compared to CON (p < 0.05). For PRA and ALD, the higher levels observed during exercise with DIU could be explained both by higher resting levels and a greater increase during exercise itself. For ANG I and NE, the effect of DIU only manifested itself during exercise. In contrast, the lower alpha-ANP observed during exercise with DIU was due to the lower resting levels. These results support the hypotheses that hypohydration leads to alterations in the secretion of all of the fluid and electrolyte hormones with the exception of AVP. The specific mechanisms

  9. Monoclonal antibodies to human growth hormone induce an allosteric conformational change in the antigen.

    PubMed Central

    Mazza, M M; Retegui, L A

    1989-01-01

    We re-investigated the properties of a monoclonal antibody (mAb), 4D11, to human growth hormone (hGH) that showed a very weak affinity, recognizing hGH only when the hormone was solubilized on a solid surface. MAb4D11 did not significantly bind 125I-hGH. It was found that three mAb directed to different hGH epitopes (mAb 3C11, 10C1 and NA71) were able to induce the binding of the soluble antigen to mAb 4D11. The co-operative effect could be demonstrated by the formation of binary complexes (Ag:Ab, 1:2) detected by high-performance liquid chromatography (HPLC) and by the increase of radioactivity found when the synergistic mAb were added to 125I-hGH incubated with mAb 4D11 immobilized on polyvinyl microplates. Other possible explanations, such as the formation of cyclic complexes or the generation of a new epitope in the Fc fragment of the first antibody (Ab), were dismissed because the Fab fragment of one of the enhancing mAb (3C11) gave the same effect as the intact Ab. The data suggest that the hGH molecule undergoes a localized conformational change after binding to mAb 3C11, NA71 or 10C1 and that mAb 4D11 binds with high affinity to the modified region of the hormone. The formation or not of ternary complexes (Ag:Ab, 1:3) was used to localize the 4D11 epitope on the surface of the Ag. It is suggested that mAb 4D11 recognizes a conformational change produced in the region defined by the AE5/AC8 epitopes, which is close to the hGH antigenic domain only expressed when the protein is immobilized on plastic surfaces. PMID:2473953

  10. Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish.

    PubMed

    Figueiredo, Marcio Azevedo; Mareco, Edson A; Silva, Maeli Dal Pai; Marins, Luis Fernando

    2012-06-01

    Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.

  11. A primer on meiotic resumption in starfish oocytes: the proposed signaling pathway triggered by maturation-inducing hormone.

    PubMed

    Kishimoto, Takeo

    2011-01-01

    This short review updates the maturation-inducing hormonal signaling in starfish oocytes. In this system, the activation of cyclin B-Cdc2 kinase (Cdk1) that leads to meiotic resumption does not require new protein synthesis. The key intracellular mediator after hormonal stimulation by 1-methyladenine is the protein kinase Akt/PKB, which in turn directly downregulates Myt1 and upregulates Cdc25 toward the activation of cyclin B-Cdc2. Mitotic kinases including Aurora, Plk1 and Greatwall are activated downstream of cyclin B-Cdc2. The starfish oocyte thus provides a simple model system for the study of meiotic resumption. Copyright © 2011 Wiley Periodicals, Inc.

  12. The thyroid hormone receptor β induces DNA damage and premature senescence

    PubMed Central

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M.; Garesse, Rafael

    2014-01-01

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. PMID:24395638

  13. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana

    PubMed Central

    Mozgová, Iva

    2017-01-01

    Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming. PMID:28095419

  14. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease.

    PubMed

    Teff, Karen L; Rickels, Michael R; Grudziak, Joanna; Fuller, Carissa; Nguyen, Huong-Lan; Rickels, Karl

    2013-09-01

    Atypical antipsychotic (AAP) medications that have revolutionized the treatment of mental illness have become stigmatized by metabolic side effects, including obesity and diabetes. It remains controversial whether the defects are treatment induced or disease related. Although the mechanisms underlying these metabolic defects are not understood, it is assumed that the initiating pathophysiology is weight gain, secondary to centrally mediated increases in appetite. To determine if the AAPs have detrimental metabolic effects independent of weight gain or psychiatric disease, we administered olanzapine, aripiprazole, or placebo for 9 days to healthy subjects (n = 10, each group) under controlled in-patient conditions while maintaining activity levels. Prior to and after the interventions, we conducted a meal challenge and a euglycemic-hyperinsulinemic clamp to evaluate insulin sensitivity and glucose disposal. We found that olanzapine, an AAP highly associated with weight gain, causes significant elevations in postprandial insulin, glucagon-like peptide 1 (GLP-1), and glucagon coincident with insulin resistance compared with placebo. Aripiprazole, an AAP considered metabolically sparing, induces insulin resistance but has no effect on postprandial hormones. Importantly, the metabolic changes occur in the absence of weight gain, increases in food intake and hunger, or psychiatric disease, suggesting that AAPs exert direct effects on tissues independent of mechanisms regulating eating behavior.

  15. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression.

    PubMed

    Li, Changjun; Wang, Weishan; Xie, Liang; Luo, Xianghang; Cao, Xu; Wan, Mei

    2016-01-01

    Parathyroid hormone (PTH) suppresses the expression of the bone formation inhibitor sclerostin (Sost) in osteocytes by inducing nuclear accumulation of histone deacetylases (HDACs) to inhibit the myocyte enhancer factor 2 (MEF2)-dependent Sost bone enhancer. Previous studies revealed that lipoprotein receptor-related protein 6 (LRP6) mediates the intracellular signaling activation and the anabolic bone effect of PTH. Here, we investigated whether LRP6 mediates the inhibitory effect of PTH on Sost using an osteoblast-specific Lrp6-knockout (LRP6-KO) mouse model. An increased level of Sost mRNA expression was detected in femur tissue from LRP6-KO mice, compared to wild-type littermates. The number of osteocytes expressing sclerostin protein was also increased in bone tissue of LRP6-KO littermates, indicating a negative regulatory role of LRP6 on Sost/sclerostin. In wild-type littermates, intermittent PTH treatment significantly suppressed Sost mRNA expression in bone and the number of sclerostin(+) osteocytes, while the effect of PTH was much less significant in LRP6-KO mice. Additionally, PTH-induced downregulation of MEF2C and 2D, as well as HDAC changes in osteocytes, were abrogated in LRP6-KO mice. These data indicate that LRP6 is required for PTH suppression of Sost expression.

  16. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl

    PubMed Central

    Page, Robert B.; Monaghan, James R.; Walker, John A.; Voss, S. Randal

    2009-01-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis. PMID:19275901

  17. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl.

    PubMed

    Page, Robert B; Monaghan, James R; Walker, John A; Voss, S Randal

    2009-06-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis.

  18. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone In Mice

    PubMed Central

    Chisholm, Carly Fleagle; Baker, Abby E.; Soucie, Kaitlin R.; Torres, Raul M.; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of sub-visible particles is a potential contributing factor to the immunogenicity of parenterally-administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. PMID:27020987

  19. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone in Mice.

    PubMed

    Chisholm, Carly Fleagle; Baker, Abby E; Soucie, Kaitlin R; Torres, Raul M; Carpenter, John F; Randolph, Theodore W

    2016-05-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of subvisible particles is a potential contributing factor to the immunogenicity of parenterally administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Progressive Transverse Microtubule Array Organization in Hormone-Induced Arabidopsis Hypocotyl Cells[W

    PubMed Central

    Vineyard, Laura; Elliott, Andrew; Dhingra, Sonia; Lucas, Jessica R.; Shaw, Sidney L.

    2013-01-01

    The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces. PMID:23444330

  1. Acetyl-L-carnitine suppresses thyroid hormone-induced and spontaneous anuran tadpole tail shortening.

    PubMed

    Hanada, Hideki; Kobuchi, Hirotsugu; Yamamoto, Masanao; Kashiwagi, Keiko; Katsu, Kenjiro; Utsumi, Toshihiko; Kashiwagi, Akihiko; Sasaki, Junzo; Inoue, Masayasu; Utsumi, Kozo

    2013-02-01

    Mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptotic tail shortening during anuran metamorphosis. L-carnitine is known to shuttle free fatty acids (FFAs) from the cytosol into mitochondria matrix for β-oxidation and energy production, and in a previous study we found that treatment with L-carnitine suppresses 3, 3', 5-triiodothyronine (T3 ) and FFA-induced MPT by reducing the level of FFAs. In the present study we focus on acetyl-L-carnitine, which is also involved in fatty acid oxidation, to determine its effect on T3 -induced tail regression in Rana rugosa tadpoles and spontaneous tail regression in Xenopus laevis tadpoles. The ladder-like DNA profile and increases in caspase-3 and caspase-9 indicative of apoptosis in the tails of T3 -treated tadpoles were found to be suppressed by the addition of acetyl-L-carnitine. Likewise, acetyl-L-carnitine was found to inhibit thyroid hormone regulated spontaneous metamorphosis in X. laevis tadpoles, accompanied by decreases in caspase and phospholipase A2 activity, as well as non-ladder-like DNA profiles. These findings support our previous conclusion that elevated levels of FFAs initiate MPT and activate the signaling pathway controlling apoptotic cell death in tadpole tails during anuran metamorphosis.

  2. Bone healing induced by local delivery of an engineered parathyroid hormone prodrug.

    PubMed

    Arrighi, Isabelle; Mark, Silke; Alvisi, Monica; von Rechenberg, Brigitte; Hubbell, Jeffrey A; Schense, Jason C

    2009-03-01

    Regenerative medicine requires innovative therapeutic designs to accommodate high morphogen concentrations in local depots, provide their sustained presence, and enhance cellular invasion and directed differentiation. Here we present an example for inducing local bone regeneration with a matrix-bound engineered active fragment of human parathyroid hormone (PTH(1-34)), linked to a transglutaminase substrate for binding to fibrin as a delivery and cell-invasion matrix with an intervening plasmin-sensitive link (TGplPTH(1-34)). The precursor form displays very little activity and signaling to osteoblasts, whereas the plasmin cleavage product, as it would be induced under the enzymatic influence of cells remodeling the matrix, was highly active. In vivo animal bone-defect experiments showed dose-dependent bone formation using the PTH-fibrin matrix, with evidence of both osteoconductive and osteoinductive bone-healing mechanisms. Results showed that this PTH-derivatized matrix may have potential utility in humans as a replacement for bone grafts or to repair bone defects.

  3. Cocaine induces DNA damage in distinct brain areas of female rats under different hormonal conditions.

    PubMed

    de Souza, Marilise F; Gonçales, Tierre A; Steinmetz, Aline; Moura, Dinara J; Saffi, Jenifer; Gomez, Rosane; Barros, Helena M T

    2014-04-01

    We evaluated levels of neuronal DNA damage after acute or repeated cocaine treatment in different brain areas of female rats after ovariectomy or sham surgery. Rats in the control and acute groups were given saline i.p., whereas in the repeated group were given 15 mg/kg, i.p., cocaine for 8 days. After a 10 day washout period, the control group was given saline i.p., whereas rats in the acute and repeated groups were given a challenge dose of 15 mg/kg, i.p., cocaine. After behavioural assessment, rats were killed and the cerebellum, hippocampus, hypothalamus, prefrontal cortex and striatum were dissected for the Comet assay. Acute cocaine exposure induced DNA damage in all brain areas. This effect persisted after repeated administration, except in the hypothalamus, where repeated treatment did not cause increased DNA damage. Sexual hormones exhibited a neuroprotective effect, decreasing cocaine-induced DNA damage in cycling rats in all brain areas. © 2014 Wiley Publishing Asia Pty Ltd.

  4. Antipsychotic-Induced Insulin Resistance and Postprandial Hormonal Dysregulation Independent of Weight Gain or Psychiatric Disease

    PubMed Central

    Teff, Karen L.; Rickels, Michael R.; Grudziak, Joanna; Fuller, Carissa; Nguyen, Huong-Lan; Rickels, Karl

    2013-01-01

    Atypical antipsychotic (AAP) medications that have revolutionized the treatment of mental illness have become stigmatized by metabolic side effects, including obesity and diabetes. It remains controversial whether the defects are treatment induced or disease related. Although the mechanisms underlying these metabolic defects are not understood, it is assumed that the initiating pathophysiology is weight gain, secondary to centrally mediated increases in appetite. To determine if the AAPs have detrimental metabolic effects independent of weight gain or psychiatric disease, we administered olanzapine, aripiprazole, or placebo for 9 days to healthy subjects (n = 10, each group) under controlled in-patient conditions while maintaining activity levels. Prior to and after the interventions, we conducted a meal challenge and a euglycemic-hyperinsulinemic clamp to evaluate insulin sensitivity and glucose disposal. We found that olanzapine, an AAP highly associated with weight gain, causes significant elevations in postprandial insulin, glucagon-like peptide 1 (GLP-1), and glucagon coincident with insulin resistance compared with placebo. Aripiprazole, an AAP considered metabolically sparing, induces insulin resistance but has no effect on postprandial hormones. Importantly, the metabolic changes occur in the absence of weight gain, increases in food intake and hunger, or psychiatric disease, suggesting that AAPs exert direct effects on tissues independent of mechanisms regulating eating behavior. PMID:23835329

  5. Exercise training associated with estrogen therapy induced cardiovascular benefits after ovarian hormones deprivation.

    PubMed

    Flues, Karin; Paulini, Janaina; Brito, Sebastião; Sanches, Iris Callado; Consolim-Colombo, Fernanda; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2010-03-01

    Menopause is recognized as a period of increased risk for coronary heart disease. Although the benefits of exercise training in lowering cardiovascular risk factors are well established, the risks and benefits of hormone therapy have been questioned. The purpose of the present study was to investigate the effects of estrogen therapy (HT) associated or not with exercise training (ET) in autonomic cardiovascular control in ovariectomized (OVX) rats. Female rats were divided into: control, OVX, OVX+HT, OVX+ET and OVX+HT+ET. HT was performed using a 0.25mg 8-weeks sustained release pellet. Trained groups were submitted to an 8-week exercise training protocol on treadmill. Baroreflex sensitivity (BRS) was evaluated by heart rate responses to arterial pressure (AP) changes, and vagal and sympathetic tonus by pharmacological blockade. Ovariectomy induced an AP increase (123+/-2mmHg vs. 108+/-2mmHg), BRS impairment ( approximately 69%), sympathetic activation ( approximately 100%) and vagal tonus reduction ( approximately 77%) compared to controls. HT or ET normalized the changes in parasympathetic tonus. However, only the association HT+ET was able to promote normalization of AP, BRS and sympathetic tonus, as compared to controls. These results indicate that ET induces cardiovascular and autonomic benefits in OVX rats under HT, suggesting a positive role of this association in the management of cardiovascular risk factor in postmenopausal women.

  6. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes.

    PubMed

    Dentice, Monica; Luongo, Cristina; Huang, Stephen; Ambrosio, Raffaele; Elefante, Antonia; Mirebeau-Prunier, Delphine; Zavacki, Ann Marie; Fenzi, Gianfranco; Grachtchouk, Marina; Hutchin, Mark; Dlugosz, Andrzej A; Bianco, Antonio C; Missero, Caterina; Larsen, P Reed; Salvatore, Domenico

    2007-09-04

    The Sonic hedgehog (Shh) pathway plays a critical role in hair follicle physiology and is constitutively active in basal cell carcinomas (BCCs), the most common human malignancy. Type 3 iodothyronine deiodinase (D3), the thyroid hormone-inactivating enzyme, is frequently expressed in proliferating and neoplastic cells, but its role in this context is unknown. Here we show that Shh, through Gli2, directly induces D3 in proliferating keratinocytes and in mouse and human BCCs. We demonstrate that Gli-induced D3 reduces intracellular active thyroid hormone, thus resulting in increased cyclin D1 and keratinocyte proliferation. D3 knockdown caused a 5-fold reduction in the growth of BCC xenografts in nude mice. Shh-induced thyroid hormone degradation via D3 synergizes with the Shh-mediated reduction of the type 2 deiodinase, the thyroxine-activating enzyme, and both effects are reversed by cAMP. This previously unrecognized functional cross-talk between Shh/Gli2 and thyroid hormone in keratinocytes is a pathway by which Shh produces its proliferative effects and offers a potential therapeutic approach to BCC.

  7. Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis.

    PubMed

    Mengeling, Brenda J; Murk, Albertinka J; Furlow, J David

    2016-07-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the environment prompted us to test whether they could also affect TH signaling. Both trialkyltins induced the integrated luciferase reporter alone and potentiated TH activation at low doses. Trimethyltin, which is not an RXR agonist, did not. We turned to a simple, robust, and specific in vivo model system of TH action: metamorphosis of Xenopus laevis, the African clawed frog. Using a precocious metamorphosis assay, we found that 1nM TBT and TPT, but not trimethyltin, greatly potentiated the effect of TH treatment on resorption phenotypes of the tail, which is lost at metamorphosis, and in the head, which undergoes extensive remodeling including gill loss. Consistent with these responses, TH-induced caspase-3 activation in the tail was enhanced by cotreatment with TBT. Induction of a transgenic reporter gene and endogenous collagenase 3 (mmp13) and fibroblast-activating protein-α (fap) genes were not induced by TBT alone, but TH induction was significantly potentiated by TBT. However, induction of other TH receptor target genes such as TRβ and deiodinase 3 by TH were not affected by TBT cotreatment. These data indicate that trialkyltins that can function as RXR agonists can selectively potentiate gene expression and resultant morphological programs directed by TH signaling in vivo.

  8. Parathyroid Hormone (PTH)–Induced Bone Gain Is Blunted in SOST Overexpressing and Deficient Mice

    PubMed Central

    Kramer, Ina; Loots, Gabriela G; Studer, Anne; Keller, Hansjoerg; Kneissel, Michaela

    2010-01-01

    Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100 µg/kg PTH(1–34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80 µg/kg PTH(1–34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, µCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. © 2010 American Society for Bone and Mineral Research PMID:19594304

  9. Gonadal hormone modulation of ∆(9)-tetrahydrocannabinol-induced antinociception and metabolism in female versus male rats.

    PubMed

    Craft, R M; Haas, A E; Wiley, J L; Yu, Z; Clowers, B H

    2017-01-01

    The gonadal hormones testosterone (T) in adult males and estradiol (E2) in adult females have been reported to modulate behavioral effects of ∆(9)-tetrahydrocannabinol (THC). This study determined whether activational effects of T and E2 are sex-specific, and whether hormones modulate production of the active metabolite 11-hydroxy-THC (11-OH-THC) and the inactive metabolite 11-nor-9-carboxy-THC (THC-COOH). Adult male and female rats were gonadectomized (GDX) and treated with nothing (0), T (10-mm Silastic capsule/100g body weight), or E2 (1-mm Silastic capsule/rat). Three weeks later, saline or the cytochrome P450 inhibitor proadifen (25mg/kg; to block THC metabolism and boost THC's effects) was injected i.p.; 1h later, vehicle or THC (3mg/kg females, 5mg/kg males) was injected i.p., and rats were tested for antinociceptive and motoric effects 15-240min post-injection. T did not consistently alter THC-induced antinociception in males, but decreased it in females (tail withdrawal test). Conversely, T decreased THC-induced catalepsy in males, but had no effect in females. E2 did not alter THC-induced antinociception in females, but enhanced it in males. The discrepant effects of T and E2 on males' and females' behavioral responses to THC suggests that sexual differentiation of THC sensitivity is not simply due to activational effects of hormones, but also occurs via organizational hormone or sex chromosome effects. Analysis of serum showed that proadifen increased THC levels, E2 increased 11-OH-THC in GDX males, and T decreased 11-OH-THC (and to a lesser extent, THC) in GDX females. Thus, hormone modulation of THC's behavioral effects is caused in part by hormone modulation of THC oxidation to its active metabolite. However, the fact that hormone modulation of metabolism did not alter THC sensitivity similarly on all behavioral measures within each sex suggests that other mechanisms also play a role in gonadal hormone modulation of THC sensitivity in adult rats.

  10. Protective effects of analogs of luteinizing hormone-releasing hormone against x-radiation-induced testicular damage in rats

    SciTech Connect

    Schally, A.V.; Paz-Bouza, J.I.; Schlosser, J.V.; Karashima, T.; Debeljuk, L.; Gandle, B.; Sampson, M.

    1987-02-01

    Possible protective effects of the agonist (D-Trp/sup 6/)LH-RH and antagonist N-Ac(D-Phe(pCl)/sup 1,2/,D-Trp/sup 3/,D-Arg/sup 6/,D-Ala/sup 10/)LH-RH against testicular damage caused by x-radiation were investigated in rats. Three months after being subjected to x-irradiation of the testes with 415 or 622 rads, control rats showed marked reduction in the weights of the testes and elevated levels of LH and follicle-stimulating hormone (FSH), indicating tubular damage. Histological studies demonstrated that, in testes of rats given 415 rads, most seminiferous tubules had only Sertoli cells and no germinal cells, and, in the group give 622 rads, the depression of spermatogenesis was even more marked. Rats pretreated for 50 days with LH-RH antagonist showed a complete recovery of testicular weights and spermatogenesis 3 months after 415 rads and showed partial recovery after 622 rads, and LH and FSH levels returned to normal in both of these groups. Three experiments were also carried out in which the rats were pretreated for 1-2 months with long-acting microcapsules of the agonist (D-Trp/sup 6/)LH-RH. Some rats were then subjected to gonadal irradiation with 415 or 622 rads and allowed a recovery period of 2-4 months. On the basis of testicular weights, histology, and gonadotropin levels, it could be concluded that the agonist (D-Trp/sup 6/)LH-RH did not protect the rat testes exposed to 622 rads and, at most, only partially protected against 415 rads. These results suggest that pretreatment with LH-RH antagonists and possibly agonists, might decrease the testicular damage caused by radiation and accelerate the recovery of reproductive functions.

  11. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway.

    PubMed

    Liu, Chen; Wang, Jia-Lin; Zheng, Ya; Xiong, En-Juan; Li, Jing-Jing; Yuan, Lin-Ling; Yu, Xiao-Qiang; Wang, Yu-Feng

    2014-06-01

    Wolbachia are endosymbionts that infect many insect species. They can manipulate the host's reproduction to increase their own maternal transmission. Cytoplasmic incompatibility (CI) is one such manipulation, which is expressed as embryonic lethality when Wolbachia-infected males mate with uninfected females. However, matings between males and females carrying the same Wolbachia strain result in viable progeny. The molecular mechanisms of CI are currently not clear. We have previously reported that the gene Juvenile hormone-inducible protein 26 (JhI-26) exhibited the highest upregulation in the 3rd instar larval testes of Drosophila melanogaster when infected by Wolbachia. This is reminiscent of an interaction between Wolbachia and juvenile hormone (JH) pathway in flies. Considering that Jhamt gene encodes JH acid methyltransferase, a key regulatory enzyme of JH biosynthesis, and that methoprene-tolerant (Met) has been regarded as the best JH receptor candidate, we first compared the expression of Jhamt and Met between Wolbachia-infected and uninfected fly testes to investigate whether Wolbachia infection influence the JH signaling pathway. We found that the expressions of Jhamt and Met were significantly increased in the presence of Wolbachia, suggesting an interaction of Wolbachia with the JH signaling pathway. Then, we found that overexpression of JhI-26 in Wolbachia-free transgenic male flies caused paternal-effect lethality that mimics the defects associated with CI. JhI-26 overexpressing males resulted in significantly decrease in hatch rate. Surprisingly, Wolbachia-infected females could rescue the egg hatch. In addition, we showed that overexpression of JhI-26 caused upregulation of the male accessory gland protein (Acp) gene CG10433, but not vice versa. This result suggests that JhI-26 may function at the upstream of CG10433. Likewise, overexpression of CG10433 also resulted in paternal-effect lethality. Both JhI-26 and CG10433 overexpressing males

  12. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    SciTech Connect

    Singh, Preeti; Godbole, Madan; Rao, Geeta; Annarao, Sanjay; Mitra, Kalyan; Roy, Raja; Ingle, Arvind; Agarwal, Gaurav; Tiwari, Swasti

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  13. Early hyperbaric oxygen therapy inhibits aquaporin 4 and adrenocorticotropic hormone expression in the pituitary gland of rabbits with blast-induced craniocerebral injury★

    PubMed Central

    Huo, Jian; Liu, Jiachuan; Wang, Jinbiao; Zhang, Yongming; Wang, Chunlin; Yang, Yanyan; Sun, Wenjiang; Xu, Shaonian

    2012-01-01

    In the present study, rabbits were treated with hyperbaric oxygen for 1 hour after detonator-blast- induced craniocerebral injury. Immunohistochemistry showed significantly reduced aquaporin 4 expression and adrenocorticotropic hormone expression in the pituitary gland of rabbits with craniocerebral injury. Aquaporin 4 expression was positively correlated with adrenocorticotropic hormone expression. These findings indicate that early hyperbaric oxygen therapy may suppress adrenocorticotropic hormone secretion by inhibiting aquaporin 4 expression. PMID:25624795

  14. Relation between the testicular sperm assay and sex hormone level in patients with azoospermia induced by mumps

    PubMed Central

    Zhang, Shuiwen; An, Yulin; Li, Junguo; Guo, Junhong; Zhou, Guoping; Li, Jianhua; Xu, Ye

    2015-01-01

    This study aimed to investigate the relation between the testicular sperm assay (TESA) and sex hormone level or testicular volume in patients with azoospermia induced by mumps. Samples from 52 patients with mumps-induced azoospermia were subjected to TESA, and then the sperm activity was observed microscopically. The sex hormone level was detected with an electrochemical assay, and ultrasound was used to calculate the testicular volume. Of the 52 azoospermia patients, 38 were found to have active sperms through testicular sperm extraction from the opened testis; furthermore, the serum follicle-stimulating hormone (FSH) and luteinizing hormone levels were obviously higher in the non-sperm group than in the sperm group (P < 0.05). Moreover, the testicular volume was smaller in the non-sperm group than in the sperm group; however, there was no significant difference between the two groups (P > 0.05). With the FSH value as a standard, the quantity of sperms was found to be within two times of, or more than two-fold of the normal range. With the testicular volume as a standard, sperms were found in testes with a volume of > 6 mL or < 6 mL. The FSH value and the testicular volume were indicators of the ability of the TESA to obtain sperms. To allow the performance of intracytoplasmic sperm injection, all patients need to undergo TESA. PMID:26885123

  15. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes.

    PubMed

    Chen, Wei; Hoo, Ruby Lai-chong; Konishi, Morichika; Itoh, Nobuyuki; Lee, Pui-Chi; Ye, Hong-ying; Lam, Karen Siu-ling; Xu, Aimin

    2011-10-07

    Fibroblast growth factor (FGF) 21 and growth hormone (GH) are metabolic hormones that play important roles in regulating glucose and lipid metabolism. Both hormones are induced in response to fasting and exert their actions on adipocytes to regulate lipolysis. However, the molecular interaction between these two hormones remains unclear. Here we demonstrate the existence of a feedback loop between GH and FGF21 on the regulation of lipolysis in adipocytes. A single bolus injection of GH into C57 mice acutely increases both mRNA and protein expression of FGF21 in the liver, thereby leading to a marked elevation of serum FGF21 concentrations. Such a stimulatory effect of GH on hepatic FGF21 production is abrogated by pretreatment of mice with the lipolysis inhibitor niacin. Direct incubation of either liver explants or human HepG2 hepatocytes with GH has no effect on FGF21 expression. On the other hand, FGF21 production in HepG2 cells is significantly induced by incubation with the conditioned medium harvested from GH-treated adipose tissue explants, which contains high concentrations of free fatty acids (FFA). Further analysis shows that FFA released by GH-induced lipolysis stimulates hepatic FGF21 expression by activation of the transcription factor PPARα. In FGF21-null mice, both the magnitude and duration of GH-induced lipolysis are significantly higher than those in their wild type littermates. Taken together, these findings suggest that GH-induced hepatic FGF21 production is mediated by FFA released from adipose tissues, and elevated FGF21 in turn acts as a negative feedback signal to terminate GH-stimulated lipolysis in adipocytes.

  16. Successful induction of lactation in a barren Thoroughbred mare: growth of a foal raised on induced lactation and the corresponding maternal hormone profiles.

    PubMed

    Korosue, Kenji; Murase, Harutaka; Sato, Fumio; Ishimaru, Mutsuki; Harada, Takehiro; Watanabe, Gen; Taya, Kazuyoshi; Nambo, Yasuo

    2012-08-01

    The purpose of this study was to demonstrate that a barren parous Thoroughbred mare with lactation induced by hormonal treatment can be introduced to an orphan foal at the same farm and that the mare can become pregnant after the end of the hormonal treatment. An additional purpose was to investigate the changes in the plasma concentrations of prolactin, estradiol-17β, progesterone, follicle-stimulating hormone, and luteinizing hormone before, during, and after hormonal treatment. The difference in body weight between the adopted foal and the control foals, which were at the same farm and raised by their natural mothers, was 17 kg at 24 weeks old, when the foals were weaned. However, the adopted foal and the control foals had almost the same weight at 35 weeks old and later. The first ovulation after hormonal treatment was confirmed 10 days after the end of hormonal treatment and then the normal estrous cycle resumed. Furthermore, the changes in plasma progesterone, estradiol-17β, follicle-stimulating hormone, and luteinizing hormone showed regular patterns after the first ovulation. Conception was confirmed in the fifth ovulation. Meanwhile, another study demonstrated that conception was confirmed in the first ovulation after hormonal treatment. The present study is the first to demonstrate the hormonal profiles during and after induction of lactation in a Thoroughbred mare. This approach is useful for solving the economic and epidemic problems of introducing a nurse mare to an orphan foal.

  17. Differential gene expression induced by growth hormone treatment in the uremic rat growth plate.

    PubMed

    Gil, Helena; Lozano, Juan J; Alvarez-García, Oscar; Secades-Vázquez, Pablo; Rodríguez-Suárez, Julián; García-López, Enrique; Carbajo-Pérez, Eduardo; Santos, Fernando

    2008-08-01

    Treatment with growth hormone (GH) improves growth retardation of chronic renal failure. cDNA microarrays were used to investigate GH-induced modifications in gene expression in the tibial growth plate of young rats. RNA was extracted from the tibial growth plate from two groups, untreated and treated with GH, of young rats made uremic by subtotal nephrectomy (n=10). To validate changes shown by the Agilent oligo microarrays, some modulated genes known to play a physiological role in growth plate metabolism were analyzed by real-time quantitative polymerase chain reaction (qPCR). The microarrays showed that GH modified the expression of 224 genes, 195 being upregulated and 29 downregulated. qPCR results confirmed the sense of expression change found in the arrays for insulin-like growth factor I, insulin-like growth factor II, collagen V alpha 1, bone morphogenetic protein 3 and proteoglycan type II. This study shows for the first time the profile of growth plate gene expression modifications caused by GH treatment in experimental uremia and provides a basis to further investigate selected individual genes with potential implication in the stimulating effect on the growth of GH treatment in chronic renal failure.

  18. Comparison of Ultraviolet Photodissociation and Collision Induced Dissociation of Adrenocorticotropic Hormone Peptides

    NASA Astrophysics Data System (ADS)

    Robotham, Scott A.; Brodbelt, Jennifer S.

    2015-09-01

    In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y-S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types ( a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.

  19. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    PubMed

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  20. Syndrome of inappropriate antidiuretic hormone secretion: a story of duloxetine-induced hyponatraemia.

    PubMed

    Amoako, Adae Opoku; Brown, Carina; Riley, Timothy

    2015-04-24

    Hyponatraemia is the most commonly encountered electrolyte abnormality in clinical practice. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) accounts for nearly 60% of all hyponatraemias. Selective serotonin reuptake inhibitors (SSRIs) are well known to have side effects of SIADH. There have been few reported cases of serotonin norepinephrine reuptake inhibitors (SNRIs) causing SIADH-induced hyponatraemia. Duloxetine is one type of SNRI used to treat several conditions, including depression and diabetic neuropathy. We present a case of a 76-year-old woman with a history of fibromyalgia who had recently been prescribed duloxetine for her condition. On admission to the hospital, her sodium decreased to a low of 118 mmol/L. Evaluation for other causes of hyponatraemia yielded negative results. Duloxetine was discontinued and after 3 days the patient's sodium increased to 130 mmol/L. The purpose of this case report is to highlight the importance of having suspicion for rare but real side effects of medications such as duloxetine.

  1. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  2. Severe hyponatremia caused by nab-paclitaxel-induced syndrome of inappropriate antidiuretic hormone secretion

    PubMed Central

    Neuzillet, Cindy; Babai, Samy; Kempf, Emmanuelle; Pujol, Géraldine; Rousseau, Benoît; Le-Louët, Hervé; Christophe Tournigand

    2016-01-01

    Abstract Incidence of pancreatic ductal adenocarcinoma (PDAC) is increasing. Most patients have advanced disease at diagnosis and therapeutic options in this setting are limited. Gemcitabine plus nab-paclitaxel regimen was demonstrated to increase survival compared with gemcitabine monotherapy and is therefore indicated as first-line therapy in patients with metastatic PDAC and performance status Eastern Cooperative Oncology Group (ECOG) 0-2. The safety profile of gemcitabine and nab-paclitaxel combination includes neutropenia, fatigue, and neuropathy as most common adverse events of grade 3 or higher. No case of severe hyponatremia associated with the use of nab-paclitaxel for the treatment of PDAC has been reported to date. We report the case of a 72-year-old Caucasian man with a metastatic PDAC treated with gemcitabine and nab-paclitaxel regimen, who presented with a severe hyponatremia (grade 4) caused by a documented syndrome of inappropriate antidiuretic hormone secretion (SIADH). This SIADH was attributed to nab-paclitaxel after a rigorous imputability analysis, including a rechallenge procedure with dose reduction. After dose and schedule adjustment, nab-paclitaxel was pursued without recurrence of severe hyponatremia and with maintained efficacy. Hyponatremia is a rare but potentially severe complication of nab-paclitaxel therapy that medical oncologists and gastroenterologists should be aware of. Nab-paclitaxel-induced hyponatremia is manageable upon dose and schedule adaptation, and should not contraindicate careful nab-paclitaxel reintroduction. This is of particular interest for a disease in which the therapeutic options are limited. PMID:27368013

  3. Cortisol interferes with the estradiol-induced surge of luteinizing hormone in the ewe.

    PubMed

    Wagenmaker, Elizabeth R; Breen, Kellie M; Oakley, Amy E; Pierce, Bree N; Tilbrook, Alan J; Turner, Anne I; Karsch, Fred J

    2009-03-01

    Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was approximately 1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.

  4. Stabilization of recombinant human growth hormone against emulsification-induced aggregation by Pluronic surfactants during microencapsulation.

    PubMed

    Wei, Gang; Lu, Li Fang; Lu, Wei Yue

    2007-06-29

    Protein aggregation upon exposing to the water/organic solvent interface is one of the most significant obstacles in developing poly(lactic-co-glycolic acid) (PLGA) microspheres with double emulsion process. The aim of present study is to devise a formulation strategy to prevent recombinant human growth hormone (rhGH) from aggregation during microencapsulation. The excipients used for stabilizing rhGH were selected from sugars, nonionic surfactants, polyol, and protein. Among the candidates, surfactants exhibited potentialities in protecting rhGH against emulsification-induced aggregation. It was also found that Pluronic F127 showed an outstanding as well as concentration-dependent stabilizing effect on rhGH, which was different to Pluronic F68 and Tween 20. After the rhGH solution comprising F127 and sucrose was emulsified with methylene chloride, the recovery of monomeric protein achieved 99.0%, principally attributed to the presence of F127. This solution was subsequently encapsulated as inner aqueous phase in the PLGA microspheres by a conventional double emulsion process, with the encapsulation efficiency higher than 98%. Improvement in the release of rhGH was observed for the microspheres co-encapsulating Pluronic F127 regardless in the presence or absence of sucrose, compared to the microspheres containing rhGH alone. The result further implied that co-encapsulation of Pluronic F127 in the microspheres played an important role in the stabilization of rhGH.

  5. Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly

    PubMed Central

    Kamenicky, Peter; Viengchareun, Say; Blanchard, Anne; Meduri, Geri; Zizzari, Philippe; Imbert-Teboul, Martine; Doucet, Alain; Chanson, Philippe; Lombes, Marc

    2008-01-01

    Acromegalic patients present with volume expansion and arterial hypertension but the renal sites and molecular mechanisms of direct antinatriuretic action of growth hormone (GH) remain unclear. Here, we show that acromegalic GC rats, which are chronically exposed to very high levels of GH, exhibited a decrease of furosemide-induced natriuresis and an increase of amiloride-stimulated natriuresis compared to controls. Enhanced Na+,K+-ATPase activity and altered proteolytic maturation of epithelial sodium channel (ENaC) subunits in the cortical collecting ducts (CCD) of GC rats provided additional evidence for an increased sodium reabsorption in the late distal nephron under chronic GH excess. In vitro experiments on KC3AC1 cells, a murine CCD cell model revealed the expression of functional GH receptors (GHR) and IGF-1 receptors coupled to activation of JAK2/STAT5, ERK and AKT signaling pathways. That GH directly controls sodium reabsorption in CCD cells is supported by i) stimulation of transepithelial sodium transport inhibited by GHR antagonist pegvisomant ii) induction of αENaC mRNA expression iii) identification of STAT5 binding to a response element located in the αENaC promoter, indicative of the transcriptional regulation of αENaC by GH. Our findings provide first evidence that GH, in concert with IGF-1, stimulates ENaC-mediated sodium transport in the late distal nephron, accounting for the pathogenesis of sodium retention in acromegaly. PMID:18388193

  6. Dose dependency of time of onset of radiation-induced growth hormone deficiency

    SciTech Connect

    Clayton, P.E.; Shalet, S.M. )

    1991-02-01

    Growth hormone (GH) secretion during insulin-induced hypoglycemia was assessed on 133 occasions in 82 survivors of childhood malignant disease. All had received cranial irradiation with a dose range to the hypothalamic-pituitary axis of 27 to 47.5 Gy (estimated by a schedule of 16 fractions over 3 weeks) and had been tested on one or more occasions between 0.2 and 18.9 years after treatment. Results of one third of the GH tests were defined as normal (GH peak response, greater than 15 mU/L) within the first 5 years, in comparison with 16% after 5 years. Stepwise multiple linear regression analysis showed that dose (p = 0.007) and time from irradiation (p = 0.03), but not age at therapy, had a significant influence on peak GH responses. The late incidence of GH deficiency was similar over the whole dose range (4 of 26 GH test results normal for less than 30 Gy and 4 of 25 normal for greater than or equal to 30 Gy after 5 years), but the speed of onset over the first years was dependent on dose. We conclude that the requirement for GH replacement therapy and the timing of its introduction will be influenced by the dose of irradiation received by the hypothalamic-pituitary axis.

  7. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex

    PubMed Central

    Kero, Jukka; Poutanen, Matti; Zhang, Fu-Ping; Rahman, Nafis; McNicol, Anne Marie; Nilson, John H.; Keri, Ruth A.; Huhtaniemi, Ilpo T.

    2000-01-01

    Transgenic (TG) female mice expressing bLHβ-CTP (a chimeric protein derived from the β-subunit of bovine luteinizing hormone [LH] and a fragment of the β-subunit of human chorionic gonadotropin [hCG]) exhibit elevated serum LH, infertility, polycystic ovaries, and ovarian tumors. In humans, increased LH secretion also occurs in infertility and polycystic ovarian syndrome, often concomitant with adrenocortical dysfunction. We therefore investigated adrenal function in LH overexpressing bLHβ-CTP female mice. The size of their adrenals was increased by 80% with histological signs of cortical stimulation. Furthermore, adrenal steroid production was increased, with up to 14-fold elevated serum corticosterone. Primary adrenal cells from TG and control females responded similarly to ACTH stimulation, but, surprisingly, the TG adrenals responded to hCG with significantly increased cAMP, progesterone, and corticosterone production. LH receptor (LHR) expression and activity were also elevated in adrenals from female TG mice, but gonadectomized TG females showed no increase in corticosterone, suggesting that the dysfunctional ovaries of the intact TG females promote adrenocortical hyperfunction. We suggest that, in intact TG females, enhanced ovarian estrogen synthesis causes increased secretion of prolactin (PRL), which elevates LHR expression. Chronically elevated serum LH, augmented by enhanced PRL production, induces functional LHR expression in mouse adrenal cortex, leading to elevated, LH-dependent, corticosterone production. Thus, besides polycystic ovaries, the bLHβ-CTP mice provide a useful model for studying human disorders related to elevated LH secretion and adrenocortical hyperfunction. PMID:10712435

  8. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex.

    PubMed

    Kero, J; Poutanen, M; Zhang, F P; Rahman, N; McNicol, A M; Nilson, J H; Keri, R A; Huhtaniemi, I T

    2000-03-01

    Transgenic (TG) female mice expressing bLHbeta-CTP (a chimeric protein derived from the beta-subunit of bovine luteinizing hormone [LH] and a fragment of the beta-subunit of human chorionic gonadotropin [hCG]) exhibit elevated serum LH, infertility, polycystic ovaries, and ovarian tumors. In humans, increased LH secretion also occurs in infertility and polycystic ovarian syndrome, often concomitant with adrenocortical dysfunction. We therefore investigated adrenal function in LH overexpressing bLHbeta-CTP female mice. The size of their adrenals was increased by 80% with histological signs of cortical stimulation. Furthermore, adrenal steroid production was increased, with up to 14-fold elevated serum corticosterone. Primary adrenal cells from TG and control females responded similarly to ACTH stimulation, but, surprisingly, the TG adrenals responded to hCG with significantly increased cAMP, progesterone, and corticosterone production. LH receptor (LHR) expression and activity were also elevated in adrenals from female TG mice, but gonadectomized TG females showed no increase in corticosterone, suggesting that the dysfunctional ovaries of the intact TG females promote adrenocortical hyperfunction. We suggest that, in intact TG females, enhanced ovarian estrogen synthesis causes increased secretion of prolactin (PRL), which elevates LHR expression. Chronically elevated serum LH, augmented by enhanced PRL production, induces functional LHR expression in mouse adrenal cortex, leading to elevated, LH-dependent, corticosterone production. Thus, besides polycystic ovaries, the bLHbeta-CTP mice provide a useful model for studying human disorders related to elevated LH secretion and adrenocortical hyperfunction.

  9. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  10. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats

    PubMed Central

    2010-01-01

    Background Non-alcoholic fatty liver disease (NAFLD), which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH) could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. Results High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha) levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin), which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. Conclusions Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance. PMID:20653983

  11. Clinically relevant hormone treatments fail to induce spinogenesis in prefrontal cortex of aged female rhesus monkeys.

    PubMed

    Ohm, Daniel T; Bloss, Erik B; Janssen, William G; Dietz, Karen C; Wadsworth, Shannon; Lou, Wendy; Gee, Nancy A; Lasley, Bill L; Rapp, Peter R; Morrison, John H

    2012-08-22

    Preclinical animal models have provided strong evidence that estrogen (E) therapy (ET) enhances cognition and induces spinogenesis in neuronal circuits. However, clinical studies have been inconsistent, with some studies revealing adverse effects of ET, including an increased risk of dementia. In an effort to bridge this disconnect between the preclinical and clinical data, we have developed a nonhuman primate (NHP) model of ET combined with high-resolution dendritic spine analysis of dorsolateral prefrontal cortical (dlPFC) neurons. Previously, we reported cyclic ET in aged, ovariectomized NHPs increased spine density on dlPFC neurons. Here, we report that monkeys treated with cyclic E treatment paired with cyclic progesterone (P), continuous E combined with P (either cyclic or continuous), or unopposed continuous E failed to increase spines on dlPFC neurons. Given that the most prevalent form of ET prescribed to women is a combined and continuous E and P, these data bring into convergence the human neuropsychological findings and preclinical neurobiological evidence that standard hormone therapy in women is unlikely to yield the synaptic benefit presumed to underlie the cognitive enhancement reported in animal models.

  12. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  13. Participation of JAK and STAT proteins in growth hormone-induced signaling.

    PubMed

    Han, Y; Leaman, D W; Watling, D; Rogers, N C; Groner, B; Kerr, I M; Wood, W I; Stark, G R

    1996-03-08

    The binding of growth hormone leads to dimerization of its receptor, accompanied by phosphorylation and activation of intracellular tyrosine kinases (JAKs) and the latent cytoplasmic transcriptions factors STAT1, STAT3, and STAT5. Both JAK1 and JAK2 are phosphorylated in response to growth hormone in mouse 3T3 F442A and human HT1080 cells. The roles of JAKs in growth hormone signal transduction were examined by using mutant HT1080 cells missing either JAK1 or JAK2. JAK2 is absolutely required for growth hormone-dependent phosphorylation of the receptor, STAT1 and STAT3, JAK1, and the SH2-containing adaptor molecule Shc. In contrast, JAK1 is not required for any of the above functions. These data indicate that JAK2 is both necessary and sufficient for the growth hormone-dependent phosphorylation events required to couple the receptor both to STAT-dependent signaling pathways and to pathways involving Shc. Furthermore, STAT5 is activated by growth hormone in 3T3 F442A cells, but not in HT1080 cells, revealing that the set of STATs activated by growth hormone can vary, possibly contributing to the specificity of the growth hormone response in different cell types.

  14. Molecular markers of oocyte differentiation in European eel during hormonally induced oogenesis.

    PubMed

    Rojo-Bartolomé, Iratxe; Martínez-Miguel, Leticia; Lafont, Anne-Gaëlle; Vílchez, M Carmen; Asturiano, Juan F; Pérez, Luz; Cancio, Ibon

    2017-09-01

    Reproduction in captivity is a key study issue in Anguilla anguilla as a possible solution for its dwindling population. Understanding the mechanisms controlling the production of ribosomal building blocks during artificially induced oocyte maturation could be particularly interesting. Transcription levels of ribosomal biogenesis associated genes could be used as markers to monitor oogenesis. Eels from the Albufera Lagoon were injected with carp pituitary extract for 15weeks and ovaries in previtellogenic (PV) stage (non-injected), in early-, mid-, late-vitellogenesis (EV, MV, LV), as well as in migratory nucleus stage (MN) were analysed. 5S rRNA and related genes were highly transcribed in ovaries with PV oocytes. As oocytes developed, transcriptional levels of genes related to 5S rRNA production (gtf3a), accumulation (gtf3a, 42sp43) and nucleocytoplasmic transport (rpl5, rpl11) and the 5S/18S rRNA index decreased (PV>EV>MV>LV>MN). On the contrary, 18S rRNA was at its highest at MN stage while ubtf1 in charge of activating RNA-polymerase I and synthesising 18S rRNA behaved as 5S related genes. Individuals that did not respond (NR) to the treatment showed 5S/18S index values similar to PV females, while studied genes showed EV/LV-like transcription levels. Therefore, NR females fail to express the largest rRNAs, which could thus be taken as markers of successful vitellogenesis progression. In conclusion, we have proved that the transcriptional dynamics of ribosomal genes provides useful tools to characterize induced ovarian development in European eels. In the future, such markers should be studied as putative indicators of response to hormonal treatments and of the quality of obtained eel oocytes. Copyright © 2017. Published by Elsevier Inc.

  15. Parathyroid Hormone (1-34) Transiently Protects Against Radiation-Induced Bone Fragility.

    PubMed

    Oest, Megan E; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A

    2016-06-01

    Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1-34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility.

  16. The corticotropin-releasing hormone test in normal short children: comparison of plasma adrenocorticotropin and cortisol responses to human corticotropin-releasing hormone and insulin-induced hypoglycemia.

    PubMed

    Goji, K

    1989-03-01

    The human corticotropin-releasing hormone (hCRH) tests were performed in twelve normal short children, and the responses of plasma ACTH and cortisol to iv administration of 1 micrograms/kg hCRH were compared with those to insulin-induced hypoglycemia. After administration of hCRH, the mean plasma ACTH level rose from a basal value of 3.3 +/- 0.4 pmol/l (mean +/- SEM) to a peak value of 9.2 +/- 0.8 pmol/l at 30 min, and the mean plasma cortisol level rose from a basal value of 231 +/- 25 nmol/l to a peak value of 546 +/- 30 nmol/l at 30 min. The ACTH response after insulin-induced hypoglycemia was greater than that after hCRH administration; the mean peak level (P less than 0.01), the percent maximum increment (P less than 0.01), and the area under the ACTH response curve (P less than 0.01) were all significantly greater after insulin-induced hypoglycemia than those after hCRH administration. Although the mean peak cortisol level after insulin-induced hypoglycemia was about 1.3-fold higher than that after hCRH administration (P less than 0.01), neither the percent maximum increment in plasma cortisol nor the area under the cortisol response curve after insulin-induced hypoglycemia was significantly different from that after hCRH administration. Consequently, the acute increases in plasma ACTH after the administration of 1 microgram/kg hCRH stimulated the adrenal gland to almost the same cortisol response as that obtained with a much greater increase in plasma ACTH after insulin-induced hypoglycemia. These results suggest that a plasma ACTH peak of 9-11 pmol/l produces near maximum acute stimulation of adrenal steroidogenesis.

  17. Ultrasound-guided regional anesthesia for carotid endarterectomy induces early hemodynamic and stress hormone changes.

    PubMed

    Hoefer, Judith; Pierer, Eve; Rantner, Barbara; Stadlbauer, Karl-Heinz; Fraedrich, Gustav; Fritz, Josef; Kleinsasser, Axel; Velik-Salchner, Corinna

    2015-07-01

    Locoregional anesthesia is an effective method for evaluating cerebral function during carotid endarterectomy (CEA). Landmark-guided regional anesthesia (RA) is currently used for CEA and can provoke substantial perioperative hypertension. Ultrasound-guided RA (US-RA) is a new method for performing RA in CEA; however, the effect on sympathetic activity and blood pressure is uncertain. This study assessed early sympathetic activity during CEA in US-RA compared with general anesthesia (GA). Patients were prospectively randomized to receive US-RA (n = 32) or GA (n = 28) for CEA. The primary end point was the change in systolic arterial blood pressure after induction of anesthesia (just before starting surgery) comparing US-RA with GA. We also recorded heart rate and analyzed concentrations of plasma blood hormones, including cortisol, metanephrine, and normetanephrine at five different times. Creatinine kinase, troponin I, and N-terminal pro-B-type natriuretic peptide were analyzed to detect potential changes in cardiac biomarkers during the procedure. Systolic arterial blood pressure (mean ± standard deviation) increased significantly in US-RA patients compared with GA patients even before surgery was initiated (180 ± 26 mm Hg vs 109 ± 24 mm Hg; P < .001), then remained elevated during the entire surgery and returned to baseline values 1 hour after admission to the postoperative anesthesia care unit. Heart rate (US-RA: 78 ± 16 beats/min, GA: 52 ± 12 beats/min; P < .001) and cortisol levels (US-RA: 155 ± 97 μg/L, GA: 99 ± 43 μg/L; P = .006) were also significantly higher in the US-RA group after induction of anesthesia. Other values did not differ. The US-RA technique for CEA induces temporary intraoperative hypertension and an increase in stress hormone levels. Nevertheless, US-RA is a feasible, effective, and safe form of locoregional for CEA that enables targeted placement of low volumes of local anesthesia under direct visualization. Copyright © 2015

  18. Reduced protein availability by albumen removal during chicken embryogenesis decreases body weight and induces hormonal changes.

    PubMed

    Willems, Els; Wang, Yufeng; Koppenol, Astrid; Lesuisse, Jens; Franssens, Lies; Decuypere, Eddy; Buyse, Johan; Everaert, Nadia

    2015-11-01

    What is the central question of this study? Prenatal protein undernutrition by albumen removal in an avian model of fetal programming leads to long-term programming effects, but when do these effects first appear and are these programming effects regulated by the same candidate genes as in mammals? What is the main finding and its importance? The present results indicate that prenatal protein undernutrition by albumen removal induces phenotypical and hormonal changes in the early posthatch period, when the mismatch between the prenatal and postnatal environment first arises, but these changes are not accompanied by an altered gene expression of the selected candidate genes. Studies of the chicken offer a unique model for investigation of the direct effects of reduced prenatal protein availability by the partial replacement of albumen with saline in eggs at embryonic day 1 (albumen-deprived group). The results were compared with mock-treated sham chicks and non-treated control chicks. Although no differences in hatch weight were found, body weight and growth were reduced in the albumen-deprived chicks until 3 weeks of age. The feed intake of the albumen-deprived chicks, however, was increased compared with the control (day 13-21) and the sham chicks (day 16-18). In the albumen-deprived chicks, the ratio of thyroxine to 3,5,3'-triiodothyronine in the plasma was increased compared with the control chicks, whereas the plasma corticosterone level was increased only at day 7 compared with both other groups. The plasma glucose concentration and glucose tolerance were not affected by treatment. Several candidate genes previously associated with effects of prenatal protein deprivation in mammals were examined in the liver of newly hatched chicks. Gene expression of glycogen synthase 2, glycogen phosphorylase 1, peroxisome proliferator-activated receptor α and γ and glucocorticoid receptor was not affected by the treatment. In conclusion, reduction of prenatal

  19. Surplus dietary tryptophan inhibits stress hormone kinetics and induces insulin resistance in pigs.

    PubMed

    Koopmans, Sietse Jan; Ruis, Marko; Dekker, Ruud; Korte, Mechiel

    2009-10-19

    Recently we have shown that surplus dietary tryptophan (TRP) reduced the plasma concentrations of cortisol and noradrenaline in pigs. Stress hormones are known to affect insulin sensitivity and metabolism. We now investigated the long-term effects of surplus dietary TRP on 1) plasma and urinary stress hormone kinetics, 2) insulin sensitivity for glucose and amino acid clearance, and 3) whole body nitrogen balance. Pigs were fed for 3weeks a high (13.2%) vs normal (3.4%) TRP to large neutral amino acids (LNAA) diet, leading to reduced fasting (14 h) plasma cortisol (17.1+/-3.0 vs 28.9+/-4.3 ng/mL, p<0.05) and noradrenaline (138+/-14 vs 225+/-21 pg/mL, p<0.005) concentrations, lower daily urinary noradrenaline (313+/-32 vs 674+/-102 ng/kg day, p<0.001) and adrenaline (124+/-13 vs 297+/-42 ng/kg day, p<0.001) but higher dopamine (5.8+/-0.5 vs 1.5+/-0.2 microg/kg day, p<0.001) excretions, respectively. Insulin sensitivities for both glucose and amino acid clearance, (as measured by the intraportal hyperinsulinaemic (1 mU/kg min) euglycaemic euaminoacidaemic clamp technique), were lower by 22% in pigs on the high vs normal TRP/LNAA diet (14.8+/-1.4 vs 18.9+/-0.9, p<0.05 and 69.7+/-4.3 vs 89.7+/-6.8 mL/kg min, p<0.05, respectively) without affecting urinary nitrogen excretion (35.5+/-1.0 vs 36.6+/-1.0% of dietary nitrogen intake, p=ns). In conclusion, long-term feeding of surplus dietary TRP inhibits both baseline adrenocortical and sympathetic nervous system activity, it induces insulin resistance for both glucose and amino acid clearance but it does not affect whole body protein catabolism. This indicates that the bioactive amino acid TRP contributes to homeostasis in neuroendocrinology and insulin action and that low baseline adrenocortical and sympatho-adrenal axis activity are associated with insulin resistance.

  20. Role of hormonal axis, growth hormone - IGF-1, in the therapeutic effect of ghrelin in the course of cerulein-induced acute pancreatitis.

    PubMed

    Ceranowicz, D; Warzecha, Z; Dembinski, A; Ceranowicz, P; Cieszkowski, J; Kusnierz-Cabala, B; Tomaszewska, R; Kuwahara, A; Kato, I

    2010-10-01

    Ghrelin is a ligand for growth hormone secretagogue receptor and stimulates release of growth hormone (GH). Recent studies have shown that treatment with ghrelin exhibits protective and therapeutic effect in the course of experimental pancreatitis. The aim of present study was to examine the role of GH and insulin-like growth factor-1 (IGF-1) in these effects. Acute pancreatitis was induced by cerulein. Study was performed on pituitary-intact hypophysectomized rats. Ghrelin was administered twice a day at the dose of 8 nmol/kg/dose. IGF-1 was given twice a day at the dose of 20 nmol/kg/dose. The severity of acute pancreatitis was assessed 0 h or 1, 2, 3, 5 and 10 days after the last dose of cerulein. Administration of cerulein led to the development of acute edematous pancreatitis. In pituitary-intact rats, treatment with ghrelin reduced biochemical indexes of the severity of acute pancreatitis and morphological signs of pancreatic damage, leading to faster regeneration of the pancreas reduction in serum concentration of pro-inflammatory interleukin-1β and decrease in serum activity of amylase and lipase. These effects were accompanied with an improvement of pancreatic blood flow and an increase in pancreatic DNA synthesis. Hypophysectomy delayed the healing of the pancreas and abolished the therapeutic effect of ghrelin. In hypophysectomized rats with pancreatitis, treatment with IGF-1 exhibits therapeutic effect similar to that observed in ghrelin-treated rats with the intact pituitary. We conclude that therapeutic effect of ghrelin in cerulein-induced pancreatitis is indirect and depends on the release of GH and IGF-1.

  1. Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice

    PubMed Central

    Zhang, Xianyang; Cui, Tengjiao; He, Jinlin; Wang, Haibo; Cai, Renzhi; Popovics, Petra; Vidaurre, Irving; Sha, Wei; Schmid, Janine; Ludwig, Barbara; Block, Norman L.; Bornstein, Stefan R.; Schally, Andrew V.

    2015-01-01

    Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus. PMID:26474831

  2. Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice.

    PubMed

    Zhang, Xianyang; Cui, Tengjiao; He, Jinlin; Wang, Haibo; Cai, Renzhi; Popovics, Petra; Vidaurre, Irving; Sha, Wei; Schmid, Janine; Ludwig, Barbara; Block, Norman L; Bornstein, Stefan R; Schally, Andrew V

    2015-11-03

    Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus.

  3. Restraint-induced changes in serum luteinizing hormone, prolactin, growth hormone and corticosterone levels in rats: effect of superior cervical ganglionectomy.

    PubMed

    Martín, A I; López-Calderón, A; Tresguerres, J A; González-Quijano, M I; Cardinali, D P

    1995-02-01

    From about 10 to 36 h after superior cervical ganglionectomy (SCGx), peripheral sympathetic nerve terminals in the median eminence degenerate, nerve ending content is released, and a transient period of increased postsynaptic activity ensues. After this time, an irreversible, paralytic phase is established in the denervated territory. The present experiment was undertaken to examine, at single points during the wallerian degeneration phase (24 h after SCGx) and during the paralytic phase (10 days after denervation), the participation of peripheral sympathetic nerves in restraint-stress-induced changes of circulating luteinizing hormone (LH), prolactin (PRL), growth hormone (GH) and corticosterone levels. During the wallerian degeneration phase, serum LH did not augment after stress, as it did in sham-operated controls. In the paralytic phase, the poststress increases in LH attained similar values in sham-operated and SCGx rats. Immobilization stress augmented PRL levels to a similar extent in sham-operated and SCGx rats either 24 h or 10 days after surgery. During the wallerian degeneration phase, a decrease in serum GH levels was found in unrestrained rats. Immobilization stress decreased GH levels to 5-12% of unrestrained values in sham-operated and SCGx rats at both examination time points after surgery. Rats studied 24 h after SCGx exhibited significantly augmented serum corticosterone levels and failed to show restraint-stress-induced stimulation of corticosterone release. In rats subjected to SCGx 10 days earlier, both basal and poststress levels of corticosterone did not differ from sham-operated controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Levels of miRNA and Hormones in Thoracic Duct Lymph in Rats with Experimental Breast Cancer Induced by N-Methyl-N-Nitrosourea.

    PubMed

    Lykov, A P; Kabakov, A V; Kazakov, O V; Bondarenko, N A; Poveshchenko, O V; Raiter, T V; Poveshchenko, A F; Strunkin, D N; Konenkov, V I

    2017-01-01

    We studied hormone levels in the thoracic duct lymph and expression of miRNA involved in the pathogenesis of breast cancer induced in rats by intramammary injection of N-methyl-Nnitrosourea. The correlations between miRNA expression and hormone levels depended on the type of treatment.

  5. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    SciTech Connect

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-03-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data.

  6. Immunophotoaffinity labeling of the binding proteins for 1-methyladenine, an oocyte maturation-inducing hormone of starfish.

    PubMed

    Kida, Tetsuo; Matsuda, Shinjiro; Kuyama, Atsushi; Toraya, Tetsuo

    2014-01-01

    Starfish oocytes are naturally arrested at the prophase stage of the first meiotic division and resume meiosis in response to 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative receptors for 1-MeAde have not yet been characterized biochemically, although the specific binding of 1-MeAde to the isolated cortices of starfish oocytes was reported so far. Based on the structure-activity relationship of 1-MeAde analogs, we have designed a photoaffinity labeling reagent. The photoaffinity labeling of oocyte membrane fractions, followed by immunoblotting analysis with anti-1-MeAde antibody, results in the detection of an almost single protein band. This 1-MeAde-binding protein might be a possible candidate of the maturation-inducing hormone receptor of starfish.

  7. Development of a porcine follicle-stimulating hormone and porcine luteinizing hormone induced ovulation protocol in the seasonally anoestrus brushtail possum (Trichosurus vulpecula).

    PubMed

    Glazier, A M; Molinia, F C

    2002-01-01

    Monovulatory brushtail possums (Trichosurus vulpecula) were stimulated with exogenous hormones during seasonal anoestrus to overcome ovarian insensitivity and induce ovulation. Seasonal ovarian insensitivity to pregnant mare serum gonadotrophin (PMSG) was overcome by a new porcine follicle-stimulating hormone/porcine luteinizing hormone (pFSH/pLH) protocol. This protocol was refined because the original treatment produced oocytes with abnormal morphology. Possums (n = 12 per group) received eight injections of pFSH of 1.5, 3.0 or 6.0 mg per injection (at 12-h intervals for 4 consecutive days). Ovulation was induced 12 h after the final pFSH injection with a 4-mg injection of pLH. Control animals were treated with the established protocol of a single injection of 15 IU of PMSG, followed 48 h later with an injection of 4 mg of pLH. All females responded to pFSH/pLH treatment, although optimal stimulation occurred in those receiving 8 x 3 mg pFSH, with 13-14 ovulations and recovery of 11-12 oocytes per female (8 x 1.5 mg pFSH: 13 ovulations, 8-9 oocytes; 8 x 6 mg pFSH: 7-8 ovulations, 4-5 oocytes). In contrast, only seven of 12 females responded to PMSG/pLH and, of those responding, only 2-3 ovulations occurred and only 1-2 oocytes per female were recovered. However, around 80% of oocytes recovered after PMSG/pLH treatment had undergone nuclear maturation (metaphase II/1st polar body) compared with around 60% of oocytes from pFSH/pLH-treated animals. In possums killed from 27 to 39 h after pLH treatment, ovulation onset was first observed from 30 h and by 31.5 h, all animals had completed ovulation. Laparoscopic artificial insemination (LAI) was performed on pFSH/pLH-treated animals to determine whether the oocytes produced were capable of fertilization. Uterine LAI performed 27.5-28.5 h after pLH treatment yielded 11/26 fertilized oocytes (up to 4-cell stage), whereas vaginal LAI performed 13-14 h after pLH treatment yielded 21/53 fertilized oocytes. A proportion of

  8. The pregnancy-induced increase in baseline circulating growth hormone in rats is not induced by ghrelin.

    PubMed

    El-Kasti, M M; Christian, H C; Huerta-Ocampo, I; Stolbrink, M; Gill, S; Houston, P A; Davies, J S; Chilcott, J; Hill, N; Matthews, D R; Carter, D A; Wells, T

    2008-03-01

    The elevation in baseline circulating growth hormone (GH) that occurs in pregnant rats is thought to arise from increased pituitary GH secretion, but the underlying mechanism remains unclear. Distribution, Fourier and algorithmic analyses confirmed that the pregnancy-induced increase in circulating GH in 3-week pregnant rats was due to a 13-fold increase in baseline circulating GH (P < 0.01), without any significant alteration in the parameters of episodic secretion. Electron microscopy revealed that pregnancy resulted in a reduction in the proportion of mammosomatotrophs (P < 0.01) and an increase in type II lactotrophs (P < 0.05), without any significant change in the somatotroph population. However, the density of the secretory granules in somatotrophs from 3-week pregnant rats was reduced (P < 0.05), and their distribution markedly polarised; the granules being grouped nearest the vasculature. Pituitary GH content was not increased, but steady-state GH mRNA levels declined progressively during pregnancy (P < 0.05). In situ hybridisation revealed that pregnancy was accompanied by a suppression of GH-releasing hormone mRNA expression in the arcuate nuclei (P < 0.05) and enhanced somatostatin mRNA expression in the periventricular nuclei (P < 0.05), an expression pattern normally associated with increased GH feedback. Although gastric ghrelin mRNA expression was elevated by 50% in 3-week pregnant rats (P < 0.01), circulating ghrelin, GH-secretagogue receptor mRNA expression and the GH response to a bolus i.v. injection of exogenous ghrelin were all largely unaffected during pregnancy. Although trace amounts of 'pituitary' GH could be detected in the placenta with radioimmunoassay, significant GH-immunoreactivity could not be observed by immunohistochemistry, indicating that rat placenta itself does not produce 'pituitary' GH. Although not excluding the possibility that the pregnancy-associated elevation in baseline circulating GH could arise from alternative extra

  9. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2017-04-01

    Mutant hypothyroid mouse models have recently shown that thyroid hormone is critical for skeletal development during an important prepubertal growth period. Additionally, thyroid hormone negatively regulates total body fat, consistent with the well-established effects of thyroid hormone on energy and fat metabolism. Since bone marrow mesenchymal stromal cells differentiate into both adipocytes and osteoblasts and a relationship between bone marrow adipogenesis and osteogenesis has been predicted, we hypothesized thyroid hormone deficiency during the postnatal growth period increases marrow adiposity in mice. Marrow adiposity in TH-deficient (Tshr (-/-)) mice treated with T3/T4, TH receptor β-specific agonist GC-1, or vehicle control was evaluated via dual-energy X-ray absorptiometry and osmium micro-computed tomography. To further examine the mechanism for thyroid hormone regulation of marrow adiposity, we used real-time RT-PCR to measure the effects of thyroid hormone on adipocyte differentiation markers in primary mouse bone marrow mesenchymal stromal cells and two mouse cell lines in vitro and in Tshr (-/-) mice in vivo. Marrow adiposity increased >20% (P < 0.01) in Tshr (-/-) mice at 3 weeks of age, and treatment with T3/T4 when serum thyroid hormone normally increases (day 5-14) rescued this phenotype. Furthermore, GC-1 rescued this phenotype equally well, suggesting this thyroid hormone effect is in part mediated via TRβ signaling. Treatment of bone marrow mesenchymal stromal or ST2 cells with T3 or GC-1 significantly increased expression of several brown/beige fat markers. Moreover, injection of T3/T4 increased browning-specific markers in white fat of Tshr (-/-) mice. These data suggest that thyroid hormone regulation of marrow adiposity is mediated at least in part via activation of TRβ signaling.

  10. Lead (Pb) alters the norepinephrine-induced secretion of luteinizing hormone releasing hormone from the median eminence of adult male rats in vitro

    SciTech Connect

    Bratton, G.R.; Hiney, J.K.; Dees, W.L. )

    1994-01-01

    In the present study, the authors evaluated the in vitro effects of lead (Pb) on basal and stimulated luteinizing hormone releasing hormone (LHRH) and Prostaglandin E[sub 2] (PGE[sub 2]) secretion. Median eminences (ME) were removed from brains of adult male rats and preincubated for 15 minutes in Krebs-Ringer bicarbonate glucose buffer in an atmosphere of 95% O[sub 2]-5% CO[sub 2]. These media were discarded and all MEs were subjected to one of the following experiments. In Experiment 1, all MEs were incubated for 30 minutes in medium only. These media were collected and replaced with medium only (controls) or with medium containing Pb doses ranging from 5 to 20 [mu]M. After this 60-minute incubation, media were collected, then replaced with new medium containing 60 [mu]M norepinephrine (NE), or NE plus each dose of Pb, then incubated for a final 30-minute period. Experiment 2 was conducted as above, except PGE[sub 2] (2.8 [mu]M) replaced the NE. In both experiments, the amounts of LHRH released was measured by RIA. In experiment 3, NE was again used for the challenge; however, this time, the amount of PGE[sub 2] released was measured by RIA. Results indicate that Pb did not alter basal LHRH release, but compared with controls, significantly blocked NE-induced LHRH release in a dose-related manner. Conversely, Pb had no effect on the PGE[sub 2]-induced release of LHRH. Additionally, Pb did not alter basal PGE[sub 2] release; however, it significantly blocked the NE-induced release of PGE[sub 2]. Since NE-induced LHRH release is mediated by PGE[sub 2], these results support the hypothesis that Pb is capable of altering the hypothalamus and suggest that this effect is due, at least in part, to the diminished PGE[sub 2] synthesis/release within the ME, resulting in diminished LHRH secretion.

  11. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents.

    PubMed

    Roness, Hadassa; Kalich-Philosoph, Lital; Meirow, Dror

    2014-01-01

    Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to

  12. Insulin-induced hypoglycemia suppresses plasma parathyroid hormone levels in patients with adrenal insufficiency.

    PubMed

    Suliman, Abdulwahab M; Freaney, Rosemarie; McBrinn, Yvonne; Gibney, James; Murray, Barbara; Smith, Thomas P; McKenna, T Joseph

    2004-10-01

    Hypoglycemia has been reported to cause suppression of parathyroid hormone (PTH) levels in serum in normal subjects. It is possible that increasing cortisol levels in response to hypoglycemia was responsible. To examine this possibility the acute PTH response to insulin administration and resulting hypoglycemia was examined in patients with adrenal insufficiency. The possible acute impact of insulin-induced hypoglycemia on bone formation and bone resorption in the absence of an endogenous cortisol response was also examined. A prospective open study was undertaken to examine the acute effects of insulin and resulting hypoglycemia on PTH levels, on bone formation as indicated by serum levels of aminoterminal propeptide of type 1 procollagen (PINP), and on bone resorption as indicated by serum levels of beta carboxy terminal telopeptide of type 1 collagen (beta-CTx). Seven patients with adrenal insufficiency participated. These patients were studied on 3 occasions under different conditions: (1) when insulin was administered to induce hypoglycemia while the patients received their routine glucocorticoid replacement; (2) when the patients received their routine glucocorticoid replacement, but were not rendered hypoglycemic; and (3) when they did not receive glucocorticoid replacement and were not rendered hypoglycemic, ie, untreated. This facilitated isolation of the PTH response to insulin and hypoglycemia from the effects of the normal increase in endogenous cortisol levels in response to hypoglycemia. Blood samples were taken at baseline and after 3 hours while the subjects continued fasting for measurement of plasma glucose, serum ionized calcium (Cai), magnesium, phosphate, PINP, PTH, and beta-CTx. Insulin 0.075 IU/kg body weight was given intravenously after the first blood sample. The usual morning glucocorticoid replacement dose was given 20 minutes after the baseline blood sample was obtained. After the administration of insulin, plasma glucose decreased from

  13. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis

    PubMed Central

    Kanczkowski, Waldemar; Sue, Mariko; Bornstein, Stefan R.

    2016-01-01

    Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic–pituitary–adrenal axis and the sympathetic–adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion. PMID:28018291

  14. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis.

    PubMed

    Kanczkowski, Waldemar; Sue, Mariko; Bornstein, Stefan R

    2016-01-01

    Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.

  15. DEHP (DI-N-ETHYLHEXYL PHTHALATE), WHEN ADMINISTERED DURING SEXUAL DIFFERENTIATION, INDUCES DOSE DEPENDENT DECREASES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS

    EPA Science Inventory

    DEHP (di-n-ethylhexyl phthalate), when administered during sexual differentiation, induces dose dependent decreases in fetal testis gene expression and steroid hormone synthesis.
    Vickie S. Wilson, Christy Lambright, Johnathan Furr, Kathy Bobseine, Carmen Wood, Gary Held, and ...

  16. DEHP (DI-N-ETHYLHEXYL PHTHALATE), WHEN ADMINISTERED DURING SEXUAL DIFFERENTIATION, INDUCES DOSE DEPENDENT DECREASES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS

    EPA Science Inventory

    DEHP (di-n-ethylhexyl phthalate), when administered during sexual differentiation, induces dose dependent decreases in fetal testis gene expression and steroid hormone synthesis.
    Vickie S. Wilson, Christy Lambright, Johnathan Furr, Kathy Bobseine, Carmen Wood, Gary Held, and ...

  17. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  18. Inhibition of L-dopa induced growth hormone release in normal and diabetic subjects by glucose administration.

    PubMed

    Vigas, M; Klimes, I; Jurcovicova, J; Kolesar, P; Repcekova-Jezova, D

    1977-12-01

    Administration of L-dopa 1 g induced an increase of plasma growth hormone (GH) levels in seven of ten healthy volunteers and in six of ten hyperglycemic insulin-dependent diabetic subjects; the maximal GH response was higher in normal subjects. Addition of 100 g glucose orally to the L-dopa completely abolished the GH response of both groups. The difference between the effect of endogenous hyperglycemia and the effect of a sudden increase of blood sugar after glucose administration on L-dopa induced GH release in diabetic subjects may be explain by the resetting of the hypothalamic control for pituitary GH release to higher levels of blood glucose.

  19. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells

    PubMed Central

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633

  20. Skeletal Muscle Growth Hormone Receptor Signaling Regulates Basal, but Not Fasting-Induced, Lipid Oxidation

    PubMed Central

    Vijayakumar, Archana; Wu, YingJie; Buffin, Nicholas J.; Li, Xiaosong; Sun, Hui; Gordon, Ronald E.; Yakar, Shoshana; LeRoith, Derek

    2012-01-01

    Background Growth hormone (GH) stimulates whole-body lipid oxidation, but its regulation of muscle lipid oxidation is not clearly defined. Mice with a skeletal muscle-specific knockout of the GH receptor (mGHRKO model) are protected from high fat diet (HFD)–induced insulin resistance and display increased whole-body carbohydrate utilization. In this study we used the mGRHKO mice to investigate the role of muscle GHR signaling on lipid oxidation under regular chow (RC)- and HFD- fed conditions, and in response to fasting. Methodology/Principal Findings Expression of lipid oxidation genes was analyzed by real-time PCR in the muscles of RC- and HFD- fed mice, and after 24 h fasting in the HFD-fed mice. Expression of lipid oxidation genes was lower in the muscles of the mGHRKO mice relative to the controls, irrespective of diet. However, in response to 24 h fasting, the HFD-fed mGHRKO mice displayed up-regulation of lipid oxidation genes similar to the fasted controls. When subjected to treadmill running challenge, the HFD-fed mGHRKO mice demonstrated increased whole-body lipid utilization. Additionally, under fasted conditions, the adipose tissue of the mGHRKO mice displayed increased lipolysis as compared to both the fed mGHRKO as well as the fasted control mice. Conclusions/Significance Our data show that muscle GHR signaling regulates basal lipid oxidation, but not the induction of lipid oxidation in response to fasting. We further demonstrate that muscle GHR signaling is involved in muscle-adipose tissue cross-talk; however the mechanisms mediating this remain to be elucidated. PMID:23024761

  1. Steroid sex hormone dynamics during estradiol-17β induced gonadal differentiation in Paralichthys olivaceus (Teleostei)

    NASA Astrophysics Data System (ADS)

    Sun, Peng; You, Feng; Liu, Mengxia; Wu, Zhihao; Wen, Aiyun; Li, Jun; Xu, Yongli; Zhang, Peijun

    2010-03-01

    Steroid sex hormones, such as estradiol-17β (E2) and testosterone (T), are important regulators of sex change in fish. In this study, we examined the effects of E2 treatment on the dynamics of E2 and T during gonadal differentiation in the olive flounder Paralichthys olivaceus using histology and radioimmunoassay (RIA). Flounder larvae were divided into five groups (G0-G4), and fed with 0 (control), 0.2, 2, 20 and 100 mg E2/kg feed from 35 to 110 day post hatching (dph). Fish growth in the G1 and G2 groups was not significantly different from that of the control group ( P>0.05), while fish in the G3 and G4 groups were less active and showed growth depression and high mortality. The gonads of fish in the G3 and G4 groups were smaller and surrounded by hyperplastic connective tissue. The frequency of females in the G0-G4 groups was 54.5%, 75.0%, 100%, 100% and 93.3%, respectively. The RIA analyses of E2 and T showed that T levels decreased during gonadal differentiation, and increased slightly at the onset of ovarian differentiation, while E2 levels increased gradually and peaked at the onset of ovarian differentiation in the control group. In the E2-treated groups, T levels decreased before the onset of ovarian differentiation. E2 levels were high on the 48 dph, but declined to a lower level on the 54 dph, and then increased gradually during gonadal differentiation. And a sharp increase of E2 levels were observed in all E2-treated groups at the onset of ovarian differentiation. The data suggest that T and E2 play important roles during gonadal differentiation, and an E2 dose of 2 mg/kg feed could induce sex reversal in P. olivaceus.

  2. Impact of low-level thyroid hormone disruption induced by propylthiouracil on brain development and function.

    PubMed

    Gilbert, Mary E

    2011-12-01

    The critical role of thyroid hormone (TH) in brain development is well-established. Evidence shows that severe deficiencies lead to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degrees of developmental hypothyroidism by administration of low doses of the TH synthesis inhibitor, propylthiouracil (PTU 0, 1, 2, and 3 ppm) to the drinking water of pregnant rats. This regimen produced dose-dependent reductions in circulating levels of T4 in dams and offspring on postnatal days (PN) 15 and 22, with return to control levels in adulthood upon termination of treatment at weaning. Modest reductions in T3 were observed in the high-dose group on PN15. Synaptic function in the dentate gyrus was examined in adult euthyroid offspring using in vivo field potentials. Excitatory synaptic transmission (excitatory postsynaptic potential [EPSP] slope amplitude) was significantly reduced at 2 and 3 ppm PTU, with no statistically reliable effect detected in the population spike. Paired-pulse functions estimating the integrity of inhibitory synaptic processing were modestly reduced by 3 ppm PTU. Long-term potentiation (LTP) of the EPSP slope was impaired at all dose levels. Trace fear conditioning to context and to cue was impaired at the highest dose level when a distractor stimulus was present, whereas conditioning in a standard trace fear paradigm paradoxically revealed "enhanced" performance at the intermediate dose and a return to control values in the high-dose group. Biphasic dose-response profiles were evident in some measures (trace fear conditioning and LTP) but not others and serve to exemplify the complexity of the role of TH in brain development and its consequences for brain function.

  3. Hormone induced expression of brush border lactase in suckling rat intestine.

    PubMed

    Chaudhry, Kamaljit Kaur; Mahmood, Safrun; Mahmood, Akhtar

    2008-05-01

    The postnatal development of intestine is associated with a decline in brush border lactase activity in rodents. This is similar to adulthood hypolactasia, a phenomenon prevalent in humans worldwide. In the present study, the effect of luminal proteases from adult rat intestine was studied in vitro on intestinal lactase activity in saline control, thyroxine, insulin and cortisone treated rat pups. Lactase levels were determined by enzyme analysis and Western blotting. mRNA levels encoding lactase were determined by Northern blotting. Administration of thyroxine for 4 days reduced (P<0.05) lactase activity, but insulin treatment had no effect in 8-day-old rat intestine. However, cortisone administration augmented (P<0.01) lactase activity, under these conditions. Western blot analysis showed decreased lactase signal corresponding to 220-kDa protein band in thyroxine treated animals. However, the intensity of lactase signal was high in cortisone treated animals compared to controls. mRNA levels encoding lactase showed a 6.8-kb mRNA transcript in saline and hormone treated rats. mRNA levels encoding lactase were increased in cortisone treated animals but were reduced in thyroxine injected pups compared to controls. Microvillus membranes from saline (P<0.01) and thyroxine (P<0.05) or insulin (P<0.01) treated rats upon incubation with luminal wash from adult rat intestine showed a significant decline in lactase activity. These findings suggest that thyroxine, insulin or cortisone induced changes in lactase expression in suckling rat intestine make it susceptible to luminal proteases, which may in part be responsible for observed maturational decline in lactase activity in adult rat intestine.

  4. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    PubMed

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette; Blondeau, Bertrand; Riveline, Jean-Pierre

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  5. UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2009-11-01

    The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.

  6. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors

    PubMed Central

    West, Daniel W. D.; Burd, Nicholas A.; Tang, Jason E.; Moore, Daniel R.; Staples, Aaron W.; Holwerda, Andrew M.; Baker, Steven K.

    2010-01-01

    The aim of our study was to determine whether resistance exercise-induced elevations in endogenous hormones enhance muscle strength and hypertrophy with training. Twelve healthy young men (21.8 ± 1.2 yr, body mass index = 23.1 ± 0.6 kg/m2) trained their elbow flexors independently for 15 wk on separate days and under different hormonal milieu. In one training condition, participants performed isolated arm curl exercise designed to maintain basal hormone concentrations (low hormone, LH); in the other training condition, participants performed identical arm exercise to the LH condition followed immediately by a high volume of leg resistance exercise to elicit a large increase in endogenous hormones (high hormone, HH). There was no elevation in serum growth hormone (GH), insulin-like growth factor (IGF-1), or testosterone after the LH protocol but significant (P < 0.001) elevations in these hormones immediately and 15 and 30 min after the HH protocol. The hormone responses elicited by each respective exercise protocol late in the training period were similar to the response elicited early in the training period, indicating that a divergent postexercise hormone response was maintained over the training period. Muscle cross-sectional area (CSA) increased by 12% in LH and 10% in HH (P < 0.001) with no difference between conditions (condition × training interaction, P = 0.25). Similarly, type I (P < 0.01) and type II (P < 0.001) muscle fiber CSA increased with training with no effect of hormone elevation in the HH condition. Strength increased in both arms, but the increase was not different between the LH and HH conditions. We conclude that exposure of loaded muscle to acute exercise-induced elevations in endogenous anabolic hormones enhances neither muscle hypertrophy nor strength with resistance training in young men. PMID:19910330

  7. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors.

    PubMed

    West, Daniel W D; Burd, Nicholas A; Tang, Jason E; Moore, Daniel R; Staples, Aaron W; Holwerda, Andrew M; Baker, Steven K; Phillips, Stuart M

    2010-01-01

    The aim of our study was to determine whether resistance exercise-induced elevations in endogenous hormones enhance muscle strength and hypertrophy with training. Twelve healthy young men (21.8 +/- 1.2 yr, body mass index = 23.1 +/- 0.6 kg/m(2)) trained their elbow flexors independently for 15 wk on separate days and under different hormonal milieu. In one training condition, participants performed isolated arm curl exercise designed to maintain basal hormone concentrations (low hormone, LH); in the other training condition, participants performed identical arm exercise to the LH condition followed immediately by a high volume of leg resistance exercise to elicit a large increase in endogenous hormones (high hormone, HH). There was no elevation in serum growth hormone (GH), insulin-like growth factor (IGF-1), or testosterone after the LH protocol but significant (P < 0.001) elevations in these hormones immediately and 15 and 30 min after the HH protocol. The hormone responses elicited by each respective exercise protocol late in the training period were similar to the response elicited early in the training period, indicating that a divergent postexercise hormone response was maintained over the training period. Muscle cross-sectional area (CSA) increased by 12% in LH and 10% in HH (P < 0.001) with no difference between conditions (condition x training interaction, P = 0.25). Similarly, type I (P < 0.01) and type II (P < 0.001) muscle fiber CSA increased with training with no effect of hormone elevation in the HH condition. Strength increased in both arms, but the increase was not different between the LH and HH conditions. We conclude that exposure of loaded muscle to acute exercise-induced elevations in endogenous anabolic hormones enhances neither muscle hypertrophy nor strength with resistance training in young men.

  8. Bioelectrical activity of porcine oviduct and uterus during spontaneous and induced estrus associated with cyclic hormone changes.

    PubMed

    Pawliński, Bartosz; Domino, Małgorzata; Aniołek, Olga; Ziecik, Adam; Gajewski, Zdzislaw

    2016-12-01

    It is widely accepted that uterine contraction is initiated by spontaneous generation of electrical activity at a cellular level in the form of action potentials. Such action potential events, when they involve many myometrial cells and occur in immediate succession, are described by their amplitude and duration. In an effort to improve clinical management of uterine contractions, research has focused on determination of the properties of the reproductive tract's electrical activity under hormonal stimulation. The aim of this study was to evaluate the myoelectric activity (amplitude and duration) of the oviduct and the uterus in relation to plasma concentration of LH, estradiol (E2), and progesterone (P4) during spontaneous and induced estrus in gilts. The course of the experiment was divided into eight periods defined by hormone concentrations (LH, P4, and E2) and time intervals before and after the start of the LH surge. Myoelectric signals were recorded, and the hormone levels were measured during proestrus and estrus in natural and hormone-induced estrus cycle. During the natural estrus, the LH surge was longer than after hormonal stimulation (28 vs. 20 hours) and suggested an inverse relationship between the LH concentration and the duration of myoelectric activity (SR = -0.68). Analyses of the records of the amplitudes and durations of the electromyography activity in uterine horns and oviducts showed significant differences between spontaneous and induced estrus (P < 0.05). During induced estrus, the LH surge began earlier (T1 vs. T2) and increased more (7.46 vs. 6.50 ng/mL) than during spontaneous estrus. This observation suggests a direct relationship between the LH concentration and the amplitude of the myoelectric activity (Spearman rank correlation = 0.71). The significantly higher duration and amplitude of the activity in the isthmus of the oviduct and the uterus during induced estrus shortly after the onset of standing heat (4-8 hours after

  9. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  10. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening.

    PubMed

    Cunha, Camila P; Roberto, Guilherme G; Vicentini, Renato; Lembke, Carolina G; Souza, Glaucia M; Ribeiro, Rafael V; Machado, Eduardo C; Lagôa, Ana M M A; Menossi, Marcelo

    2017-03-07

    The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed.

  11. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening

    PubMed Central

    Cunha, Camila P.; Roberto, Guilherme G.; Vicentini, Renato; Lembke, Carolina G.; Souza, Glaucia M.; Ribeiro, Rafael V.; Machado, Eduardo C.; Lagôa, Ana M. M. A.; Menossi, Marcelo

    2017-01-01

    The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed. PMID:28266527

  12. Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain

    PubMed Central

    Schang, Anne-Laure; Van Steenwinckel, Juliette; Chevenne, Didier; Alkmark, Marten; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2014-01-01

    Preterm birth is very strongly associated with maternal/foetal inflammation and leads to permanent neurological deficits. These deficits correlate with the severity of white matter injury, including maturational arrest of oligodendrocytes and hypomyelination. Preterm birth and exposure to inflammation causes hypothyroxinemia. As such, supplementation with thyroxine (T4) seems a good candidate therapy for reducing white matter damage in preterm infants as oligodendrocyte maturation and myelination is regulated by thyroid hormones. We report on a model of preterm inflammation-induced white matter damage, in which induction of systemic inflammation by exposure from P1 to P5 to interleukin-1β (IL-1β) causes oligodendrocyte maturational arrest and hypomyelination. This model identified transient hypothyroidism and wide-ranging dysfunction in thyroid hormone signalling pathways. To test whether a clinically relevant dose of T4 could reduce inflammation-induced white matter damage we concurrently treated mice exposed to IL-1β from P1 to P5 with T4 (20 μg/kg/day). At P10, we isolated O4-positive pre-oligodendrocytes and gene expression analysis revealed that T4 treatment did not recover the IL-1β-induced blockade of oligodendrocyte maturation. Moreover, at P10 and P30 immunohistochemistry for markers of oligodendrocyte lineage (NG2, PDGFRα and APC) and myelin (MBP) similarly indicated that T4 treatment did not recover IL-1β-induced deficits in the white matter. In summary, in this model of preterm inflammation-induced white matter injury, a clinical dose of T4 had no therapeutic efficacy. We suggest that additional pre-clinical trials with T4 covering the breadth and scope of causes and outcomes of perinatal brain injury are required before we can correctly evaluate clinical trials data and understand the potential for thyroid hormone as a widely implementable clinical therapy. PMID:24240022

  13. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  14. Differential role of gonadal hormones on kainic acid-induced neurodegeneration in medial amygdaloid nucleus of female and male rats.

    PubMed

    Pereno, G L; Beltramino, C A

    2009-10-20

    Sex hormones contribute to modulating brain functions throughout the life span. It has been suggested that estrogen prevents neuronal loss in different areas of the CNS such as the hippocampus. However there are less consistent data on its effects on the amygdala. Kainic acid (KA) is used to produce seizures that mimic those of temporal lobe epilepsy in humans. At high doses in animal models, KA induces neurotoxicity, particularly in the medial amygdaloid nuclei (MeA). It is uncertain whether the gonadal hormones are protective or not against this neurotoxicity in the MeA. Here we show that a single dose of KA induces neurodegeneration in the subnuclei of the MeA of rats with different degrees of intensity in males and females. A differential neuroprotective effect of the gonadal hormones was also observed. In diestrous rats, massive neuronal death similar to that in the ovariectomized females was detected. MeA neurons of proestrous rats, like the ovariectomized treated with estrogen, were significantly less affected by the KA. Testosterone produced a mild neuroprotective action, but dihydrotestosterone did not protect. A similar pattern was observed in all male groups. Together, the results indicate that estrogen protects MeA neurons from KA neurotoxicity. Androgens are only partially neuroprotective, with this effect being found only in testosterone, probably through its conversion to estrogen by aromatase.

  15. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats.

    PubMed

    Cluny, Nina L; Eller, Lindsay K; Keenan, Catherine M; Reimer, Raylene A; Sharkey, Keith A

    2015-04-01

    Oligofructose (OFS) is a prebiotic that reduces energy intake and fat mass via changes in gut satiety hormones and microbiota. The effects of OFS may vary depending on predisposition to obesity. The aim of this study was to examine the effect of OFS in diet-induced obese (DIO) and diet-resistant (DR) rats. Adult, male DIO, and DR rats were randomized to: high-fat/high-sucrose (HFS) diet or HFS diet + 10% OFS for 6 weeks. Body composition, food intake, gut microbiota, plasma gut hormones, and cannabinoid CB(1) receptor expression in the nodose ganglia were measured. OFS reduced body weight, energy intake, and fat mass in both phenotypes (P < 0.05). Select gut microbiota differed in DIO versus DR rats (P < 0.05), the differences being eliminated by OFS. OFS did not modify plasma ghrelin or CB(1) expression in nodose ganglia, but plasma levels of GIP were reduced and PYY were elevated (P < 0.05) by OFS. OFS was able to reduce body weight and adiposity in both prone and resistant obese phenotypes. OFS-induced changes in gut microbiota profiles in DIO and DR rats, along with changes in gut hormone levels, likely contribute to the sustained lower body weights. © 2015 The Obesity Society.

  16. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3.

    PubMed

    Kerner, S A; Scott, R A; Pike, J W

    1989-06-01

    Osteoblast-specific expression of the bone protein osteocalcin is controlled at the transcriptional level by the steroid hormone 1 alpha,25-dihydroxyvitamin D3. As this protein may represent a marker for bone activity in human disease, we examined the regulation of its expression at the molecular level by evaluating human osteocalcin gene promoter function. We describe regions within the promoter that contribute to basal expression of the gene in osteoblast-like cells in culture. Further, we define a 21-base-pair DNA element with the sequence 5'-GTGACTCACCGGGTGAACGGG-3', which acts in cis to mediate 1 alpha,25-dihydroxyvitamin D3 inducibility of the osteocalcin gene. This response element bears sequence similarity with other short DNA segments, particularly those for estrogen and thyroid hormone, which act together with their respective trans-acting receptors to modulate gene transcription.

  17. Heat shock of cultured GC cells enhances the level of triiodothyronine induced growth hormone (GH) and GH messenger ribonucleic acid.

    PubMed

    Shapiro, L E; Katz, C P; DeFesi, C R; Surks, M I

    1989-07-01

    We have previously proposed that the effects of heat shock on thyroid hormone-responsive rat pituitary tumor (GC) cells may be a model relevant to the in vivo effects of nonthyroidal disease on thyroid hormone action. To determine the effects of heat shock on thyroid hormone responses, GC cells (normally cultured at 37 C) were studied after incubation at 41 C. After 18 h at 41 C there was enhanced synthesis of proteins (mol wt, 70,000 and 90,000) considered to be universal markers of the cellular response to heat shock. Incubation at 41 C also resulted in a significant decrease in GC cell viability and (after 24 h) arrest of GC cell growth. However, the induction of GH synthesis by T3 was significantly enhanced in GC cells stressed by incubation at 41 C. The addition of 5 nM T3 to thyroid hormone-depeleted GC cells resulted in a significantly greater (P less than 0.001) accumulation of GH (2642 +/- 280 ng/18 h) during 41 C incubation than during 37 C incubation (1223 +/- 175 ng/18 h). The enhanced T3-induced production of GH was coincident with a proportional increase (P less than 0.05) in cellular GH mRNA determined by dot hybridization analysis. Thus, the stress of 41 C incubation elicits a heat shock response in GC cells characterized by decreased viability and growth arrest, but enhanced accumulation of GH mRNA in response to T3. Our recent report on the identical effects due to the stress of implantation of the Walker 256 carcinoma on T3-induced rat pituitary GH mRNA in vivo suggests that heat shock of cultured GC cells is a valid in vitro model of nonthyroidal disease.

  18. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  19. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon

    PubMed Central

    Kakei, Yusuke; Mochida, Keiichi; Sakurai, Tetsuya; Yoshida, Takuhiro; Shinozaki, Kazuo; Shimada, Yukihisa

    2015-01-01

    Brachypodium distachyon is a new model plant closely related to wheat and other cereals. In this study, we performed a comprehensive analysis of hormone-regulated genes in Brachypodium distachyon using RNA sequencing technology. Brachypodium distachyon seedlings were treated with eight phytohormones (auxin, cytokinine, brassinosteroid, gibberelline, abscisic acid, ethylene, jasmonate and salicylic acid) and two inhibitors, Brz220 (brassinosteroid biosynthesis inhibitor) and prohexadione (gibberelline biosynthesis inhibitor). The expressions of 1807 genes were regulated in a phytohormone-dependent manner. We compared the data with the phytohormone responses that have reported in rice. Transcriptional responses to hormones are conserved between Bracypodium and rice. Transcriptional regulation by brassinosteroid, gibberellin and ethylene was relatively weaker than those by other hormones. This is consistent with the data obtained from comprehensive analysis of hormone responses reported in Arabidopsis. Brachypodium and Arabidopsis also shared some common transcriptional responses to phytohormones. Alternatively, unique transcriptional responses to phytohormones were observed in Brachypodium. For example, the expressions of ACC synthase genes were up-regulated by auxin treatment in rice and Arabidopsis, but no orthologous ACC synthase gene was up-regulated in Brachypodium. Our results provide information useful to understand the diversity and similarity of hormone-regulated transcriptional responses between eudicots and monocots. PMID:26419335

  20. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon.

    PubMed

    Kakei, Yusuke; Mochida, Keiichi; Sakurai, Tetsuya; Yoshida, Takuhiro; Shinozaki, Kazuo; Shimada, Yukihisa

    2015-09-30

    Brachypodium distachyon is a new model plant closely related to wheat and other cereals. In this study, we performed a comprehensive analysis of hormone-regulated genes in Brachypodium distachyon using RNA sequencing technology. Brachypodium distachyon seedlings were treated with eight phytohormones (auxin, cytokinine, brassinosteroid, gibberelline, abscisic acid, ethylene, jasmonate and salicylic acid) and two inhibitors, Brz220 (brassinosteroid biosynthesis inhibitor) and prohexadione (gibberelline biosynthesis inhibitor). The expressions of 1807 genes were regulated in a phytohormone-dependent manner. We compared the data with the phytohormone responses that have reported in rice. Transcriptional responses to hormones are conserved between Bracypodium and rice. Transcriptional regulation by brassinosteroid, gibberellin and ethylene was relatively weaker than those by other hormones. This is consistent with the data obtained from comprehensive analysis of hormone responses reported in Arabidopsis. Brachypodium and Arabidopsis also shared some common transcriptional responses to phytohormones. Alternatively, unique transcriptional responses to phytohormones were observed in Brachypodium. For example, the expressions of ACC synthase genes were up-regulated by auxin treatment in rice and Arabidopsis, but no orthologous ACC synthase gene was up-regulated in Brachypodium. Our results provide information useful to understand the diversity and similarity of hormone-regulated transcriptional responses between eudicots and monocots.

  1. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.

  2. Embryonal mass and hormone-associated effects of pregnancy inducing a differential growth of four murine tumors.

    PubMed

    Bustuoabad, Oscar D; di Gianni, Pedro D; Franco, Marcela; Kordon, Edith C; Vanzulli, Silvia I; Meiss, Roberto P; Grion, Lorena C; Díaz, Graciela S; Nosetto, Sergio H; Hockl, Pablo; Lombardi, M Gabriela; Pasqualini, Christiane Dosne; Ruggiero, Raúl A

    2002-01-01

    A differential effect of pregnancy on the growth of subcutaneous implants of four murine tumors has been observed. Two tumors lacking receptors for progesterone and estrogen [methylcholanthrene-induced fibrosarcoma (MC-C) and spontaneous lymphoid leukemia (LB)] exhibited slow kinetics throughout the course of pregnancy, although inhibition was stronger beyond day 10. On the other hand, one of two tumors bearing receptors for progesterone and estrogen [medroxyprogesterone (MPA)-induced mammary adenocarcinoma (C7HI)] exhibited three phases: up to days 8-10 of gestation the tumor grew faster than in virgins, between days 8-10 and 15 it reached a plateau, and beyond day 15 a sharp reduction in tumor mass was observed. The other tumor [mouse mammary tumor virus (MMTV)-induced mammary carcinoma(T2280)] behaved as a typical pregnancy-dependent tumor (i.e., it grew in pregnant but not in virgin mice, regressed soon after delivery, and reassumed its growth at the middle of a second round of pregnancy). Neither MPA nor estrogen affected MC-C and LB tumor growth. On the other hand, MPA-treated mice enhanced C7HI tumor and reciprocally C7HI tumor-bearing mice treated with estrogen strongly inhibited tumor growth. As for T2280, neither MPA nor estrogen alone could promote tumor growth and, in consequence, no tumor developed. However, when MPA plus estrogen was administered in a schedule simulating the successive appearance of these hormones in pregnancy, T2280 grew even faster than in pregnant mice. When the four tumors were implanted in mice bearing grafts of embryonal tissues (teratomas), all of them were inhibited. This antitumor effect was similar to that observed in pregnancy when tumors unresponsive to progesterone and estrogen were tested. On the other hand, with tumors bearing progesterone and estrogen receptors, differences in tumor growth were detected in pregnant and teratoma-bearing mice. This suggested the existence during pregnancy of two factors potentially

  3. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells

    PubMed Central

    Zhou, Jilong; Yao, Wang; Li, Chengyu; Wu, Wangjun; Li, Qifa; Liu, Honglin

    2017-01-01

    Recent studies reported the important role of autophagy in follicular development. However, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of follicle-stimulating hormone (FSH) on mouse granulosa cells (MGCs). Results indicated that autophagy was induced by FSH, which is known to be the dominant hormone regulating follicular development and granulosa cell (GC) proliferation. The activation of mammalian target of rapamycin (mTOR), a master regulator of autophagy, was inhibited during the process of MGC autophagy. Moreover, MHY1485 (an agonist of mTOR) significantly suppressed autophagy signaling by activating mTOR. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was increased after FSH treatment. Blocking hypoxia-inducible factor 1-alpha attenuated autophagy signaling. In vitro, CoCl2-induced hypoxia enhanced cell autophagy and affected the expression of beclin1 and BCL2/adenovirus E1B interacting protein 3 (Bnip3) in the presence of FSH. Knockdown of beclin1 and Bnip3 suppressed autophagy signaling in MGCs. Furthermore, our in vivo study demonstrated that the FSH-induced increase in weight was significantly reduced after effectively inhibiting autophagy with chloroquine, which was correlated with incomplete mitophagy process through the PINK1-Parkin pathway, delayed cell cycle, and reduced cell proliferation rate. In addition, chloroquine treatment decreased inhibin alpha subunit, but enhanced the expression of 3 beta-hydroxysteroid dehydrogenase. Blocking autophagy resulted in a significantly lower percentage of antral and preovulatory follicles after FSH stimulation. In conclusion, our results indicate that FSH induces autophagy signaling in MGCs via HIF-1α. In addition, our results provide evidence that autophagy induced by FSH is related to follicle development and atresia. PMID:28817115

  4. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    NASA Technical Reports Server (NTRS)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  5. Biosynthesis of cellular and secreted proteins during follicle-stimulating hormone-induced granulosa cell differentiation.

    PubMed

    Knecht, M; Shinohara, O; Catt, K J

    1986-09-01

    The synthesis of cellular and secreted proteins by differentiating granulosa cells from diethylstilbestrol-treated immature rats was studied by one- and two-dimensional polyacrylamide gel electrophoresis. In cultured granulosa cells, FSH altered the relative biosynthesis of specific cellular and secreted proteins in a concentration- and time-dependent manner. The incorporation of [35S]methionine into cellular proteins of Mr 42,000, 48,000, and 58,000 was enhanced by increasing amounts of the gonadotropin, whereas the labeling of a 44,000 Mr protein was reduced. Similarly, FSH increased the labeling of secreted proteins with relative Mr of 16,000, 17,000, 20,000, 25,000, 36,000, 41,000, 46,000, 111,000, and 153,000, and decreased that of proteins with Mr of 38,000, 48,000, 191,000, and 250,000. The expression of specific proteins was related to the degree of cellular maturation, since some proteins were newly synthesized during the early stages of granulosa cell development (less than 6 h), whereas others were more evident in the middle (24 h) or later (48 h) phases of culture. Also, the level of specific protein synthesis was variable since certain proteins were progressively produced during culture, and the biosynthesis of others fluctuated or was reduced during development. The effects of FSH on protein synthesis were mimicked by other cAMP-inducing ligands, including cholera toxin, forskolin, and 8-bromo-cAMP. Removal of FSH at 24 h of culture was followed by reversion of the protein biosynthetic pattern at 48 h to that of control cells, indicating that continued exposure to the gonadotropin is required during development. Cells cultured in the absence of ligands for 24 h synthesized proteins characteristic of differentiated cells when subsequently cultured with forskolin. These results indicate that FSH selectively alters the biosynthesis of cell-associated and secreted proteins during granulosa cell maturation. The characterization of these gene products and

  6. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    NASA Technical Reports Server (NTRS)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  7. Cobalt-induced hormonal and intracellular alterations in rat ovarian fragments in vitro.

    PubMed

    Roychoudhury, Shubhadeep; Sirotkin, Alexander V; Toman, Robert; Kolesarova, Adriana

    2014-01-01

    The objective of this in vitro study was to examine dose-dependent changes in the secretion activity (progesterone, 17β-estradiol and insulin-like growth factor-I) of rat ovarian fragments after experimental cobalt (Co) administration including the apoptotic potential of Co on rat ovarian fragments by evaluating the expression of apoptotic markers Bax and caspase-3. Ovarian fragments were incubated with cobalt sulphate (CoSO4.7H2O) at the doses 90, 170, 330 and 500 μg.mL(-1) for 24 h and compared with control group without Co addition. Release of progesterone (P4) 17β-estradiol and insulin-like growth factor-I (IGF-I) by ovarian fragments was assessed by RIA, expression of Bax and caspase-3 by SDS-PAGE and Western blotting. Observations show that P4 release by ovarian fragments was significantly (P < 0.05) inhibited after cobalt sulphate addition at higher doses 170-500 μg.mL(-1) used in the study in comparison to control. However, cobalt sulphate addition did not cause any significant change in the release of 17β-estradiol by ovarian fragments at all the doses used in the study (90-500 μg.mL(-1)) in comparison to control. On the contrary, IGF-I release by ovarian fragments was significantly (P < 0.05) stimulated after cobalt sulphate addition at the lowest dose 90 μg.mL(-1) in comparison to control, while other doses did not cause any significant change. Also, addition of cobalt sulphate decreased the expression of both the apoptotic peptides Bax and caspase-3 at the higher doses 170, 330 and 500 μg.mL(-1), but not at the lowest dose 90 μg.mL(-1) used in the study. Obtained results suggest Co induced (1) inhibition in secretion of steroid hormone progesterone, (2) dose-dependent increase in the release of growth factor IGF-I, and (3) decrease in the expression of markers of apoptosis (Bax and caspase-3) of rat ovarian fragments.

  8. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    PubMed

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  9. alpha-Melanocyte stimulating hormone and oxytocin induced penile erections, and intracavernous pressure increases in the rat.

    PubMed

    Mizusawa, Hiroya; Hedlund, Petter; Andersson, Karl-Erik

    2002-02-01

    alpha-Melanocyte stimulating hormone (alpha-MSH; Fluka Chemie AG, Geneva, Switzerland) and oxytocin induce erection in rats after intracerebroventricular administration. We studied possible interactions of alpha-melanocyte stimulating hormone with mechanisms pertaining to oxytocin or nitric oxide. We used 78 anesthetized male Sprague-Dawley rats. Catheters were implanted in the lateral cerebral ventricle or into the subarachnoid space at L6 to S1. Intracavernous pressure was documented and arterial blood pressure was directly measured. Intracerebroventricular alpha-MSH (3 microg.) produced a mean of 2.6 +/- 0.6 erectile responses (p <0.05) with a mean duration of 3.4 +/- 1.1 minutes (p <0.05). Mean peak intracavernous pressure was 114 +/- 8 cm. water. An intracerebroventricular dose of 100 microg. N-nitro-L-arginine-methyl ester HCl (Sigma Chemical Co., St. Louis, Missouri) given in intracerebroventricular fashion abolished alpha-MSH induced erectile responses, whereas intracerebroventricular administration of 500 ng. of the oxytocin receptor antagonist l-deamino, 2-D-Tyr(Oet), 4-Thr, 8-Orn-OT (Ferring AB, Malmö, Sweden) had no effect. Intracerebroventricular oxytocin (30 ng.) induced a mean of 3.2 +/- 0.9 erectile responses (p <0.05) with a mean peak intracavernous pressure of 81 +/- 8 cm. water and a mean duration of 3.3 +/- 1.1 minutes. Intrathecal alpha-MSH (3 microg.) did not produce any erectile responses, whereas a mean of 5.7 +/- 0.9 responses (p <0.001) with a mean peak intracavernous pressure of 142 +/- 8 cm. water and mean duration of 5.0 +/- 1.3 minutes was obtained with 30 ng. oxytocin intrathecally. Responses induced by intrathecal oxytocin were abolished by 100 microg. N-nitro-L-arginine-methyl ester HCl intrathecally. We confirmed by monitoring intracavernous pressure and blood pressure that supraspinal erectile responses induced by alpha-melanocyte stimulating hormone involve effects mediated by nitric oxide but are independent of oxytocinergic

  10. The effect of luteinizing hormone releasing hormone analog regime and stage of oocyte maturity for induced ovulation of channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The effective LHRHa (luteinizing hormone releasing hormone analog) dose based on the gonadal maturity of channel catfish, Ictalurus punctatus to optimize channel x blue hybrid catfish production was evaluated in 4 trials (twice in early part of the season and twice in the peak spawning season) in a ...

  11. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles.

    PubMed

    Lin, Jin-xing; Jia, Yu-dong; Zhang, Cai-qiao

    2011-11-01

    The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1-100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

  12. Potential role of cysteine and methionine in the protection against hormonal imbalance and mutagenicity induced by furazolidone in female rats.

    PubMed

    Ahmed, Hanaa H; El-Aziem, Sekena H Abd; Abdel-Wahhab, Mosaad A

    2008-01-14

    The use of nitrofurans as veterinary drugs has been banned in the EU since 1993 due to doubts on the safety of the protein-bound residues of these drugs in edible products. Furazolidone (FUZ) is a nitrofuran drug, which has been used for many years as an antibacterial drug in veterinary practice. The aim of the current study is to investigate the role of L-cysteine and L-methionine in the protection against hormonal imbalance and the genotoxicity induced by FUZ using the micronucleus (MN) assay and random amplified polymorphism DNA (RAPD-PCR) analysis in female rats. Forty female Sprague-Dawley rats were divided into four groups included the untreated control group; a group treated with FUZ (300 mg/kg b.w.); a group treated with a mixture of L-cysteine (300 mg/kg b.w.) and L-methionine (42.8 mg/kg b.w.) and a group treated with FUZ plus the mixture of L-cysteine and L-methionine for 10 days. The results indicated that FUZ induced hormonal disturbances involving thyroid, ovarian and adrenal hormones. Moreover, FUZ increased the micronucleus formation and induced changes in polymorphic band patterns. The combined treatment with FUZ and the mixture of L-cysteine and L-methionine succeeded to prevent or diminish the endocrine disturbance and the clastogenic effects of FUZ. The current study is casting new light on the complex mechanisms underlying the ameliorating action of dietary L-cysteine and L-methionine against FUZ toxicity in experimental animals.

  13. Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence1[W

    PubMed Central

    van der Graaff, Eric; Schwacke, Rainer; Schneider, Anja; Desimone, Marcelo; Flügge, Ulf-Ingo; Kunze, Reinhard

    2006-01-01

    A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network. PMID:16603661

  14. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    NASA Technical Reports Server (NTRS)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  15. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    NASA Technical Reports Server (NTRS)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  16. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    PubMed

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse

  17. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    PubMed Central

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  18. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  20. Hormone-induced repression of a peroxidase isozyme in plant tissue.

    PubMed

    Ockerse, R; Siegel, B Z; Galston, A W

    1966-01-28

    Young stem sections of dwarf peas (Progress No. 9) grown in light contain at least seven peroxidase isozymes separable by electrophoresis on starch gel. An eighth isozyme appears as the tissue elongates and ages, on or off the plant. The appearance of this isozyme in excised sections is repressed by application of the plant growth hormone, indole-3-acetic acid.

  1. Hormonal Correlates of Clozapine-Induced Weight Gain in Psychotic Children: An Exploratory Study

    ERIC Educational Resources Information Center

    Sporn, Alexandra L.; Bobb, Aaron J.; Gogtay, Nitin; Stevens, Hanna; Greenstein, Deanna K.; Clasen, Liv S.; Tossell, Julia W.; Nugent, Thomas; Gochman, Peter A.; Sharp, Wendy S.; Mattai, Anand; Lenane, Marge C.; Yanovski, Jack A.; Rapoport, Judith L.

    2005-01-01

    Objective: Weight gain is a serious side effect of atypical antipsychotics, especially in childhood. In this study, the authors examined six weight gain-related hormones in patients with childhood-onset schizophrenia (COS) after 6 weeks of clozapine treatment. Method: Fasting serum samples for 24 patients with COS and 21 matched healthy controls…

  2. Hormonal Correlates of Clozapine-Induced Weight Gain in Psychotic Children: An Exploratory Study

    ERIC Educational Resources Information Center

    Sporn, Alexandra L.; Bobb, Aaron J.; Gogtay, Nitin; Stevens, Hanna; Greenstein, Deanna K.; Clasen, Liv S.; Tossell, Julia W.; Nugent, Thomas; Gochman, Peter A.; Sharp, Wendy S.; Mattai, Anand; Lenane, Marge C.; Yanovski, Jack A.; Rapoport, Judith L.

    2005-01-01

    Objective: Weight gain is a serious side effect of atypical antipsychotics, especially in childhood. In this study, the authors examined six weight gain-related hormones in patients with childhood-onset schizophrenia (COS) after 6 weeks of clozapine treatment. Method: Fasting serum samples for 24 patients with COS and 21 matched healthy controls…

  3. Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis

    PubMed Central

    Ariyani, Winda; Iwasaki, Toshiharu; Miyazaki, Wataru; Khongorzul, Erdene; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito; Koibuchi, Noriyuki

    2016-01-01

    Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8 to 10−6M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 to 10−4M), with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10−9M T4 was augmented by low-dose Gd-DTPA-BMA (10−7M) but was suppressed by higher dose (10−5M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10−9M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10−5M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker

  4. Cyclic AMP Modulation of Estrogen-Induced Effects: A Novel Mechanism for Hormonal Resistance in Breast Cancer

    DTIC Science & Technology

    1997-10-01

    Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated proteins: possible mediators of hormone-induced tran...cells. Nucleic Ac- ids Res 19:6595-6602 42. Halachmi S, Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated...the estrogen re- ceptor. EMBO J 14:3741-3751 26. Halachmi S, Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated

  5. Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression.

    PubMed

    Minoia, Mariella; Gentilin, Erica; Molè, Daniela; Rossi, Martina; Filieri, Carlo; Tagliati, Federico; Baroni, Alessandra; Ambrosio, Maria Rosaria; degli Uberti, Ettore; Zatelli, Maria Chiara

    2012-06-01

    GH and IGF-I play a role in breast cancer (BC) development. We previously demonstrated that GH protects the estrogen receptor (ER) positive BC-derived MCF7 cell line toward the cytotoxic effects of doxorubicin (D), independently of IGF-I. This issue may be important in ER negative BC cells that are more aggressive and more likely to develop chemoresistance. The aim of this study was to evaluate whether GH may impact chemoresistance phenotype of ER-negative BC-derived MDA-MB-231 cell line and investigate the possible mechanisms implicated in the protective action of GH toward the cytotoxic effects of D in both ER-positive and ER-negative BC-derived cell lines. GH protects ER-negative MDA-MB-231 cells from the cytotoxic effects of D and GH receptor antagonist pegvisomant reduces GH-induced DNA synthesis also in these cells. In both MDA-MB-231 and MCF7 cells, GH does not revert D-induced G2/M accumulation but significantly reduces basal and D-induced apoptosis, an effect blocked by pegvisomant. Glutathione S-transferase activity is not implicated in the protective effects of GH, whereas D-induced apoptosis depends on c-Jun N terminal kinase (JNK) activation. GH reduces both basal and D-stimulated JNK transcriptional activity and phosphorylation. In human BC cell lines, GH directly promotes resistance to apoptosis induced by chemotherapeutic drugs independently of ER expression by modulating JNK, further broadening the concept that GH excess may hamper cytotoxic BC treatment. These findings support the hypothesis that blocking GH receptor may be viewed as a potential new therapeutic approach to overcome chemoresistance, especially in ER-negative BC.

  6. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    SciTech Connect

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  7. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.).

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Patrick, Eamonn T; Knight, Anna C

    2014-07-01

    Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a

  8. Parathyroid hormone 7-84 induces hypocalcemia and inhibits the parathyroid hormone 1-84 secretory response to hypocalcemia in rats with intact parathyroid glands.

    PubMed

    Huan, Jinxing; Olgaard, Klaus; Nielsen, Lars Bo; Lewin, Ewa

    2006-07-01

    Biologic effects of large C-terminal parathyroid hormone (PTH) fragments, opposite to those of N-terminal PTH, have been demonstrated. C-terminal PTH fragments are co-secreted with N-terminal PTH from the parathyroids. The aim of our study was to examine whether C-terminal PTH 7-84 regulates secretion of PTH 1-84 and affects the expression of genes of relevance for parathyroid function, PTH, calcium-sensing receptor (CaR), PTH type 1 receptor (PTHR1), and PTH-related peptide (PTHrP) genes in rat parathyroid glands. PTH 7-84 induced a significant decrease in plasma Ca2+ in rats with intact parathyroid glands. Despite the reduction of plasma Ca2+, no stimulation of PTH 1-84 secretion took place. Furthermore, the PTH 1-84 secretory response to EGTA-induced acute and severe hypocalcemia was significantly inhibited by PTH 7-84. During recovery from hypocalcemia, plasma Ca2+ levels were significantly lower in the PTH 7-84-treated group, as compared with the vehicle group, and at the same time plasma PTH 1-84 levels were significantly suppressed. The expression of PTH, CaR, PTHR1, and PTHrP genes in the rat parathyroid glands was not affected by PTH 7-84. The peripheral metabolism of PTH 1-84 was not affected by PTH 7-84. PTH 7-84 did not cross-react with the rat bioactive PTH 1-84 assay. In normal rats with intact parathyroid glands, PTH 7-84 inhibited the PTH 1-84 secretory response to hypocalcemia and induced a significant decrease in plasma Ca2+. These effects of PTH 7-84 on PTH 1-84 secretion and on plasma Ca2+ levels were not associated with significant changes in PTH, PTHR1, CaR, and PTHrP gene expressions in the rat parathyroid glands. It is hypothesized that PTH 7-84 regulates PTH secretion via an autocrine/paracrine regulatory mechanism.

  9. Optimization of the T3-induced Xenopus metamorphosis assay for detecting thyroid hormone signaling disruption of chemicals.

    PubMed

    Yao, Xiaofang; Chen, Xiaoying; Zhang, Yinfeng; Li, Yuanyuan; Wang, Yao; Zheng, Zongming; Qin, Zhanfen; Zhang, Qingdong

    2017-02-01

    T3-induced Xenopus metamorphosis is an ideal model for detecting thyroid hormone (TH) signaling disruption of chemicals. To optimize the T3-induced Xenopus assay and improve its sensitivity and reproducibility, we intend to develop quantitatively morphological endpoints and choose appropriate concentrations and exposure durations for T3 induction. Xenopus laevis at stage 52 were exposed to series of concentrations of T3 (0.31-2.5nmol/L) for 6days. By comparing morphological changes induced by T3, we propose head area, mouth width, unilateral brain width/brain length, and hindlimb length/snout-vent length as quantitative parameters for characterizing T3-induced morphological changes, with body weight as a parameter for indicating integrated changes. By analyzing time-response curves, we found that following 4-day exposure, T3-induced grossly morphological changes displayed linear concentration-response curves, with moderate morphological changes resulting from 1.25nmol/L T3 exposure. When using grossly morphological endpoints to detect TH signaling disruption, we propose 4days as exposure duration of T3, with concentrations close to 1.25nmol/L as induction concentrations. However, it is appropriate to examine morphological and molecular changes of the intestine on day 2 due to their early response to T3. The quantitative endpoints and T3 induction concentrations and durations we determined would improve the sensitivity and the reproducibility of the T3-induced Xenopus metamorphosis assay.

  10. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    SciTech Connect

    Hannon, Patrick R. Brannick, Katherine E. Wang, Wei Gupta, Rupesh K. Flaws, Jodi A.

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  11. Coconut water alters maternal high fat diet induced changes in hormones and pup morphometry of Wistar rats.

    PubMed

    Kunle-Alabi, O T; Akindele, O O; Raji, Y

    2015-06-01

    Maternal high fat diet (HFD) during gestation adversely programmes foetal metabolism and cardiovascular function for the development of obesity and its related cardiovascular diseases in adult life. The hypolipidemic actions of coconut water (CW) in the presence of HFD have been reported. This study examined the effects of oral administration of CW on lipid panel, hormone profile, pup and placental morphometry of dams fed HFD during gestation. Twenty-four pregnant Wistar rats were assigned to four groups (n = 6) and treated daily from gestation day (GD) 1 to 21 as follows; Group 1: 1 ml/100g b.wt. distilled water; Group 2: 1ml/100g b.wt. CW; Group 3: HFD (70% standard rat feed plus 30% butter); Group 4: HFD + 1 ml/100g b.wt. CW. Animals were sacrificed on GD 21. Random blood glucose was measured using tail blood. Caesarean section was performed to remove the pups and their placentas which were immediately measured. Oxidative stress status of the placentas; serum lipid and hormone profiles of dams were assessed. HFD+CW resulted in significant (P < 0.05) reductions in pup weight and morphometric indices when compared with pups from HFD. These changes were accompanied by significant improvements in maternal serum lipid profile, alterations in hormone levels and higher placental lipid peroxidation. These results suggest that coconut water is protective against maternal high fat diet-induced changes. Further studies are on-going to determine the actions of coconut water of maternal high fat diet induced foetal programming of adult health.

  12. Are thyroid hormones mediators of incubation temperature-induced phenotypes in birds?

    PubMed Central

    DuRant, S. E.; Carter, A. W.; Denver, R. J.; Hepp, G. R.; Hopkins, W. A.

    2014-01-01

    Incubation temperature influences a suite of traits in avian offspring. However, the mechanisms underlying expression of these phenotypes are unknown. Given the importance of thyroid hormones in orchestrating developmental processes, we hypothesized that they may act as an upstream mechanism mediating the effects of temperature on hatchling phenotypic traits such as growth and thermoregulation. We found that plasma T3, but not T4 concentrations, differed among newly hatched wood ducks (Aix sponsa) from different embryonic incubation temperatures. T4 at hatching correlated with time spent hatching, and T3 correlated with hatchling body condition, tarsus length, time spent hatching and incubation period. In addition, the T3 : T4 ratio differed among incubation temperatures at hatch. Our findings are consistent with the hypothesis that incubation temperature modulates plasma thyroid hormones which in turn influences multiple aspects of duckling phenotype. PMID:24402717

  13. Are thyroid hormones mediators of incubation temperature-induced phenotypes in birds?

    PubMed

    DuRant, S E; Carter, A W; Denver, R J; Hepp, G R; Hopkins, W A

    2014-01-01

    Incubation temperature influences a suite of traits in avian offspring. However, the mechanisms underlying expression of these phenotypes are unknown. Given the importance of thyroid hormones in orchestrating developmental processes, we hypothesized that they may act as an upstream mechanism mediating the effects of temperature on hatchling phenotypic traits such as growth and thermoregulation. We found that plasma T₃, but not T₄ concentrations, differed among newly hatched wood ducks (Aix sponsa) from different embryonic incubation temperatures. T₄ at hatching correlated with time spent hatching, and T₃ correlated with hatchling body condition, tarsus length, time spent hatching and incubation period. In addition, the T₃ : T₄ ratio differed among incubation temperatures at hatch. Our findings are consistent with the hypothesis that incubation temperature modulates plasma thyroid hormones which in turn influences multiple aspects of duckling phenotype.

  14. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway.

    PubMed

    Lee, Ju-Hee; Moon, Myung-Hee; Jeong, Jae-Kyo; Park, Yang-Gyu; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2012-10-05

    Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    PubMed

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms.

  16. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    SciTech Connect

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  17. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes

    PubMed Central

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-01

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP. PMID:28065941

  18. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes.

    PubMed

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-09

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP.

  19. Artemisinin induces hormonal imbalance and oxidative damage in the erythrocytes and uterus but not in the ovary of rats.

    PubMed

    Farombi, E O; Abolaji, A O; Adedara, I A; Maduako, I; Omodanisi, I

    2015-01-01

    Artemisinin is an antimalarial drug previously reported to induce neurotoxicity and embryotoxicity in animal models. This study investigated the erythrocytes and reproductive toxicity potentials of artemisinin in female rats. Animals were randomly divided into four study groups of eight rats each. The control group (group I) received corn oil, the vehicle, while groups II-IV were orally exposed to 7, 35 and 70 mg kg(-1) day(-1) of artemisinin, respectively, by gastric intubation for 7 consecutive days. Subsequently, we evaluated the impact of artemisinin on the endocrine environment and selected markers of oxidative damage and antioxidant status of the erythrocytes, ovary and uterus. Artemisinin significantly increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels and decreased catalase, glutathione peroxidase and superoxide dismutase activities in erythrocytes and uterus of rats compared with control group (p < 0.05). However, artemisinin did not alter ovarian MDA, H2O2, glutathione levels and catalase activity, while ovarian and uterine histological assessment revealed absence of visible lesions. Moreover, artemisinin significantly decreased follicle-stimulating hormone and increased progesterone levels compared with control (p < 0.05). Thus, these data suggest that in the absence of malarial parasite infection, artemisinin induced hormonal imbalance and oxidative damage in the erythrocytes and uterus but spared the ovary of rats.

  20. Effects of ovarian hormone treatment on Ca(2+)-induced contractions and Ca(2+)-antagonism in the depolarized rat myometrium.

    PubMed

    Zeitune, M G; Bazerque, P M

    1996-01-01

    The effects of estrogen (E), progesterone (P) and estrogen plus progesterone (E+P) treatment on Ca-induced contraction in the KCL-depolarized uterine muscle, and the influences on the Ca2+ antagonism induced by reserpine and verapamil "in vitro" were studied. Uterine muscles from rats in estrus were taken as controls. Uteri from spayed untreated rats showed the same sensitivity to Ca2+ as those from estrus rats, but castration decreased maximal contractile tension to Ca2+ and Ca2+ threshold. P treatment failed to modified the effects of castration on the responses to Ca2+. E or E+P treatments decreased the sensitivity to Ca2+ but only E+P increased slope values and maximal contractile tension. E and E+P increased the potency of verapamil Ca2+ antagonism but none of the treatments modified reserpine direct inhibitory effects. The results obtained suggest that alterations on uterine contractility by hormone treatment are the result of complex interactions between both genomic effects on the contractile process as well as non-genomic direct actions of the hormones on Ca2+ membrane permeability.

  1. Food availability affects orexin a/ hypocretin-1-induced inhibition of pulsatile luteinizing hormone secretion in female rats.

    PubMed

    Furuta, Miyako; Mitsushima, Dai; Shinohara, Kazuyuki; Kimura, Fukuko; Funabashi, Toshiya

    2010-01-01

    Orexin A/hypocretin-1 inhibits pulsatile luteinizing hormone (LH) secretion in female rats. In this study, we investigated whether this inhibition was tied to the fasting state, as suggested by our previous study. We first examined whether orexin A inhibited pulsatile LH secretion when food was available ad libitumduring blood sampling. Next, we investigated the effect of intravenous administration of glucose (400 mg/kg) or lactic acid (negative control; 400 mg/kg) on orexin A-induced inhibition of pulsatile LH secretion. We found that orexin A did not affect pulsatile LH secretion in the presence of food, although it increased feeding behavior. Injection of orexin A significantly inhibited pulsatile LH secretion when food was withheld during blood sampling (p < 0.05); this inhibitory effect was rapidly reversed by intravenous injection of glucose but not lactic acid. Because orexin A did not seem to affect pulsatile LH secretion when food was available ad libitum, we speculate that orexin A has an effect on LH secretion when orexin A-induced hunger is accompanied by stress, such as the absence of food. Furthermore, glucose as well as food may act as a satiety factor in gonadotropin-releasing hormone pulse generation. Copyright 2009 S. Karger AG, Basel.

  2. Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells.

    PubMed

    Basak, Onur; Beumer, Joep; Wiebrands, Kay; Seno, Hiroshi; van Oudenaarden, Alexander; Clevers, Hans

    2017-02-02

    Lgr5+ adult intestinal stem cells are highly proliferative throughout life. Single Lgr5+ stem cells can be cultured into three-dimensional organoids containing all intestinal epithelial cell types at near-normal ratios. Conditions to generate the main cell types (enterocyte, goblet cells, Paneth cells, and M cells) are well established, but signals to induce the spectrum of hormone-producing enteroendocrine cells (EECs) have remained elusive. Here, we induce Lgr5+ stem cell quiescence in vitro by blocking epidermal growth factor receptor (EGFR) or mitogen-associated protein kinase (MAPK) signaling pathways in organoids and show that their quiescent state is readily reverted. Quiescent Lgr5+ stem cells acquire a distinct molecular signature biased toward EEC differentiation. Indeed, combined inhibition of Wnt, Notch, and MAPK pathways efficiently generates a diversity of EEC hormone-expressing subtypes in vitro. Our observations uncouple Wnt-dependent stem cell maintenance from EGF-dependent proliferation and provide an approach for the study of the elusive EECs in a defined environment.

  3. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats.

    PubMed

    Yang, Zhi-Hong; Takeo, Jiro; Katayama, Masashi

    2013-06-01

    We have analyzed the effect of palmitoleic acid on short-term food intake in male rats. Administration of omega-7 palmitoleic acid by oral gavage significantly decreased food intake compared to palmitic acid, omega-9 oleic acid, or a vehicle control. Palmitoleic acid exhibited a dose-dependent effect in this context and did not cause general malaise. A triglyceride form of palmitoleate also decreased food intake, whereas olive oil, which is rich in oleic acid, did not. Palmitoleic acid accumulated within the small intestine in a dose-dependent fashion and elevated levels of the satiety hormone cholecystokinin (CCK). Both protein and mRNA levels of CCK were affected in this context. The suppression of food intake by palmitoleic acid was attenuated by intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. Palmitoleic acid did not alter the expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, and a PPARα antagonist did not affect palmitoleic acid-induced satiety. This suggests that the PPARα pathway might not be involved in suppressing food intake in response to palmitoleic acid. We have shown that orally administered palmitoleic acid induced satiety, enhanced the release of satiety hormones in rats.

  4. Prophylactic effect of Nigella sativa against lead acetate induced changes in spermiogram, reproductive hormones and gonadal histology of rats

    PubMed Central

    Assi, Mohammed Abdulrazzaq; Hezmee, Mohammed Noor Mohd; Abba, Yusuf; Yusof, Md Sabri Md; Haron, Abd Wahid; Rajion, Mohamed Ali; Al-Zuhairy, Mashaan Abbas

    2016-01-01

    Aim: This study was designed to evaluate the prophylactic effect of Nigella sativa (NS) treatment on toxic effects induced by lead acetate (LA) on the reproductive hormones, spermiogram and gonadal histology of rats. Materials and Methods: A total of 20 Sprague-Dawley rats were divided into four groups of five rats each. Group 1 (negative control [NC]) was the NC and was given distilled water, Group 2 served as the positive control (PC) and was administered 10 mg/kg/day of LA per overall survival (OS), Group 3 (T1) was administered 200 mg/kg/daily of NS per OS for a month, and Group 4 (T2) was pretreated with 200 mg/kg/daily of NS per OS for 1 month, followed by 10 mg/kg/daily of LA alone per OS for another. The rats were euthanized at the end of the experimental period for collection of blood and the right caudal epididymis and testis. Serum was used for determination of reproductive hormones by using radioimmunoassay kits. The epididymal segment was cut and homogenized in phosphate-buffered saline, and the homogenate was used for determination of the spermiogram parameters such as sperm concentration, sperm viability, percentage of live sperm, motility and abnormality. Both the epididymis and testis were fixed in 10% buffered formalin for histological processing. Results: The sperm concentration, general, and individual motilities were higher (p<0.05) in the NC and T1 animals, while the T2 had intermediate and the PC had lower (p<0.05) values of each parameter. The percentage sperm viability was higher (p<0.05) in the T1 and lower (p<0.05) in the PC group. However, percentage abnormality was lower in T1, comparable in NC and T2, and higher (p<0.05) in PC. Spermatogenic cell population and epididymal sperm reserve (ESR) were optimal in control and pretreated animals, while the PC had lower spermatids and ESR. The concentration of estradiol (EST) was lower (p<0.05) in the PC and T2, while leuteinizing hormone (LH) concentration was lower (p<0.05) in the PC, and

  5. Changes in plasma adrenocorticotropic hormone and cortisol levels induced by intracerebroventricular injection of histamine and its related compounds in dogs.

    PubMed

    Tsujimoto, S; Kamei, C; Yoshida, T; Tasaka, K

    1993-08-01

    Changes in plasma adrenocorticotropic hormone (ACTH) and cortisol levels induced by intracerebroventricular injection of histamine (H(i)) were studied in dogs. Intracerebroventricular administration of Hi at doses of 5 and 10 micrograms/kg caused a significant increase in plasma ACTH, while more rapid and more marked increase in plasma cortisol was noticed after Hi injection at doses of 2-10 micrograms/kg. Similar results were obtained when 2-methylhistamine was injected; remarkable increases in both plasma ACTH and cortisol levels were observed at doses of 25 and 50 micrograms/kg. However, no such effect was elicited by 4-methylhistamine even at a dose of 50 micrograms/kg. The rate of plasma cortisol increase induced by either Hi or 2-methylhistamine was significantly faster than that of plasma ACTH. Simultaneous application of pyrilamine (intracerebroventricularly) with H(i) resulted in the significant inhibition of H(i)-induced hormone secretions, but in similar administration neither ACTH nor cortisol were affected by cimetidine. In hypophysectomized dogs, a significant increase in plasma cortisol level was also observed after H(i) injection at a dose of 5 micrograms/kg. Intravenous infusion of hexamethonium continued before and after H(i) injection failed to inhibit the increase in plasma ACTH and cortisol levels induced by H(i). From these findings, it can be concluded that intracerebroventricular injection of H(i) caused an increase in plasma ACTH and cortisol levels via H1-receptor, and it is suggested that to some extent, the cortisol release elicited by H(i) is certainly produced without participation of ACTH.

  6. Thyroid Hormone-Induced Hypertrophy in Mesenchymal Stem Cell Chondrogenesis Is Mediated by Bone Morphogenetic Protein-4

    PubMed Central

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair. PMID:23937304

  7. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway*

    PubMed Central

    Yang, Yanmei; Blair, Harry C.; Shapiro, Irving M.; Wang, Bin

    2015-01-01

    Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients. PMID:25979341

  8. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors

    PubMed Central

    Kim, Tae-Kyung

    2016-01-01

    Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors. PMID:27574483

  9. A Triterpenoid Inhibited Hormone-Induced Adipocyte Differentiation and Alleviated Dexamethasone-Induced Insulin Resistance in 3T3-L1 adipocytes.

    PubMed

    Qin, Ji-Huan; Ma, Jun-Zeng; Yang, Xing-Wei; Hu, Ying-Jie; Zhou, Juan; Fu, Lin-Chun; Tian, Ru-Hua; Liu, Shan; Xu, Gang; Shen, Xiao-Ling

    2015-06-01

    6α-Hydroxylup-20(29)-en-3-on-28-oic acid (1), a natural triterpenoid, was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes, and restoring glucose consuming ability in dexamethasone (DXM)-induced insulin resistant 3T3-L1 adipocytes. Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion. Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis, and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85, Akt2 and AS160, thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.

  10. Endothelin regulates intermittent hypoxia-induced lipolytic remodelling of adipose tissue and phosphorylation of hormone-sensitive lipase.

    PubMed

    Briançon-Marjollet, Anne; Monneret, Denis; Henri, Marion; Hazane-Puch, Florence; Pepin, Jean-Louis; Faure, Patrice; Godin-Ribuot, Diane

    2016-03-15

    Obstructive sleep apnoea syndrome is characterized by repetitive episodes of upper airway collapse during sleep resulting in chronic intermittent hypoxia (IH). Obstructive sleep apnoea syndrome, through IH, promotes cardiovascular and metabolic disorders. Endothelin-1 (ET-1) secretion is upregulated by IH, and is able to modulate adipocyte metabolism. Therefore, the present study aimed to characterize the role of ET-1 in the metabolic consequences of IH on adipose tissue in vivo and in vitro. Wistar rats were submitted to 14 days of IH-cycles (30 s of 21% FiO2 and 30 s of 5% FiO2 ; 8 h day(-1) ) or normoxia (air-air cycles) and were treated or not with bosentan, a dual type A and B endothelin receptor (ETA-R and ETB-R) antagonist. Bosentan treatment decreased plasma free fatty acid and triglyceride levels, and inhibited IH-induced lipolysis in adipose tissue. Moreover, IH induced a 2-fold increase in ET-1 transcription and ETA-R expression in adipose tissue that was reversed by bosentan. In 3T3-L1 adipocytes, ET-1 upregulated its own and its ETA-R transcription and this effect was abolished by bosentan. Moreover, ET-1 induced glycerol release and inhibited insulin-induced glucose uptake. Bosentan and BQ123 inhibited these effects. Bosentan also reversed the ET-1-induced phosphorylation of hormone-sensitive lipase (HSL) on Ser(660) . Finally, ET-1-induced lipolysis and HSL phosphorylation were also observed under hypoxia. Altogether, these data suggest that ET-1 is involved in IH-induced lipolysis in Wistar rats, and that upregulation of ET-1 production and ETA-R expression by ET-1 itself under IH could amplify its effects. Moreover, ET-1-induced lipolysis could be mediated through ETA-R and activation of HSL by Ser(660) phosphorylation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching.

    PubMed Central

    Lehmann, J M; Zhang, X K; Graupner, G; Lee, M O; Hermann, T; Hoffmann, B; Pfahl, M

    1993-01-01

    Thyroid hormone receptors (TRs) form heterodimers with retinoid X receptors (RXRs). Heterodimerization is required for efficient TR DNA binding to most response elements and transcriptional activation by thyroid hormone. RXRs also function as auxiliary proteins for several other receptors. In addition, RXR alpha can be induced by specific ligands to form homodimers. Here we report that RXR-specific retinoids that induce RXR homodimers are effective repressors of the T3 response. We provide evidence that this repression by RXR-specific ligands occurs by sequestering of RXR from TR-RXR heterodimers into RXR homodimers. This ligand-induced squelching may represent an important mechanism by which RXR-specific retinoids and 9-cis retinoic acid mediate hormonal cross talk among a subfamily of nuclear receptors activated by structurally unrelated ligands. Images PMID:8246986

  12. Organophosphorus insecticide induced decrease in plasma luteinizing hormone concentration in white-footed mice

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1985-01-01

    Oral intubation of 50 and 100 mg/kg acephate inhibited brain acetylcholinesterase (AChE) activity by 45% and 56%, and reduced basal luteinizing hormone (LH) concentration by 29% and 25% after 4 h in white-footed mice (Peromyscus leucopus noveboracensis). Dietary exposure to 25, 100, and 400 ppm acephate for 5 days substantially inhibited brain AChE activity, but did not affect plasma LH concentration. These preliminary findings suggest that acute exposure to organophosphorus insecticides may affect LH secretion and possibly reproductive function.

  13. Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis.

    PubMed

    Kovács, P; Sundermann, C A; Csaba, G

    1996-08-15

    Receptor-mediated endocytosis by Tetrahvmena pyriformis was studied using tetramethylrhodamine isothiocyanate-labeled concanavalin A (TRITC-Con A) with fluorescence and confocal microscopy. In the presence of insulin, or 24 h after insulin pretreatment (hormonal imprinting), the binding and uptake of TRITC-Con A increased when compared to controls, owing to the binding of TRITC-Con A to sugar oligomers of insulin receptors. Mannose inhibited the binding of Con A, thus demonstrating the specificity of binding. Histamine, a phagocytosis-promoting factor in mammals and Tetrahymena, and galactose, did not influence the uptake of TRITC-Con A.

  14. Protective Role of Endogenous Ovarian Hormones Against Learning and Memory Impairments and Brain Tissues Oxidative Damage Induced by Lipopolysaccharide

    PubMed Central

    Pourganji, Masoume; Hosseini, Mahmoud; Soukhtanloo, Mohammad; Zabihi, Hoda; Hadjzadeh, Mosa Al-reza

    2014-01-01

    Background: The contribution of neuroinflammation in Alzheimer’s disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. Objectives: In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. Materials and Methods: The rats were divided into four groups: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. Results: The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). Conclusions: Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation. PMID:24829769

  15. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice.

    PubMed

    Datta, Nabanita S; Samra, Tareq A; Abou-Samra, Abdul B

    2012-05-01

    Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3-6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH.

  16. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice

    PubMed Central

    Samra, Tareq A.; Abou-Samra, Abdul B.

    2012-01-01

    Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3–6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH. PMID:22338074

  17. Peripheral growth hormone induces cell proliferation in the intact adult rat brain.

    PubMed

    David Aberg, N; Lind, Johan; Isgaard, Jörgen; Georg Kuhn, H

    2010-06-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) increase cell genesis in several regions of the brains of GH-IGF-I-deficient hypophysectomized rats. However, it is not known to what degree GH treatment stimulates adult cell genesis in pituitary-intact rodents. We investigated the effect of peripheral administration of bovine growth hormone (bGH) on cellular proliferation in various regions of the brains of normal adult female rats. To monitor cell division, bromodeoxyuridine (BrdU) was administered daily for 5 days. We studied the two areas of ongoing neurogenesis, the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, as well as the corpus callosum, striatum, and the parietal and piriform cortices. After bGH treatment, the numbers of BrdU-positive cells increased 2.0- to 2.5-fold in all the brain regions, with the exception of the SVZ, in which there was no increase in the numbers of BrdU-positive cells. The present study shows for the first time that peripheral bGH administration increases the generation of new brain cells in normal adult female rats. Thus, bGH may stimulate cellular proliferation not only under GH-deficiency, but also under physiologic conditions. These findings have important implications for GH treatment strategies for patients who have normal or near-normal circulating levels of GH or IGF-I. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Menstrual Cycle Hormones Induce Changes in Functional Interactions Between Lymphocytes and Decidual Vascular Endothelial Cells

    PubMed Central

    VAN DEN HEUVEL, MARIANNE J.; HORROCKS, JULIE; BASHAR, SIAMAK; TAYLOR, SUZANNE; BURKE, SUZANNE; HATTA, KOTA; LEWIS, JENNIFER E.; CROY, B. ANNE

    2010-01-01

    During the secretory phase of the menstrual cycle, a Natural Killer (NK) cell subset expressing CD56bright, appears in the decidualizing uterus, and remains until onset of menses. If pregnancy occurs, decidual (d)NK cells increase to become the predominant uterine lymphocytes of early pregnancy. To elucidate mechanisms of CD56bright cell recruitment to the uterus, an in vitro adhesion assay was used to assess the effect of the menstrual cycle, as well as cycle-associated hormones on adhesive properties of human lymphocytes. Adhesion of human peripheral blood lymphocytes to pregnant mouse lymph nodes and Peyer’s Patches tissue sections was constant throughout the cycle. When uterine tissue was used as the substrate, adhesive CD56+ cells were found only in decidua basalis. Adhesion increased at the luteinizing hormone surge. Adhesion was mediated through both L-selectin and α4 integrin-dependent mechanisms. Furthermore, we observed increased adhesive function in CD56+ cells from male donors which had been cultured with estradiol or LH as compared to cell aliquots cultured without additives. Lymphocytes adherent to mouse uterine tissue were predominantly CD56bright, suggesting that peripheral NK cells may be actively recruited to the uterus in an important, brief endocrine-regulated fashion at the time of ovulation to establish the dNK population of early pregnancy. PMID:15687334

  19. Expansion of specialized epidermis induced by hormonal state and mechanical strain.

    PubMed

    Wu, Hsin-Jung; Easwaran, Teresa; Offutt, Carlos D; Elgar, Richard Levi; Spandau, Dan F; Koyama, Sachiko; Foley, John

    2015-05-01

    In mammals, some sites of specialized skin such as the palms, soles, and lips grow proportionally with the animal. However, other types of specialized skin such as the nipple and anal/genital region are dramatically altered with changes of reproductive status. The specific cell types that mediate the growth of these sites have not been identified. In the mouse, we observed a dramatic expansion of the specialized epidermis of the nipple, coupled to changes in connective tissue and hair shaft density, which we designate as areola formation. During this process thymidine analog uptake was elevated in the epidermis and hair follicles. Although there were no changes in connective tissue cell proliferation, we did observe an altered expression of extracellular matrix genes. In addition, the fibroblasts of the virgin nipple areola and region showed increased transcript and protein levels for estrogen, progesterone, relaxin, and oxytocin relative to those of ventral skin. To determine the role of pregnancy, lactation hormonal milieu, and localized mechanical strain on areola formation, we created models that separated these stimuli and evaluated changes in gross structure, proliferation and protein expression. While modest increases of epidermal proliferation and remodeling of connective tissue occurred as a result of individual stimuli, areola formation required exposure to pregnancy hormones, as well as mechanical strain.

  20. Role of estradiol in cortisol-induced reduction of luteinizing hormone pulse frequency.

    PubMed

    Oakley, Amy E; Breen, Kellie M; Tilbrook, Alan J; Wagenmaker, Elizabeth R; Karsch, Fred J

    2009-06-01

    Precise control of pulsatile GnRH and LH release is imperative to ovarian cyclicity but is vulnerable to environmental perturbations, like stress. In sheep, a sustained (29 h) increase in plasma cortisol to a level observed during stress profoundly reduces GnRH pulse frequency in ovariectomized ewes treated with ovarian steroids, whereas shorter infusion (6 h) is ineffective in the absence of ovarian hormones. This study first determined whether the ovarian steroid milieu or duration of exposure is the relevant factor in determining whether cortisol reduces LH pulse frequency. Prolonged (29 h) cortisol infusion did not lower LH pulse frequency in ovariectomized ewes deprived of ovarian hormones, but it did so in ovariectomized ewes treated with estradiol and progesterone to create an artificial estrous cycle, implicating ovarian steroids as the critical factor. Importantly, this effect of cortisol was more pronounced after the simulated preovulatory estradiol rise of the artificial follicular phase. The second experiment examined which component of the ovarian steroid milieu enables cortisol to reduce LH pulse frequency in the artificial follicular phase: prior exposure to progesterone in the luteal phase, low early follicular phase estradiol levels, or the preovulatory estradiol rise. Basal estradiol enabled cortisol to decrease LH pulse frequency, but the response was potentiated by the estradiol rise. These findings lead to the conclusion that ovarian steroids, particularly estradiol, enable cortisol to inhibit LH pulse frequency. Moreover, the results provide new insight into the means by which gonadal steroids, and possibly reproductive status, modulate neuroendocrine responses to stress.

  1. Expansion of specialized epidermis induced by hormonal state and mechanical strain

    PubMed Central

    Wu, Hsin-Jung; Easwaran, Teresa; Offutt, Carlos D.; Elgar, Richard Levi; Spandau, Dan F.; Koyama, Sachiko; Foley, John

    2015-01-01

    In mammals, some sites of specialized skin such as the palms, soles, and lips grow proportionally with the animal. However, other types of specialized skin such as the nipple and anal/genital region are dramatically altered with changes of reproductive status. The specific cell types that mediate the growth of these sites have not been identified. In the mouse, we observed a dramatic expansion of the specialized epidermis of the nipple, coupled to changes in connective tissue and hair shaft density, which we designate as areola formation. During this process thymidine analog uptake was elevated in the epidermis and hair follicles. Although there were no changes in connective tissue cell proliferation, we did observe an altered expression of extracellular matrix genes. In addition, the fibroblasts of the virgin nipple areola and region showed increased transcript and protein levels for estrogen, progesterone, relaxin, and oxytocin relative to those of ventral skin. To determine the role of pregnancy, lactation hormonal milieu, and localized mechanical strain on areola formation, we created models that separated these stimuli and evaluated changes in gross structure, proliferation and protein expression. While modest increases of epidermal proliferation and remodeling of connective tissue occurred as a result of individual stimuli, areola formation required exposure to pregnancy hormones, as well as mechanical strain. PMID:25680535

  2. Dielectric screening of early differentiation patterns in mesenchymal stem cells induced by steroid hormones.

    PubMed

    Ron, Amit; Shur, Irena; Daniel, Ramiz; Singh, Ragini Raj; Fishelson, Nick; Croitoru, Nathan; Benayahu, Dafna; Shacham-Diamand, Yosi

    2010-06-01

    In the framework of this study, target identification and localization of differentiation patterns by means of dielectric spectroscopy is presented. Here, a primary pre-osteoblastic bone marrow-derived MBA-15 cellular system was used to study the variations in the dielectric properties of mesenchymal stem cells while exposed to differentiation regulators. Using the fundamentals of mixed dielectric theories combined with finite numerical tools, the permittivity spectra of MBA-15 cell suspensions have been uniquely analyzed after being activated by steroid hormones to express osteogenic phenotypes. Following the spectral analysis, significant variations were revealed in the dielectric properties of the activated cells in comparison to the untreated populations. Based on the differentiation patterns of MBA-15, the electrical modifications were found to be highly correlated with the activation of specific cellular mechanisms which directly react to the hormonal inductions. In addition, by describing the dielectric dispersion in terms of transfer functions, it is shown that the spectral perturbations are well adapted to variations in the electrical characteristics of the cells. The reported findings vastly emphasize the tight correlation between the cellular and electrical state of the differentiated cells. It therefore emphasizes the vast abilities of impedance-based techniques as potential screening tools for stem cell analysis.

  3. Protective effect of central thyrotropin-releasing hormone analog on cerulein-induced acute pancreatitis in rats.

    PubMed

    Yoneda, Masashi; Goto, Manabu; Nakamura, Kimihide; Shimada, Tadahito; Hiraishi, Hideyuki; Terano, Akira; Haneda, Masakazu

    2005-02-15

    Central neuropeptides play a role in many physiological functions through the autonomic nervous system. We have recently demonstrated that central injection of a thyrotropin-releasing hormone (TRH) analog increases pancreatic blood flow through vagal and nitric oxide-dependent pathways. In this study, the central effect of a TRH analog on experimental acute pancreatitis was investigated in rats. Acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 microg/kg) at 1-h interval. Either stable TRH analog, RX 77368 (5-100 ng), or saline was injected intracisternally 15 min before the first cerulein injection under ether anesthesia. Serum amylase level was measured before and 5 h after the first cerulein injection. Pancreatic wet/dry weight ratio and histological changes were also evaluated. Intracisternal TRH analog inhibited cerulean-induced elevation of serum amylase level, increase in pancreatic wet/dry weight ratio and pancreatic histological changes, such as interstitial edema, inflammation and vacuolization. The pancreatic cytoprotection induced by central TRH analog was abolished by subdiaphragmatic vagotomy and N(G)-nitro-L-arginine-methyl ester (L-NAME), but not by 6-hydroxydopamine (6-OHDA). Intravenous administration of the TRH analog did not influence cerulein-induced acute pancreatitis. These results indicate that the TRH analog acts in the central nervous system to protect against acute pancreatitis through vagal and nitric oxide-dependent pathways.

  4. Testicular Steroidogenesis and Locomotor Activity Are Regulated by Gonadotropin-Inhibitory Hormone in Male European Sea Bass

    PubMed Central

    Paullada-Salmerón, José A.; Cowan, Mairi; Aliaga-Guerrero, María; López-Olmeda, José F.; Mañanós, Evaristo L.; Zanuy, Silvia

    2016-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20β-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior. PMID:27788270

  5. Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain.

    PubMed

    Ismail, Amel F M; El-Sonbaty, Sawsan M

    2016-05-01

    Ionizing radiation has attracted a lot of attention due to its beneficial and possible harmful effects to the human population. The brain displays numerous biochemical and functional alterations after exposure to irradiation, which induces oxidative-stress through generation of reactive oxygen species (ROS). The present study evaluated the neuro-protective role of fermented Ginkgo biloba (FGb) leaf extract, compared to non-fermented G. biloba (Gb) leaf extract against γ-irradiation (6Gy) in the rats' brain. The changes of the Gb phytochemical constituents after fermentation, using Aspergillus niger were evaluated by Gas Chromatography-Mass Spectrometry. The results showed a significant decrease in superoxide dismutase (SOD), glutathione peroxidase (GPx) activities and elevation of the calcium level in the brain cytosolic fraction of γ-irradiated rats. Further, significant increases in the malondialdehyde (MDA), the stress hormones (catecholamines); epinephrine (EN), norepinephrine (NE) and dopamine (DA) levels and the interleukin-1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) gene expression relative ratio in parallel with a significant decrease in the glutathione (GSH) content and DNA fragmentation in the brain tissues of the γ-irradiated rats were observed. The pre-treatment with Gb extract significantly amended these biochemical parameters. Meanwhile, the pre-treatment with the FGb showed more improvement, compared to Gb, of these biochemical parameters in the brain of γ-irradiated rats, which could be attributed to the enhancement of its antioxidant activity after fermentation. These findings suggested that fermentation enhances the protective effect of Gb in the brain on the neuroinflammation, release of the stress hormones, apoptosis and oxidative damage induced by γ-irradiation. fermentation improved the bio-activities of Gb leaf extract and thus enhanced the in-vivo antioxidant, anti-apoptotic and anti-inflammatory activities, leading to

  6. Chemotherapy-induced amenorrhea and the resumption of menstruation in premenopausal women with hormone receptor-positive early breast cancer.

    PubMed

    Koga, Chinami; Akiyoshi, Sayuri; Ishida, Mayumi; Nakamura, Yoshiaki; Ohno, Shinji; Tokunaga, Eriko

    2017-09-01

    For premenopausal women with breast cancer, information on the effects of chemotherapy and the risk of infertility is important. In this study, the effect of chemotherapy on the ovarian function in premenopausal women with hormone receptor-positive breast cancer was investigated, with an age-stratified analysis of the appearance of amenorrhea and the resumption of menstruation after the use of chemotherapy with anthracyclines or taxanes. Premenopausal women diagnosed with operable Stage I-III hormone receptor-positive breast cancer and underwent neoadjuvant or adjuvant chemotherapy with the standard regimen of anthracyclines and/or taxanes were included. The patients were classified into age groups in 5-year increments, and the rates of chemotherapy-induced amenorrhea (CIA), resumption of menstruation, and duration of CIA after chemotherapy were analyzed. The subjects consisted of 101 patients (median age 45 years). CIA occurred in 97 (96%) patients and 40 patients resumed menstruation. In all patients aged ≤39 years menstruation restarted, whereas in all patients aged ≥50 years, menstruation did not restart. For the patients who resumed menstruation, the younger the patients, the sooner menstruation tended to restart. The resumption of menstruation occurred within 1 year for younger patients aged around 30 years, but for those aged ≥35 years, 60% of cases took around 2-3 years for resumption. The incidence of CIA, the resumption of menstruation and duration of CIA after chemotherapy depend greatly on the patient's age.

  7. Resistance exercise-induced hormonal response under the influence of delayed onset muscle soreness in men and boys.

    PubMed

    Pullinen, T; Mero, A; Huttunen, P; Pakarinen, A; Komi, P V

    2011-12-01

    It was hypothesized that exercise-induced muscle damage (EIMD)-related alterations in hormonal responses could be observed if a second exercise bout is performed soon after an identical unaccustomed bout leading to delayed onset muscle soreness (DOMS). Eight men (31 ± 7 years) and eight boys (14 ± 0 years) performed two exercise bouts (E1 and E2, with 48 h rest in between) consisting of three sets of bilateral knee extensions until exhaustion with 40% load. No differences between the groups or bouts were observed in the number of repetitions performed and maximal isometric force decline, or between groups in serum creatine kinase activity and DOMS. Decreased peak epinephrine (EPI) (-38%), growth hormone (GH) (-45%) and cortisol (COR) (-31%) concentrations were found in E2 in men (P<0.05). In men, the peak GH concentration was also lower in E2 and COR was higher in both bouts than in boys. No changes in norepinephrine and testosterone responses were found in either group. The results suggest that in men, the responses of EPI, GH and COR are attenuated when the second bout is performed under the influence of DOMS. In boys, the lack of this attenuation may not be explained by less severe EIMD. © 2010 John Wiley & Sons A/S.

  8. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite.

    PubMed

    Alyoussef, Abdullah; Al-Gayyar, Mohammed M H

    2016-07-01

    Scientific evidence illustrated the health hazards of exposure to nitrites for prolonged time. Nitrites affected several body organs due to oxidative, inflammatory and apoptosis properties. Furthermore, thymoquinone (TQ) had curative effects against many diseases. We tried to discover the impact of both sodium nitrite and TQ on inflammatory cytokines contents in testicular tissues and hormonal balance both in vivo and in vitro. Fifty adult male SD rats received 80mg/kg sodium nitrite and treated with either 25 or 50mg/kg TQ daily by oral-gavage for twelve weeks. Testis were removed for sperms' count. Testicular tissue homogenates were used for assessment of protein and gene expression of IL-1β, IL-6, TNF-α, Nrf2 and caspase-3. Serum samples were used for measurement of testosterone, LH, FSH and prolactin. Moreover, all the parameters were measured in human normal testis cell-lines, CRL-7002. Sodium nitrite produced significant decrease in serum testosterone associated with raised FSH, LH and prolactin. Moreover, sodium nitrite significantly elevated TNF-α, IL-1β, IL-6, caspase-3 and reduced Nrf2. TQ significantly reversed all these effects both in vivo and in vitro. In conclusion, TQ ameliorated testicular tissue inflammation and restored the normal balance of sex hormones induced by sodium nitrite both in vivo and in vitro.

  9. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality

    PubMed Central

    Doi, Kent; Hu, Xuzhen; Yuen, Peter S.T.; Leelahavanichkul, Asada; Yasuda, Hideo; Kim, Soo Mi; Schnermann, Jürgen; Jonassen, Thomas E.N.; Frøkiær, Jørgen; Nielsen, Søren; Star, Robert A.

    2008-01-01

    Sepsis remains a serious problem in critically ill patients with the mortality increasing to over half when there is attendant acute kidney injury. α-Melanocyte-stimulating hormone is a potent anti-inflammatory cytokine that inhibits many forms of inflammation including that with acute kidney injury. We tested whether a new α-melanocyte-stimulating hormone analogue (AP214), which has increased binding affinity to melanocortin receptors, improves sepsis-induced kidney injury and mortality using a cecal ligation and puncture mouse model. In the lethal cecal ligation-puncture model of sepsis, severe hypotension and bradycardia resulted and AP214 attenuated acute kidney injury of the lethal model with a bell-shaped dose-response curve. An optimum AP214 dose reduced acute kidney injury even when it was administered 6 hr after surgery and it significantly improved blood pressure and heart rate. AP214 reduced serum TNF-α and IL-10 levels with a bell-shaped dose-response curve. Additionally; NF-κB activation in the kidney and spleen, and splenocyte apoptosis were decreased by the treatment. AP214 significantly improved survival in both lethal and sublethal models. We have shown that AP214 improves hemodynamic failure, acute kidney injury, mortality and splenocyte apoptosis attenuating pro- and anti-inflammatory actions due to sepsis. PMID:18354376

  10. Glucoreceptors located in different areas mediate the hypoglycemia-induced release of growth hormone, prolactin, and adrenocorticotropin in man.

    PubMed

    Vigas, M; Tatár, P; Jurcovicová, J; Jezová, D

    1990-03-01

    In young male volunteers, the changes in growth hormone (GH), prolactin (PRL), and adrenocorticotropic hormone (ACTH) release in response to insulin injection combined with the infusion of saline, glucose, and fructose were evaluated. Glucose infusion in a dose which prevented insulin hypoglycemia completely abolished endocrine responses. Infusion of fructose, which is known not to cross the blood-brain barrier (BBB), did not influence the GH release during hypoglycemia; however, it inhibited PRL secretion. The ACTH response was slightly attenuated and delayed, while the hypoglycemia-induced rise in cortisol levels was not modified by fructose infusion. These data indicate that the glucoreceptors mediating the signals for a complete counterregulatory neuroendocrine response are not located in a single brain structure. Stimuli for GH release are produced in areas of the central nervous system protected by the BBB, while those for PRL release are presumably present in structures not protected by the BBB. Glucoreceptors triggering ACTH release are located both inside and outside the BBB.

  11. Alteration of reproductive hormone levels in pregnant sows induced by repeated ACTH application and its possible influence on pre- and post-natal hormone secretion of piglets.

    PubMed

    Brüssow, Klaus-Peter; Schneider, Falk; Kanitz, Ellen; Otten, Winfried; Tuchscherer, Margret

    2005-02-01

    fetuses (n=87) recovered 3 h after ACTH or saline (EXP 4), the plasma cortisol concentrations were significantly increased in umbilical vein (93.7 +/- 5.5 vs. 47.0 +/- 5.3 nmol/l) and artery (95.7 +/- 5.4 vs. 66.4 +/- 5.4 nmol/l), and in periphery (46.8 +/- 5.3 vs. 27.1 +/- 5.3 nmol/l) compared to controls. Plasma ACTH concentrations, however, did not differ in fetuses of both treatment groups. Postnatal LH-RH challenge tests (1st and 28th day post partum) induced LH surges in female piglets (n=67) both of ACTH and saline treated sows, but did not differ between groups (1st day: 7.2 +/- 0.8 vs. 8.1 +/- 0.7 ng/ml; 28th day: 10.5 +/- 1.7 vs. 13.6 +/- 2.2 ng/ml). However, basal LH of piglets whose mothers were submitted to ACTH during 2nd TP was lower on 1st day (1.7 +/- 0.2 vs. 2.3 +/- 0.2 ng/ml, p<0.05) but not on 28th day (1.0 +/- 0.2 vs. 1.1 +/- 0.2 ng/ml). However in both groups, the basal LH was always higher on 1st as on 28th day (p<0.05). Thus, chronic intermittent ACTH administration is able to influence the release pattern of maternal reproductive hormones. However, these findings demonstrate that these effects are dependent on the stage of pregnancy. Furthermore, it was shown that maternal cortisol can cross the placenta during gestation and thus may affect maternal-fetal interactions and, as a result, reproductive function of offspring.

  12. Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones.

    PubMed

    Gholap, S; Kar, A

    2003-06-01

    The efficacy of Inula racemosa (root) and Gymnema sylvestre (leaf) extracts either alone or in combination was evaluated in the amelioration of corticosteroid-induced hyperglycaemia in mice. Simultaneously thyroid hormone levels were estimated by radio-immunoassay (RIA) in order to ascertain whether the effects are mediated through thyroid hormones or not. While the corticosteroid (dexamethasone) administration increased the serum glucose concentration, it decreased serum concentrations of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Administration of the two plant extracts either alone or in combination decreased the serum glucose concentration in dexamethasone induced hyperglycaemic animals. However, the administration of Inula racemosa and Gymnema sylvestre extracts in combination proved to be more effective than the individual extracts. These effects were comparable to a standard corticosteroid-inhibiting drug, ketoconazole. As no marked changes in thyroid hormone concentrations were observed by the administration of any of the plant extracts in dexamethasone treated animals, it is further suggested that these plant extracts may not prove to be effective in thyroid hormone mediated type II diabetes, but for steroid induced diabetes.

  13. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding.

    PubMed

    Trainor, Brian C; Takahashi, Elizabeth Y; Campi, Katharine L; Florez, Stefani A; Greenberg, Gian D; Laman-Maharg, Abigail; Laredo, Sarah A; Orr, Veronica N; Silva, Andrea L; Steinman, Michael Q

    2013-03-01

    There is compelling evidence for important sex differences in behavioral and hormonal responses to psychosocial stress. Here we examined the effects of gonadal hormones on behavioral responses to social defeat stress in monogamous California mice (Peromyscus californicus). Three episodes of social defeat induced social withdrawal in intact females but not males. Gonadectomy blocked corticosterone responses to defeat in females and sensitized male corticosterone responses. However, gonadectomy had no effects on social interaction behavior, suggesting that social withdrawal is not dependent on gonadal hormones in the adult California mouse. In contrast, defeat reduced exploratory behavior in the open field test for intact but not castrated males. We also examined the effects of social defeat on social interaction behavior when California mice were raised on corncob bedding, which has estrogenic properties. In this dataset of over 300 mice, we observed that social defeat did not induce social withdrawal when females were raised on corncob bedding. This finding suggests that the use of corncob in rodent studies could mask important sex differences in the effects of stress on brain and behavior. Although gonadal hormones do not affect social withdrawal behavior in adults, our data suggest that hormones may act earlier in development to induce a more resilient social phenotype.

  14. [Exercise-induced oedema due to hormone-containing intrauterine device].

    PubMed

    Franssen, Laurens E; Bos, Willem-Jan W

    2012-01-01

    Oedema is a known adverse effect of the levonorgestrel-containing intrauterine device (Mirena IUD). However, exercise-induced oedema has not been described before. A 38-year-old woman presented with symptoms of diffuse, exercise-induced oedema and dyspnoea. Tests for heart failure and other causes of oedema showed no abnormalities. All symptoms resolved spontaneously after the patient initiated removal of the IUD. The pathophysiology of exercise-induced oedema is still poorly understood. When confronted with a patient with oedema (induced by exercise or other cause), the most common causes must first be excluded. If no explanation can be found, then the effects of medication must not be overlooked.

  15. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    PubMed

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation.

  16. Re-evaluation of thyroid hormone signaling antagonism of tetrabromobisphenol A for validating the T3-induced Xenopus metamorphosis assay.

    PubMed

    Wang, Yao; Li, Yuanyuan; Qin, Zhanfen; Wei, Wuji

    2017-02-01

    We developed the T3-induced Xenopus metamorphosis assay, which is supposed to be able to sensitively detect thyroid hormone (TH) signaling disruption of chemicals. The present study aimed to validate the T3-induced Xenopus metamorphosis assay by re-evaluating the TH signaling antagonism of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. According to the assay we developed, Xenopus tadpoles at stage 52 were exposed to 10-500nmol/L TBBPA in the presence of 1nmol/L T3. After 96hr of exposure, TBBPA in the range of 10-500nmol/L was found to significantly inhibit T3-induced morphological changes of Xenopus tadpoles in a concentration-dependent manner in term of body weight and four morphological endpoints including head area (HA), mouth width (MW), unilateral brain width/brain length (ULBW/BL), and hind-limb length/snout-vent length (HLL/SVL). The results show that these endpoints we developed are sensitive for characterizing the antagonistic effects of TBBPA on T3-induced metamorphosis. Following a 24-hr exposure, we found that TBBPA antagonized expression of T3-induced TH-response genes in the tail, which is consistent with previous findings in the intestine. We propose that the tail can be used as an alternative tissue to the intestine for examining molecular endpoints for evaluating TH signaling disruption. In conclusion, our results demonstrate that the T3-induced Xenopus metamorphosis assay we developed is an ideal in vivo assay for detecting TH signaling disruption.

  17. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  18. Amiodarone Induced Hyponatremia Masquerading as Syndrome of Inappropriate Antidiuretic Hormone Secretion by Anaplastic Carcinoma of Prostate

    PubMed Central

    Dutta, Pinaki; Kumar, Santosh; Kakkar, Nandita; Bhansali, Anil; Rotondo, Fabio; Kovacs, Kalman

    2014-01-01

    Syndrome of inappropriate antidiuretic hormone secretion (SIADH) is one of the most common causes of hyponatremia. The usual causes are malignancies, central nervous system, pulmonary disorders, and drugs. Amiodarone is a broad spectrum antiarrhythmic agent widely used in the management of arrhythmias. The different side effects include thyroid dysfunction, visual disturbances, pulmonary infiltrates, ataxia, cardiac conduction abnormalities, drug interactions, corneal microdeposits, skin rashes, and gastrointestinal disturbances. SIADH is a rare but lethal side effect of amiodarone. We describe a 62-year-old male who was suffering from advanced prostatic malignancy, taking amiodarone for underlying heart disease. He developed SIADH which was initially thought to be paraneoplastic in etiology, but later histopathology refuted that. This case emphasizes the importance of detailed drug history and the role of immunohistochemistry in establishing the diagnosis and management of hyponatremia due to SIADH. PMID:24818037

  19. Richter's Syndrome with Hypercalcemia Induced by Tumor-Associated Production of Parathyroid Hormone-Related Peptide

    PubMed Central

    Watanabe, Naoki; Yasuda, Hajime; Morishita, Soji; Aota, Yasuo; Tomomatsu, Junichi; Tanaka, Masaru; Ohsaka, Akimichi; Komatsu, Norio

    2017-01-01

    Humoral hypercalcemia due to parathyroid hormone-related peptide (PTHrP) elevation is a well-known complication of various malignancies, but the situation is rare concerning hematological malignancies except for adult T-cell leukemia/lymphoma. We report a case of Richter's syndrome with humoral hypercalcemia, and demonstrate by reverse transcription polymerase chain reaction (RT-PCR) that peripheral blood PTHrP levels were 2,500-fold higher compared to healthy controls. PTHrP production by tumor cells in chronic lymphocytic leukemia (CLL) and Richter's syndrome has been previously demonstrated by nonquantitative methods such as immunohistochemistry and northern blot analysis, but this is the first report using the RT-PCR method. The presented case did not have hypercalcemia when initially diagnosed as small lymphocytic lymphoma (SLL), and as reported earlier, the development of hypercalcemia may be an indication of the transformation to Richter's syndrome in patients with CLL/SLL. PMID:28203174

  20. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment.

    PubMed

    Guo, Bin; Huang, Xinxin; Cooper, Scott; Broxmeyer, Hal E

    2017-03-06

    Efficient hematopoietic stem cell (HSC) homing is important for hematopoietic cell transplantation (HCT), especially when HSC numbers are limited, as in the use of cord blood (CB). In a screen of small-molecule compounds, we identified glucocorticoid (GC) hormone signaling as an activator of CXCR4 expression in human CB HSCs and hematopoietic progenitor cells (HPCs). Short-term GC pretreatment of human CB HSCs and HPCs promoted SDF-1-CXCR4-axis-mediated chemotaxis, homing, and long-term engraftment when these cells were transplanted into primary- and secondary-recipient NSG mice. Mechanistically, activated glucocorticoid receptor binds directly to a glucocorticoid response element in the CXCR4 promoter and recruits the SRC-1-p300 complex to promote H4K5 and H4K16 histone acetylation, facilitating transcription of CXCR4. These results suggest a new and readily available means to enhance the clinical efficacy of CB HCT.

  1. Ultrastructural and hormonal changes in rat cauda epididymal spermatozoa induced by Boswellia papyrifera and Boswellia carterii.

    PubMed

    Ahmed, Mukhtar; Ali, Daoud; Harrath, Abdel Halim; Hussain, Tajamul; Al-Daghri, Nasser; Alokail, Majed S; Aladakatti, Ravindranath H; Ghodesawar, Mukhtar Ahmed G

    2014-04-01

    Boswellia papyrifera and Boswellia carterii diffuses smoke polluting air that adversely affects indoor environment that certainly harm human health. Therefore, this study aims at ascertaining the effect of these plants on gonadal hormones and molecular changes in rat spermatozoa. The animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Significant decreases in FSH, LH and testosterone levels were evidenced, along with a reduction of protein, sialic acid, and carnitine levels. In sperm physiology, sperm count, motility, speed decrease, whereas sperm anomalies increase. TEM observation indicates morphological changes in plasma and acrosomal membranes, cytoplasmic droplet in the tail region, vacuolated, and disorganization of the mitochondrial sheath. These findings demonstrate that B. papyrifera and B. carterii smoke affects the process of sperm formation and maturation, which indicates the detrimental effects of these plants on the reproductive system.

  2. Persistent hiccups in cancer patient: a presentation of syndrome of inappropriate antidiuretic hormone induced hyponatremia.

    PubMed

    Goyal, Alka; Mehmood, Syed; Mishra, Seema; Bhatnagar, Sushma

    2013-05-01

    Hyponatremia is quite common in cancer patients, but the presentation as persistent hiccups is not common. Literature over hiccups development due to hyponatremia is quite scant. Hiccups are of various types, persistent hiccups are those that last more than 48 h and remains less than 1 month. Hiccups lasting more than 24 h require investigation for an underlying organic etiology, with hyponatremia included in the differential diagnosis. This paper discusses a carcinoma lip patient presented with the persistent hiccups and unconsciousness post-operatively. The patient was initially responded with trials of both metoclopramide and Ryle's tube insertion, but eventually, his hiccups resolved only after treatment of hyponatremia. Patient's clinical course and investigations suggest an etiology of syndrome of inappropriate antidiuretic hormone (SIADH) secretion behind the hyponatremia. Study suggested that SIADH linked hyponatremia should be considered in the differential diagnosis of cancer patients with refractory hiccups.

  3. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  4. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  5. Glucose- and Hormone-Induced cAMP Oscillations in α- and β-Cells Within Intact Pancreatic Islets

    PubMed Central

    Tian, Geng; Sandler, Stellan; Gylfe, Erik; Tengholm, Anders

    2011-01-01

    OBJECTIVE cAMP is a critical messenger for insulin and glucagon secretion from pancreatic β- and α-cells, respectively. Dispersed β-cells show cAMP oscillations, but the signaling kinetics in cells within intact islets of Langerhans is unknown. RESEARCH DESIGN AND METHODS The subplasma-membrane cAMP concentration ([cAMP]pm) was recorded in α- and β-cells in the mantle of intact mouse pancreatic islets using total internal reflection microscopy and a fluorescent translocation biosensor. Cell identification was based on the opposite effects of adrenaline on cAMP in α- and β-cells. RESULTS In islets exposed to 3 mmol/L glucose, [cAMP]pm was low and stable. Glucagon and glucagon-like peptide-1(7-36)-amide (GLP-1) induced dose-dependent elevation of [cAMP]pm, often with oscillations synchronized among β-cells. Whereas glucagon also induced [cAMP]pm oscillations in most α-cells, <20% of the α-cells responded to GLP-1. Elevation of the glucose concentration to 11–30 mmol/L in the absence of hormones induced slow [cAMP]pm oscillations in both α- and β-cells. These cAMP oscillations were coordinated with those of the cytoplasmic Ca2+ concentration ([Ca2+]i) in the β-cells but not caused by the changes in [Ca2+]i. The transmembrane adenylyl cyclase (AC) inhibitor 2′5′-dideoxyadenosine suppressed the glucose- and hormone-induced [cAMP]pm elevations, whereas the preferential inhibitors of soluble AC, KH7, and 1,3,5(10)-estratrien-2,3,17-β-triol perturbed cell metabolism and lacked effect, respectively. CONCLUSIONS Oscillatory [cAMP]pm signaling in secretagogue-stimulated β-cells is maintained within intact islets and depends on transmembrane AC activity. The discovery of glucose- and glucagon-induced [cAMP]pm oscillations in α-cells indicates the involvement of cAMP in the regulation of pulsatile glucagon secretion. PMID:21444924

  6. Catechin induced modulation in the activities of thyroid hormone synthesizing enzymes leading to hypothyroidism.

    PubMed

    Chandra, Amar K; De, Neela

    2013-02-01

    Catechins, the flavonoids found in abundance in green tea, have many beneficial health effects such as antioxidative, anticarcinogenic, anti-inflammatory, antiallergic, and hypotensive properties. However, flavonoids have antithyroid/goitrogenic effect, although less information is available about the effect of pure catechin on thyroid physiology. The present investigation has been undertaken to explore the effect of catechin administration on thyroid physiology in rat model. For the in vivo experiment catechin was injected intraperitoneally (i.p.) at doses of 10, 20 and 30 mg/kg body to male albino rats for 15 and 30 days, respectively, and thyroid activities were evaluated with respect to determination of serum levels of thyroid hormones, thyroid peroxidase, 5'-deiodinase I (5'-DI), and Na(+), K(+)-ATPase activities that are involved in the synthesis of thyroid hormone. Catechin decreased the activities of thyroid peroxidase and thyroidal 5'-deiodinase I, while Na(+), K(+)-ATPase activity significantly increased in dose-dependent manner; substantial decrease in serum T3 and T4 levels coupled with significant elevation of serum TSH were also noted. Histological examinations of the thyroid gland revealed marked hypertrophy and/or hyperplasia of the thyroid follicles with depleted colloid content. In in vitro study, short-term exposure of rat thyroid tissue to catechin at the concentrations of 0.10, 0.20, and 0.30 mg/ml leads to decrease in the activities of thyroid peroxidase and 5'-deiodinase I, while the activity of thyroidal Na(+), K(+)-ATPase remains unaltered even at high concentration of catechin treatment. The present study reinforces the concept that catechin, tea flavonoids possess potent antithyroid activity as evidenced from in vivo and in vitro studies.

  7. Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling Atlantic salmon.

    PubMed

    Björnsson, B T; Hemre, G I; Bjørnevik, M; Hansen, T

    2000-07-01

    Earlier studies have established that increased daylength increases plasma growth hormone (GH) levels during spring smoltification of yearling Atlantic salmon. Recently, the Atlantic salmon aquaculture industry has started the production of underyearling ("summer") smolts. This involves fast juvenile growth on continuous light (24L), the transfer of juveniles over 8 cm in length to short day (12L) for 6 weeks in the summer, followed by transfer to 24L for another 6 weeks before transfer to seawater in late October. Three groups were studied in fresh water from July to the following May in order to elucidate the GH response to this photoperiod manipulation: one group was kept on 24L throughout (long-day group), while the other two groups were exposed to short day from July 15th. Of these, one was brought back onto long day on September 1st (winter group) while the other was kept on short day (short-day group). Plasma GH levels of the long-day group were around 1.6 ng/ml throughout the study. The short-day transfer suppressed GH levels to 0.7 ng/ml within 2 weeks (short-day and winter groups). The long-day transfer (winter group) increased GH levels to 11 ng/ml within 3 weeks, and this elevation of GH levels was sustained for about 3 months, before declining to pretreatment levels. The study demonstrates that underyearling Atlantic salmon react to increased daylength in a way similar to traditional yearling smolts. It also demonstrates for the first time that decreased daylength can suppress plasma GH levels in fish. It is concluded that winter photoperiod manipulation causes an out-of-season initiation and completion of the parr-smolt transformation of underyearling Atlantic salmon and that growth hormone plays a major role in this process.

  8. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    PubMed

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  9. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.

    PubMed

    de Carvalho, D; Marques, D A; Bernuci, M P; Leite, C M; Araújo-Lopes, R; Anselmo-Franci, J; Bícego, K C; Szawka, R E; Gargaglioni, L H

    2016-01-28

    The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. Most of the studies involving the role of the LC in hypercapnic ventilatory responses have been performed in males. Since ovarian steroids modulate the activity of LC neurons and females have a different respiratory response to CO2 than males, we evaluated the activity of LC noradrenergic neurons during normocapnia and hypercapnia in female and male rats with distinct sex hormone levels. Ovariectomized (OVX), estradiol (E2)-treated ovariectomized (OVX+E2) and female rats on the diestrous day of the estrous cycle were evaluated. Concurrently, males were investigated as gonad-intact, orchidectomized (ORX), testosterone (T)-treated ORX (ORX+T), and E2-treated ORX (ORX+E2). Activation of LC neurons was determined by double-label immunohistochemistry to c-Fos and tyrosine hydroxylase (TH). Hypercapnia induced by 7% CO2 increased the number of c-Fos/TH-immunoreactive (ir) neurons in the LC of all groups when compared to air exposure. Hypercapnia-induced c-Fos expression did not differ between diestrous females and intact male rats. In the OVX+E2 group, there was attenuation in the c-Fos expression during normocapnia compared with OVX rats, but CO2 responsiveness was not altered. Moreover, in ORX rats, neither T nor E2 treatments changed c-Fos expression in LC noradrenergic neurons. Thus, in female rats, E2 reduces activation of LC noradrenergic neurons, whereas in males, sex hormones do not influence the LC activity.

  10. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C

    2012-09-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7-33)-CBD and PTH([-1]-33)-CBD, also bound collagen and antagonized PTH(1-34) effect in SaOS-2 cells; however, PTH(7-33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7-33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo+Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo+Antagonist mice were grossly and histologically indistinguishable from Chemo+Vehicle mice. Chemo+Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. Copyright © 2011 UICC.

  11. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C.

    2013-01-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7–33)-CBD and PTH([−1]–33)-CBD, also bound collagen and antagonized PTH(1–34) effect in SaOS-2 cells; however, PTH(7–33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7–33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo + Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo + Antagonist mice were grossly and histologically indistinguishable from Chemo + Vehicle mice. Chemo + Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. PMID:22130912

  12. Feed efficiency and body composition are related to cortisol response to adrenocorticotropin hormone and insulin-induced hypoglycemia in rams.

    PubMed

    Knott, S A; Cummins, L J; Dunshea, F R; Leury, B J

    2010-08-01

    Metabolic rate and energy consumption increase through the activation of the hypothalamic-pituitary-adrenal axis when an animal is exposed to a stressor. Residual feed intake (RFI) as a measure of efficiency has been shown to be related to exogenous adrenocorticotropin hormone (ACTH)-stimulated cortisol concentrations, which is indicative of the relationship between an animal's response to stress and the efficiency with which the energy is used for growth and production. In this study, we tested the hypothesis that sheep with low post-ACTH serum cortisol concentration relative to the other sheep in the flock have lower RFI values and lower cortisol concentrations following insulin-induced hypoglycemia. Adrenocorticotropin hormone (2.0 microg/kg body weight)-stimulated cortisol concentrations were measured in 100 sheep. The extreme responders were selected (n = 12 high cortisol, n = 12 low cortisol), and feed efficiency and body composition parameters were measured. A second ACTH challenge and an insulin challenge were administered. More efficient sheep (more negative RFI value) were found to have lower (P < 0.05) cortisol concentrations following both an ACTH challenge and an insulin challenge. Low-cortisol sheep (low response to ACTH or insulin) were found to have a lower (P < 0.05) proportion of fat tissue in comparison to the high-cortisol animals. These data clearly indicate that an animal's response to exogenous ACTH or insulin-induced hypoglycemia as a stressor is related (P < 0.05) to efficiency of energy use when measured as RFI. These data have important implications in enabling identification of animals that are superior in terms of feed efficiency and for understanding the physiological mechanisms underlying efficiency of energy use. Copyright 2010 Elsevier Inc. All rights reserved.

  13. The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice

    PubMed Central

    Xue, Yingben; Xiao, Yongjun; Liu, Jingning; Karaplis, Andrew C.; Pollak, Martin R.; Brown, Edward M.; Miao, Dengshun

    2012-01-01

    Although the calcium-sensing receptor (CaSR) and parathyroid hormone (PTH) may each exert skeletal effects, it is uncertain how CaSR and PTH interact at the level of bone in primary hyperparathyroidism (PHPT). Therefore, we simulated PHPT with 2 wk of continuous PTH infusion in adult mice with deletion of the PTH gene (Pth−/− mice) and with deletion of both PTH and CaSR genes (Pth−/−-Casr −/− mice) and compared skeletal phenotypes. PTH infusion in Pth−/− mice increased cortical bone turnover, augmented cortical porosity, and reduced cortical bone volume, femoral bone mineral density (BMD), and bone mineral content (BMC); these effects were markedly attenuated in PTH-infused Pth−/−-Casr−/− mice. In the absence of CaSR, the PTH-stimulated expression of receptor activator of nuclear factor-κB ligand and tartrate-resistant acid phosphatase and PTH-stimulated osteoclastogenesis was also reduced. In trabecular bone, PTH-induced increases in bone turnover, trabecular bone volume, and trabecular number were lower in Pth−/−-Casr−/− mice than in Pth−/− mice. PTH-stimulated genetic markers of osteoblast activity were also lower. These results are consistent with a role for CaSR in modulating both PTH-induced bone resorption and PTH-induced bone formation in discrete skeletal compartments. PMID:22275754

  14. Cardiac ACE2/angiotensin 1-7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy.

    PubMed

    Diniz, Gabriela P; Senger, Nathalia; Carneiro-Ramos, Marcela S; Santos, Robson A S; Barreto-Chaves, Maria Luiza M

    2016-08-01

    Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin-angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1-7 (Ang 1-7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1-7, ACE2 and Mas receptor levels. Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Although plasma Ang 1-7 levels were unchanged by hyperthyroidism, cardiac Ang 1-7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1-7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1-7 levels were accompanied by increased Mas receptor protein levels. The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. © The Author(s), 2015.

  15. Defense Responses in Aspen with Altered Pectin Methylesterase Activity Reveal the Hormonal Inducers of Tyloses1[OPEN

    PubMed Central

    Leśniewska, Joanna; Krzesłowska, Magdalena; Kushwah, Sunita; Sundberg, Björn; Moritz, Thomas

    2017-01-01

    Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula × tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other’s concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses. PMID:27923986

  16. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats.

    PubMed

    Inaba, Yuki; Kato, Yuki; Itou, Azumi; Chiba, Aoi; Sawai, Ken; Fülöp, Ferenc; Nagy, György Miklos; Hashizume, Tsutomu

    2016-12-01

    The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin-releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL-releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL-releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL-releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL-releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH-induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL-induced PRL secretion in goats.

  17. Hormone-induced cortical maturation ensures the slow block to polyspermy and does not couple with meiotic maturation in starfish.

    PubMed

    Hirohashi, Noritaka; Harada, Kaori; Chiba, Kazuyoshi

    2008-06-01

    Meiotic progression in starfish oocytes is reinitiated by a maturation-inducing hormone called 1-methyladenine (1-MeAde). In addition to meiotic maturation, 1-MeAde induces cortical maturation in which cortical granules become competent to discharge in response to fusion of a single sperm, which results in the formation of the fertilization envelope. We found that subthreshold concentrations of 1-MeAde induce cortical maturation without germinal vesicle breakdown (GVBD). During cortical maturation, the IP3 sensitivity of calcium stores was increased as well as during meiotic maturation. When oocytes were exposed with 1-MeAde only on a hemisphere of oocytes, the IP3 sensitivity of the cortical region was increased only in the exposed hemisphere, suggesting that signals and components involved in cortical maturation do not readily spread in the cytoplasm. Although a specific inhibitor of phosphatidylinositol-3 kinase, LY294002 blocked both GVBD and cortical maturation, a Cdc2 kinase inhibitor, roscovitine did not block cortical maturation. Inhibition of Akt activation by injecting the competitors for Akt phosphorylation and membrane recruitment also blocked cortical maturation. These results suggest that the signaling pathway leading to Akt activation is common in cortical maturation and meiotic maturation, and Cdc2 activation was not required for cortical maturation.

  18. The luteinizing hormone surge is preceded by an estrogen-induced increase of hypothalamic progesterone in ovariectomized and adrenalectomized rats.

    PubMed

    Micevych, Paul; Sinchak, Kevin; Mills, Richard H; Tao, Leslie; LaPolt, Philip; Lu, John K H

    2003-07-01

    As circulating estrogen levels rise on the afternoon of proestrus, they stimulate the hypothalamo-pituitary axis. This estrogen positive feedback is pivotal to stimulate the luteinizing hormone (LH) surge required for ovulation and luteinization of ovarian follicles. In addition to estrogen, pre-LH surge progesterone is critical for an LH surge as was demonstrated by blocking progesterone synthesis. In ovariectomized (OVX) rats treated with trilostane, a blocker of the enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD) that catalyzes the conversion of pregnenolone to progesterone, estrogen did not induce an LH surge. Further, estrogen induced an LH surge in OVX and adrenalectomized (ADX) rats, indicating that the source of progesterone was neither the ovary nor adrenal gland. This estrogen-only LH surge was inhibited by pretreatment with trilostane, indicating that although the adrenal gland and ovary were not necessary for positive feedback, progesterone synthesis was critical for estrogen-induced positive feedback in an OVX/ADX rat. This suggested that the LH surge is dependent on the pre-LH surge synthesis of progesterone. Estrogen-induced progesterone receptors in the hypothalamus are vital for the LH surge, so a potential location for progesterone synthesis is the hypothalamus. OVX/ADX female rats were treated with 17beta-estradiol (50 microg) and progesterone levels were assayed by RIA. Progesterone levels were elevated in hypothalamic tissue following estrogen treatment. No increases in tissue progesterone levels were found in parietal cortex, cerebellum, medulla, pituitary or plasma. Additionally, male rats that do not have an estrogen positive feedback-induced LH surge were examined. Castrated/ADX male rats had no increase in hypothalamic progesterone levels after estrogen treatment. Together, these data strongly suggest that estrogen enhances neuroprogesterone synthesis in the hypothalamus that is involved in the positive feedback regulating the LH

  19. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones.

    PubMed

    Peeling, Peter; Dawson, Brian; Goodman, Carmel; Landers, Grant; Trinder, Debbie

    2008-07-01

    Iron is utilised by the body for oxygen transport and energy production, and is therefore essential to athletic performance. Commonly, athletes are diagnosed as iron deficient, however, contrasting evidence exists as to the severity of deficiency and the effect on performance. Iron losses can result from a host of mechanisms during exercise such as hemolysis, hematuria, sweating and gastrointestinal bleeding. Additionally, recent research investigating the anemia of inflammation during states of chronic disease has allowed us to draw some comparisons between unhealthy populations and athletes. The acute-phase response is a well-recognised reaction to both exercise and disease. Elevated cytokine levels from such a response have been shown to increase the liver production of the hormone Hepcidin. Hepcidin up-regulation has a negative impact on the iron transport and absorption channels within the body, and may explain a potential new mechanism behind iron deficiency in athletes. This review will attempt to explore the current literature that exits in this new area of iron metabolism and exercise.

  20. Growth hormone therapy in chronic renal failure induces catch-up of head circumference.

    PubMed

    Van Dyck, M; Proesmans, W

    2001-08-01

    Growth of head circumference was studied along with height, weight, and body mass index (BMI) in 21 prepubertal patients with chronic renal failure (CRF) before and during recombinant human growth hormone (rhGH) treatment. CRF was present from birth in 15 patients, in the 6 others it was acquired and existing for at least 1 year. Five patients were on chronic dialysis, and 16 children were on conservative treatment with a median glomerular filtration rate of 17 ml/min per 1.73 m2 at the start of rhGH therapy. rhGH was administered for 12 months in all patients, for 18 months in 19, and for 24 months in 12 patients. Mean height standard deviation score (SDS) increased significantly from -2.29 to -1.31 after 1 year and to -1.07 after 2 years. Mean BMI SDS was within the normal range throughout. Mean head circumference SDS improved significantly from -2.04 to -1.45 after 1 year and remained stable thereafter. Changes in head circumference differed between patients under 5 years and those over 5 years. In the former, the increase in head circumference SDS was already significant after 6 months of therapy, in the latter, significance was reached only after 1 year. It can be concluded that rhGH in CRF patients significantly improves head circumference SDS, albeit not to the same extent as height SDS.

  1. Fibromyalgia, autism, and opioid addiction as natural and induced disorders of the endogenous opioid hormonal system.

    PubMed

    Johnson, Brian; Ulberg, Scott; Shivale, Swati; Donaldson, Jeffrey; Milczarski, Ben; Faraone, Stephen V

    2014-10-01

    Because of their circulation through the blood, the multiplicity of receptor sites, and the diversity of functions, opioids may most accurately be designated as a hormone. Opioids modulate the intensity of pain. In mammals, the opioid system has been modified to modulate social interactions as well (Panksepp and Watt, 2011). Over 10,000 patient encounters were observed on a neuropsychoanalytic addiction medicine service. Cold pressor times (CPT) were recorded before and after stimulation of the opioid system with low-dose naltrexone (LDN) for patients after opioid detoxification and for fibromyalgia patients. Patients maintained on opioids relate autistically. The cold, unrelated nature of their human interactions was reversed by detoxification from opioids. Fibromyalgia patients have difficulty participating in human relationships, as if they lack an ability to respond interpersonally, as do post-detoxification patients. LDN improved pain tolerance as shown by a significant increase on CPT for post detoxification patients from 16 seconds to 55 seconds and in fibromyalgia patients from 21 seconds to 42 seconds, and improved relatedness. The correlation of opioid prescribing increasing over time and autism prevalence increasing over time is highly significant. 1. Opioid-maintained patients relate autistically. 2. Autism is a hyperopioidergic disorder. 3. Fibromylagia is a hypoopioidergic disorder. 4. Low opioid tone caused by opioid maintenance or fibromyalgia can usually be reversed with low-dose naltrexone. 5. The increase in the incidence of autism may have been caused by the increase in use of opioids for analgesia during childbirth.

  2. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    PubMed

    Ohlsson, C; Nilsson, A; Isaksson, O; Lindahl, A

    1992-10-15

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps were removed, and three rats in each group were given GH (20 micrograms/day, s.c.) for an additional 14 days to chase the labeled cells out of the proliferative layers. Labeled cells remained in the germinal layer, in the perichondrial ring, and on the surface of the articular cartilage close to the epiphyseal plate. GH administered together with labeled thymidine significantly increased the number of labeled cells in the germinal cell layer compared to that in the control leg (ratio = 1.95 +/- 0.13), whereas IGF-I showed no stimulatory effect (ratio = 0.96 +/- 0.04). Therefore GH but not IGF-I stimulates the multiplication of the slowly cycling (label-retaining) cells in the germinal layer of the epiphyseal plate. IGF-I acts only on the proliferation of the resulting chondrocytes.

  3. Hormonal contraceptives suppress oxytocin-induced brain reward responses to the partner's face.

    PubMed

    Scheele, Dirk; Plota, Jessica; Stoffel-Wagner, Birgit; Maier, Wolfgang; Hurlemann, René

    2016-05-01

    The hypothalamic peptide oxytocin (OXT) has been identified as a key modulator of pair-bonding in men, but its effects in women are still elusive. Moreover, there is substantial evidence that hormonal contraception (HC) influences partner preferences and sexual satisfaction, which constitute core domains of OXT function. We thus hypothesized that OXT effects on partner-related behavioral and neural responses could be significantly altered in women using HC. In this functional magnetic resonance imaging study involving 40 pair-bonded women, 21 of whom were using HC, we investigated whether a 24-IU nasal dose of OXT would modulate brain reward responses evoked by the romantic partner's face relative to the faces of familiar and unfamiliar people. Treatment with OXT increased the perceived attractiveness of the partner relative to other men, which was paralleled by elevated responses in reward-associated regions, including the nucleus accumbens. These effects of OXT were absent in women using HC. Our results confirm and extend previous findings in men that OXT interacts with the brain reward system to reinforce partner value representations, indicating a common OXT-dependent mechanism underlying partner attraction in both sexes. This mechanism may be disturbed in women using HC, suggesting that gonadal steroids could alter partner-specific OXT effects.

  4. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    PubMed

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  5. Paliperidone Inducing Concomitantly Syndrome of Inappropriate Antidiuretic Hormone, Neuroleptic Malignant Syndrome, and Rhabdomyolysis.

    PubMed

    Kaur, Jaspinder; Kumar, Dileep; Alfishawy, Mostafa; Lopez, Ricardo; Sachmechi, Issac

    2016-01-01

    Paliperidone, an active metabolite of risperidone, is a new atypical antipsychotic agent. Syndrome of inappropriate antidiuretic hormone (SIADH), neuroleptic malignant syndrome (NMS), and rhabdomyolysis are the uncommon side effects of psychotropic drugs. We report a case of 35-year-old male with schizoaffective disorder who was admitted for acute-on-chronic exacerbation of his psychotic disorder for which intramuscular paliperidone 234 mg injection was given. Two days later, the patient developed hyponatremic seizures secondary to SIADH which was treated with hypertonic saline. On the third day, he developed high grade fever and severe muscle rigidity with raised creatine phosphokinase (CPK) and liver enzymes levels. He was treated with dantrolene 100 mg, bromocriptine 2.5 mg, and lorazepam 2 mg. Our patient required management of the three rare conditions following treatment with paliperidone. This case highlights the need for health care providers to be aware of the rare, potentially life threatening but preventable hyponatremia, NMS, and rhabdomyolysis as a possible adverse effect of paliperidone.

  6. High-Dose Risperidone Induced Latent Syndrome of Inappropriate Antidiuretic Hormone Secretion With Seizure Presentation.

    PubMed

    Lee, Yen-Feng; Tsai, Chia-Kuang; Liang, Chih-Sung

    2015-01-01

    We report a case of a patient with schizophrenia treated with high-dose risperidone, who developed syndrome of inappropriate antidiuretic hormone secretion (SIADH) with the only early symptom of tonic-clonic seizures. A 40-year-old woman with schizophrenia was treated with risperidone 2 mg/d. After the dosage was titrated to 6 mg/d, she experienced generalized seizure attacks. Laboratory screening revealed that the serum sodium level was 106 mmol/L, the urine sodium concentration was 41.2 mmol/L, and the urine osmolality was 371 mOsm/kg H2O. A diagnosis of SIADH was made, and risperidone was stopped. After infusion of hypertonic saline, the serum sodium returned to normal levels, and seizures did not recur. In this patient, SIADH advanced in a latent manner because the first and only symptom of SIADH was seizure attack. High-dose risperidone treatment is the most probable cause, and the mechanisms may be related to risperidone's high affinity for the 5-hydroxytryptamine 2A and dopamine 2 receptors. Patients with schizophrenia can display atypical features of medical illnesses. Routine physical and laboratory examinations may prevent silent disease progression.

  7. Paliperidone Inducing Concomitantly Syndrome of Inappropriate Antidiuretic Hormone, Neuroleptic Malignant Syndrome, and Rhabdomyolysis

    PubMed Central

    Lopez, Ricardo

    2016-01-01

    Paliperidone, an active metabolite of risperidone, is a new atypical antipsychotic agent. Syndrome of inappropriate antidiuretic hormone (SIADH), neuroleptic malignant syndrome (NMS), and rhabdomyolysis are the uncommon side effects of psychotropic drugs. We report a case of 35-year-old male with schizoaffective disorder who was admitted for acute-on-chronic exacerbation of his psychotic disorder for which intramuscular paliperidone 234 mg injection was given. Two days later, the patient developed hyponatremic seizures secondary to SIADH which was treated with hypertonic saline. On the third day, he developed high grade fever and severe muscle rigidity with raised creatine phosphokinase (CPK) and liver enzymes levels. He was treated with dantrolene 100 mg, bromocriptine 2.5 mg, and lorazepam 2 mg. Our patient required management of the three rare conditions following treatment with paliperidone. This case highlights the need for health care providers to be aware of the rare, potentially life threatening but preventable hyponatremia, NMS, and rhabdomyolysis as a possible adverse effect of paliperidone. PMID:27721999

  8. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations.

    PubMed

    Boullu-Ciocca, S; Tassistro, V; Dutour, A; Grino, M

    2015-12-01

    Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.

  9. Distribution and responsiveness of rat anti-Müllerian hormone during ovarian development and VCD-induced ovotoxicity.

    PubMed

    Mark-Kappeler, Connie J; Sen, Nivedita; Keating, Aileen F; Sipes, I Glenn; Hoyer, Patricia B

    2010-11-15

    Anti-Müllerian hormone (AMH) is produced by granulosa cells in primary to small antral follicles of the adult ovary and helps maintain primordial follicles in a dormant state. The industrial chemical, 4-vinylcyclohexene diepoxide (VCD) causes specific ovotoxicity in primordial and small primary follicles of mice and rats. Previous studies suggest that this ovotoxicity involves acceleration of primordial to primary follicle recruitment via interactions with the Kit/Kit ligand signaling pathway. Because of its accepted role in inhibiting primordial follicle recruitment, the present study was designed to investigate a possible interaction between AMH and VCD-induced ovotoxicity. Protein distribution of AMH was compared in neonatal and adult F344 rat ovaries. AMH protein was visualized by immunofluorescence microscopy in large primary and secondary follicles of the adult ovary, but in small primary follicles in neonatal rat ovaries. In cultured postnatal day (PND) 4 F344 rat ovaries, VCD exposure (30 μM, 2-8 days) decreased (P<0.05) AMH mRNA (d4-8) and protein (d6-8). Recombinant AMH (100-400 mg/ml) in PND4 ovaries cultured 8 days±VCD (30 μM) caused an increase (P<0.05) in primordial, and a decrease (P<0.05) in small primary follicles, supporting that AMH retarded primordial follicle recruitment. However, no concentration of AMH had an effect on VCD-induced ovotoxicity. Whereas, VCD caused a reduction in expression of AMH (d4-d8), it followed previously reported initial disruptions in Kit signaling induced by VCD (d2). Thus, collectively, these results do not support a mechanism whereby VCD causes ovotoxicity via generalized activation of primordial follicle recruitment, but instead provide further support for the specificity of other intracellular mechanisms involved in VCD-induced ovotoxicity.

  10. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles.

    PubMed

    Suzuki, Shunsuke; Awai, Koichiro; Ishihara, Akinori; Yamauchi, Kiyoshi

    2016-01-01

    Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.

  11. Histamine released from epidermal keratinocytes plays a role in α-melanocyte-stimulating hormone-induced itching in mice.

    PubMed

    Shimizu, Kyoko; Andoh, Tsugunobu; Yoshihisa, Yoko; Shimizu, Tadamichi

    2015-11-01

    Sunburn, wound repair, and chronic renal failure with hemodialysis are usually accompanied by both pigmentation and itching. Proopiomelanocortin-derived α-melanocyte-stimulating hormone (α-MSH) is produced in response to external stimuli, such as UV irradiation, and is involved in cutaneous pigmentation. However, it is unclear whether α-MSH is also involved in the itching. We therefore investigated whether α-MSH elicited itch-related responses in mice. We found that an intradermal injection of α-MSH induced hind-paw scratching, an itch-related response, in mice. The α-MSH-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone and the H1 histamine receptor antagonist terfenadine. In mast cell-deficient mice, α-MSH also elicited scratching, which was inhibited by terfenadine. The immunoreactivity for l-histidine decarboxylase, a key enzyme required for the production of histamine, histamine, and the melanocortin 1 and 5 receptors were shown in not only mast cells but also keratinocytes in murine skin. In addition to the expression of l-histidine decarboxylase and melanocortin 1 and 5 receptors, the mouse keratinocyte cell lines (Pam212) also showed immunoreactivity for l-histidine decarboxylase, histamine, and melanocortin 1 and 5 receptors. The application of α-MSH induced the release of histamine from Pam212 cells. These findings indicate that α-MSH may play an important role in the itching associated with pigmented cutaneous lesions and that the histamine released from keratinocytes is involved in this α-MSH-induced itching.

  12. Distribution and responsiveness of rat anti-Muellerian hormone during ovarian development and VCD-induced ovotoxicity

    SciTech Connect

    Mark-Kappeler, Connie J.; Sen, Nivedita; Keating, Aileen F.; Sipes, I. Glenn; Hoyer, Patricia B.

    2010-11-15

    Anti-Muellerian hormone (AMH) is produced by granulosa cells in primary to small antral follicles of the adult ovary and helps maintain primordial follicles in a dormant state. The industrial chemical, 4-vinylcyclohexene diepoxide (VCD) causes specific ovotoxicity in primordial and small primary follicles of mice and rats. Previous studies suggest that this ovotoxicity involves acceleration of primordial to primary follicle recruitment via interactions with the Kit/Kit ligand signaling pathway. Because of its accepted role in inhibiting primordial follicle recruitment, the present study was designed to investigate a possible interaction between AMH and VCD-induced ovotoxicity. Protein distribution of AMH was compared in neonatal and adult F344 rat ovaries. AMH protein was visualized by immunofluorescence microscopy in large primary and secondary follicles of the adult ovary, but in small primary follicles in neonatal rat ovaries. In cultured postnatal day (PND) 4 F344 rat ovaries, VCD exposure (30 {mu}M, 2-8 days) decreased (P < 0.05) AMH mRNA (d4-8) and protein (d6-8). Recombinant AMH (100-400 mg/ml) in PND4 ovaries cultured 8 days {+-} VCD (30 {mu}M) caused an increase (P < 0.05) in primordial, and a decrease (P < 0.05) in small primary follicles, supporting that AMH retarded primordial follicle recruitment. However, no concentration of AMH had an effect on VCD-induced ovotoxicity. Whereas, VCD caused a reduction in expression of AMH (d4-d8), it followed previously reported initial disruptions in Kit signaling induced by VCD (d2). Thus, collectively, these results do not support a mechanism whereby VCD causes ovotoxicity via generalized activation of primordial follicle recruitment, but instead provide further support for the specificity of other intracellular mechanisms involved in VCD-induced ovotoxicity.

  13. Plasma sodium-osmotic dissociation and hormonal interaction with drinking-induced hypervolemia at 2800 m altitude.

    PubMed

    Greenleaf, J E; Hinghofer-Szalkay, H; Rössler, A; Farrell, P A; Loomis, J L; Fedele, M J; West, J; Cowell, S A

    2001-06-01

    To study hormonal factors that may account for the dissociation between beverage-induced plasma sodium p[Na+] and osmotic p[Osm] concentrations that appear to refute the high theoretical correlation between p[Na+] and p[Osm]. Ten men (24 +/- SD 3 yr of age) sat reclining (head up) for 12 h in a chamber (21-23 degrees C dry bulb, 25-33% relative humidity) at 2800 m (9184 ft, 539 mm Hg) altitude (ALT), and at 321 m (1053 ft, 732 mm Hg) on the ground (GND). During 1000-1030 hours they consumed 3 fluids (12 ml x kg(-1),X = 948 ml x d(-1)) with large differences in sodium and osmotic contents: AstroAde (AA) with 185 mEq x L(-1) Na+ and 283 mOsm x kg(-1), Performance 1 (Shaklee) (P1) with 22 mEq x L(-1) Na+ and 365 mOsm kg(-1), or H2O at ALT; and only H2O on the GND. After drinking: plasma volume (PV) increased at 1200 hours by 8.3% (p < 0.05) with AA but was not significantly (NS) changed in the other sessions (Xdelta = +0.9%, range -0.9 to 2.8%); p[Na+] and p[Osm] were unchanged. Urinary rates and free-water clearances were attenuated with AA and P1 vs. those with H2O. Correlations between and among p[Na+] and p[Osm] suggest that the pNa+ ion is more tightly controlled than pOsm; and that there was no clear hormonal response that could account for this dissociation from theoretical considerations. There is significant dissociation between plasma sodium and osmotic concentrations after fluid intake. Induction and maintenance of hypervolemia requires increased (near isotonic) drink Na+ osmols rather than increased non-ionic osmols.

  14. Comparison of Piascledine (Avocado and Soybean Oil) and Hormone Replacement Therapy in Menopausal-Induced Hot Flashing

    PubMed Central

    Panahi, Yunes; Beiraghdar, Fatemeh; Kashani, Nafise; Baharie Javan, Nika; dadjo, yahya

    2011-01-01

    Different symptoms in Climacteric period, includes hot flash. Hormone replacement therapy (HRT) is common therapy for relief of menopausal symptoms but has possible contraindications and side effects. Recently Piascledine (combination of Avocado oil with Soybean oil) showed effects in reducing hot flash severity. Present study designed to compare the effects of HRT with Piascledine in treatment of hot flash. The cases of this study were sixty-six women at the age range of 40 to 70 years and complaints of menopause-induced hot flashing, whose last menstruation dated at least 6 months prior to the beginning of the study. The patients in this open label clinical trial, randomized to receive Piascledine capsule 1 mg or HRT (0.625 mg oral daily Conjugated Estrogen tablets, plus 2.5 mg continuous oral daily Medroxyprogesterone Acetate tablets) for 2 month. Hot flash property and severity was assessed via a daily check list and Visual analog scale. Climacteric symptom was measured before and after intervention using Greene Climacteric Scale (GCS) and Blatt-kupperman Menopausal Index (BKMI). Thirty-three eligible patients were allocated in each group. From the Piascledine group, one patient and from the HRT group, 16 patients weren›t willing to attend the study; therefore, 32 and 17 woman received treatment in Piascledine and HRT groups. 4 patients were withdrawn for vaginal bleeding and one for breast tenderness from HTR group. Hot flash severity in both groups decreased during the time similarly. With regard to GCS (p = 0.571) and BMKI (p = 0.891), the outcome was similar among the two groups. Due to low HRT compliance and its possible risks in long period of time and considering the same activity of soybean supplement and HRT in relieving the hot flash as menopausal symptoms in women, it seems that soybean supplements can be an alternative therapy to hormone. PMID:24250433

  15. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    PubMed Central

    Hannon, Patrick R.; Brannick, Katherine E.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2015-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1-100μg/ml) for 24-96 hr to establish the temporal effects of DEHP on the follicle. Following 24-96 hr of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydorxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. PMID:25701202

  16. Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin

    NASA Astrophysics Data System (ADS)

    Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.

    2006-07-01

    Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.

  17. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system.

    PubMed

    Zhang, Mingcai; Duan, Liusheng; Tian, Xiaoli; He, Zhongpei; Li, Jianmin; Wang, Baomin; Li, Zhaohu

    2007-06-01

    This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.

  18. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle

    PubMed Central

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-01-01

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions. PMID:23878361

  19. The phytopathogen Rhodococcus fascians breaks apical dominance and activates axillary meristems by inducing plant genes involved in hormone metabolism.

    PubMed

    Simón-Mateo, Carmen; Depuydt, Stephen; DE Oliveira Manes, Carmem Lara; Cnudde, Filip; Holsters, Marcelle; Goethals, Koen; Vereecke, Danny

    2006-03-01

    SUMMARY Rhodococcus fascians is a Gram-positive bacterium that interacts with many plant species and induces multiple shoots through a combination of activation of dormant axillary meristems and de novo meristem formation. Although phenotypic analysis of the symptoms of infected plants clearly demonstrates a disturbance of the phytohormonal balance and an activation of the cell cycle, the actual mechanism of symptom development and the targets of the bacterial signals are unknown. To elucidate the molecular pathways that are responsive to R. fascians infection, differential display was performed on Nicotiana tabacum as a host. Four differentially expressed genes could be identified that putatively encode a senescence-associated protein, a gibberellin 2-oxidase, a P450 monooxygenase and a proline dehydrogenase. The differential expression of the three latter genes was confirmed on infected Arabidopsis thaliana plants by quantitative reverse transcription polymerase chain reactions, supporting their general function in R. fascians-induced symptom development. The role of these genes in hormone metabolism, especially of gibberellin and abscisic acid, in breaking apical dominance and in activating axillary meristems, which are processes associated with symptom development, is discussed.

  20. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    PubMed

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  1. Acute-onset hypomagnesemia-induced hypocalcemia caused by the refractoriness of bones and renal tubules to parathyroid hormone.

    PubMed

    Yamamoto, Masahiro; Yamaguchi, Toru; Yamauchi, Mika; Yano, Shozo; Sugimoto, Toshitsugu

    2011-11-01

    Chronic hypomagnesemia is closely associated with hypocalcemia, which is caused by impaired parathyroid hormone (PTH) secretion or the refractoriness of bone and renal tubules to PTH. The dominant mechanism of acute-onset, hypomagnesemia-induced hypocalcemia is currently unclear. An 83-year-old man who had undergone chemotherapy with carboplatin for prostate cancer suffered from acute diarrhea and finger paresthesia. Laboratory data confirmed hypocalcemia as well as hypomagnesemia. Urinary calcium levels were not measured. However, the urinary fractional excretion of Mg (FE(Mg)) was elevated. Despite elevated PTH levels, the renal tubular maximal reabsorption rate of phosphate to GFR (TmP/GFR) was elevated, and bone formation and resorption markers were suppressed. A magnesium loading test revealed a clear magnesium deficiency. After administration of magnesium, bone marker levels were increased, and TmP/GFR was reduced to normal levels, despite the persistent elevation of PTH. Serum calcium levels eventually increased to approximately the reference range. Clinical histories and these observations both suggest that when patients with hypomagnesemia-induced hypocalcemia rapidly lose magnesium through complications such as diarrhea, the primary cause may be the refractoriness of bone and renal tubules to PTH, rather than impaired PTH secretion.

  2. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310.

    PubMed

    Costa, A R; Marcelino, H; Gonçalves, I; Quintela, T; Tomás, J; Duarte, A C; Fonseca, A M; Santos, C R A

    2016-09-01

    The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells.

  3. Food restriction-induced augmentation of heroin seeking in female rats: manipulations of ovarian hormones.

    PubMed

    Sedki, Firas; Gardner Gregory, James; Luminare, Adriana; D'Cunha, Tracey M; Shalev, Uri

    2015-10-01

    Food restriction augments heroin seeking in chronically food-restricted male rats under withdrawal, an effect not yet examined in female rats. Importantly, women and female rats possess an increased vulnerability to drugs of abuse, which may be mediated by fluctuations in ovarian hormones. We investigated the role of estradiol and progesterone in augmented heroin seeking in chronically food-restricted female rats, under withdrawal. Female rats self-administered heroin for 10-12 days and were then allowed unrestricted (sated) or restricted access to food (FDR; ∼10 % reduction in body weight) for 14 days. On day 14, rats underwent a heroin-seeking test. Exp. 1: Rats underwent ovariectomy or sham surgery and were treated with a low dose of estradiol (5.0 % in cholesterol; subcutaneous capsule). Exp. 2: Rats underwent ovariectomy and were administered with a high dose of estradiol (0.5 mg/kg; subcutaneous) for 8 days before testing. Exp. 3: Progesterone injections (2.0 mg/kg; subcutaneous) were administered 24 h and 2 h before testing. Food restriction resulted in augmented heroin seeking, compared to sated controls. While ovariectomy had no effect, estradiol replacement attenuated the food restriction effect. Injections of progesterone had no effect on heroin seeking in either the sated or FDR groups. The effect of food restriction on heroin seeking in female rats under withdrawal is as robust as previously found in males. Interestingly, estradiol replacement, but not progesterone, attenuates the food restriction effect in the ovariectomized rats, possibly due to its anorexic properties.

  4. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats.

    PubMed

    Bircan, Burak; Çakır, Murat; Kırbağ, Sevda; Gül, Hüseyin Fatih

    2016-08-01

    Apelin is a peptide hormone defined as a ligand for G-protein clamped receptor (APJ) receptor. It is indicated in the literature both apelin and APJ are synthesized on the peripheral tissues including the renal tissues. Which roles does the apelin play on the renal tissue has not been completely illuminated yet. This study is designed to determine the possible protective effect of apelin-13 on the kidney I/R injury. Adult male Sprague-Dawley rats were used in this study. In the sham group, right kidneys of the animals were dissected. In the I/R group, right kidney was dissected and ischemia of 45 min was performed, and then reperfusion was applied for 3 h. In the treatment groups, three different doses of apelin were injected at the beginning of the ischemia unlike the I/R group. BUN, Cre, Na, K, Cl, total protein and albumin from serum samples were determined and TNF-α, IL-1β, IL-6, TAS and TOS parameters were read with ELISA reader. MDA, SOD, CAT and GSH-Px enzyme activations from renal tissues were measured. In comparison with the sham and I/R groups, while the serum BUN, CRE, CI and TNF-α levels showed an increase in the groups on which the apelin-13 was applied, Na, total protein, albumin, TAS levels decreased. Serum TOS level of other groups showed an increase by comparison with the sham group. Our results showed that apelin-13 applied after I/R increased the antioxidant enzyme activity in a dose dependent manner, prevented the lipid oxidation and improved the renal functions.

  5. Cyclosporin A inhibits thyroid hormone-induced shortening of the tadpole tail through membrane permeability transition.

    PubMed

    Hanada, Hideki; Katsu, Kenjiro; Kanno, Tomoko; Sato, Eisuke F; Kashiwagi, Akihiko; Sasaki, Junzo; Inoue, Masayasu; Utsumi, Kozo

    2003-07-01

    Regression of the tadpole tail through muscule cell apoptosis is one of the most spectacular events in amphibian metamorphosis. Accumulated evidence has shown that mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptosis. Previously we reported that cyclosporin A (CsA) suppressed 3,5,3'-triiodothyronine (T(3))-induced mitochondrial swelling, which was coupled with cytochrome c (Cyt.c) release through MPT [Comp. Biochem. Phys. 130 (2001) 411-418]. To further clarify the mechanism of tadpole metamorphosis, the present study investigates the effect of CsA on T(3) induced tadpole tail shortening. A low concentration of T(3) (5 x 10(-8) M) was found to induce a shortening of stage X Rana rugosa tadpole tails, accompanied by an increase in caspase-3- and -9 like protease activity, as well as an increase in DNA-fragmentation and ladder formation, while CsA was seen to suppress the effects of T(3). The stage X tadpole tail was found to express Bax mRNA and this expression was not affected by T(3) treatment. CsA, on the other hand, proved to have a slightly supressive effection on Bax expression. 20 microM T(3) as well as 50 microM Ca(2+) induced swelling in mitochondria isolated from the liver of R. rugosa resulting in the release of apoptosis related substances, and the released fraction activated cytosolic caspase-3 and -9 in the presence of dATP. This result indicated that Cyt.c might be released from mitochondria by treatment with T(3) through both direct and indirect action of T(3). From these results and other data it was concluded that mitochondrial MPT plays an important role in T(3)-induced apoptosis in the tadpole tail, resulting in tail shortening, and CsA was seen to suppress the effects of T(3).

  6. Hormonal and behavioural abnormalities induced by stress in utero: an animal model for depression.

    PubMed

    Maccari, S; Darnaudery, M; Van Reeth, O

    2001-09-01

    Prenatal stress in rats can exert profound influence on the off spring's development, inducing abnormalities such as increased "anxiety", "emotionality" or "depression-like" behaviours.Prenatal stress has long-term effects on the development of the hypothalamo-pituitary-adrenal(HPA) axis and forebrain cholinergic systems. These long-term neuroendocrinological effects are mediated, at least in part, by stress-induced maternal corticosterone increase during pregnancy and stress-induced maternal anxiety during the postnatal period. We have shown a significant phase advance in the circadian rhythms of corticosterone secretion and locomotor activity in prenatally-stressed (PNS) rats. When subjected to an abrupt shift in the light-dark(LD) cycle, PNS rats resynchronized their activity rhythm more slowly than control rats. In view of the data suggesting abnormalities in the circadian timing system in these animals, we have investigated the effects of prenatal stress on the sleep-wake cycle in adult male rats. PNS rats exhibited various changes in sleep-wake parameters, including a dramatic increase in the amount of paradoxical sleep. Taken together, our results indicate that prenatal stress can induce increased responses to stress and abnormal circadian rhythms and sleep in adult rats.Various clinical observations in humans suggest a possible pathophysiological link between depression and disturbances in circadian rhythmicity. Circadian abnormalities in depression can be related to those found in PNS rats. Interestingly, we have recently shown that the increased immobility in the forced swimming test observed in PNS rats can be corrected by chronic treatment with the antidepressant tianeptine, or with melatonin or S23478, a melatonin agonist. Those results reinforce the idea of the usefulness of PNS rats as an appropriate animal model to study human depression and support a new antidepressant-like effect of melatonin and the melatonin agonist S23478.

  7. Honey and metformin ameliorated diabetes-induced damages in testes of rat; correlation with hormonal changes

    PubMed Central

    Nasrolahi, Ozra; Khaneshi, Fereshteh; Rahmani, Fatemeh; Razi, Mazdak

    2013-01-01

    Background: The global prevalence of diabetes mellitus is on rise. Diabetes-induced oxidative stress has been known to affect liver, pancreas, kidney and reproductive organs pathologically. Honey is a natural product of bee with antioxidant properties. Objective: Current study aimed to analyze the protective effects of Metformin (MF) alone and MF+ natural honey co-administration on diabetes-induced histological derangements in testis of rats. Materials and Methods: Thirty six, mature male Wistar rats were randomly divided into six groups including; control, honey-dosed non-diabetic, diabetes-induced (65 mg/kg, single dose), honey-administrated diabetic (1.0 g/kg/day), Metformin-received diabetic (100 mg/kg/day), Metformin and honey-co-treated diabetic which were followed 40 days. The animals were anesthetized by diethyl ether and the blood samples were collected. The serum levels of testosterone, Insulin, LH and FSH analyzed using antibody enzyme immunoassay method. The testicular tissues were dissected out and underwent to histological analyses. Results: The biochemical analyses revealed that the diabetes resulted in significantly reduced testosterone (p<0.01), LH and FSH (P<0.01, 0.001) levels in serum. Light microscopic analyses showed remarkable (p<0.01) reduction in seminiferous tubules diameter (STD), spermiogenesis index (SPI) and thickness of the epithelium in the diabetic group versus control and co-treated groups. Simultaneous administration of the honey with MF could fairly up-regulate testosterone, LH and FSH levels. The animals in metformin and honey-treated group exhibited with improved tubules atrophy, elevated spermiogenesis index and germinal epithelium thickness. Conclusion: Our data indicated that co-administration of Metformin and honey could inhibit the diabetes-induced damages in testicular tissue. Moreover, the simultaneous administration of metformin and honey up-regulated the diabetes-reduced insulin, LH, FSH and testosterone levels. This

  8. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men

    PubMed Central

    West, Daniel W D; Kujbida, Gregory W; Moore, Daniel R; Atherton, Philip; Burd, Nicholas A; Padzik, Jan P; De Lisio, Michael; Tang, Jason E; Parise, Gianni; Rennie, Michael J; Baker, Steven K; Phillips, Stuart M

    2009-01-01

    We aimed to determine whether exercise-induced elevations in systemic concentration of testosterone, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) enhanced post-exercise myofibrillar protein synthesis (MPS) and phosphorylation of signalling proteins important in regulating mRNA translation. Eight young men (20 ± 1.1 years, BMI = 26 ± 3.5 kg m−2) completed two exercise protocols designed to maintain basal hormone concentrations (low hormone, LH) or elicit increases in endogenous hormones (high hormone, HH). In the LH protocol, participants performed a bout of unilateral resistance exercise with the elbow flexors. The HH protocol consisted of the same elbow flexor exercise with the contralateral arm followed immediately by high-volume leg resistance exercise. Participants consumed 25 g of protein after arm exercise to maximize MPS. Muscle biopsies and blood samples were taken as appropriate. There were no changes in serum testosterone, GH or IGF-1 after the LH protocol, whereas there were marked elevations after HH (testosterone, P < 0.001; GH, P < 0.001; IGF-1, P < 0.05). Exercise stimulated a rise in MPS in the biceps brachii (rest = 0.040 ± 0.007, LH = 0.071 ± 0.008, HH = 0.064 ± 0.014% h−1; P < 0.05) with no effect of elevated hormones (P= 0.72). Phosphorylation of the 70 kDa S6 protein kinase (p70S6K) also increased post-exercise (P < 0.05) with no differences between conditions. We conclude that the transient increases in endogenous purportedly anabolic hormones do not enhance fed-state anabolic signalling or MPS following resistance exercise. Local mechanisms are likely to be of predominant importance for the post-exercise increase in MPS. PMID:19736298

  9. Vesicle-mediated phosphatidylcholine reapposition to the plasma membrane following hormone-induced phospholipase D activation.

    PubMed

    Coletti, D; Silvestroni, L; Naro, F; Molinaro, M; Adamo, S; Palleschi, S

    2000-04-10

    Phospholipase D (PLD) activation involved in signal transduction may lead to the hydrolysis of conspicuous amounts of phosphatidylcholine (PC). This study shows that PLD activation significantly alters the plasma membrane (PM) environment and the membrane exchange dynamics. PC-PLD activation in vasopressin (AVP)-stimulated L6 myogenic cells was accompanied by increased exocytosis and decreased membrane fluidity, as shown by transmission EM and fluorescence spectroscopy of trimethylammonium-diphenyl-hexatriene. AVP-induced exocytosis appeared to be brefeldin A-insensitive. PLD inhibition by Zn(2+) and PC de novo synthesis inhibition by hexadecylphosphocholine abolished AVP-induced vesicle traffic. Upon AVP stimulation, metabolically labeled PC decreased in PM, then transiently increased in microsomes, and returned to the prestimulus level in the PM within 5 min, a phenomenon requiring PC neosynthesis and microtubule functionality. Vesicle traffic with similar features was also observed after endothelin-1-induced PC-PLD activation in rat peritubular myoid cells. These results indicate that, in nonsecretory cells, exocytosis coupled to PC de novo synthesis restores PM-PC, conspicuously consumed during PLD-mediated signal transduction. Copyright 2000 Academic Press.

  10. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  11. Intrathecal urocortin I in the spinal cord as a murine model of stress hormone-induced musculoskeletal and tactile hyperalgesia.

    PubMed

    Larson, Alice A; Nunez, Myra G; Kissel, Casey L; Kovács, Katalin J

    2015-11-01

    Stress is antinociceptive in some models of pain, but enhances musculoskeletal nociceptive responses in mice and muscle pain in patients with fibromyalgia syndrome. To test the hypothesis that urocortins are stress hormones that are sufficient to enhance tactile and musculoskeletal hyperalgesia, von Frey fibre sensitivity and grip force after injection of corticotropin-releasing factor (CRF), urocortin I and urocortin II were measured in mice. Urocortin I (a CRF1 and CRF2 receptor ligand) produced hyperalgesia in both assays when injected intrathecally (i.t.) but not intracerebroventricularly, and only at a large dose when injected peripherally, suggesting a spinal action. Morphine inhibited urocortin I-induced changes in nociceptive responses in a dose-related fashion, confirming that changes in behaviour reflect hyperalgesia rather than weakness. No tolerance developed to the effect of urocortin I (i.t.) when injected repeatedly, consistent with a potential to enhance pain chronically. Tactile hyperalgesia was inhibited by NBI-35965, a CRF1 receptor antagonist, but not astressin 2B, a CRF2 receptor antagonist. However, while urocortin I-induced decreases in grip force were not observed when co-administered i.t. with either NBI-35965 or astressin 2B, they were even more sensitive to inhibition by astressin, a non-selective CRF receptor antagonist. Together these data indicate that urocortin I acts at CRF receptors in the mouse spinal cord to elicit a reproducible and persistent tactile (von Frey) and musculoskeletal (grip force) hyperalgesia. Urocortin I-induced hyperalgesia may serve as a screen for drugs that alleviate painful conditions that are exacerbated by stress.

  12. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma).

    PubMed

    Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K

    2008-02-11

    Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by > or = two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by > or = two-fold in the 5 and 50 nM T4 treatments, respectively. We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.

  13. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma)

    PubMed Central

    Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K

    2008-01-01

    Background Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Results Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively. Conclusion We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis. PMID:18267027

  14. Role of progestin-induced mammary-derived growth hormone in the pathogenesis of cystic endometrial hyperplasia in the bitch.

    PubMed

    Bhatti, Sofie F M; Rao, Nagesha A S; Okkens, Auke C; Mol, Jan A; Duchateau, Luc; Ducatelle, Richard; van den Ingh, Ted S G A M; Tshamala, Mulenda; Van Ham, Luc M L; Coryn, Marc; Rijnberk, Ad; Kooistra, Hans S

    2007-10-01

    Endogenous progesterone and synthetic progestins may induce hypersecretion of growth hormone (GH) of mammary origin, hyperplastic ductular changes in the mammary gland, and the development of cystic endometrial hyperplasia (CEH) in dogs. It was investigated whether progestin-induced mammary GH plays a role in the pathogenesis of CEH in the bitch. During 1 year, bitches with surgically excised mammary glands and healthy control bitches received medroxyprogesterone acetate (MPA). Before and after MPA treatment, uterine and mammary tissues were collected for histological, immunohistochemical, and RT-PCR examination. After MPA administration, the mammary tissue in the control dogs had differentiated into lobulo-alveolar structures and CEH was present in all uteri of both dog groups. In the MPA-exposed mammary tissue of the control dogs, GH could only be demonstrated immunohistochemically in proliferating epithelium. After treatment with MPA the dogs of both groups had immunohistochemically demonstrable GH in the cytoplasm of hyperplastic glandular uterine epithelial cells. RT-PCR analysis of the mammary gland tissue after MPA administration demonstrated a significant higher GH gene, and lower GHR gene expression than before treatment. In the uterus, the expression of the gene encoding for GH was significantly increased in the mastectomized dogs, whereas in the control dogs the expression of the gene encoding for insulin-like growth factor-I had significantly increased with MPA administration. MPA treatment significantly down regulated PR gene expression in the uterus in both dog groups. These results indicate that progestin-induced GH of mammary origin is not an essential component in the development of CEH in the bitch.

  15. Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development

    SciTech Connect

    Ellis-Hutchings, Robert G.; Cherr, Gary N.; Hanna, Lynn A.; Keen, Carl L. . E-mail: clkeen@ucdavis.edu

    2006-09-01

    In experimental animals fed standard laboratory diets, penta-BDE mixtures can decrease circulating thyroid hormone and liver vitamin A concentrations. A substantial number of pregnant women and their children have marginal vitamin A status, potentially increasing their risk of adverse effects to penta-BDE exposure. The current study investigated the effects of maternal gestational and lactational penta-BDE exposure on thyroid hormone and vitamin A homeostasis in rats of sufficient vitamin A (VAS) or marginal vitamin A (VAM) status and their offspring. Dams were administered daily oral doses of 18 mg/kg DE-71 (a penta-BDE mixture) or a corn oil vehicle from gestation day 6 through lactation day (LD) 18. Thyroid hormone and vitamin A homeostasis were assessed in plasma and tissues of LD 19 dams and postnatal day (PND) 12, 18, and 31 pups. DE-71 exposure induced hepatomegaly in VAS and VAM pups at all timepoints and increased testes weights at PND 31. While liver vitamin A concentrations were low in DE-71 treated dams and pups, plasma retinol concentrations and plasma retinol binding protein levels were only low in VAM animals exposed to DE-71. DE-71 exposure lowered plasma thyroxine concentrations in VAS and VAM dams and pups. Plasma thyroid stimulating hormone concentrations were high in VAM dams exposed to DE-71, suggesting that marginal vitamin A status enhances the susceptibility to thyroid hormone axis disruption by DE-71. These results support the concept that marginal vitamin A status in pregnant women may increase the risk for PBDE-induced disruptions in vitamin A and thyroid hormone homeostasis.

  16. Natural Variation in Stress Hormones, Comparisons Across Matrices, and Impacts Resulting from Induced Stress in the Bottlenose Dolphin.

    PubMed

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E; Kellar, Nicholas M; Cockrem, John; Romano, Tracy; Booth, Rebecca K; Wasser, Samuel K

    2016-01-01

    Knowledge regarding stress hormones and how they vary in response to seasonality, gender, age, and reproductive status for any marine mammal is limited. Furthermore, stress hormones may be measured in more than one matrix (e.g., feces, blood, blubber), but the relationships between levels of a given hormone across these matrices are unknown, further complicating the interpretations of hormones measured in samples collected from wild animals. A study is underway to address these issues in a population of bottlenose dolphins trained for voluntary participation in sample collections from different matrices and across season and time of day.

  17. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat.

    PubMed Central

    Bertherat, J; Timsit, J; Bluet-Pajot, M T; Mercadier, J J; Gourdji, D; Kordon, C; Epelbaum, J

    1993-01-01

    Effects of growth hormone (GH) hypersecretion on somatostatin-(SRIH) and GH-releasing hormone (GHRH) were studied by in situ hybridization and receptor autoradiography in rats bearing a GH-secreting tumor. 6 and 18 wk after tumor induction, animals displayed a sharp increase in body weight and GH plasma levels; pituitary GH content was reduced by 47 and 55%, while that of prolactin and thyrotropin was unchanged. At 18 wk, hypothalamic GHRH and SRIH levels had fallen by 84 and 52%, respectively. In parallel, the density of GHRH mRNA per arcuate neuron was reduced by 52 and 50% at 6 and 18 wk, while SRIH mRNA levels increased by 71 and 83% in the periventricular nucleus (with no alteration in the hilus of the dentate gyrus). The numbers of GHRH- and SRIH-synthetizing neurons in the hypothalamus were not altered in GH-hypersecreting rats. Resection of the tumor restored hypothalamic GHRH and SRIH mRNAs to control levels. GH hypersecretion did not modify 125I-SRIH binding sites on GHRH neurons. Thus, chronic GH hypersecretion affects the expression of the genes encoding for GHRH and SRIH. The effect is long lasting, not desensitizable and reversible. Images PMID:8097209

  18. Regulation of hormone-induced Ca sup 2+ mobilization in the human platelets

    SciTech Connect

    Crouch, M.F.; Lapetina, E.G. )

    1990-03-01

    {alpha}-Thrombin, {gamma}-thrombin, and platelet-activating factor each stimulated the mobilization of intracellular Ca{sup 2+} stores in aspirin-treated human platelets. This was followed by desensitization of the receptors, as shown by the return of the Ca{sup 2+} level to basal values and by the fact that a subsequent addition of a second different agonist, but not the same agonist, could again elicit a response. Epinephrine, acting on {alpha}{sub 2}-adrenergic receptors, was by itself ineffective at mobilizing Ca{sup 2+} stores. However, when added after the thrombin-induced response, epinephrine could evoke a considerable release of Ca{sup 2+} from cellular stores. This appeared to be due to epinephrine recoupling thrombin receptors to phospholipase C. In support of this, epinephrine was able to induce the formation of inositol triphosphate when added after the response to thrombin had also become desensitized. Alone, epinephrine was without effect. Pre-activation of protein kinase C with the phorbol ester abolished these effects of epinephrine, suggesting that epinephrine was working by activating a protein which could be inactivated by phosphorylation. The current work is to characterize this protein that may be a member of the G{sub i}, GTP-binding protein family.

  19. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin.

    PubMed

    Yau, Suk Yu; Li, Ang; Hoo, Ruby L C; Ching, Yick Pang; Christie, Brian R; Lee, Tatia M C; Xu, Aimin; So, Kwok-Fai

    2014-11-04

    Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression.

  20. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin

    PubMed Central

    Yau, Suk Yu; Li, Ang; Hoo, Ruby L. C.; Ching, Yick Pang; Christie, Brian R.; Lee, Tatia M. C.; Xu, Aimin; So, Kwok-Fai

    2014-01-01

    Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood–brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression. PMID:25331877

  1. Induced Disruption of the Iron-Regulatory Hormone Hepcidin Inhibits Acute Inflammatory Hypoferraemia

    PubMed Central

    Armitage, Andrew E.; Lim, Pei Jin; Frost, Joe N.; Pasricha, Sant-Rayn; Soilleux, Elizabeth J.; Evans, Emma; Morovat, Alireza; Santos, Ana; Diaz, Rebeca; Biggs, Daniel; Davies, Benjamin; Gileadi, Uzi; Robbins, Peter A.; Lakhal-Littleton, Samira; Drakesmith, Hal

    2016-01-01

    Withdrawal of iron from serum (hypoferraemia) is a conserved innate immune antimicrobial strategy that can withhold this critical nutrient from invading pathogens, impairing their growth. Hepcidin (Hamp1) is the master regulator of iron and its expression is induced by inflammation. Mice lacking Hamp1 from birth rapidly accumulate iron and are susceptible to infection by blood-dwelling siderophilic bacteria such as Vibrio vulnificus. In order to study the innate immune role of hepcidin against a background of normal iron status, we developed a transgenic mouse model of tamoxifen-sensitive conditional Hamp1 deletion (termed iHamp1-KO mice). These mice attain adulthood with an iron status indistinguishable from littermate controls. Hamp1 disruption and the consequent decline of serum hepcidin concentrations occurred within hours of a single tamoxifen dose. We found that the TLR ligands LPS and Pam3CSK4 and heat-killed Brucella abortus caused an equivalent induction of inflammation in control and iHamp1-KO mice. Pam3CSK4 and B. abortus only caused a drop in serum iron in control mice, while hypoferraemia due to LPS was evident but substantially blunted in iHamp1-KO mice. Our results characterise a powerful new model of rapidly inducible hepcidin disruption, and demonstrate the critical contribution of hepcidin to the hypoferraemia of inflammation. PMID:27423740

  2. Total glycosides of Paeony shows Neuroprotective effects against Semen Strychni-induced neurotoxicity by recovering secretion of hormones and improving brain energy metabolism.

    PubMed

    Hou, Chenzhi; Zhang, Ruowen; Zhang, Kexia; Chen, Xiaohui

    2017-08-29

    In this study, we investigated the protective effect of total glycosides of paeony against Semen Strychni-induced neurotoxicity and discussed some probably mechanisms. Levels of estrone, estradiol, estriol and growth hormone in male rats' serum were determined by ELISA, levels of ATP and substances associated with energy metabolism in rats' brain were determined by HPLC and levels of progesterone was determined by a UPLC-MS/MS method. The results showed that neurotoxicity induced by Semen Strychni could cause a significant decrease (p < 0.05, compare to the blank group) in secretion of estrogens and GH and disorder brain energy metabolism at the same time. While, rats with total glycosides of paeony pre-protection (orally administrated with total glycosides of paeony for 15 days before administrating Semen Strychni extract) showed a much better condition in the secretion of hormones and brain energy metabolism, and showed no significant changes in most of those associated substances when comparing to the blank group. Our study indicated that total glycosides of paeony have neuroprotective effects on Semen Strychni-induced neurotoxicity. It could recover the disordered hormone secretion and improve the brain energy metabolism. Total glycosides of paeony is potential to be further used in clinic to protect against neurotoxicity induced by other reasons.

  3. Growth Hormone Improves Growth Retardation Induced by Rapamycin without Blocking Its Antiproliferative and Antiangiogenic Effects on Rat Growth Plate

    PubMed Central

    Álvarez-García, Óscar; García-López, Enrique; Loredo, Vanessa; Gil-Peña, Helena; Mejía-Gaviria, Natalia; Rodríguez-Suárez, Julián; Ordóñez, Flor Á.; Santos, Fernando

    2012-01-01

    Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis. PMID:22493717

  4. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  5. Growth hormone improves growth retardation induced by rapamycin without blocking its antiproliferative and antiangiogenic effects on rat growth plate.

    PubMed

    Álvarez-García, Óscar; García-López, Enrique; Loredo, Vanessa; Gil-Peña, Helena; Mejía-Gaviria, Natalia; Rodríguez-Suárez, Julián; Ordóñez, Flor Á; Santos, Fernando

    2012-01-01

    Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis.

  6. A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides.

    PubMed

    Thekkiniath, Jose C; Zabet-Moghaddam, Masoud; San Francisco, Susan K; San Francisco, Michael J

    2013-06-01

    Batrachochytrium dendrobatidis (B. dendrobatidis), a chytrid fungus, is one of the major contributors to the global amphibian decline. The fungus infects both tadpoles and adult amphibians. Tadpoles are infected in their keratinized mouthparts, and infected adults exhibit hyperkeratosis and loss of righting reflex. Infections of adults may result in death from cardiac arrest in susceptible species. Thyroid hormone plays a key role in amphibian metamorphosis. The occurrence of B. dendrobatidis in tadpoles during metamorphosis may result in exposure of the fungus to host morphogens including TH. This exposure may induce gene expression in the fungus contributing to invasion and colonization of the host. Here, we demonstrate movement of fungal zoospores toward TH. Additionally, expression of a subtilisin-like serine protease is up-regulated in B. dendrobatidis cells exposed to TH. A gene encoding this protease was cloned from B. dendrobatidis and expressed in Escherichia coli. The protein was partially purified and characterized. The similarity between subtilases of human dermatophytes and the B. dendrobatidis subtilisin-like serine protease suggests the importance of this enzyme in B. dendrobatidis pathogenicity. Cleavage of frog skin antimicrobial peptides (AMPs) by this B. dendrobatidis subtilisin-like serine protease suggests a role for this enzyme in fungal survival and colonization. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations.

    PubMed

    Gaspers, Lawrence D; Bartlett, Paula J; Politi, Antonio; Burnett, Paul; Metzger, Walson; Johnston, Jane; Joseph, Suresh K; Höfer, Thomas; Thomas, Andrew P

    2014-11-20

    Receptor-mediated oscillations in cytosolic Ca(2+) concentration ([Ca(2+)]i) could originate either directly from an autonomous Ca(2+) feedback oscillator at the inositol 1,4,5-trisphosphate (IP3) receptor or as a secondary consequence of IP3 oscillations driven by Ca(2+) feedback on IP3 metabolism. It is challenging to discriminate these alternatives, because IP3 fluctuations could drive Ca(2+) oscillations or could just be a secondary response to the [Ca(2+)]i spikes. To investigate this problem, we constructed a recombinant IP3 buffer using type-I IP3 receptor ligand-binding domain fused to GFP (GFP-LBD), which buffers IP3 in the physiological range. This IP3 buffer slows hormone-induced [IP3] dynamics without changing steady-state [IP3]. GFP-LBD perturbed [Ca(2+)]i oscillations in a dose-dependent manner: it decreased both the rate of [Ca(2+)]i rise and the speed of Ca(2+) wave propagation and, at high levels, abolished [Ca(2+)]i oscillations completely. These data, together with computational modeling, demonstrate that IP3 dynamics play a fundamental role in generating [Ca(2+)]i oscillations and waves.

  8. Hormonal implication in Bracon-venom-induced paralysation of the host larva of Corcyra cephalonica (Lepidoptera: Pyralidae).

    PubMed

    Chanda, Sudipta; Panda, R N; Chakravorty, Sanjib

    2002-08-01

    To facilitate oviposition, the ectoparasite Bracon hebetor, injects its venom, a paralysing toxin, to the host Corcyra larva that ultimately dies without showing any metamorphic change, even if allowed to remain unparasitised. At the initial stage of venom injection the rate of heartbeat of the host becomes abruptly high. This has been explained from the synergistic action of the substances of poison gland and calyx. The paralysed larvae subsequent to envenomization die within 240 hr. Application of hydroprene as single dose or with a booster dose after paralysation mostly increases the survival period considering heart beat as the index. The predicted value of survival period (714.4 hr), determined from a fitted equation obtained from the relationship between heart beat and survival period, indicates that a 100 microg treatment/larva with a booster dose of 50 microg/larva most effectively lengthens the period. It is concluded that the venom-induced physiological dysfunction of the immobilised larvae, as indicated in the rate of heart beat and survival period, though can be recovered to some extent after the application of juvenoids, there cannot occur any metamorphic change of these larvae. The parasitoid, therefore, succeeds in completing its development and metamorphosis by arresting the development of its host through an indirect hormonal suppression. The findings indicate an endocrine implication in host-parasite relationship in insect.

  9. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation.

  10. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  11. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells.

    PubMed

    Maltese, Giuseppe; Psefteli, Paraskevi-Maria; Rizzo, Benedetta; Srivastava, Salil; Gnudi, Luigi; Mann, Giovanni E; Siow, Richard C M

    2017-03-01

    Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The anti-ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO-1) and peroxiredoxin-1 (Prx-1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO-1 and Prx-1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII-mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2-mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.

  12. KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats.

    PubMed

    Helena, Cleyde V; Toporikova, Natalia; Kalil, Bruna; Stathopoulos, Andrea M; Pogrebna, Veronika V; Carolino, Ruither O; Anselmo-Franci, Janete A; Bertram, Richard

    2015-11-01

    Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.

  13. KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats

    PubMed Central

    Helena, Cleyde V.; Toporikova, Natalia; Kalil, Bruna; Stathopoulos, Andrea M.; Pogrebna, Veronika V.; Carolino, Ruither O.; Anselmo-Franci, Janete A.

    2015-01-01

    Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges. PMID:26302111

  14. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition.

    PubMed

    Fedorova, Larisa V; Raju, Vanamala; El-Okdi, Nasser; Shidyak, Amjad; Kennedy, David J; Vetteth, Sandeep; Giovannucci, David R; Bagrov, Alexei Y; Fedorova, Olga V; Shapiro, Joseph I; Malhotra, Deepak

    2009-04-01

    We recently demonstrated that the cardiotonic steroid marinobufagenin (MBG) induced fibrosis in rat hearts through direct stimulation of collagen I secretion by cardiac fibroblasts. This stimulation was also responsible for the cardiac fibrosis seen in experimental renal failure. In this study, the effect of MBG on the development of renal fibrosis in rats was investigated. Four weeks of MBG infusion triggered mild periglomerular and peritubular fibrosis in the cortex and the appearance of fibrotic scars in the corticomedullary junction of the kidney. MBG also significantly increased the protein levels and nuclear localization of the transcription factor Snail in the tubular epithelia. It is known that activation of Snail is associated with epithelial-to-mesenchymal transition (EMT) during renal fibrosis. To examine whether MBG alone can trigger EMT, we used the porcine proximal tubular cell line LLC-PK1. MBG (100 nM) caused LLC-PK1 cells grown to confluence to acquire a fibroblast-like shape and have an invasive motility. The expressions of the mesenchymal proteins collagen I, fibronectin, and vimentin were increased twofold. However, the total level of E-cadherin remained unchanged. These alterations in LLC-PK1 cells in the presence of MBG were accompanied by elevated expression and nuclear translocation of Snail. During the time course of EMT, MBG did not have measurable inhibitory effects on the ion pumping activity of its natural ligand, Na(+)-K(+)-ATPase. Our data suggest that the MBG may be an important factor in inducing EMT and, through this mechanism, elevated levels of MBG in chronic renal failure may play a role in the progressive fibrosis.

  15. Induction of T(4) UDP-GT activity, serum thyroid stimulating hormone, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers.

    PubMed

    Hood, Alan; Allen, Marcia L; Liu, YaPing; Liu, Jie; Klaassen, Curtis D

    2003-04-01

    The microsomal enzyme inducers phenobarbital (PB), pregnenolone-16 alpha-carbonitrile (PCN), 3-methylcholanthrene (3MC), and Aroclor 1254 (PCB) are known to induce thyroxine (T(4)) glucuronidation and reduce serum T(4) concentrations in rats. Also, microsomal enzyme inducers that increase serum TSH (i.e., PB and PCN) also increase thyroid follicular cell proliferation in rats. Little is known about the effects of these microsomal enzyme inducers on T(4) glucuronidation, serum thyroid hormone concentrations, serum TSH, and thyroid gland growth in mice. Therefore, we tested the hypothesis that microsomal enzyme inducers induce T(4) UDP-GT activity, resulting in reduced serum T(4) concentrations, as well as increased serum TSH and thyroid follicular cell proliferation in mice. B6C3F male mice were fed a control diet or a diet containing PB (600, 1200, 1800, or 2400 ppm), PCN (250, 500, 1000, or 2000 ppm), 3MC (62.5, 125, 250, or 500 ppm), or PCB (10, 30, 100, or 300 ppm) for 21 days. All four inducers increased liver weight and hepatic microsomal UDP-GT activity toward chloramphenicol, alpha-naphthol, and T(4). PB and PCB decreased serum total T(4), but PCN and 3MC did not. Serum thyroid stimulating hormone was markedly increased by PCN and 3MC treatments, and slightly increased by PB and PCB treatments. All four microsomal enzyme inducers dramatically increased thyroid follicular cell proliferation in mice. The findings suggest that PB, PCN, 3MC, and PCB disrupt thyroid hormone homeostasis in mice.

  16. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  17. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyro