Sample records for hormone function binding

  1. Follicle stimulating hormone, its novel association with sex hormone binding globulin in men and postmenopausal women.

    PubMed

    Wang, Ningjian; Zhang, Kun; Han, Bing; Li, Qin; Chen, Yi; Zhu, Chunfang; Chen, Yingchao; Xia, Fangzhen; Zhai, Hualing; Jiang, Boren; Shen, Zhoujun; Lu, Yingli

    2017-06-01

    Follicle stimulating hormone plays direct roles in a variety of nongonadal tissues and sex hormone binding globulin is becoming the convergence of the crosstalk among metabolic diseases. However, no studies have explored the association between follicle stimulating hormone and sex hormone binding globulin. We aimed to study this association among men and women. SPECT-China is a population-based study conducted since 2014. This study included 4206 men and 2842 postmenopausal women. Collected serum was assayed for gonadotropins, sex hormone binding globulin, sex hormones etc. Regression analyses were performed to assess the relationship between sex hormone binding globulin and follicle stimulating hormone and other variables including metabolic factors, thyroid function and sex hormones. Treatment with follicle stimulating hormone at different concentrations of 0, 5, 50 and 100 IU/L for 24 h was performed in HepG2 cells. In Spearman correlation, sex hormone binding globulin was significantly correlated with FSH, triglycerides, thyroxins, body mass index and blood pressure in men and postmenopausal women (all P < 0.05). In regression analyses, follicle stimulating hormone was a significant predictor of sex hormone binding globulin in men and postmenopausal women (P < 0.05), independent of above variables. Follicle stimulating hormone induced sex hormone binding globulin expression in a dose-dependent fashion in HepG2 cells. Serum follicle stimulating hormone levels were positively associated with circulating sex hormone binding globulin levels in men and postmenopausal women. This association is independent of age, insulin resistance, hepatic function, lipid profile, thyroid function, adiposity, blood pressure, and endogenous sex hormones.

  2. [Effect of aceclofenac on thyroid hormone binding and thyroid function].

    PubMed

    Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F

    2000-01-01

    Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.

  3. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    PubMed

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  4. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  5. Krüppel-like factors are effectors of nuclear receptor signaling

    PubMed Central

    Knoedler, Joseph R.; Denver, Robert J.

    2015-01-01

    Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391

  6. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo

    PubMed Central

    Riggs, Daniel L.; Roberts, Patricia J.; Chirillo, Samantha C.; Cheung-Flynn, Joyce; Prapapanich, Viravan; Ratajczak, Thomas; Gaber, Richard; Picard, Didier; Smith, David F.

    2003-01-01

    Hsp90 is required for the normal activity of steroid receptors, and in steroid receptor complexes it is typically bound to one of the immunophilin-related co-chaperones: the peptidylprolyl isomerases FKBP51, FKBP52 or CyP40, or the protein phosphatase PP5. The physiological roles of the immunophilins in regulating steroid receptor function have not been well defined, and so we examined in vivo the influences of immunophilins on hormone-dependent gene activation in the Saccharomyces cerevisiae model for glucocorticoid receptor (GR) function. FKBP52 selectively potentiates hormone-dependent reporter gene activation by as much as 20-fold at limiting hormone concentrations, and this potentiation is readily blocked by co-expression of the closely related FKBP51. The mechanism for potentiation is an increase in GR hormone-binding affinity that requires both the Hsp90-binding ability and the prolyl isomerase activity of FKBP52. PMID:12606580

  7. A New Family of Nuclear Receptor Coregulators That Integrate Nuclear Receptor Signaling through CREB-Binding Protein

    PubMed Central

    Mahajan, Muktar A.; Samuels, Herbert H.

    2000-01-01

    We describe the cloning and characterization of a new family of nuclear receptor coregulators (NRCs) which modulate the function of nuclear hormone receptors in a ligand-dependent manner. NRCs are expressed as alternatively spliced isoforms which may exhibit different intrinsic activities and receptor specificities. The NRCs are organized into several modular structures and contain a single functional LXXLL motif which associates with members of the steroid hormone and thyroid hormone/retinoid receptor subfamilies with high affinity. Human NRC (hNRC) harbors a potent N-terminal activation domain (AD1), which is as active as the herpesvirus VP16 activation domain, and a second activation domain (AD2) which overlaps with the receptor-interacting LXXLL region. The C-terminal region of hNRC appears to function as an inhibitory domain which influences the overall transcriptional activity of the protein. Our results suggest that NRC binds to liganded receptors as a dimer and this association leads to a structural change in NRC resulting in activation. hNRC binds CREB-binding protein (CBP) with high affinity in vivo, suggesting that hNRC may be an important functional component of a CBP complex involved in mediating the transcriptional effects of nuclear hormone receptors. PMID:10866662

  8. Persistent Graves' hyperthyroidism despite rapid negative conversion of thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi

    2017-02-06

    Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating hormone receptor antibody, which is bioactive but less reactive on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, or the effect of reduced levels of circulating thyroid-stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.

  9. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone.

    PubMed

    Granata, Riccarda; Isgaard, Jörgen; Alloatti, Giuseppe; Ghigo, Ezio

    2011-05-01

    In 1976, small peptide growth hormone secretagogues (GHSs) were discovered and found to promote growth hormone (GH) release from the pituitary. The GHS receptor (GHS-R) was subsequently cloned, and its endogenous ligand ghrelin was later isolated from the stomach. Ghrelin is a 28-amino acid peptide, whose acylation is essential for binding to GHS-R type 1a and for the endocrine functions, including stimulation of GH secretion and subsequent food intake. Unacylated ghrelin, the other ghrelin form, although devoid of GHS-R binding is an active peptide, sharing many peripheral effects with acylated ghrelin (AG). The ghrelin system is broadly expressed in myocardial tissues, where it exerts different functions. Indeed, ghrelin inhibits cardiomyocyte and endothelial cell apoptosis, and improves left ventricular (LV) function during ischemia-reperfusion (I/R) injury. In rats with heart failure (HF), ghrelin improves LV dysfunction and attenuates the development of cardiac cachexia. Similarly, ghrelin exerts vasodilatory effects in humans, improves cardiac function and decreases systemic vascular resistance in patients with chronic HF. Obestatin is a recently identified ghrelin gene peptide. The physiological role of obestatin and its binding to the putative GPR39 receptor are still unclear, although protective effects have been demonstrated in the pancreas and heart. Similarly to AG, the hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates GH release from the pituitary, through binding to the GHRH-receptor. Besides its proliferative effects in different cell types, at the cardiovascular level GHRH inhibits cardiomyocyte apoptosis, and reduces infarct size in both isolated rat heart after I/R and in vivo after myocardial infarction. Therefore, both ghrelin and GHRH exert cardioprotective effects, which make them candidate targets for therapeutic intervention in cardiovascular dysfunctions.

  10. Amino acid substitutions in the hormone-binding domain of the human androgen receptor alter the stability of the hormone receptor complex.

    PubMed Central

    Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J

    1994-01-01

    We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841

  11. The action of stress hormones on the structure and function of erythrocyte membrane.

    PubMed

    Mokrushnikov, Pavel V; Panin, Lev E; Zaitsev, Boris N

    2015-07-01

    The action of a mixture of hormones (cortisol and adrenaline) on erythrocyte membrane during their binding was investigated. Changes in the membrane structure were elucidated by atomic force microscopy; microviscosity of the lipid bilayer and changes in the activity of Na(+),K(+)-ATPase at different concentrations of the hormones in erythrocyte suspension were estimated by the fluorescence method. Cortisol and adrenaline were shown to compete for the binding sites. A hormone that managed to bind nonspecifically to the membrane hindered the binding of another hormone. In a mixture of these hormones, cortisol won a competition for the binding sites; therewith, microviscosity of the membranes increased by 25%, which corresponds to a change in microviscosity produced by the action of cortisol alone. The competitive relationships affected also the Na(+),K(+)-ATPase activity, which was indicated by appearance of the second maximum of enzyme activity. It is assumed that an increase in microviscosity of erythrocyte membrane first raises the Na(+),K(+)-ATPase activity due to a growth of the maximum energy of membrane phonons, and then decreases the activity due to hindering of conformational transitions in the enzyme molecule.

  12. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction.

    PubMed

    Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M

    2005-06-01

    The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.

  13. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  14. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai

    2012-02-21

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology ofmore » the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.« less

  15. Long-Term Effects of a Randomised Controlled Trial Comparing High Protein or High Carbohydrate Weight Loss Diets on Testosterone, SHBG, Erectile and Urinary Function in Overweight and Obese Men

    PubMed Central

    Moran, Lisa J.; Brinkworth, Grant D.; Martin, Sean; Wycherley, Thomas P.; Stuckey, Bronwyn; Lutze, Janna; Clifton, Peter M.; Wittert, Gary A.; Noakes, Manny

    2016-01-01

    Introduction Obesity is associated with reduced testosterone and worsened erectile and sexual function in men. Weight loss improves these outcomes. High protein diets potentially offer anthropometric and metabolic benefits, but their effects on reproductive and sexual outcomes is not known. Aim To examine the long-term effects of weight loss with a higher protein or carbohydrate diet on testosterone, sex hormone binding globulin, erectile dysfunction, lower urinary tract symptoms and sexual desire in overweight and obese men. Methods One-hundred and eighteen overweight or obese men (body mass index 27–40 kg/m2, age 20–65 years) were randomly assigned to an energy restricted higher protein low fat (35% protein, 40% carbohydrate, 25% fat; n = 57) or higher carbohydrate low fat diet (17% protein, 58% carbohydrate, 25% fat, n = 61) diet for 52 weeks (12 weeks weight loss, 40 weeks weight maintenance). Primary outcomes were serum total testosterone, sex hormone binding globulin and calculated free testosterone. Secondary outcomes were erectile function as assessed by the International Index of Erectile Function (IIEF) (total score and erectile function domain), lower urinary tract symptoms and sexual desire. Results Total testosterone, sex hormone binding globulin and free testosterone increased (P<0.001) and the total IIEF increased (P = 0.017) with no differences between diets (P≥0.244). Increases in testosterone (P = 0.037) and sex hormone binding globulin (P<0.001) and improvements in the total IIEF (P = 0.041) occurred from weeks 0–12 with a further increase in testosterone from week 12–52 (P = 0.002). Increases in free testosterone occurred from week 12–52 (p = 0.002). The IIEF erectile functon domain, lower urinary tract symptoms and sexual desire did not change in either group (P≥0.126). Conclusions In overweight and obese men, weight loss with both high protein and carbohydrate diets improve testosterone, sex hormone binding globulin and overall sexual function. Trial Registration Anzctr.org.au ACTRN12606000002583 PMID:27584019

  16. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    PubMed

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  17. NRIP enhances HPV gene expression via interaction with either GR or E2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Szu-Wei; Lu, Pei-Yu; Guo, Jih-Huong

    We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, inmore » a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.« less

  18. Handedness, functional cerebral hemispheric lateralization, and cognition in male-to-female transsexuals receiving cross-sex hormone treatment.

    PubMed

    Wisniewski, Amy B; Prendeville, Mary T; Dobs, Adrian S

    2005-04-01

    This study examined the impact of sex hormones on functional cerebral hemispheric lateralization and cognition in a group of male-to-female transsexuals receiving cross-sex hormone therapy compared to eugonadal men with a male gender identity. Cerebral lateralization was measured with a handedness questionnaire and a visual-split-field paradigm and cognitive tests sensitive to sex hormone exposure (identical pictures, 3-D mental rotation, building memory) were also administered. Endocrine measures on the day of participation for transsexual and control subjects included total testosterone, free testosterone, estradiol, gonadotropins, and sex hormone binding globulin concentrations. Compared to controls, male-to-female transsexuals had elevated estradiol and sex hormone binding globulin concentrations and suppressed testosterone concentrations. Transsexual subjects showed a trend toward less exclusive right-handedness than controls. No group differences were observed on the visual-split-field or cognitive tasks. No direct associations were observed between endocrine measures and the laterality measures and cognitive performance. Previous observations of female-typical patterns in cerebral lateralization and cognitive performance in male-to-female transsexuals were not found in the current study.

  19. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements.

    PubMed

    Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R

    1992-04-01

    Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.

  20. The effect of thyroid hormone and a long-acting somatostatin analogue on TtT-97 murine thyrotropic tumors.

    PubMed

    Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C

    2000-07-01

    Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.

  1. Post-translational modifications of transthyretin affect the triiodonine-binding potential

    PubMed Central

    Henze, Andrea; Homann, Thomas; Serteser, Mustafa; Can, Ozge; Sezgin, Ozlem; Coskun, Abdurrahman; Unsal, Ibrahim; Schweigert, Florian J; Ozpinar, Aysel

    2015-01-01

    Transthyretin (TTR) is a visceral protein, which facilitates the transport of thyroid hormones in blood and cerebrospinal fluid. The homotetrameric structure of TTR enables the simultaneous binding of two thyroid hormones per molecule. Each TTR subunit provides a single cysteine residue (Cys10), which is frequently affected by oxidative post-translational modifications. As Cys10 is part of the thyroid hormone-binding channel within the TTR molecule, PTM of Cys10 may influence the binding of thyroid hormones. Therefore, we analysed the effects of Cys10 modification with sulphonic acid, cysteine, cysteinylglycine and glutathione on binding of triiodothyronine (T3) by molecular modelling. Furthermore, we determined the PTM pattern of TTR in serum of patients with thyroid disease by immunoprecipitation and mass spectrometry to evaluate this association in vivo. The in silico assays demonstrated that oxidative PTM of TTR resulted in substantial reorganization of the intramolecular interactions and also affected the binding of T3 in a chemotype- and site-specific manner with S-glutathionylation as the most potent modulator of T3 binding. These findings were supported by the in vivo results, which indicated thyroid function-specific patterns of TTR with a substantial decrease in S-sulphonated, S-cysteinylglycinated and S-glutathionylated TTR in hypothyroid patients. In conclusion, this study provides evidence that oxidative modifications of Cys10 seem to affect binding of T3 to TTR probably because of the introduction of a sterical hindrance and induction of conformational changes. As oxidative modifications can be dynamically regulated, this may represent a sensitive mechanism to adjust thyroid hormone availability. PMID:25311081

  2. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute to better understanding of the evolution of the TH system. PMID:26710071

  3. Ligand binding pocket function of drosophila USP is necessary for metamorphosis

    USDA-ARS?s Scientific Manuscript database

    The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...

  4. Hsp90 can Accommodate the Simultaneous Binding of the FKBP52 and HOP Proteins

    PubMed Central

    Hildenbrand, Zacariah L.; Molugu, Sudheer K.; Herrera, Nadia; Ramirez, Citlally; Xiao, Chuan; Bernal, Ricardo A.

    2011-01-01

    The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp902-FKBP521- HOP2 and Hsp902-FKBP521-p232-HOP2 complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor. PMID:21378414

  5. Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary Gland

    PubMed Central

    Labrie, Fernand; Barden, Nicholas; Poirier, Guy; De Lean, Andre

    1972-01-01

    An assay for the binding of [3H]thyrotropin-releasing hormone ([3H]TRH) is described. Plasma membranes isolated from bovine anterior pituitary gland bind about 600 femtomoles of this hormone per mg of protein, as compared to 15 femtomoles per mg of protein in the total adenohypophyseal homogenate (40-fold purification). The equilibrium constant of membrane receptor-[3H]TRH binding at 0°C is 4.3 × 107 L·M-1, or a half-maximal binding of this hormone at 23 nM. The binding is time-dependent; addition of unlabeled hormone induces dissociation of the receptor-[3H]TRH complex with a half-life of 14 min. The binding of TRH is not altered by 10 μM melanocyte-stimulating hormone-release inhibiting hormone, lysine-vasopressin, adrenocorticotropin, growth hormone, prolactin, luteinizing hormone, insulin, glucagon, L-thyroxine, or L-triiodothyronine. K+ and Mg++ increase formation of the receptor-TRH complex at optimal concentrations of 5-25 mM and 0.5-2.5 mM, respectively, with inhibition at higher concentrations. Ca++ inhibits binding of TRH at all concentrations tested. PMID:4621548

  6. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increasedmore » ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.« less

  7. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase

    PubMed Central

    Whittaker, Jonathan; Whittaker, Linda J.; Roberts, Charles T.; Phillips, Nelson B.; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Weiss, Michael A.

    2012-01-01

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo–cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation. PMID:22736795

  8. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    PubMed

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  9. Study of goldfish (Carassius auratus) growth hormone structure-function relationship by domain swapping.

    PubMed

    Chan, Y H; Cheng, C H K; Chan, K M

    2007-03-01

    Using goldfish as a model, the structure-function relationship of goldfish growth hormone was studied using the strategy of homologous domain swapping. Chimeric mutants were constructed by exchanging homologous regions between goldfish growth hormone (gfGH II) and goldfish prolactin (gfPRL) with their cloned complementary DNAs. Six mutants, with their domain-swapped, were generated to have different combinations of three target regions, including the helix a, helix d and the large section in between these helices (possess the helices b, c and other random coiled regions). After expression in E. coli and refolding, these mutants were characterized by using competitive receptor binding assay (RRA) and growth hormone responding promoter activation assay. The different activity profiles of mutants in Spi 2.1 gene promoter assays from that in RRA shows that, for gfGH, receptor binding dose not confer receptor signal activations. When either helices a or d of gfGH was maintained with other helices replaced by their gfPRL counterparts, both receptor binding and hence gene activation activities are reduced. In mutants with helices b and c in gfGH maintained, containing the gfGH middle section, and helices a and d swapped with gfPRL, the had reduced RRA activities but the promoter activation activities retained. In conclusion, as in the case of human GH, the gfGH molecule possesses two functional sites: one of them is composed of discontinuous epitopes located on the target regions of this study and is for receptor binding; another site is located on the middle section of the molecule that helices a and d are not involved, and it is for activation of GH receptor and intracellular signals.

  10. SHBG (Sex Hormone Binding Globulin)

    MedlinePlus

    ... Links Patient Resources For Health Professionals Subscribe Search Sex Hormone Binding Globulin (SHBG) Send Us Your Feedback ... As Testosterone-estrogen Binding Globulin TeBG Formal Name Sex Hormone Binding Globulin This article was last reviewed ...

  11. Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail.

    PubMed

    Murdoch, Hannah; Feng, Gui-Jie; Bächner, Dietmar; Ormiston, Laura; White, Julia H; Richter, Dietmar; Milligan, Graeme

    2005-03-04

    In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.

  12. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  13. Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity

    PubMed Central

    Smits, Guillaume; Campillo, Mercedes; Govaerts, Cédric; Janssens, Véronique; Richter, Christine; Vassart, Gilbert; Pardo, Leonardo; Costagliola, Sabine

    2003-01-01

    Glycoprotein hormone receptors [thyrotropin (TSHr), luteinizing hormone/chorionic gonadotropin (LH/CGr), follicle stimulating hormone (FSHr)] are rhodopsin-like G protein-coupled receptors with a large extracellular N-terminal portion responsible for hormone recognition and binding. In structural models, this ectodomain is composed of two cysteine clusters flanking nine leucine-rich repeats (LRRs). The LRRs form a succession of β-strands and α-helices organized into a horseshoe-shaped structure. It has been proposed that glycoprotein hormones interact with residues of the β-strands making the concave surface of the horseshoe. Gain-of-function homology scanning of the β-strands of glycoprotein hormone receptors allowed identification of the critical residues responsible for the specificity towards human chorionic gonadotropin (hCG). Substitution of eight or two residues of the LH/CGr into the TSHr or FSHr, respectively, resulted in constructs displaying almost the same affinity and sensitivity for hCG as wild-type LH/CGr. Molecular dynamics simulations and additional site-directed mutagenesis provided a structural rationale for the evolution of binding specificity in this duplicated gene family. PMID:12773385

  14. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    PubMed

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  15. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.

    PubMed

    Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C

    2017-03-01

    The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.

  16. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    PubMed

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-01

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  17. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shima, K.; Kitayama, S.; Nakano, R.

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3more » beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.« less

  18. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor

    PubMed Central

    Jindra, Marek; Uhlirova, Mirka; Charles, Jean-Philippe; Smykal, Vlastimil; Hill, Ronald J.

    2015-01-01

    Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology. PMID:26161662

  19. Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid

    PubMed Central

    Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena

    2013-01-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905

  20. Exercise to Counteract Loss of Bone and Muscle during Androgen Deprivation Therapy in Men with Prostate Cancer

    DTIC Science & Technology

    2008-08-01

    increases 5- to 10-fold after the initiation of ADT19 and that the relative risk of osteoporotic fracture is increased by 30% to 300%.20-22 In 31 men...of bone turnover; serum sex hormones; physical functional performance; quality of life, and risk factors for cardiovascular disease (blood lipids...hormone binding globulin; physical functional performance; and quality of life. Local project support will enable additional assessments of risk

  1. Exercise to Countereact Loss of Bone and Muscle During Androgen Deprivation Therapy in Men with Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    increases 5- to 10-fold after the initiation of ADT14 and that the relative risk of osteoporotic fracture is increased by 30% to 300%.15-17 In 31 men...of bone turnover; serum sex hormones; physical functional performance; quality of life, and risk factors for cardiovascular disease (blood lipids...hormone binding globulin; physical functional performance; and quality of life. Local project support will enable additional assessments of risk factors

  2. Methyltestosterone-induced transient hyperthyroidism in a hypothyroid patient.

    PubMed

    Krysiak, R; Okopien, B

    2013-01-01

    In this paper we report different effects of methyltestosterone administration on thyroid function in two twin brothers, one of whom suffered from hypothyroidism, while the other was apparently healthy. Methyltestosterone, which is a non-aromatisable androgen, resulted in a marked reduction of thyroxine-binding globulin (TBG), irrespectively of the patient's hormonal status, while the impact on free thyroid hormones depended on baseline thyroid function. Our research shows that a possibility of the use of non-aromatisable androgens or other drugs affecting TBG levels should be taken into consideration in all hypothyroid patients receiving levothyroxine, in whom thyroid hormone status suddenly changes without any apparent reason.

  3. Pesticides as endocrine-disrupting chemicals

    EPA Science Inventory

    Pesticides are designed to be bioactive against certain targets but can cause toxicity to nontarget species by a variety of other modes of action including disturbance of endocrine function. As such, pesticides have been found to bind and alter the function of hormone receptors, ...

  4. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues.

    PubMed

    Chung, J Sook; Zmora, N; Katayama, H; Tsutsui, N

    2010-05-01

    The removal of the eyestalk (s) induces molting and reproduction promoted the presence of regulatory substances in the eyestalk (ES), particularly medulla terminalis X-organ and the sinus gland (MTXO-SG). The PCR-based cloning strategies have allowed for isolating a great number of cDNAs sequences of crustacean hyperglycemic hormone (CHH) neuropeptides family from the eyestalk and non-eyestalk tissues, e.g., pericardial organs and fore- and hindguts. However, the translated corresponding neuropeptides in these tissues, their circulating concentrations, the mode of actions, and specific physiological functions have not been well described. The profiles of CHH neuropeptides present in the MTXO-SG may differ among decapod crustacean species, but they can be largely divided into two sub-groups on the basis of structural homology: (1) CHH and (2) molt-inhibiting hormone (MIH)/mandibular organ-inhibiting hormone (MOIH)/vitellogenesis/gonad-inhibiting hormone (V/GIH). CHH typically elevating the level of circulating glucose from animals under stressful conditions (hyper- and hypothermia, hypoxia, and low salinity) has multiple target tissues and functions such as ecdysteroidogenesis, osmoregulation, and vitellogenesis. Recently, MIH, known for exclusively suppressing ecdysteroidogenesis in Y-organs, is also reported to have an additional role in vitellogenesis of adult female crustacean species, suggesting that some CHH neuropeptides may acquire an extra regulatory role in reproduction at adult stage. This paper reviews the regulatory roles of CHH and MIH at the levels of specific functions, temporal and spatial expression, titers, their binding sites on the target tissues, and second messengers from two crab species: the blue crab, Callinectes sapidus, and the European green crab, Carcinus maenas. It further discusses the diverse regulatory roles of these neuropeptides and the functional plasticity of these neuropeptides in regard to life stage and species-specific physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  5. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo

    PubMed Central

    Machado, Danielle S.; Sabet, Amin; Santiago, Leticia A.; Sidhaye, Aniket R.; Chiamolera, Maria I.; Ortiga-Carvalho, Tania M.; Wondisford, Fredric E.

    2009-01-01

    Resistance to thyroid hormone (RTH) is most often due to point mutations in the β-isoform of the thyroid hormone (TH) receptor (TR-β). The majority of mutations involve the ligand-binding domain, where they block TH binding and receptor function on both stimulatory and inhibitory TH response elements. In contrast, a few mutations in the ligand-binding domain are reported to maintain TH binding and yet cause RTH in certain tissues. We introduced one such naturally occurring human RTH mutation (R429Q) into the germline of mice at the TR-β locus. R429Q knock-in (KI) mice demonstrated elevated serum TH and inappropriately normal thyroid-stimulating hormone (TSH) levels, consistent with hypothalamic–pituitary RTH. In contrast, 3 hepatic genes positively regulated by TH (Dio1, Gpd1, and Thrsp) were increased in R429Q KI animals. Mice were then rendered hypothyroid, followed by graded T3 replacement. Hypothyroid R429Q KI mice displayed elevated TSH subunit mRNA levels, and T3 treatment failed to normally suppress these levels. T3 treatment, however, stimulated pituitary Gh levels to a greater degree in R429Q KI than in control mice. Gsta, a hepatic gene negatively regulated by TH, was not suppressed in R429Q KI mice after T3 treatment, but hepatic Dio1 and Thrsp mRNA levels increased in response to TH. Cardiac myosin heavy chain isoform gene expression also showed a specific defect in TH inhibition. In summary, the R429Q mutation is associated with selective impairment of TH-mediated gene repression, suggesting that the affected domain, necessary for TR homodimerization and corepressor binding, has a critical role in negative gene regulation by TH. PMID:19439650

  6. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  7. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less

  8. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-throughput In Vitro Data, High-throughput Exposure Modeling, and Physiologically-Based Pharmacokinetic/Pharmacodynamic Modeling

    EPA Science Inventory

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can...

  9. Generalized Resistance to Thyroid Hormone Associated with a Mutation in the Ligand-Binding Domain of the Human Thyroid Hormone Receptor β

    NASA Astrophysics Data System (ADS)

    Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  10. Persistent Organochlorine Pollutants with Endocrine Activity and Blood Steroid Hormone Levels in Middle-Aged Men

    PubMed Central

    Emeville, Elise; Giton, Frank; Giusti, Arnaud; Oliva, Alejandro; Fiet, Jean; Thomé, Jean-Pierre; Blanchet, Pascal; Multigner, Luc

    2013-01-01

    Background Studies relating long-term exposure to persistent organochlorine pollutants (POPs) with endocrine activities (endocrine disrupting chemicals) on circulating levels of steroid hormones have been limited to a small number of hormones and reported conflicting results. Objective We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandrosterone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone, estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way: dichlorodiphenyl dichloroethene (DDE), polychlorinated biphenyl (PCB) congener 153, and chlordecone. Methods We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepiandrosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples. Results DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for chlordecone. Conclusions These results suggested that the endocrine response pattern, estimated by determining blood levels of steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally attributed to these compounds. It remains to be investigated whether this response pattern is predictive of the subsequent occurrence of disease. PMID:23785499

  11. FKBP51 and FKBP52 in Signaling and Disease

    PubMed Central

    Storer, Cheryl L.; Dickey, Chad A.; Galigniana, Mario D.; Rein, Theo; Cox, Marc B.

    2011-01-01

    FKBP51 and FKBP52 are diverse regulators of steroid hormone receptor signaling including regulation of receptor maturation, hormone binding, and nuclear translocation. Although structurally similar, they are functionally divergent, which is largely attributed to differences in the FK1 domain and the proline-rich loop. FKBP51 and FKBP52 have emerged as likely contributors to a variety of hormone-dependent diseases including stress-related diseases, immune function, reproductive functions and a variety of cancers. In addition, recent studies have implicated FKBP51 and FKBP52 in Alzheimer’s disease and other protein aggregation disorders. This review summarizes our current understanding of FKBP51 and FKBP52 interactions within the receptor-chaperone complex, their contributions to health and disease, and their potential as therapeutic targets for the treatment of these diseases. PMID:21889356

  12. No effect of sex steroids on compensatory muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Rance, N. E.

    1984-01-01

    The effects of orchiectomy and/or subcutaneously implanted testosterone propionate (TP) on the hypertrophic response of rat plantaris muscles to functional overload (induced by bilateral removal of gastrocnemius and soleus muscles) are investigated experimentally. Muscle wet weight, metabolic substrate oxidation, and cytosolic androgen-receptor binding are measured, and the results are presented in tables. Eight weeks after surgery, the plantaris muscle weight as a percentage of body weight is found to be about twice that in rats without muscle overload, regardless of the sex-hormone status. Overloading causes decreased ability to oxidize glucose and pyruvate, decreased succinate dehydrogenase specific activity, and no change in the ability to oxidize beta-hydroxybutyrate or in androgen-receptor binding. The oxidative response is unaffected by orchiectomy or TP or both. It is argued that the actions of sex hormones and functional overload are not synergistic.

  13. Computational insights into the molecular interactions of environmental xenoestrogens 4-tert-octylphenol, 4-nonylphenol, bisphenol A (BPA), and BPA metabolite, 4-methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene (MBP) with human sex hormone-binding globulin.

    PubMed

    Sheikh, Ishfaq A; Tayubi, Iftikhar A; Ahmad, Ejaz; Ganaie, Majid A; Bajouh, Osama S; AlBasri, Samera F; Abdulkarim, Ibtihal M J; Beg, Mohd A

    2017-01-01

    Environmental contamination has been one of the major drawbacks of the industrial revolution. Several man-made chemicals are constantly released into the environment during the manufacturing process and by leaching from the industrial products. As a result, human and animal populations are exposed to these synthetic chemicals on a regular basis. Many of these chemicals have adverse effects on the physiological functions, particularly on the hormone systems in human and animals and are called endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), 4-tert-octylphenol (OP), and 4-nonylphenol (NP) are three high volume production EDCs that are widely used for industrial purposes and are present ubiquitously in the environment. Bisphenol A is metabolized in the human body to a more potent compound (MBP: 4-Methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene). Epidemiological and experimental studies have shown the three EDCs to be associated with adverse effects on reproductive system in human and animals. Sex hormone-binding globulin (SHBG) is a circulatory protein that binds sex steroids and is a potential target for endocrine disruptors in the human body. The current study was done in order to understand the binding mechanism of OP, BPA, NP, and MBP with human SHBG using in silico approaches. All four compounds showed high binding affinity with SHBG, however, the binding affinity values were higher (more negative) for MBP and NP than for OP and BPA. The four ligands interacted with 19-23 residues of SHBG and a consistent overlapping of the interacting residues for the four ligands with the residues for the natural ligand, dihydrotestosterone (DHT; 82-91% commonality) was shown. The overlapping SHBG interacting residues among DHT and the four endocrine disruptors suggested that these compounds have potential for interference and disruption in the steroid binding function. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ketoconazole inhibition of testicular secretion of testosterone and displacement of steroid hormones from serum transport proteins.

    PubMed Central

    Grosso, D S; Boyden, T W; Pamenter, R W; Johnson, D G; Stevens, D A; Galgiani, J N

    1983-01-01

    In vivo perfusion of canine testes with ketoconazole inhibited the stimulation of testosterone production by human chorionic gonadotropin in a dose-dependent manner. Ketoconazole also selectively displaced steroids from serum-binding globulins. Dihydrotestosterone and estradiol binding to sex hormone-binding globulin were inhibited by ketoconazole. Cortisol binding to corticosteroid-binding globulin was unaffected. The concentrations of ketoconazole that inhibited human chorionic gonadotropin stimulation of testicular androgen production and displaced sex steroids from sex hormone-binding globulin were in the range of blood levels found in patients on higher therapeutic dosage regimens. Suppression of testicular testosterone synthesis and displacement of estrogens from sex hormone-binding globulin may decrease the androgen/estrogen ratio of the blood and contribute to the development of gynecomastia that has been reported in some ketoconazole-treated patients. PMID:6301363

  15. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  16. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    PubMed Central

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  17. Complex Actions of Thyroid Hormone Receptor Antagonist NH-3 on Gene Promoters in Different Cell Lines

    PubMed Central

    Shah, Vanya; Nguyen, Phuong; Nguyen, Ngoc-Ha; Togashi, Marie; Scanlan, Thomas S.; Baxter, John D.; Webb, Paul

    2014-01-01

    It is desirable to obtain new antagonists for thyroid hormone (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T3) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T3-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T3 promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T3 binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators. PMID:18930112

  18. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region

    PubMed Central

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region of the receptor. PMID:26441830

  19. Sex-hormone-binding globulin.

    PubMed

    Anderson, D C

    1974-01-01

    A review was made to understand how plasma binding protein might influence sex-hormone action in target tissues. Steroids are predominately bound to plasma proteins and only unbound steroids enter the cells. Sex-hormone-binding globulin (SHBG) binds to both the main circulating steroid T and E2 but changes in SHBG concentrations exert significant results. Increased SHBG levels increase estrogen production and decreases T activity; whereas, increased androgens increase T action and inhibit SHBG production. These disturbances in hormone maintenance may lead to abnormal adult sex differentiation such as hirsutism and forms of hynaecomastia. By developing SHBG concentration measurement methods-responses of hirsutism to glucocorticoid or estrogem may be assessed. In addition, the effect of thyroid hormones on SHBG may also have therapeutic implications in endocrine disease.

  20. Verification of epigenetic inheritance in a unicellular model system: multigenerational effects of hormonal imprinting.

    PubMed

    Kőhidai, László; Lajkó, Eszter; Pállinger, Eva; Csaba, György

    2012-10-01

    The unicellular Tetrahymena has receptors for hormones of higher vertebrates, produces these hormones, and their signal pathways are similar. The first encounter with a hormone in higher dose provokes the phenomenon of hormonal imprinting, by which the reaction of the cell is quantitatively modified. This modification is transmitted to the progeny generations. The duration of the single imprinter effect of two representative signal molecules, insulin and 5-HT (5-hydroxytryptamine), in two concentrations (10(-6) and 10(-15) M) were studied. The effects of imprinting were followed in 5 physiological indices: (i) insulin binding, (ii) 5-HT synthesis, (iii) swimming behaviour, (iv) cell growth and (v) chemotaxis in progeny generations 500 and 1000. The result of each index was different from the non-imprinted control functions, growth rate, swimming behaviour and chemotactic activity to insulin being enhanced, while others, e.g. synthesis and chemotactic responsiveness of 5-HT and the binding of insulin were reduced. This means that a function-specific heritable epigenetic change during imprinting occurs, and generally a single encounter with a femtomolar hormone concentration is enough for provoking durable and heritable imprinting in Tetrahymena. The experiments demonstrate the possibility of epigenetic effects at a unicellular level and call attention to the possibility that the character of unicellular organisms has changed through to the present day due to an enormous amount of non-physiological imprinter substances in their environment. The results - together with results obtained earlier in mammals - point to the validity of epigenetic imprinting effects throughout the animal world.

  1. Association of Central Obesity with Sex Hormonebinding Globulin: A Cross-sectional Study of 1166 Chinese Men.

    PubMed

    Liu, Fangwei; Shen, Xubo; Wang, Ruifeng; Yu, Na; Shi, Yongjun; Xiong, Shimin; Xiong, Chengliang; Zhou, Yuanzhong

    2018-01-01

    Background Both sex hormone-binding globulin and central obesity have been found to be associated with metabolic and cardiovascular diseases. However, the direct relation between sex hormone-binding globulin and central obesity has not been demonstrated. Methodology We performed a cross-sectional study of 1166 male participants from Zunyi, Guizhou, western China, in 2013. Each participant completed a questionnaire and had a brief clinical exam with a fasting blood sample taken. All blood samples underwent standard laboratory testing for sex hormone-binding globulin. Level of serum sex hormone-binding globulin was compared by demographic characteristics, and multiple linear regression was used to evaluate the independent association of variables and sex hormone-binding globulin level. Results The mean serum level of sex hormone-binding globulin was increased in old-aged men (older than 40 years; mean 44.68±20.58 nmol/L), low diastolic blood pressure (<90mmHg; 43.76±20.50 nmol/L), waist-to-height ratio <0.5 (48.73±20.59 nmol/L), no education (52.36±22.91 nmol/L), farm occupation (43.58±20.60nmol/L), non-alcohol or former user (44.78±20.94 nmol/L) and long-term medication history (44.79±21.50 nmol/L). Factors independently associated with sex hormone binding globulin level on multiple regression were waist-to-height ratio (β=- 11.84 [95% confidence interval -13.96,-9.72]), age(β=12.40 [9.63,15.17]) and diastolic blood pressure (β=-5.07 [-7.44,-2.71]). Conclusions Central obesity has an independent inverse relation with serum level of sex hormone binding globulin among western Chinese men.

  2. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  3. 11-Deoxycortisol is a corticosteroid hormone in the lamprey

    USGS Publications Warehouse

    Close, D.A.; Yun, S.-S.; McCormick, S.D.; Wildbill, A.J.; Li, W.

    2010-01-01

    Corticosteroid hormones are critical for controlling metabolism, hydromineral balance, and the stress response in vertebrates. Although corticosteroid hormones have been well characterized in most vertebrate groups, the identity of the earliest vertebrate corticosteroid hormone has remained elusive. Here we provide evidence that 11-deoxycortisol is the corticosteroid hormone in the lamprey, a member of the agnathans that evolved more than 500 million years ago. We used RIA, HPLC, and mass spectrometry analysis to determine that 11-deoxycortisol is the active corticosteroid present in lamprey plasma. We also characterized an 11-deoxycortisol receptor extracted from sea lamprey gill cytosol. The receptor was highly specific for 11-deoxycortisol and exhibited corticosteroid binding characteristics, including DNA binding. Furthermore, we observed that 11-deoxycortisol was regulated by the hypothalamus-pituitary axis and responded to acute stress. 11-Deoxycortisol implants reduced sex steroid concentrations and upregulated gill Na+, K+-ATPase, an enzyme critical for ion balance. We show here that 11-deoxycortisol functioned as both a glucocorticoid and a mineralocorticoid in the lamprey. Our findings indicate that a complex and highly specific corticosteroid signaling pathway evolved at least 500 million years ago with the arrival of the earliest vertebrate.

  4. Cloning and sequence analysis of Galleria mellonella juvenile hormone binding protein--a search for ancestors and relatives.

    PubMed

    Rodriguez Parkitna, Jan M; Ozyhar, Andrzej; Wiśniewski, Jacek R; Kochman, Marian

    2002-09-01

    Juvenile hormone binding proteins (JHBPs) serve as specific carriers of juvenile hormone (JH) in insect hemolymph. As shown in this report, Galleria mellonella JHBP is encoded by a cDNA of 1063 nucleotides. The pre-protein consists of 245 amino acids with a 20 amino acid leader sequence. The concentration of the JHBP mRNA reaches a maximum on the third day of the last larval instar, and decreases five-fold towards pupation. Comparison of amino acid sequences of JHBPs from Bombyx mori, Heliothis virescens, Manduca sexta and G. mellonella shows that 57 positions out of 226 are occupied by identical amino acids. A phylogeny tree was constructed from 32 proteins, which function could be associated to JH. It has three major branches: (i) ligand binding domains of nuclear receptors, (ii) JHBPs and JH esterases (JHEs), and (iii) hypothetical proteins found in Drosophila melanogaster genome. Despite the close positioning of JHEs and JHBPs on the tree, which probably arises from the presence of a common JH binding motif, these proteins are unlikely to belong to the same family. Detailed analysis of the secondary structure modeling shows that JHBPs may contain a beta-barrel motif flanked by alpha-helices and thus be evolutionary related to the same superfamily as calycins.

  5. Effect of anticonvulsants on plasma testosterone and sex hormone binding globulin levels.

    PubMed Central

    Barragry, J M; Makin, H L; Trafford, D J; Scott, D F

    1978-01-01

    Plasma sex hormone binding globulin (SHBG) and testosterone levels were measured in 29 patients with epilepsy (16 men and 13 women), most of them on chronic therapy with anticonvulsant drugs. Sex hormone binding globulin concentrations were increased in both sexes and testosterone levels in male patients. It is postulated that anticonvulsants may induce hepatic synthesis of SHBG. PMID:569688

  6. Mutation analysis of inhibitory guanine nucleotide binding protein alpha (GNAI) loci in young and familial pituitary adenomas.

    PubMed

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15-20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.

  7. Mutation Analysis of Inhibitory Guanine Nucleotide Binding Protein Alpha (GNAI) Loci in Young and Familial Pituitary Adenomas

    PubMed Central

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1 , GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas. PMID:25291362

  8. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity.

    PubMed

    Lee, Sang-Min; Booe, Jason M; Gingell, Joseph J; Sjoelund, Virginie; Hay, Debbie L; Pioszak, Augen A

    2017-07-05

    The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI - cells, which yield core N-glycans (Man 5 GlcNAc 2 ). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.

  9. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013.

    PubMed

    Huang, Han-Bin; Pan, Wen-Harn; Chang, Jung-Wei; Chiang, Hung-Che; Guo, Yue Leon; Jaakkola, Jouni J K; Huang, Po-Chin

    2017-02-01

    Previous epidemiologic and toxicological studies provide some inconsistent evidence that exposure to phthalates may affect thyroid function and growth hormone homeostasis. To assess the relations between exposure to phthalates and indicators of thyroid function and growth hormone homeostasis disturbances both among adults and minors. We conducted a population-based cross-sectional study of 279 Taiwanese adults (≥18 years old) and 79 minors (<18 years old) in 2013. Exposure assessment was based on urinary biomarkers, 11 phthalate metabolites measured by using online liquid chromatography/tandem mass spectrometry. Indicators of thyroid function included serum levels of thyroxine (T 4 ), free T 4 , triiodothyronine, thyroid-stimulating hormone, and thyroxine-binding globulin (TBG). Growth hormone homeostasis was measured as the serum levels of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3). We applied multivariate linear regression models to examine these associations after adjusting for covariates. Among adults, serum T 4 levels were negatively associated with urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate (β=-0.028, P=0.043) and the sum of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolite (β=-0.045, P=0.017) levels. Free T 4 levels were negatively associated with urinary mono-ethylhexyl phthalate (MEHP) (β=-0.013, P=0.042) and mono-(2-ethyl-5-oxohexyl) phthalate (β=-0.030, P=0.003) levels, but positively associated with urinary monoethyl phthalate (β=0.014, P=0.037) after adjustment for age, BMI, gender, urinary creatinine levels, and TBG levels. Postive associations between urinary MEHP levels and IGF-1 levels (β=0.033, P=0.006) were observed. Among minors, free T 4 was positively associated with urinary mono benzyl phthalate levels (β=0.044, P=0.001), and IGF-1 levels were negatively associated with the sum of urinary DEHP metabolite levels (β=-0.166, P=0.041) after adjustment for significant covariance and IGFBP3. Our results are consistent with the hypothesis that exposure to phthalates influences thyroid function and growth hormone homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  11. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  12. Association of Higher Plasma Vitamin D Binding Protein and Lower Free Calcitriol Levels with Tenofovir Disoproxil Fumarate Use and Plasma and Intracellular Tenofovir Pharmacokinetics: Cause of a Functional Vitamin D Deficiency?

    PubMed Central

    Kiser, Jennifer J.; Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G.; Woodhouse, Leslie R.; Van Loan, Marta D.; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Gordon, Catherine M.

    2013-01-01

    Tenofovir disoproxil fumarate (TDF) causes bone, endocrine, and renal changes by an unknown mechanism(s). Data are limited on tenofovir pharmacokinetics and these effects. Using baseline data from a multicenter study of HIV-infected youth on stable treatment with regimens containing TDF (n = 118) or lacking TDF (n = 85), we measured cross-sectional associations of TDF use with markers of renal function, vitamin D-calcium-parathyroid hormone balance, phosphate metabolism (tubular reabsorption of phosphate and fibroblast growth factor 23 [FGF23]), and bone turnover. Pharmacokinetic-pharmacodynamic associations with plasma tenofovir and intracellular tenofovir diphosphate concentrations were explored among those receiving TDF. The mean age was 20.9 (standard deviation [SD], 2.0) years; 63% were male; and 52% were African American. Compared to the no-TDF group, the TDF group showed lower mean estimated glomerular filtration rates and tubular reabsorption of phosphate, as well as higher parathyroid hormone and 1,25-dihydroxy vitamin D [1,25-OH(2)D] levels. The highest quintile of plasma tenofovir concentrations was associated with higher vitamin D binding protein, lower free 1,25-OH(2)D, higher 25-OH vitamin D, and higher serum calcium. The highest quintile of intracellular tenofovir diphosphate concentration was associated with lower FGF23. Higher plasma tenofovir concentrations were associated with higher vitamin D binding protein and lower free 1,25-OH(2)D, suggesting a functional vitamin D deficiency explaining TDF-associated increased parathyroid hormone. The finding of lower FGF23 accompanying higher intracellular tenofovir diphosphate suggests that different mechanisms mediate TDF-associated changes in phosphate handling. Separate pharmacokinetic properties may be associated with distinct TDF toxicities: tenofovir with parathyroid hormone and altered calcium balance and tenofovir diphosphate with hypophosphatemia and FGF23 regulation. (The clinical trial registration number for this study is NCT00490412 and is available online at http://clinicaltrials.gov/ct2/show/NCT00490412.) PMID:24002093

  13. Vitamin-caused faulty perinatal hormonal imprinting and its consequences in adult age.

    PubMed

    Csaba, G

    2017-09-01

    Lipid-soluble vitamins (vitamins A, D, E, and K) are actually hormones (exohormones), as they can be directly bound by hormone receptors or are in connection with molecules, which influence hormone receptors. Vitamin D is a transition between endo- and exohormones and the possibility of similar situation in case of other lipid-soluble hormones is discussed. The perinatal exposition with these "vitamins" can cause faulty perinatal hormonal imprinting with similar consequences as the faulty imprinting by the synthetic endohormones, members of the same hormone family or industrial, communal, or medical endocrine disruptors. The faulty imprinting leads to late (lifelong) consequences with altered hormone binding by receptors, altered sexuality, brain function, immunity, bone development, and fractures, etc. In addition, as hormonal imprinting is an epigenetic process, the effect of a single exposure by fat-soluble vitamins is inherited to the progeny generations. As vitamins are handled differently from hormones; however, perinatal treatments take place frequently and sometimes it is forced, the negative late effect of faulty perinatal vitamin-caused hormonal imprinting must be considered.

  14. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    PubMed Central

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to trigger a profound evolutionary change in the protein's function and shaped the genetics of evolutionary reversibility. PMID:24415950

  15. Circulating sex hormones in relation to anthropometric, sociodemographic and behavioural factors in an international dataset of 12,300 men

    PubMed Central

    Appleby, Paul N.; Albanes, Demetrius; Black, Amanda; Chan, June M.; Chen, Chu; Cirillo, Piera M.; Cohn, Barbara A.; Cook, Michael B.; Donovan, Jenny L.; Ferrucci, Luigi; Garland, Cedric F.; Giles, Graham G.; Goodman, Phyllis J.; Habel, Laurel A.; Haiman, Christopher A.; Holly, Jeff M. P.; Hoover, Robert N.; Kaaks, Rudolf; Knekt, Paul; Kolonel, Laurence N.; Kubo, Tatsuhiko; Le Marchand, Loïc; Luostarinen, Tapio; MacInnis, Robert J.; Mäenpää, Hanna O.; Männistö, Satu; Metter, E. Jeffrey; Milne, Roger L.; Nomura, Abraham M. Y.; Oliver, Steven E.; Parsons, J. Kellogg; Peeters, Petra H.; Platz, Elizabeth A.; Riboli, Elio; Ricceri, Fulvio; Rinaldi, Sabina; Rissanen, Harri; Sawada, Norie; Schaefer, Catherine A.; Schenk, Jeannette M.; Stanczyk, Frank Z.; Stampfer, Meir; Stattin, Pär; Stenman, Ulf-Håkan; Tjønneland, Anne; Trichopoulou, Antonia; Thompson, Ian M.; Tsugane, Shoichiro; Vatten, Lars; Whittemore, Alice S.; Ziegler, Regina G.

    2017-01-01

    Introduction Sex hormones have been implicated in the etiology of a number of diseases. To better understand disease etiology and the mechanisms of disease-risk factor associations, this analysis aimed to investigate the associations of anthropometric, sociodemographic and behavioural factors with a range of circulating sex hormones and sex hormone-binding globulin. Methods Statistical analyses of individual participant data from 12,330 male controls aged 25–85 years from 25 studies involved in the Endogenous Hormones Nutritional Biomarkers and Prostate Cancer Collaborative Group. Analysis of variance was used to estimate geometric means adjusted for study and relevant covariates. Results Older age was associated with higher concentrations of sex hormone-binding globulin and dihydrotestosterone and lower concentrations of dehydroepiandrosterone sulfate, free testosterone, androstenedione, androstanediol glucuronide and free estradiol. Higher body mass index was associated with higher concentrations of free estradiol, androstanediol glucuronide, estradiol and estrone and lower concentrations of dihydrotestosterone, testosterone, sex hormone-binding globulin, free testosterone, androstenedione and dehydroepiandrosterone sulfate. Taller height was associated with lower concentrations of androstenedione, testosterone, free testosterone and sex hormone-binding globulin and higher concentrations of androstanediol glucuronide. Current smoking was associated with higher concentrations of androstenedione, sex hormone-binding globulin and testosterone. Alcohol consumption was associated with higher concentrations of dehydroepiandrosterone sulfate, androstenedione and androstanediol glucuronide. East Asians had lower concentrations of androstanediol glucuronide and African Americans had higher concentrations of estrogens. Education and marital status were modestly associated with a small number of hormones. Conclusion Circulating sex hormones in men are strongly associated with age and body mass index, and to a lesser extent with smoking status and alcohol consumption. PMID:29281666

  16. Circulating sex hormones in relation to anthropometric, sociodemographic and behavioural factors in an international dataset of 12,300 men.

    PubMed

    Watts, Eleanor L; Appleby, Paul N; Albanes, Demetrius; Black, Amanda; Chan, June M; Chen, Chu; Cirillo, Piera M; Cohn, Barbara A; Cook, Michael B; Donovan, Jenny L; Ferrucci, Luigi; Garland, Cedric F; Giles, Graham G; Goodman, Phyllis J; Habel, Laurel A; Haiman, Christopher A; Holly, Jeff M P; Hoover, Robert N; Kaaks, Rudolf; Knekt, Paul; Kolonel, Laurence N; Kubo, Tatsuhiko; Le Marchand, Loïc; Luostarinen, Tapio; MacInnis, Robert J; Mäenpää, Hanna O; Männistö, Satu; Metter, E Jeffrey; Milne, Roger L; Nomura, Abraham M Y; Oliver, Steven E; Parsons, J Kellogg; Peeters, Petra H; Platz, Elizabeth A; Riboli, Elio; Ricceri, Fulvio; Rinaldi, Sabina; Rissanen, Harri; Sawada, Norie; Schaefer, Catherine A; Schenk, Jeannette M; Stanczyk, Frank Z; Stampfer, Meir; Stattin, Pär; Stenman, Ulf-Håkan; Tjønneland, Anne; Trichopoulou, Antonia; Thompson, Ian M; Tsugane, Shoichiro; Vatten, Lars; Whittemore, Alice S; Ziegler, Regina G; Allen, Naomi E; Key, Timothy J; Travis, Ruth C

    2017-01-01

    Sex hormones have been implicated in the etiology of a number of diseases. To better understand disease etiology and the mechanisms of disease-risk factor associations, this analysis aimed to investigate the associations of anthropometric, sociodemographic and behavioural factors with a range of circulating sex hormones and sex hormone-binding globulin. Statistical analyses of individual participant data from 12,330 male controls aged 25-85 years from 25 studies involved in the Endogenous Hormones Nutritional Biomarkers and Prostate Cancer Collaborative Group. Analysis of variance was used to estimate geometric means adjusted for study and relevant covariates. Older age was associated with higher concentrations of sex hormone-binding globulin and dihydrotestosterone and lower concentrations of dehydroepiandrosterone sulfate, free testosterone, androstenedione, androstanediol glucuronide and free estradiol. Higher body mass index was associated with higher concentrations of free estradiol, androstanediol glucuronide, estradiol and estrone and lower concentrations of dihydrotestosterone, testosterone, sex hormone-binding globulin, free testosterone, androstenedione and dehydroepiandrosterone sulfate. Taller height was associated with lower concentrations of androstenedione, testosterone, free testosterone and sex hormone-binding globulin and higher concentrations of androstanediol glucuronide. Current smoking was associated with higher concentrations of androstenedione, sex hormone-binding globulin and testosterone. Alcohol consumption was associated with higher concentrations of dehydroepiandrosterone sulfate, androstenedione and androstanediol glucuronide. East Asians had lower concentrations of androstanediol glucuronide and African Americans had higher concentrations of estrogens. Education and marital status were modestly associated with a small number of hormones. Circulating sex hormones in men are strongly associated with age and body mass index, and to a lesser extent with smoking status and alcohol consumption.

  17. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loopsmore » that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.« less

  18. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH,more » but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.« less

  19. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  20. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    PubMed

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes.

    PubMed

    Treuter, E; Johansson, L; Thomsen, J S; Wärnmark, A; Leers, J; Pelto-Huikko, M; Sjöberg, M; Wright, A P; Spyrou, G; Gustafsson, J A

    1999-03-05

    Transcriptional activation by nuclear receptors (NRs) involves the concerted action of coactivators, chromatin components, and the basal transcription machinery. Crucial NR coactivators, which target primarily the conserved ligand-regulated activation (AF-2) domain, include p160 family members, such as TIF2, as well as p160-associated coactivators, such as CBP/p300. Because these coactivators possess intrinsic histone acetyltransferase activity, they are believed to function mainly by regulating chromatin-dependent transcriptional activation. Recent evidence suggests the existence of an additional NR coactivator complex, referred to as the thyroid hormone receptor-associated protein (TRAP) complex, which may function more directly as a bridging complex to the basal transcription machinery. TRAP220, the 220-kDa NR-binding subunit of the complex, has been identified in independent studies using both biochemical and genetic approaches. In light of the functional differences identified between p160 and TRAP coactivator complexes in NR activation, we have attempted to compare interaction and functional characteristics of TIF 2 and TRAP220. Our findings imply that competition between the NR-binding subunits of distinct coactivator complexes may act as a putative regulatory step in establishing either a sequential activation cascade or the formation of independent coactivator complexes.

  2. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses.

    PubMed

    Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William

    Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.

  3. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    PubMed Central

    Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.

    2018-01-01

    The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568

  4. NMR assignments of juvenile hormone binding protein in complex with JH III.

    PubMed

    Suzuki, Rintaro; Tase, Akira; Fujimoto, Zui; Shiotsuki, Takahiro; Yamazaki, Toshimasa

    2009-06-01

    A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.

  5. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone.

    PubMed

    Astapova, Inna

    2016-04-01

    Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis. © 2016 Society for Endocrinology.

  6. Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies.

    PubMed

    Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen

    2009-05-01

    The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.

  7. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling

    DOE PAGES

    Zhang, Feng; Yao, Jian; Ke, Jiyuan; ...

    2015-08-10

    The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins frommore » transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. In this paper, we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Finally, our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.« less

  8. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.

    PubMed

    Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun

    2013-11-01

    Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding. Copyright © 2013 Wiley Periodicals, Inc.

  9. Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milius, R.P.

    1985-01-01

    Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less

  10. Modulation of rat testes lipid composition by hormones: Effect of PRL (prolactin) and hCG (human chorionic gonadotropin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebokova, E.; Wierzbicki, A.; Clandinin, M.T.

    1988-10-01

    The effect of prolactin (PRL) and human chorionic gonadotropin (hCG) administration for 7 days on the composition and function of rat testicular plasma membrane was investigated. Refractory state in Leydig cells desensitized by hCG decreased the binding capacity for {sup 125}I-labeled hCG and also luteinizing hormone (LH)-induced adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) and testosterone production. In testicular membranes of hCG-treated animals, a depletion of cholesterol and an increase in total phospholipid content was observed after gonadotropin injection, thereby decreasing the cholesterol-to-phospholipid ratio. Injection of high doses of PRL had no effect on the binding capacity or affinity of the LH-hCG receptormore » but decreased the response of Leydig cells to LH in terms of cAMP and testosterone synthesis. PRL also increased total and esterified cholesterol and decreased free cholesterol and membrane phospholipid content. The fatty acid composition of testicular lipids was significantly and selectively influenced by both hormonal treatments. These observations suggest that metabolism of cholesterol and long-chain polyunsaturated fatty acids in testicular tissue is affected by chorionic gonadotropin and PRL and may provide the mechanism for regulating steroidogenic functions.« less

  11. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats

    PubMed Central

    Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.

    2008-01-01

    The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066

  12. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    PubMed

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17β-oestradiol in comparison to one containing levonorgestrel and ethinylestradiol on markers of endocrine function.

    PubMed

    Ågren, Ulla M; Anttila, Marjatta; Mäenpää-Liukko, Kristiina; Rantala, Maija-Liisa; Rautiainen, Hilkka; Sommer, Werner F; Mommers, Ellen

    2011-12-01

    To compare the effects of two monophasic combined oral contraceptives, containing either nomegestrol acetate/17β-oestradiol (NOMAC/E2) or levonorgestrel/ ethinylestradiol (LNG/EE) on endocrine function, androgens, and sex hormone-binding globulin (SHBG). Randomised, open-label, multi-centre trial involving 121 healthy women, aged 18-50 years old. Participants received NOMAC/E2 (2.5 mg/1.5 mg) in a 24/4-day regimen (n=60) or LNG/EE (150 μg/30 μg) in a 21/7-day regimen (n=61) for six cycles. The primary outcome was the change from baseline to cycle 6 in markers of adrenal and thyroid function, androgens, and SHBG. Total cortisol, corticosteroid-binding globulin (CBG), and thyroxine-binding globulin (TBG) increased from baseline in both groups, with significantly greater increases in the LNG/EE group. No relevant changes from baseline or differences between the groups were observed for thyroid-stimulating hormone (TSH) and free thyroxine (T4). Androgens and androgen precursors decreased from baseline in both groups, with significantly greater decreases in the LNG/EE group (except for free testosterone). A greater increase in SHBG was observed with NOMAC/E2 than with LNG/EE. NOMAC/E2 has significantly less influence on markers of adrenal and thyroid function and androgens than LNG/EE. The clinical relevance of these findings requires further study.

  14. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17β-oestradiol in comparison to one containing levonorgestrel and ethinylestradiol on markers of endocrine function

    PubMed Central

    Ågren, Ulla M; Anttilat, Marjatta; Mäenpää-Liukko, Kristiina; Rantala, Maija-Liisa; Rautiainen, Hilkka; Sommer, Werner F; Mommers, Ellen

    2011-01-01

    Objectives To compare the effects of two monophasic combined oral contraceptives, containing either nomegestrol acetate/17β-oestradiol (NOMAC/E2) or levonorgestrel/ ethinylestradiol (LNG/EE) on endocrine function, androgens, and sex hormone-binding globulin (SHBG). Methods Randomised, open-label, multi-centre trial involving 121 healthy women, aged 18-50 years old. Participants received NOMAC/E2 (2.5 mg/1.5 mg) in a 24/4-day regimen (n = 60) or LNG/EE (150 μg/30 μg) in a 21/7-day regimen (n = 61) for six cycles. The primary outcome was the change from baseline to cycle 6 in markers of adrenal and thyroid function, androgens, and SHBG. Results Total cortisol, corticosteroid-binding globulin (CBG), and thyroxine-binding globulin (TBG) increased from baseline in both groups, with significantly greater increases in the LNG/EE group. No relevant changes from baseline or differences between the groups were observed for thyroid-stimulating hormone (TSH) and free thyroxine (T4). Androgens and androgen precursors decreased from baseline in both groups, with significantly greater decreases in the LNG/EE group (except for free testosterone). A greater increase in SHBG was observed with NOMAC/E2 than with LNG/EE. Conclusions NOMAC/E2 has significantly less influence on markers of adrenal and thyroid function and androgens than LNG/EE. The clinical relevance of these findings requires further study. PMID:21942708

  15. Neuroendocrine considerations in the treatment of men and women with epilepsy

    PubMed Central

    Harden, Cynthia L; Pennell, Page B

    2016-01-01

    Complex, multidirectional interactions between hormones, seizures, and the medications used to control them can present a challenge for clinicians treating patients with epilepsy. Many hormones act as neurosteroids, modulating brain excitability via direct binding sites. Thus, changes in endogenous or exogenous hormone levels can affect the occurrence of seizures directly as well as indirectly through pharmacokinetic effects that alter the concentrations of antiepileptic drugs. The underlying structural and physiological brain abnormalities of epilepsy and the metabolic activity of antiepileptic drugs can adversely affect hypothalamic and gonadal functioning. Knowledge of these complex interactions has increased and can now be incorporated in meaningful treatment approaches for men and women with epilepsy. PMID:23237902

  16. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?

    PubMed

    Dempsey, D'Maris Amick; Klessig, Daniel F

    2017-03-23

    Salicylic acid (SA) is an important plant hormone that regulates many aspects of plant growth and development, as well as resistance to (a)biotic stress. Efforts to identify SA effector proteins have revealed that SA binds to and alters the activity of multiple plant proteins-this represents a shift from the paradigm that hormones mediate their functions via one or a few receptors. SA and its derivatives also have multiple targets in animals; some of these proteins, like their plant counterparts, are associated with pathological processes. Together, these findings suggest that SA exerts its defense-associated effects in both kingdoms via a large number of targets.

  17. The specificity of binding of growth hormone and prolactin to purified plasma membranes from pregnant-rabbit liver.

    PubMed Central

    Webb, C F; Cadman, H F; Wallis, M

    1986-01-01

    The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes. PMID:3790086

  18. Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior

    PubMed Central

    Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.

    2009-01-01

    Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594

  19. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    PubMed Central

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2 increased PR-mediated transcription in mammalian cells by as much as 7- to 10-fold without altering the basal promoter activity of target reporter genes. This increase in PR-mediated gene activation by coexpression of HMG-1/-2 was observed in different cell types and with different target promoters, suggesting a generality to the functional interaction between HMG-1/-2 and PR in vivo. Cotransfection of HMG-1 also increased reporter gene activation mediated by other steroid receptors, including glucocorticoid and androgen receptors, but it had a minimal influence on VDR-dependent transcription in vivo. These results support the conclusion that HMG-1/-2 are coregulatory proteins that increase the DNA binding and transcriptional activity of the steroid hormone class of receptors but that do not functionally interact with certain nonsteroid classes of nuclear receptors. PMID:9671457

  20. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  1. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    PubMed

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  2. Dwarfism in Mice Lacking Collagen-binding Integrins α2β1 and α11β1 Is Caused by Severely Diminished IGF-1 Levels*

    PubMed Central

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772

  3. Determining the time androgens and sex hormone-binding globulin take to return to baseline after discontinuation of oral contraceptives in women with polycystic ovary syndrome: a prospective study.

    PubMed

    Sánchez, Luis A; Pérez, Marilda; Centeno, Indira; David, Marisa; Kahi, Doris; Gutierrez, Elizabeth

    2007-03-01

    In this study, discontinuation of oral contraceptive pills in women with polycystic ovary syndrome was followed by the return of all measured androgens and sex hormone-binding globulin levels to basal values after 8 weeks. These observations are pertinent to the measurement of androgens and sex hormone-binding globulin levels in subjects who currently are taking oral contraceptive pills and have symptoms that are related to polycystic ovary syndrome.

  4. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  5. Thyroid Function Tests.

    ERIC Educational Resources Information Center

    Glover, Irving T.

    1979-01-01

    Describes two tests, T-4 and T-3, for hypothyroid based on the binding of the hormones by proteins. The tests were performed in courses for physicians, clinical chemists, laboratory technicians, and undergraduate science students by the individuals involved and on their own sera. These tests are commercially available in kit form. (GA)

  6. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS. (R824760)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Calcitonin: regional distribution of the hormone and its binding sites in the human brain and pituitary.

    PubMed

    Fischer, J A; Tobler, P H; Kaufmann, M; Born, W; Henke, H; Cooper, P E; Sagar, S M; Martin, J B

    1981-12-01

    Immunoreactive calcitonin (CT), indistinguishable from human CT-(1-32) and its sulfoxide, has been identified in extracts of the hypothalamus, the pituitary, and the thyroid obtained from human subjects at autopsy. DCT concentrations were highest in a region encompassing the posterior hypothalamus, the median eminence, and the pituitary; intermediate in the substantia nigra, the anterior hypothalamus, the globus pallidus, and the inferior colliculus; and low in the caudate nucleus, the hippocampus, the amygdala, and the cerebral and cerebellar cortices. Specific CT binding measured with 125I-labeled salmon CT was highest in homogenates of the posterior hypothalamus and the median eminence, shown to contain the highest concentrations of endogenous CT in the brain; CT binding was less than 12% of hypothalamic binding in all of the other regions of the brain examined and was negligible in the pituitary. Half-maximal binding was achieved with 0.1 nM nonradioactive salmon CT-(1-32), and the binding was directed to structural or conformational sites, or both, in the COOH-terminal half of salmon CT. The rank order of the inhibition of the binding by CT from different species and analogues of the human hormone was the same as in receptors on a human lymphoid cell line (Moran, J., Hunziker, W. & Fischer, J. A. (1978) Proc. Natl. Acad. Sci. USA 75, 3984-3988). The functional role of CT and of its binding sites in the brain remains to be elucidated.

  8. A non-invasive test for receptor binding applied to nephrogenic diabetes insipidus.

    PubMed Central

    Britton, K. E.; Tedder, R. S.; Khokhar, A. M.; Brown, N. J.; Davison, A.; Slater, J. D.

    1977-01-01

    Studies in animals have determined the importance of specific receptors to the action of many hormones and drugs. In man, a non-invasive external counting technique has been used and absence of receptor function has been demonstrated in a patient with nephrogenic diabetes insipidus using radioactively labelled arginine vasopressin. This is in contrast to the findings in a patient with pituitary diabetes insipidus and a normal control. These results suggest a model for the study of hormone and drug kinetics in man avoiding multiple samplings of biological fluids. PMID:196275

  9. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effectmore » on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists. ► Low-brominated OH-PBDEs bind to TH receptor differently than high-brominated ones.« less

  10. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  11. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis.

    PubMed

    Khodthong, Chuenchanok; Kabachinski, Greg; James, Declan J; Martin, Thomas F J

    2011-08-03

    Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone

    PubMed Central

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza

    2015-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the expression of sex-specific lincRNAs and their potential for regulation of sex differences in liver physiology and disease. PMID:26459762

  13. Arrestin binds to different phosphorylated regions of the thyrotropin-releasing hormone receptor with distinct functional consequences.

    PubMed

    Jones, Brian W; Hinkle, Patricia M

    2008-07-01

    Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.

  14. Structural, Functional and Evolutionary Aspects of Seed Globulins.

    PubMed

    Kesari, Pooja; Neetu; Sharma, Anchal; Katiki, Madhusudhanarao; Kumar, Pramod; Gurjar, Bhola R; Tomar, Shailly; Sharma, Ashwani K; Kumar, Pravindra

    2017-01-01

    Globulins are a major class of seed storage proteins which were thought to be enzymatically inactive. These proteins belong to the most ancient cupin superfamily. They can be graded into 11S legumin type and 7S vicilin type based on their sedimentation coefficients. Members from both classes share structural homology are thought to have evolved from either one-domain germin predecessor by duplication or by horizontal gene transfer of two-domain gene from bacteria to eukaryotes. Globulins are known to define the nutritional quality of the seeds, however, they are also involved in sucrose binding, desiccation, defense against microbes, hormone binding and oxidative stress etc. Major drawback with globulins is their tendency to bind to IgE. Studying structural-functional behavior of such protein can help in modifying proteins for enhanced functionality in food processing industries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Genetic testing facilitates prepubertal diagnosis of congenital hypogonadotropic hypogonadism.

    PubMed

    Xu, C; Lang-Muritano, M; Phan-Hug, F; Dwyer, A A; Sykiotis, G P; Cassatella, D; Acierno, J; Mohammadi, M; Pitteloud, N

    2017-08-01

    Neonatal micropenis and cryptorchidism raise the suspicion of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder caused by gonadotropin-releasing hormone deficiency. Low plasma testosterone levels and low gonadotropins during minipuberty provide a clinical diagnostic clue, yet these tests are seldomly performed in general practice. We report a male neonate with no family history of reproductive disorders who was born with micropenis and cryptorchidism. Hormonal testing at age 2.5 months showed low testosterone (0.3 nmol/L) and undetectable gonadotropins (luteinizing hormone and follicle-stimulating hormone both <0.5 U/L), suggestive of CHH. Genetic testing identified a de novo, heterozygous mutation in fibroblast growth factor receptor 1 (FGFR1 p.L630P). L630 resides on the ATP binding cleft of the FGFR1 tyrosine kinase domain, and L630P is predicted to cause a complete loss of receptor function. Cell-based assays confirmed that L630P abolishes FGF8 signaling activity. Identification of a loss-of-function de novo FGFR1 mutation in this patient confirms the diagnosis of CHH, allowing for a timely hormonal treatment to induce pubertal development. Therefore, genetic testing can complement clinical and hormonal assessment for a timely diagnosis of CHH in childhood. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Age-related changes in the response of intestinal cells to parathyroid hormone.

    PubMed

    Russo de Boland, Ana

    2004-12-01

    The concept of the role(s) of parathyroid hormone (PTH), has expanded from that on acting on the classical target tissues, bone and kidney, to the intestine where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and, activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of PTH receptor (PTHR1) binding sites, reduced expression of G proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired PTH receptor-mediated signaling in intestinal cells. A fundamental understanding of why PTH functions are impaired with age will enhance our understanding of its importance in intestinal cell physiology.

  17. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  18. hCG: Biological Functions and Clinical Applications

    PubMed Central

    Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-01-01

    Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80–85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications. PMID:28937611

  19. hCG: Biological Functions and Clinical Applications.

    PubMed

    Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-09-22

    Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.

  20. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    PubMed

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models

    PubMed Central

    Yakar, Shoshana; Isaksson, Olle

    2015-01-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. PMID:26432542

  2. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    PubMed Central

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  3. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    PubMed

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  4. Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum.

    PubMed

    Dong, Hongyan; Yauk, Carole L; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R Thomas; Lambert, Iain; Wade, Michael G

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRbeta) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning -8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5') of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRbeta binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding.

  5. Development and Characterization of a Novel Anti-idiotypic Monoclonal Antibody to Growth Hormone, Which Can Mimic Physiological Functions of Growth Hormone in Primary Porcine Hepatocytes

    PubMed Central

    Lan, Hai-Nan; Jiang, Hai-Long; Li, Wei; Wu, Tian-Cheng; Hong, Pan; Li, Yu Meng; Zhang, Hui; Cui, Huan-Zhong; Zheng, Xin

    2015-01-01

    B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production. PMID:25656185

  6. Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men.

    PubMed

    Ramlau-Hansen, Cecilia Høst; Moeller, Ulla Kristine; Bonde, Jens Peter; Olsen, Jørn; Thulstrup, Ane Marie

    2011-03-01

    To examine the association between low serum vitamin D concentration and estimates of male reproductive function. Cross-sectional study. University hospital. From a Danish pregnancy cohort established in 1984-1987, 347 sons were selected for a study conducted in 2005-2006. Semen parameters and reproductive hormones were related to vitamin D concentrations in 307 men. Semen characteristics and reproductive hormones. A high vitamin D level was unexpectedly associated with lower crude median total sperm count and percentage of normal morphology sperm and a high level of crude median sex hormone-binding globulin and FSH. After adjustment, the associations attenuated to nonsignificant associations, except for sex hormone-binding globulin. Additionally, adjusted free androgen index was lower at higher vitamin D levels, and men with high vitamin D had 11% (95% confidence interval, 1%-20%) lower free androgen index compared with men with low vitamin D. These results do not indicate that low vitamin D is a risk factor for poor semen quality in a population of young healthy men, but we may not have enough men with low vitamin D levels to detect an effect. New studies should include a larger proportion of vitamin D-deficient men. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Dietary intake, glucose metabolism and sex hormones in women with polycystic ovary syndrome (PCOS) compared with women with non-PCOS-related infertility.

    PubMed

    Tsai, Ya-Hui; Wang, Ting-Wen; Wei, Hsiao-Jui; Hsu, Chien-Yeh; Ho, Hsin-Jung; Chen, Wen-Hua; Young, Robert; Liaw, Chian-Mey; Chao, Jane C-J

    2013-06-28

    The present study investigated dietary intake, glucose metabolism and sex hormones in women with polycystic ovary syndrome (PCOS). A total of forty-five women (aged 25–40 years) with PCOS and 161 control women (aged 25–43 years) with non-PCOS-related infertility were recruited. Anthropometry, glucose tolerance and sex hormones were determined and dietary intake was assessed. Women with PCOS had lower serum sex hormone-binding globulin and increased BMI, waist:hip ratio, luteinising hormone, ratio of luteinising hormone: follicle-stimulating hormone, testosterone and free androgen index (FAI). Postprandial glucose, fasting insulin and insulin resistance were elevated in women with PCOS. Women with PCOS had reduced energy and carbohydrate intake but higher fat intake. Serum sex hormone-binding globulin level was negatively associated with BMI in both groups and negatively correlated with macronutrient intake in the PCOS group with hyperandrogenism. However, FAI was positively correlated with BMI, waist circumference and glucose metabolic parameters in both groups. Therefore, women with PCOS consume lower energy and carbohydrate compared with those with non-PCOS-related infertility and macronutrient intake is only negatively associated with serum sex hormone-binding globulin level in the PCOS group with hyperandrogenism.

  8. Genome-wide activity of unliganded estrogen receptor-α in breast cancer cells

    PubMed Central

    Caizzi, Livia; Ferrero, Giulio; Cutrupi, Santina; Cordero, Francesca; Ballaré, Cecilia; Miano, Valentina; Reineri, Stefania; Ricci, Laura; Friard, Olivier; Testori, Alessandro; Corà, Davide; Caselle, Michele; Di Croce, Luciano; De Bortoli, Michele

    2014-01-01

    Estrogen receptor-α (ERα) has central role in hormone-dependent breast cancer and its ligand-induced functions have been extensively characterized. However, evidence exists that ERα has functions that are independent of ligands. In the present work, we investigated the binding of ERα to chromatin in the absence of ligands and its functions on gene regulation. We demonstrated that in MCF7 breast cancer cells unliganded ERα binds to more than 4,000 chromatin sites. Unexpectedly, although almost entirely comprised in the larger group of estrogen-induced binding sites, we found that unliganded-ERα binding is specifically linked to genes with developmental functions, compared with estrogen-induced binding. Moreover, we found that siRNA-mediated down-regulation of ERα in absence of estrogen is accompanied by changes in the expression levels of hundreds of coding and noncoding RNAs. Down-regulated mRNAs showed enrichment in genes related to epithelial cell growth and development. Stable ERα down-regulation using shRNA, which caused cell growth arrest, was accompanied by increased H3K27me3 at ERα binding sites. Finally, we found that FOXA1 and AP2γ binding to several sites is decreased upon ERα silencing, suggesting that unliganded ERα participates, together with other factors, in the maintenance of the luminal-specific cistrome in breast cancer cells. PMID:24639548

  9. Structural and functional maturation of rat gastrointestinal barrier with thyroxine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, E.J.; Pang, K.Y.; Harmatz, P.R.

    It has been noted that the closure of the intestinal barrier to immunoglobulins is a normal maturational process in the rat. It has also been noted that the microvillus membrane (MVM) of newborn animals differs from adult MVM. The purpose of this study is to document whether thyroid hormone can induce closure in vivo in the rat and to relate this effect of thyroxine to the structural and functional maturation of the intestinal MVM. To assess closure, 2-wk-old rats were fed in rat immunoglobulin G (IgG), and serum antibody binding activity was measured 4 h later. The antibody binding activitymore » of treated animals (T) was 1.5-2 times less than that of controls (C), indicating that thyroxine stimulates closure. The MVM similarly showed signs of maturation. Structural maturation was demonstrated by the lower fluidity of the thyroid-treated animals' membranes. Under the influence of thyroxine, the number of receptors on the MVM for IgG had decreased, while the K/sub a/ remained the same, demonstrating the functional maturation of the MVM. In conclusion, thryoid hormone can induce both structural and functional maturation of the intestinal MVM and can enhance the intestinal mucosal barrier by decreasing the penetration of antibodies.« less

  10. G protein modulation of CaV2 voltage-gated calcium channels.

    PubMed

    Currie, Kevin P M

    2010-01-01

    Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.

  11. Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells

    PubMed Central

    Romero, María del Mar; Fernández-López, José Antonio; Remesar, Xavier; Alemany, Marià

    2012-01-01

    It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding. PMID:22479617

  12. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo

    2009-01-01

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We alsomore » screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.« less

  13. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    PubMed

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effect of SKI2670, a novel, orally active, non-peptide GnRH antagonist, on hypothalamic-pituitary-gonadal axis.

    PubMed

    Kim, Seon Mi; Yoo, Taekyung; Lee, So Young; Kim, Eun Jeong; Lee, Soo Min; Lee, Min Hee; Han, Min Young; Jung, Seung-Hyun; Choi, Jung-Hye; Ryu, Keun Ho; Kim, Hun-Taek

    2015-10-15

    Suppression of the hypothalamic-pituitary-gonadal axis has been widely utilized for the management of gonadal-hormone-dependent diseases such as endometriosis. Efforts to develop orally available gonadotropin-releasing hormone (GnRH) antagonists for the treatment of gonadal-hormone-dependent diseases led to the discovery of SKI2670, a novel non-peptide GnRH antagonist. The present study was undertaken to pharmacologically characterize SKI2670 in vitro and in vivo. We measured binding affinity and antagonistic activity of SKI2670 for the GnRH receptors. Immediate suppression of gonadotropins by single dosing of SKI2670 was examined in castrated monkeys. Subsequently, influence on gonadal hormones by prolonged administration of SKI2670 was assessed in naive female monkeys. To investigate in vivo efficacy of SKI2670, regression of ectopic implants by repeated administration of SKI2670 was examined in a rat endometriosis model. SKI2670 is a potent functional antagonist for the human GnRH receptor, with subnanomolar binding affinity. In castrated monkeys, single administration of SKI2670 lowered serum luteinizing hormone (LH) levels stronger with longer duration when compared to elagolix at equivalent doses. Moreover, repeated dosing of SKI2670 suppressed serum levels of gonadotropins and gonadal hormones in intact female monkeys while elagolix suppressed serum LH levels only. Finally, it exhibited regressive effects on ectopic implants in a rat endometriosis model without bone loss. Our findings demonstrate robust GnRH antagonistic efficacy of SKI2670 in animal models, suggesting that SKI2670-induced suppression of the hypothalamic-pituitary-gonadal axis may be beneficial for the treatment of gonadal-hormone-dependent diseases such as endometriosis in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Weight-of-evidence analysis of human exposures to dioxins and dioxin-like compounds and associations with thyroid hormone levels during early development.

    PubMed

    Goodman, Julie E; Kerper, Laura E; Boyce, Catherine Petito; Prueitt, Robyn L; Rhomberg, Lorenz R

    2010-10-01

    Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case-control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Signalling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a subst...

  17. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES FOR INTERSPECIES EXTRAPOLATION OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    In vitro screening assays designed to identify hormone minics or antagonists, including the EDSTAC Tier 1 Screening (TIS) Battery, typically use only mammalian estrogen (ER) and androgen receptors (AR). However, there is uncertainty concerning species differences in binding affin...

  18. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    PubMed Central

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  19. Do Androgen Receptor Splice Variants Facilitate Growth of Bone Metastases

    DTIC Science & Technology

    2016-11-01

    therapy is expression of constitutively active AR splice variants, which lack the carboxyl terminal hormone binding domain. The best characterized...resistance is expression of constitutively active AR splice variants, which lack the carboxyl terminal hormone binding domain. Of these, the most...removes hormone , but also many other factors. We plan to retest the effects of AR-V7 in the complete medium to determine whether effects would be

  20. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  1. The Involvement of PPARs in the Selective Regulation of Brain CYP2D by Growth Hormone.

    PubMed

    Zhang, Furong; Li, Jie; Na, Shufang; Wu, Juan; Yang, Zheqiong; Xie, Xianfei; Wan, Yu; Li, Ke; Yue, Jiang

    2018-05-21

    Brain CYP2D is responsible for the synthesis of endogenous neurotransmitters such as dopamine and serotonin. This study is to investigate the effects of cerebral CYP2D on mouse behavior and the mechanism whereby growth hormone regulates brain CYP2D. The inhibition of cerebellar CYP2D significantly affected the spatial learning and exploratory behavior of mice. CYP2D expression was lower in the brain in GHR-/- mice than that in WT mice; however, hepatic CYP2D levels were similar. Brain PPARα expression in male GHR-/- mice were markedly higher than those in WT mice, while brain PPARγ levels were decreased or unchanged in different regions. However, both hepatic PPARα and PPARγ in male GHR-/- mice were markedly higher than those in WT mice. Pulsatile GH decreased the PPARα mRNA level and increased the mRNA levels of CYP2D6 and PPARγ in SH-SY5Y cells. A luciferase assay showed that PPARγ activated the CYP2D6 gene promoter while PPARα inhibited its function. Pulsatile GH decreased the binding of PPARα to the CYP2D6 promoter by 40% and promoted the binding of PPARγ to the CYP2D6 promoter by approximately 60%. The male GH secretory pattern altered PPAR expression and the binding of PPARs to the CYP2D promoter, leading to the elevation of brain CYP2D in a tissue-specific manner. Growth hormone may alter the learning and memory functions in patients receiving GH replacement therapy via brain CYP2D. Copyright © 2018. Published by Elsevier Ltd.

  2. A randomized, open-label, crossover study comparing the effects of oral versus transdermal estrogen therapy on serum androgens, thyroid hormones, and adrenal hormones in naturally menopausal women.

    PubMed

    Shifren, Jan L; Desindes, Sophie; McIlwain, Marilyn; Doros, Gheorghe; Mazer, Norman A

    2007-01-01

    To compare the changes induced by oral versus transdermal estrogen therapy on the total and free serum concentrations of testosterone (T), thyroxine (T4), and cortisol (C) and the concentrations of their serum binding globulins sex hormone-binding globulin, thyroxine-binding globulin, and cortisol-binding globulin in naturally menopausal women. Randomized, open-label, crossover. Interventions included a 6-week withdrawal from previous hormone therapy (baseline), followed in randomized order by 12 weeks of oral conjugated equine estrogens (CEE) (0.625 mg/d) and 12 weeks of transdermal estradiol (TD E2) (0.05 mg/d), with oral micronized progesterone (100 mg/d) given continuously during both transdermal estrogen therapy regimens. Twenty-seven women were enrolled in the study, and 25 completed both treatment periods. The mean(SD) percentage changes from baseline of sex hormone-binding globulin, total T, and free T with oral CEE were +132.1% (74.5%), +16.4% (43.8%), and -32.7% (25.9%), respectively, versus +12.0% (25.1%), +1.2% (43.7%), and +1.0% (45.0%) with TD E2. The mean (SD) percentage changes of thyroxine-binding globulin, total T4, and free T4 with oral CEE were +39.9% (20.1%), +28.4% (29.2%), and -10.4% (22.3%), respectively, versus +0.4% (11.1%), -0.7% (16.5%), and +0.2% (26.6%) with TD E2. The mean (SD) percentage changes of cortisol-binding globulin, total C, and free C with oral CEE were +18.0% (19.5%), +29.2% (46.3%), and +50.4% (126.5%), respectively, versus -2.2% (11.3%), -6.7% (30.8%), and +1.8% (77.1%) with TD E2. Concentrations of all hormones and binding globulins were significantly different (P < or = 0.003) during administration of oral versus transdermal estrogen therapy, except for free T4 and free C. Compared with oral CEE, TD E2 exerts minimal effects on the total and free concentrations of T, T4, and C and their binding proteins.

  3. Functional diagnostics for thyrotropin hormone receptor autoantibodies: bioassays prevail over binding assays.

    PubMed

    Lytton, Simon David; Schluter, Anke; Banga, Paul J

    2018-06-01

    Autoantibodies to the thyrotropin hormone receptor (TSH-R) are directly responsible for the hyperthyroidism in Graves' disease and mediate orbital manifestations in Graves' orbitopathy (otherwise known as thyroid eye disease). These autoantibodies are heterogeneous in their function and collectively referred to as TRAbs. Measurement of TRAbs is clinically important for diagnosis of a variety of conditions and different commercial assays with high sensitivity and specificity are available for diagnostic purposes. This review provides overwhelming evidence that the TRAbs detected in binding assays by mainly the automated electrochemical luminescence immunoassays (ECLIA) do not distinguish TRAbs that stimulate the TSH-R (called TSIs or TSAbs) and TRAbs that just inhibit the binding of TSH without stimulating the TSH-R (called TBAbs). However, TSAbs and TBAbs have divergent pathogenic roles, and depending which fraction predominates cause different clinical symptoms and engender different therapeutic regimen. Therefore, diagnostic distinction of TSAbs and TBAbs is of paramount clinical importance. To date, only bioassays such as the Mc4 TSH-R bioassay (Thyretain TM , Quidel) and the Bridge assay (Immulite 2000, Siemens) can measure TSAbs, with only the former being able to distinguish between TSAbs and TBAbs. On this note, it is strongly recommended to only use the term TSI or TSAb when reporting the results of bioassays, whereas the results of automated TRAb binding assays should be reported as TRAbs (of undetermined functional significance). This review aims to present a technical and analytical account of leading commercial diagnostic methods of anti-TSH-R antibodies, a metaanalysis of their clinical performance and a perspective for the use of cell based TSH-R bioassays in the clinical diagnostics of Graves' disease.

  4. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    PubMed

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.

  5. Conversion of human choriogonadotropin into a follitropin by protein engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R.

    1991-02-01

    Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the {alpha} subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their {beta} subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG {beta}-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH{beta} and hFSH{beta} in receptor recognition and activation. Since the {beta} subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region,more » the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH {beta} subunits, coexpressed them with the human {alpha} subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH{beta} residues 33-52 for hCG{beta} residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH{beta} residues 88-108 in place of the carboxyl terminus of hCG{beta} (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG{beta} residues 108-145 or substitution of residues in the determinant loop located between hCD{beta} residues 93 and 100.« less

  6. Steroid ligands bind human sex hormone-binding globulin in specific orientations and produce distinct changes in protein conformation.

    PubMed

    Grishkovskaya, Irina; Avvakumov, George V; Hammond, Geoffrey L; Catalano, Maria G; Muller, Yves A

    2002-08-30

    The amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG) contains a single high affinity steroid-binding site. Crystal structures of this domain in complex with several different steroid ligands have revealed that estradiol occupies the SHBG steroid-binding site in an opposite orientation when compared with 5 alpha-dihydrotestosterone or C19 androgen metabolites (5 alpha-androstan-3 beta,17 beta-diol and 5 alpha-androstan-3 beta,17 alpha-diol) or the synthetic progestin levonorgestrel. Substitution of specific residues within the SHBG steroid-binding site confirmed that Ser(42) plays a key role in determining high affinity interactions by hydrogen bonding to functional groups at C3 of the androstanediols and levonorgestrel and the hydroxyl at C17 of estradiol. Among residues participating in the hydrogen bond network with hydroxy groups at C17 of C19 steroids or C3 of estradiol, Asp(65) appears to be the most important. The different binding mode of estradiol is associated with a difference in the position/orientation of residues (Leu(131) and Lys(134)) in the loop segment (Leu(131)-His(136)) that covers the steroid-binding site as well as others (Leu(171)-Lys(173) and Trp(84)) on the surface of human SHBG and may provide a basis for ligand-dependent interactions between SHBG and other macromolecules. These new crystal structures have also enabled us to construct a simple space-filling model that can be used to predict the characteristics of novel SHBG ligands.

  7. Age-related changes in bone turnover in men.

    PubMed

    Fatayerji, D; Eastell, R

    1999-07-01

    Biochemical markers of bone turnover can be used to study the pathophysiology of osteoporosis. So far there have been few such studies in men. The aims of this study were to determine the effect of aging on bone turnover and to identify which hormones might regulate bone turnover in men. We studied 178 healthy Caucasian men, ages 20-79 years (30 per decade). The data for the effect of age on bone turnover was best fit by a quadratic function (nadirs at age 56, 57, 53, 39, and 58 years for intact propeptide of type I procollagen, osteocalcin, bone alkaline phosphatase, free deoxypyridinoline, and cross-linked N-telopeptides of type I collagen, respectively). For most markers, bone turnover tended to be highest in the third decade, lowest in the fifth and sixth decade, with a small increase in some markers in the eighth decade. Insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3, dehydroepiandrosterone sulfate, testosterone, estradiol, and free androgen index all decreased significantly with age (54, 17, 76, 26, 33, and 57%, respectively), while sex hormone binding globulin and parathyroid hormone increased significantly with age (62% and 43%). IGF-I and sex hormones were positively correlated with bone turnover, and this association was stronger in young men than older men. In conclusion, increased IGF-I and sex hormones may be associated with increased bone turnover in young men, with less influence on bone turnover in older men.

  8. [Action of hormones at the molecular level].

    PubMed

    Korolkovas, A

    1973-03-01

    A review of the literature (the list of citations is available from the author on request) is given on the molecular pharmacology of steroid hormones and on efforts to isolate androgen, estrogen, and progestogen receptors with the object of understanding the mechanism of action at the cellular and molecular levels. Complementarity is the necessary factor for interaction between drug and chemoreceptor or the tension induced by proximity, as in the case of enzyme-substrate interaction. In reacting with a receptor, the drug molecule is seen as being, in general, in a state of least energy. Binding forces are the same as those operating in the interior of simple molecules. 2 factors are of special importance to the complex action of drug-receptor: the distribution of the electron charge in each and the molecular conformation of each. A number of examples illustrates this structure-activity relationship. For steroid hormones, 3 stereochemical aspects are significant for their molecular action: 1) binding sites (equatorial or axial), 2) the position of substituents, and 3) the form of cyclohexane (bound and most stable or free and thermodynamically less stable). The mode of action of steroid hormones is outlined, including a diagram of gene regulation and the function of operons and messenger RNA. Androgens, estrogens, and progestogens each owe their specific biological activity to interaction with a macromolecular receptor, such interaction presumably being due to complementarity between receptor and hormone surfaces. Several theories to account for this interaction are discussed and diagrammed.

  9. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans.

    PubMed

    Hannich, J Thomas; Entchev, Eugeni V; Mende, Fanny; Boytchev, Hristio; Martin, René; Zagoriy, Vyacheslav; Theumer, Gabriele; Riezman, Isabelle; Riezman, Howard; Knölker, Hans-Joachim; Kurzchalia, Teymuras V

    2009-06-01

    In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.

  10. Age-related changes in the response of intestinal cells to 1α,25(OH)2-vitamin D3.

    PubMed

    Gonzalez Pardo, Verónica; Russo de Boland, Ana

    2013-01-01

    The hormonally active form of vitamin D(3), 1α,25(OH)(2)-vitamin D(3), acts in intestine, its major target tissue, where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of vitamin D receptor (VDR) levels and binding sites, reduced expression of G-proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired 1α,25(OH)(2)-vitamin D(3) receptor-mediated signaling in intestinal cells. A fundamental understanding why the hormone functions are impaired with age will enhance our knowledge of its importance in intestinal cell physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Revaluation of the concept of developmental abnormality: the importance of faulty perinatal imprinting].

    PubMed

    Csaba, György

    2015-07-12

    The classic definition of developmental abnormalities referred to malformations observed at birth. Later the functional teratogenicity was also recognized and accepted, which can be revealed in functional abnormalities caused by harms during the intrauterine development and can be manifested at any time of life. However, the ontogeny is not closed with the birth, because some systems or organs are developing for a long time after it, and can be influenced by different factors. From this aspect the perinatal period is especially important when the mutual adjustment of the receptor-hormone system is taking place and the hormonal imprinting develops. If this is faulty, it influences the hormone binding capacity of receptors that has consequences for life. The faulty hormonal imprinting is functionally teratogen; it provokes a fault up to the level of a malformation and aggravated with its heredity to the progenies. False imprinting is provoked (in animal experiments, proportioning to human doses) by drugs acting at receptor level, as oxytocin, steroid hormone analogues (pregnancy protectors, oral contraceptives, surfactants), vitamin A and D, environmental pollutant endocrine disruptors (benzpyrene, bisphenol A, pesticides, herbicides) and certain soybean components, etc. From this aspect these are functional teratogens, and their evasion in prevention as well as therapy seems to be vital. This means that the concept of developmental abnormality must be broadened, as developmental abnormalities: 1.) can originate not only in the intrauterine period, but also perinatally or even later, 2.) it can be manifested at any time of life, 3.) it can be present in a latent form which can be activated by inner or outer environmental factors, 4.) the faulty hormonal imprinting is a teratogen factor.

  12. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.

    PubMed

    Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hormone activation induces nucleosome positioning in vivo

    PubMed Central

    Belikov, Sergey; Gelius, Birgitta; Almouzni, Geneviève; Wrange, Örjan

    2000-01-01

    The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishment of specific translational positioning of nucleosomes despite the lack of significant positioning in the inactive state; and, in the active promoter, a subnucleosomal particle encompassing the glucocorticoid receptor (GR)-binding region was detected. The presence of only a single GR-binding site was sufficient for the structural transition to occur. Both basal promoter elements and ongoing transcription were dispensable. These data reveal a stepwise process in the transcriptional activation by glucocorticoid hormone. PMID:10698943

  14. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and corpus callosum fractional anisotropy with Full-Scale IQ and Processing Speed Index. In patients with isolated growth hormone deficiency, white matter abnormalities in the corpus callosum and corticospinal tract, and reduced thalamic and globus pallidum volumes relate to deficits in cognitive function and motor performance. Follow-up studies that investigate the course of the structural and cognitive deficits on growth hormone treatment are now required to confirm that growth hormone deficiency impacts significantly on brain structure, cognitive function and motor performance.

  15. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  16. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  17. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ({sup 3}H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of {sup 3}H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked {sup 3}H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked {sup 3}H-EFDA in toluene alone, and of the protein-linked {sup 3}H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) formore » binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III.« less

  18. Androgens and the male reproductive tract: an overview of classical roles and current perspectives.

    PubMed

    Patrão, Marilia T C C; Silva, Erick J R; Avellar, Maria Christina W

    2009-11-01

    Androgens are steroid hormones that play key roles in the development and maintenance of male phenotype and reproductive function. These hormones also affect the function of several non-reproductive organs, such as bone and skeletal muscle. Endogenous androgens exert most of their effects by genomic mechanisms, which involve hormone binding to the androgen receptor (AR), a ligand-activated transcription factor, resulting in the modulation of gene expression. AR-induced non-genomic mechanisms have also been reported. A large number of steroidal and non-steroidal AR-ligands have been developed for therapeutic use, including the treatment of male hypogonadism (AR agonists) and prostate diseases (AR antagonists), among other pathological conditions. Here, the AR gene and protein structure, mechanism of action and AR gene homologous regulation were reviewed. The AR expression pattern, its in vivo regulation and physiological relevance in the developing and adult testis and epididymis, which are sites of sperm production and maturation, respectively, were also presented.

  19. Cytosolic glucocorticoid receptor in the testis of Bufo arenarum: seasonal changes in its binding parameters.

    PubMed

    Denari, Daniela; Ceballos, Nora R

    2006-07-01

    Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding to Leydig and Sertoli cells. In conclusion, in the testis of B. arenarum GC could regulate the function of both cellular types particularly during breeding when CORT reaches the highest plasma concentration.

  20. Non-hormonal male contraception: A review and development of an Eppin based contraceptive.

    PubMed

    O'Rand, Michael G; Silva, Erick J R; Hamil, Katherine G

    2016-01-01

    Developing a non-hormonal male contraceptive requires identifying and characterizing an appropriate target and demonstrating its essential role in reproduction. Here we review the development of male contraceptive targets and the current therapeutic agents under consideration. In addition, the development of EPPIN as a target for contraception is reviewed. EPPIN is a well characterized surface protein on human spermatozoa that has an essential function in primate reproduction. EPPIN is discussed as an example of target development, testing in non-human primates, and the search for small organic compounds that mimic contraceptive antibodies; binding EPPIN and blocking sperm motility. Although many hurdles remain before the success of a non-hormonal male contraceptive, continued persistence should yield a marketable product. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Follicle-stimulating hormone (FSH) unmasks specific high affinity FSH-binding sites in cell-free membrane preparations of porcine granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, K.A.; LaBarbera, A.R.

    1988-11-01

    The purpose of these studies was to determine whether changes in FSH receptors correlated with FSH-induced attenuation of FSH-responsive adenylyl cyclase in immature porcine granulosa cells. Cells were incubated with FSH (1-1000 ng/ml) for up to 24 h, treated with acidified medium (pH 3.5) to remove FSH bound to cells, and incubated with (125I)iodo-porcine FSH to quantify FSH-binding sites. FSH increased binding of FSH in a time-, temperature-, and FSH concentration-dependent manner. FSH (200 ng/ml) increased binding approximately 4-fold within 16 h. Analysis of equilibrium saturation binding data indicated that the increase in binding sites reflected a 2.3-fold increase inmore » receptor number and a 5.4-fold increase in apparent affinity. The increase in binding did not appear to be due to 1) a decrease in receptor turnover, since the basal rate of turnover appeared to be very slow; 2) an increase in receptor synthesis, since agents that inhibit protein synthesis and glycosylation did not block the increase in binding; or 3) an increase in intracellular receptors, since agents that inhibit cytoskeletal components had no effect. Agents that increase intracellular cAMP did not affect FSH binding. The increase in binding appeared to result from unmasking of cryptic FSH-binding sites, since FSH increased binding in cell-free membrane preparations to the same extent as in cells. Unmasking of cryptic sites was hormone specific, and the sites bound FSH specifically. Unmasking of sites was reversible in a time- and temperature-dependent manner after removal of bound FSH. The similarity between the FSH dose-response relationships for unmasking of FSH-binding sites and attenuation of FSH-responsive cAMP production suggests that the two processes are functionally linked.« less

  2. Research resource: Update and extension of a glycoprotein hormone receptors web application.

    PubMed

    Kreuchwig, Annika; Kleinau, Gunnar; Kreuchwig, Franziska; Worth, Catherine L; Krause, Gerd

    2011-04-01

    The SSFA-GPHR (Sequence-Structure-Function-Analysis of Glycoprotein Hormone Receptors) database provides a comprehensive set of mutation data for the glycoprotein hormone receptors (covering the lutropin, the FSH, and the TSH receptors). Moreover, it provides a platform for comparison and investigation of these homologous receptors and helps in understanding protein malfunctions associated with several diseases. Besides extending the data set (> 1100 mutations), the database has been completely redesigned and several novel features and analysis tools have been added to the web site. These tools allow the focused extraction of semiquantitative mutant data from the GPHR subtypes and different experimental approaches. Functional and structural data of the GPHRs are now linked interactively at the web interface, and new tools for data visualization (on three-dimensional protein structures) are provided. The interpretation of functional findings is supported by receptor morphings simulating intramolecular changes during the activation process, which thus help to trace the potential function of each amino acid and provide clues to the local structural environment, including potentially relocated spatial counterpart residues. Furthermore, double and triple mutations are newly included to allow the analysis of their functional effects related to their spatial interrelationship in structures or homology models. A new important feature is the search option and data visualization by interactive and user-defined snake-plots. These new tools allow fast and easy searches for specific functional data and thereby give deeper insights in the mechanisms of hormone binding, signal transduction, and signaling regulation. The web application "Sequence-Structure-Function-Analysis of GPHRs" is accessible on the internet at http://www.ssfa-gphr.de/.

  3. Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine.

    PubMed Central

    White, R; Sjöberg, M; Kalkhoven, E; Parker, M G

    1997-01-01

    The oestrogen receptor is a member of the nuclear receptor family of transcription factors which, on binding the steroid hormone 17beta-oestradiol, interacts with co-activator proteins and stimulates gene expression. Replacement of a single tyrosine in the hormone-binding domain generated activated forms of the receptor which stimulated transcription in the absence of hormone. This increased activation is related to a decrease in hydrophobicity and a reduction in size of the side chain of the amino acid with which the tyrosine is replaced. Ligand-independent, in common with ligand-dependent transcriptional activation, requires an amphipathic alpha-helix at the C-terminus of the ligand-binding domain which is essential for the interaction of the receptor with a number of potential co-activator proteins. In contrast to the wild-type protein, constitutively active receptors were able to bind both the receptor-interacting protein RIP-140 and the steroid receptor co-activator SRC-1 in a ligand-independent manner, although in the case of SRC-1 this was only evident when the receptors were prebound to DNA. We propose, therefore, that this tyrosine is required to maintain the receptor in a transcriptionally inactive state in the absence of hormone. Modification of this residue may generate a conformational change in the ligand-binding domain of the receptor to form an interacting surface which allows the recruitment of co-activators independent of hormone binding. This suggests that this tyrosine may be a target for a different signalling pathway which forms an alternative mechanism of activating oestrogen receptor-mediated transcription. PMID:9135157

  4. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β.

    PubMed

    Alamino, Vanina A; Mascanfroni, Iván D; Montesinos, María M; Gigena, Nicolás; Donadio, Ana C; Blidner, Ada G; Milotich, Sonia I; Cheng, Sheue-Yann; Masini-Repiso, Ana M; Rabinovich, Gabriel A; Pellizas, Claudia G

    2015-04-01

    Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  5. Characterization of AvaR1, a butenolide-autoregulator receptor for biosynthesis of a Streptomyces hormone in Streptomyces avermitilis.

    PubMed

    Sultan, Suandi Pratama; Kitani, Shigeru; Miyamoto, Kiyoko T; Iguchi, Hiroyuki; Atago, Tokitaka; Ikeda, Haruo; Nihira, Takuya

    2016-11-01

    Streptomyces hormones, sometimes called as autoregulators, are important signaling molecules to trigger secondary metabolism across many Streptomyces species. We recently identified a butenolide-type autoregulator (termed avenolide) as a new class of Streptomyces hormone from Streptomyces avermitilis that produces important anthelmintic agent avermectin. Avenolide triggers the production of avermectin with minimum effective concentration of nanomolar. Here, we describe the characterization of avaR1 encoding an avenolide receptor in the regulation of avermectin production and avenolide biosynthesis. The disruption of avaR1 resulted in transcriptional derepression of avenolide biosynthetic gene with an increase in avenolide production, with no change in the avermectin production profile. Moreover, the avaR1 mutant showed increased transcription of avaR1. Together with clear DNA-binding capacity of AvaR1 toward avaR1 upstream region, it suggests that AvaR1 negatively controls the expression of avaR1 through the direct binding to the promoter region of avaR1. These findings revealed that the avenolide receptor AvaR1 functions as a transcriptional repressor for avenolide biosynthesis and its own synthesis.

  6. Steroid hormones are novel nucleoside transport inhibitors by competition with nucleosides for their transporters.

    PubMed

    Kaneko, Masahiro; Hakuno, Fumihiko; Kamei, Hiroyasu; Yamanaka, Daisuke; Chida, Kazuhiro; Minami, Shiro; Coe, Imogen R; Takahashi, Shin-Ichiro

    2014-01-10

    Nucleoside transport is important for nucleic acid synthesis in cells that cannot synthesize nucleosides de novo, and for entry of many cytotoxic nucleoside analog drugs used in chemotherapy. This study demonstrates that various steroid hormones induce inhibition of nucleoside transport in mammalian cells. We analyzed the inhibitory effects of estradiol (E2) on nucleoside transport using SH-SY5Y human neuroblastoma cells. We observed inhibitory effects after acute treatment with E2, which lasted in the presence of E2. However, when E2 was removed, the effect immediately disappeared, suggesting that E2 effects are not mediated through the canonical regulatory pathway of steroid hormones, such as transcriptional regulation. We also discovered that E2 could competitively inhibit thymidine uptake and binding of the labeled nucleoside transporter inhibitor, S-[4-nitrobenzyl]-6-thioinosine (NBTI), indicating that E2 binds to endogenous nucleoside transporters, leading to inhibition of nucleoside transport. We then tested the effects of various steroids on nucleoside uptake in NBTI-sensitive cells, SH-SY5Y and NBTI-insensitive cells H9c2 rat cardiomyoblasts. We found E2 and progesterone clearly inhibited both NBTI-sensitive and insensitive uptake at micromolar concentrations. Taken together, we concluded that steroid hormones function as novel nucleoside transport inhibitors by competition with nucleosides for their transporters. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Statistical Genomic Approach Identifies Association between FSHR Polymorphisms and Polycystic Ovary Morphology in Women with Polycystic Ovary Syndrome

    PubMed Central

    Du, Tao; Duan, Yu; Li, Kaiwen; Zhao, Xiaomiao; Ni, Renmin; Li, Yu; Yang, Dongzi

    2015-01-01

    Background. Single-nucleotide polymorphisms (SNPs) in the follicle stimulating hormone receptor (FSHR) gene are associated with PCOS. However, their relationship to the polycystic ovary (PCO) morphology remains unknown. This study aimed to investigate whether PCOS related SNPs in the FSHR gene are associated with PCO in women with PCOS. Methods. Patients were grouped into PCO (n = 384) and non-PCO (n = 63) groups. Genomic genotypes were profiled using Affymetrix human genome SNP chip 6. Two polymorphisms (rs2268361 and rs2349415) of FSHR were analyzed using a statistical approach. Results. Significant differences were found in the allele distributions of the GG genotype of rs2268361 between the PCO and non-PCO groups (27.6% GG, 53.4% GA, and 19.0% AA versus 33.3% GG, 36.5% GA, and 30.2% AA), while no significant differences were found in the allele distributions of the GG genotype of rs2349415. When rs2268361 was considered, there were statistically significant differences of serum follicle stimulating hormone, estradiol, and sex hormone binding globulin between genotypes in the PCO group. In case of the rs2349415 SNP, only serum sex hormone binding globulin was statistically different between genotypes in the PCO group. Conclusions. Functional variants in FSHR gene may contribute to PCO susceptibility in women with PCOS. PMID:26273622

  8. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  9. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    NASA Astrophysics Data System (ADS)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  10. Gonadal function in males with autoimmune Addison's disease and autoantibodies to steroidogenic enzymes

    PubMed Central

    Dalla Costa, M; Bonanni, G; Masiero, S; Faggian, D; Chen, S; Furmaniak, J; Rees Smith, B; Perniola, R; Radetti, G; Garelli, S; Chiarelli, S; Albergoni, M P; Plebani, M; Betterle, C

    2014-01-01

    Steroidogenic enzyme autoantibodies (SEAbs) are frequently present and are markers of autoimmune premature ovarian failure (POF) in females with autoimmune Addison's disease (AAD). The prevalence and significance of SEAbs in males with AAD have not yet been defined. We studied the prevalence of SEAbs in a large cohort of males with AAD and assessed the relationship between SEAbs positivity and testicular function. A total of 154 males with AAD (mean age 34 years) were studied. SEAbs included autoantibodies to steroid-producing cells (StCA), detected by immunofluorescence, and steroid 17α-hydroxylase (17α-OHAbs) and side chain cleavage enzyme (SCCAbs) measured by immunoprecipitation assays. Gonadal function was evaluated by measuring follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHGB), anti-müllerian hormone (AMH) and inhibin-B (I-B). Twenty-six males, 10 SEAbs(+) and 16 SEAbs(–), were followed-up for a mean period of 7·6 years to assess the behaviour of SEAbs and testicular function. SEAbs were found in 24·7% of males with AAD, with the highest frequency in patients with autoimmune polyendocrine syndrome type 1 (APS-1). The levels of reproductive hormones in 30 SEAbs(+) males were in the normal range according to age and were not significantly different compared to 55 SEAbs(–) males (P > 0·05). During follow-up, both SEAbs(+) and SEAbs(–) patients maintained normal testicular function. SEAbs were found with high frequency in males with AAD; however, they were not associated with testicular failure. This study suggests that the diagnostic value of SEAbs in males with AAD differs compared to females, and this may be related to the immunoprivileged status of the testis. PMID:24666377

  11. Gonadal function in males with autoimmune Addison's disease and autoantibodies to steroidogenic enzymes.

    PubMed

    Dalla Costa, M; Bonanni, G; Masiero, S; Faggian, D; Chen, S; Furmaniak, J; Rees Smith, B; Perniola, R; Radetti, G; Garelli, S; Chiarelli, S; Albergoni, M P; Plebani, M; Betterle, C

    2014-06-01

    Steroidogenic enzyme autoantibodies (SEAbs) are frequently present and are markers of autoimmune premature ovarian failure (POF) in females with autoimmune Addison's disease (AAD). The prevalence and significance of SEAbs in males with AAD have not yet been defined. We studied the prevalence of SEAbs in a large cohort of males with AAD and assessed the relationship between SEAbs positivity and testicular function. A total of 154 males with AAD (mean age 34 years) were studied. SEAbs included autoantibodies to steroid-producing cells (StCA), detected by immunofluorescence, and steroid 17α-hydroxylase (17α-OHAbs) and side chain cleavage enzyme (SCCAbs) measured by immunoprecipitation assays. Gonadal function was evaluated by measuring follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHGB), anti-müllerian hormone (AMH) and inhibin-B (I-B). Twenty-six males, 10 SEAbs((+)) and 16 SEAbs((-)), were followed-up for a mean period of 7·6 years to assess the behaviour of SEAbs and testicular function. SEAbs were found in 24·7% of males with AAD, with the highest frequency in patients with autoimmune polyendocrine syndrome type 1 (APS-1). The levels of reproductive hormones in 30 SEAbs((+)) males were in the normal range according to age and were not significantly different compared to 55 SEAbs((-)) males (P > 0·05). During follow-up, both SEAbs((+)) and SEAbs((-)) patients maintained normal testicular function. SEAbs were found with high frequency in males with AAD; however, they were not associated with testicular failure. This study suggests that the diagnostic value of SEAbs in males with AAD differs compared to females, and this may be related to the immunoprivileged status of the testis. © 2014 British Society for Immunology.

  12. Effects of sex steroids on muscarinic sties in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Dahan, M.I.

    1986-03-01

    The level of binding sites for (/sup 3/H)scopolamine in the rat hypothalamus and amygdala (but not elsewhere in the brain) is modified by hormonal status. In females, there is an inverse relation between the level of sites and estrogen (E/sub 2/) and progesterone (P) concentration. Binding is high in metoestrous (Met) and in ovariectomized (Ovx) animals but low in proestrous (Pro). Hormone replacement in ovariectomized animals lowers the level of the sites. Castration (Cast) of males reduces the level of sites but subsequent testosterone (T) treatment restores normal levels. The results support a role of hormones in sexual behavior viamore » alteration in levels of muscarinic receptors: male hormone increases and female hormones decrease receptor levels.« less

  13. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site.

    PubMed Central

    McKinney, J D

    1989-01-01

    Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666

  14. Association of Sex Hormones With Sexual Function, Vitality, and Physical Function of Symptomatic Older Men With Low Testosterone Levels at Baseline in the Testosterone Trials

    PubMed Central

    Cunningham, Glenn R.; Stephens-Shields, Alisa J.; Rosen, Raymond C.; Wang, Christina; Ellenberg, Susan S.; Matsumoto, Alvin M.; Bhasin, Shalender; Molitch, Mark E.; Farrar, John T.; Cella, David; Barrett-Connor, Elizabeth; Cauley, Jane A.; Cifelli, Denise; Crandall, Jill P.; Ensrud, Kristine E.; Fluharty, Laura; Gill, Thomas M.; Lewis, Cora E.; Pahor, Marco; Resnick, Susan M.; Storer, Thomas W.; Swerdloff, Ronald S.; Anton, Stephen; Basaria, Shehzad; Diem, Susan; Tabatabaie, Vafa; Hou, Xiaoling

    2015-01-01

    Context: The prevalence of sexual dysfunction, low vitality, and poor physical function increases with aging, as does the prevalence of low total and free testosterone (TT and FT) levels. However, the relationship between sex hormones and age-related alterations in older men is not clear. Objective: To test the hypotheses that baseline serum TT, FT, estradiol (E2), and sex hormone-binding globulin (SHBG) levels are independently associated with sexual function, vitality, and physical function in older symptomatic men with low testosterone levels participating in the Testosterone Trials (TTrials). Design: Cross-sectional study of baseline measures in the TTrials. Setting: The study was conducted at 12 sites in the United States. Participants: The 788 TTrials participants were ≥ 65 years and had evidence of sexual dysfunction, diminished vitality, and/or mobility disability, and an average of two TT < 275 ng/dL. Interventions: None. Main Outcome Measures: Question 4 of Psychosocial Daily Questionnaire (PDQ-Q4), the FACIT-Fatigue Scale, and the 6-minute walk test. Results: Baseline serum TT and FT, but not E2 or SHBG levels had small, but statistically significant associations with validated measures of sexual desire, erectile function, and sexual activity. None of these hormones was significantly associated within or across trials with FACIT-Fatigue, PHQ-9 Depression or Physical Function-10 scores, or gait speed. Conclusions: FT and TT levels were consistently, independently, and positively associated, albeit to a small degree, with measures of sexual desire, erectile function, and sexual activity, but not with measures of vitality or physical function in symptomatic older men with low T who qualified for the TTrials. PMID:25548978

  15. Association of sex hormones with sexual function, vitality, and physical function of symptomatic older men with low testosterone levels at baseline in the testosterone trials.

    PubMed

    Cunningham, Glenn R; Stephens-Shields, Alisa J; Rosen, Raymond C; Wang, Christina; Ellenberg, Susan S; Matsumoto, Alvin M; Bhasin, Shalender; Molitch, Mark E; Farrar, John T; Cella, David; Barrett-Connor, Elizabeth; Cauley, Jane A; Cifelli, Denise; Crandall, Jill P; Ensrud, Kristine E; Fluharty, Laura; Gill, Thomas M; Lewis, Cora E; Pahor, Marco; Resnick, Susan M; Storer, Thomas W; Swerdloff, Ronald S; Anton, Stephen; Basaria, Shehzad; Diem, Susan; Tabatabaie, Vafa; Hou, Xiaoling; Snyder, Peter J

    2015-03-01

    The prevalence of sexual dysfunction, low vitality, and poor physical function increases with aging, as does the prevalence of low total and free testosterone (TT and FT) levels. However, the relationship between sex hormones and age-related alterations in older men is not clear. To test the hypotheses that baseline serum TT, FT, estradiol (E2), and sex hormone-binding globulin (SHBG) levels are independently associated with sexual function, vitality, and physical function in older symptomatic men with low testosterone levels participating in the Testosterone Trials (TTrials). Cross-sectional study of baseline measures in the TTrials. The study was conducted at 12 sites in the United States. The 788 TTrials participants were ≥ 65 years and had evidence of sexual dysfunction, diminished vitality, and/or mobility disability, and an average of two TT < 275 ng/dL. None. Question 4 of Psychosocial Daily Questionnaire (PDQ-Q4), the FACIT-Fatigue Scale, and the 6-minute walk test. Baseline serum TT and FT, but not E2 or SHBG levels had small, but statistically significant associations with validated measures of sexual desire, erectile function, and sexual activity. None of these hormones was significantly associated within or across trials with FACIT-Fatigue, PHQ-9 Depression or Physical Function-10 scores, or gait speed. FT and TT levels were consistently, independently, and positively associated, albeit to a small degree, with measures of sexual desire, erectile function, and sexual activity, but not with measures of vitality or physical function in symptomatic older men with low T who qualified for the TTrials.

  16. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer.

    PubMed

    Severson, Tesa M; Kim, Yongsoo; Joosten, Stacey E P; Schuurman, Karianne; van der Groep, Petra; Moelans, Cathy B; Ter Hoeve, Natalie D; Manson, Quirine F; Martens, John W; van Deurzen, Carolien H M; Barbe, Ellis; Hedenfalk, Ingrid; Bult, Peter; Smit, Vincent T H B M; Linn, Sabine C; van Diest, Paul J; Wessels, Lodewyk; Zwart, Wilbert

    2018-02-02

    Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.

  17. Restoration of Cardiac Tissue Thyroid Hormone Status in Experimental Hypothyroidism: A Dose-Response Study in Female Rats

    PubMed Central

    Weltman, Nathan Y.; Ojamaa, Kaie; Savinova, Olga V.; Chen, Yue-Feng; Schlenker, Evelyn H.; Zucchi, Riccardo; Saba, Alessandro; Colligiani, Daria; Pol, Christine J.

    2013-01-01

    Thyroid hormones (THs) play a pivotal role in regulating cardiovascular homeostasis. To provide a better understanding of the coordinated processes that govern cardiac TH bioavailability, this study investigated the influence of serum and cardiac TH status on the expression of TH transporters and cytosolic binding proteins in the myocardium. In addition, we sought to determine whether the administration of T3 (instead of T4) improves the relationship between THs in serum and cardiac tissue and cardiac function over a short-term treatment period. Adult female Sprague Dawley rats were made hypothyroid by 7 weeks treatment with the antithyroid drug 6-n-propyl-2-thiouracil (PTU). After establishing hypothyroidism, rats were assigned to 1 of 5 graded T3 dosages plus PTU for a 2-week dose-response experiment. Untreated, age-matched rats served as euthyroid controls. PTU was associated with depressed serum and cardiac tissue T3 and T4 levels, arteriolar atrophy, altered TH transporter and cytosolic TH binding protein expression, fetal gene reexpression, and cardiac dysfunction. Short-term administration of T3 led to a mismatch between serum and cardiac tissue TH levels. Normalization of serum T3 levels was not associated with restoration of cardiac tissue T3 levels or cardiac function. In fact, a 3-fold higher T3 dosage was necessary to normalize cardiac tissue T3 levels and cardiac function. Importantly, this study provides the first comprehensive data on the relationship between altered TH status (serum and cardiac tissue), cardiac function, and the coordinated in vivo changes in cardiac TH membrane transporters and cytosolic TH binding proteins in altered TH states. PMID:23594789

  18. Effect of propranolol on thyroid homeostasis of healthy volunteers.

    PubMed Central

    Wilkins, M. R.; Franklyn, J. A.; Woods, K. L.; Kendall, M. J.

    1985-01-01

    The effect of propranolol on thyroid status was investigated by administering the drug in 2 therapeutic doses (80 mg b.d. and 120 mg b.d.) to 8 healthy volunteers and serially measuring total and free thyroid hormones and their major binding protein. Mean free T3 fell by 1.2 pmol/l (P less than 0.05) whilst mean free T4 and mean rT3 rose by 3.3 pmol/l (P less than 0.01) and 0.16 nmol/l (P less than 0.01) respectively. Mean thyroxine binding globulin (TBG) fell by 1.2 mg/l (P less than 0.001). Despite the change in free hormone levels there was no significant change in TSH. For the first time the effect of propranolol on circulating thyroid hormones and binding proteins in healthy subjects is apparent within one study. The biological significance of the change in free hormone levels is discussed. PMID:3927277

  19. Circadian and estral changes in the hypothalamic prostaglandin e content and [h]prostaglandin e binding in female rats.

    PubMed

    Bommelaer-Bayet, M C; Wisner, A; Renard, C A; Levi, F A; Dray, F

    1990-04-01

    Abstract Prostaglandin E(2), (PGE(2)) is involved in the luteinizing hormone-releasing hormone-stimulated luteinizing hormone surge in female rats and may act via specific membrane receptors. The following studies were performed to determine whether there were any changes in the hypothalamic PGE(2) binding and/or PGE(2) content which were specific to proestrus and not to the rest of the estrous cycle. Groups of female Wistar rats were sacrificed at 3-h intervals throughout the estrous cycle to determine both the circadian and circaestral changes in the hypothalamic PGE(2) content and [(3)H]PGE(2) binding. The hypothalamic PGE(2) content was maximal at 1700 h on each of the 4 consecutive days of the estrous cycle but was independent of the stage of the cycle. [(3)H]PGE(2) binding also displayed a circadian rhythm; the lowest binding occurred near the circadian peak of PGE(2), suggesting that the PGE(2) binding sites were occupied by endogenous PGE(2). Since such circadian rhythms were not observed in the hypothalamus of male rats, they may be under the control of ovarian steroids. Also, since PGE(2) binding and the PGE(2) content both exhibit a diurnal pattern independent of the day of the cycle, there may be changes in the PGE(2) receptor-mediated process coupled to an adenylyl cyclase which could explain the luteinizing hormone surge in proestrus.

  20. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure,more » PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.« less

  1. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells

    PubMed Central

    Fortin, Jérôme; Boehm, Ulrich; Weinstein, Michael B.; Graff, Jonathan M.; Bernard, Daniel J.

    2014-01-01

    The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate FSH β-subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD proteins SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce FSH at quantitatively normal levels. Notably, however, we discovered that the recombined Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb transcriptional assays. As the truncated protein lacks the N-terminal Mad homology 1 (MH1) domain, these results show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove all SMAD3 function may facilitate interpretation of divergent phenotypes previously described in different Smad3 knockout mouse lines.—Fortin, J., Boehm, U., Weinstein, M. B., Graff, J. M., Bernard, D. J. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. PMID:24308975

  2. ADH (Antidiuretic Hormone) Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  3. Anti-Müllerian Hormone

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  4. Growth hormone deficiency - children

    MedlinePlus

    ... be done include: Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 ( ... C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, ...

  5. Hormones and the Resistance of Women to Paracoccidioidomycosis

    PubMed Central

    Shankar, Jata; Restrepo, Angela; Clemons, Karl V.; Stevens, David A.

    2011-01-01

    Summary: Paracoccidioidomycosis, one of the most important endemic and systemic mycoses in Latin America, presents several clinical pictures. Epidemiological studies indicate a striking rarity of disease (but not infection) in females, but only during the reproductive years. This suggested a hormonal interaction between female hormones and the etiologic dimorphic fungus Paracoccidioides brasiliensis. Many fungi have been shown to use hormonal (pheromonal) fungal molecules for intercellular communication, and there are increasing numbers of examples of interactions between mammalian hormones and fungi, including the specific binding of mammalian hormones by fungal proteins, and suggestions of mammalian hormonal modulation of fungal behavior. This suggests an evolutionary conservation of hormonal receptor systems. We recount studies showing the specific hormonal binding of mammalian estrogen to proteins in P. brasiliensis and an action of estrogen to specifically block the transition from the saprophytic form to the invasive form of the fungus in vitro. This block has been demonstrated to occur in vivo in animal studies. These unique observations are consistent with an estrogen-fungus receptor-mediated effect on pathogenesis. The fungal genes responsive to estrogen action are under study. PMID:21482727

  6. Serum levels of sex steroid hormones and matrix metalloproteinases after intra-articular glucocorticoid treatment in female patients with rheumatoid arthritis.

    PubMed

    Weitoft, T; Larsson, A; Rönnblom, L

    2008-03-01

    To study metalloproteinase activity and sex steroid hormone production in serum after intra-articular glucocorticoid treatment for knee synovitis. 18 female patients with rheumatoid arthritis and synovitis of the knee with need for intra-articular glucocorticoid treatment were included in this study. Serum samples of matrix metalloproteinases (MMP-1/TIMP complex and MMP-3), dehydroepiandrosterone sulphate, testosterone, oestradiol, steroid hormone binding globulin, follicle stimulating hormone and luteinising hormone were collected before injection with 20 mg triamcinolone hexacetonide, and 24 h, 48 h, 1 week and 2 weeks after injection, respectively. Serum levels of MMP-3 were significantly decreased, but MMP-1/TIMP complex was unaffected. Dehydroepiandrosterone sulphate, testosterone and oestradiol levels all decreased and tended to return to baseline levels during the observation period. Steroid hormone binding globulin, follicle stimulating hormone and luteinising hormone levels were unchanged. Intra-articular glucocorticoid treatment causes a temporary, but considerable suppression of sex steroid hormone secretion. The reduction of MMP-3 indicates an inhibition of the inflammatory, but probably also the cartilage destructive processes within the treated joint.

  7. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat.

    PubMed Central

    Nakagawa, S; Kawashima, Y; Hirose, A; Kozuka, H

    1994-01-01

    Regulation of the hepatic level of fatty-acid-binding protein (FABP) by hormones and p-chlorophenoxyisobutyric acid (clofibric acid) was studied. The hepatic level of FABP, measured as the oleic acid-binding capacity of the cytosolic FABP fraction, was decreased in streptozotocin-diabetic rats. The level of FABP was markedly increased in adrenalectomized rats, and the elevation was prevented by the administration of dexamethasone. Hypothyroidism decreased the level of FABP and hyperthyroidism increased it. A high correlation between the incorporation of [14C]oleic acid in vivo into hepatic triacylglycerol and the level of FABP was found for normal, diabetic and adrenalectomized rats. The level of FABP was increased by administration of clofibric acid to rats in any altered hormonal states, as was microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, a peroxisome-proliferator-responsive parameter. These results suggest that the hepatic level of FABP is under regulation by multiple hormones and that clofibric acid induces FABP and 1-acyl-GPC acyltransferase by a mechanism which may be distinct from that by which hormones regulate the level of FABP. PMID:8110197

  8. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis

    PubMed Central

    Laurent, Michaël R.; Hammond, Geoffrey L.; Blokland, Marco; Jardí, Ferran; Antonio, Leen; Dubois, Vanessa; Khalil, Rougin; Sterk, Saskia S.; Gielen, Evelien; Decallonne, Brigitte; Carmeliet, Geert; Kaufman, Jean-Marc; Fiers, Tom; Huhtaniemi, Ilpo T.; Vanderschueren, Dirk; Claessens, Frank

    2016-01-01

    Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology. PMID:27748448

  9. Interactions of L-3,5,3'-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

    PubMed Central

    Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724

  10. Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes.

    PubMed

    Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

  11. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    NASA Technical Reports Server (NTRS)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  12. Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models.

    PubMed

    Markov, Gabriel V; Girard, Jean; Laudet, Vincent; Leblanc, Catherine

    2018-06-15

    Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Activity and subcellular compartmentalization of peroxisome proliferator-activated receptor alpha are altered by the centrosome-associated protein CAP350.

    PubMed

    Patel, Hansa; Truant, Ray; Rachubinski, Richard A; Capone, John P

    2005-01-01

    Peroxisome proliferator-activated nuclear hormone receptors (PPAR) are ligand-activated transcription factors that play pivotal roles in governing metabolic homeostasis and cell growth. PPARs are primarily in the nucleus but, under certain circumstances, can be found in the cytoplasm. We show here that PPAR(alpha) interacts with the centrosome-associated protein CAP350. CAP350 also interacts with PPAR(delta), PPAR(gamma) and liver-X-receptor alpha, but not with the 9-cis retinoic acid receptor, RXR(alpha). Immunofluorescence analysis indicated that PPAR(alpha) is diffusely distributed in the nucleus and excluded from the cytoplasm. However, in the presence of coexpressed CAP350, PPAR(alpha) colocalizes with CAP350 to discrete nuclear foci and to the centrosome, perinuclear region and intermediate filaments. In contrast, the subcellular distribution of RXR(alpha) or of thyroid hormone receptor alpha was not altered by coexpression of CAP350. An amino-terminal fragment of CAP350 was localized exclusively to nuclear foci and was sufficient to recruit PPAR(alpha) to these sites. Mutation of the single putative nuclear hormone receptor interacting signature motif LXXLL present in this fragment had no effect on its subnuclear localization but abrogated recruitment of PPAR(alpha) to nuclear foci. Surprisingly, mutation of the LXXLL motif in this CAP350 subfragment did not prevent its binding to PPAR(alpha) in vitro, suggesting that this motif serves some function other than PPAR(alpha) binding in recruiting PPAR(alpha) to nuclear spots. CAP350 inhibited PPAR(alpha)-mediated transactivation in an LXXLL-dependent manner, suggesting that CAP350 represses PPAR(alpha) function. Our findings implicate CAP350 in a dynamic process that recruits PPAR(alpha) to discrete nuclear and cytoplasmic compartments and suggest that altered intracellular compartmentalization represents a regulatory process that modulates PPAR function.

  14. Medical hypothesis: bifunctional genetic-hormonal pathways to breast cancer.

    PubMed

    Davis, D L; Telang, N T; Osborne, M P; Bradlow, H L

    1997-04-01

    As inherited germ line mutations, such as loss of BRCA1 or AT, account for less than 5% of all breast cancer, most cases involve acquired somatic perturbations. Cumulative lifetime exposure to bioavailable estradiol links most known risk factors (except radiation) for breast cancer. Based on a series of recent experimental and epidemiologic findings, we hypothesize that the multistep process of breast carcinogenesis results from exposure to endogenous or exogenous hormones, including phytoestrogens that directly or indirectly alter estrogen metabolism. Xenohormones are defined as xenobiotic materials that modify hormonal production; they can work bifunctionally, through genetic or hormonal paths, depending on the periods and extent of exposure. As for genetic paths, xenohormones can modify DNA structure or function. As for hormonal paths, two distinct mechanisms can influence the potential for aberrant cell growth: compounds can directly bind with endogenous hormone or growth factor receptors affecting cell proliferation or compounds can modify breast cell proliferation altering the formation of hormone metabolites that influence epithelial-stromal interaction and growth regulation. Beneficial xenohormones, such as indole-3-carbinol, genistein, and other bioflavonoids, may reduce aberrant breast cell proliferation, and influence the rate of DNA repair or apoptosis and thereby influence the genetic or hormonal microenvironments. Upon validation with appropriate in vitro and in vivo studies, biologic markers of the risk for breast cancer, such as hormone metabolites, total bioavailable estradiol, and free radical generators can enhance cancer detection and prevention.

  15. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  16. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans.

    PubMed

    Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J

    2006-03-24

    In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.

  17. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  18. Defective membrane expression of human growth hormone (GH) receptor causes Laron-type GH insensitivity syndrome.

    PubMed Central

    Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M

    1991-01-01

    Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554

  19. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.

    PubMed

    Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan

    2008-01-01

    The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.

  20. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    PubMed

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  1. Thyroid Stimulating Hormone Receptor Antibodies in Thyroid Eye Disease-Methodology and Clinical Applications.

    PubMed

    Diana, Tanja; Kahaly, George J

    2018-05-02

    Thyroid stimulating hormone receptor antibodies (TSHR-Ab) cause autoimmune hyperthyroidism and are prevalent in patients with related thyroid eye disease (TED). To provide a historical perspective on TSHR-Ab and to present evidence-based recommendations for clinical contemporary use. The authors review the recent literature pertaining to TSHR-Ab in patients with TED and describe the various immunoassays currently used for detecting TSHR-Ab and their clinical applications. We provide a historical summary and description of the various methods used to detect TSHR-Ab, foremost, the functional TSHR-Ab. Increasing experimental and clinical data demonstrate the clinical usefulness of cell-based bioassays for measurements of functional TSHR-Ab in the diagnosis and management of patients with autoimmune TED and in the characterization of patients with autoimmune-induced hyperthyroidism and hypothyroidism. Thyroid stimulating hormone receptor antibodies, especially the functional stimulating antibodies, are sensitive, specific, and reproducible biomarkers for patients with autoimmune TED and correlate well with clinical disease activity and clinical severity. Unlike competitive-binding assays, bioassays have the advantage of indicating not only the presence of antibodies but also their functional activity and potency. Measurement of TSHR-Ab (especially stimulating antibodies) is a clinically useful tool for the management of patients with TED.

  2. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  3. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  4. Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder.

    PubMed

    Rapkin, Andrea J; Akopians, Alin L

    2012-06-01

    Premenstrual syndrome (PMS) and premenstrual dysphoric disorder are triggered by hormonal events ensuing after ovulation. The symptoms can begin in the early, mid or late luteal phase and are not associated with defined concentrations of any specific gonadal or non-gonadal hormone. Although evidence for a hormonal abnormality has not been established, the symptoms of the premenstrual disorders are related to the production of progesterone by the ovary. The two best-studied and relevant neurotransmitter systems implicated in the genesis of the symptoms are the GABArgic and the serotonergic systems. Metabolites of progesterone formed by the corpus luteum of the ovary and in the brain bind to a neurosteroid-binding site on the membrane of the gamma-aminobutyric acid (GABA) receptor, changing its configuration, rendering it resistant to further activation and finally decreasing central GABA-mediated inhibition. By a similar mechanism, the progestogens in some hormonal contraceptives are also thought to adversely affect the GABAergic system. The lowering of serotonin can give rise to PMS-like symptoms and serotonergic functioning seems to be deficient by some methods of estimating serotonergic activity in the brain; agents that augment serotonin are efficacious and are as effective even if administered only in the luteal phase. However, similar to the affective disorders, PMS is ultimately not likely to be related to the dysregulation of individual neurotransmitters. Brain imaging studies have begun to shed light on the complex brain circuitry underlying affect and behaviour and may help to explicate the intricate neurophysiological foundation of the syndrome.

  5. A portion of heifers attaining “early puberty” do not display estrus, are anovulatory and have altered sex hormone binding globulin concentrations

    USDA-ARS?s Scientific Manuscript database

    Cows with excess androstenedione (High A4) in the follicular fluid of dominant follicles attain puberty earlier than their low androstenedione counterparts. Furthermore, High A4 cows are anovulatory (chronic or sporadic) and have lower Sex Hormone Binding Globulin (SHBG) compared to Low A4 ovulator...

  6. Prostate Cancer Risk in Relation to IGF-1 and its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2006-05-01

    and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in the stomach, also stimulates...GHRL Ghrelin GHSR Growth hormone secretagogue receptor IGFALS IGF binding protein, acid labile subunit IGFBP1 - 6 IGF-binding proteins 1 to 6

  7. High Sex Hormone Binding Globulin (SHBG) Levels in Older Patients with Acute Hip Fracture Are Correlated with Worse Function and Increased Bone Resorption

    USDA-ARS?s Scientific Manuscript database

    Previous studies suggested that higher SHBG levels are associated with an increased hip fracture risk and that higher testosterone levels may reduce the odds of falling among men and women age 65 and older. The objective of this study is to examine the correlation of serum testosterone and SHBG with...

  8. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors.

    PubMed

    Carroll, Sean Michael; Bridgham, Jamie T; Thornton, Joseph W

    2008-12-01

    Specific interactions among proteins, nucleic acids, and metabolites drive virtually all cellular functions and underlie phenotypic complexity and diversity. Despite the fundamental importance of interactions, the mechanisms and dynamics by which they evolve are poorly understood. Here we describe novel interactions between a lineage-specific hormone and its receptors in elasmobranchs, a subclass of cartilaginous fishes, and infer how these associations evolved using phylogenetic and protein structural analyses. The hormone 1alpha-hydroxycorticosterone (1alpha-B) is a physiologically important steroid synthesized only in elasmobranchs. We show that 1alpha-B modulates gene expression in vitro by activating two paralogous intracellular transcription factors, the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the little skate Leucoraja erinacea; MR serves as a high-sensitivity and GR as a low-sensitivity receptor. Using functional analysis of extant and resurrected ancestral proteins, we show that receptor sensitivity to 1alpha-B evolved millions of years before the hormone itself evolved. The 1alpha-B differs from more ancient corticosteroids only by the addition of a hydroxyl group; the three-dimensional structure of the ancestral receptor shows that the ligand pocket contained ample unoccupied space to accommodate this moiety. Our findings indicate that the interactions between 1alpha-B and elasmobranch GR and MR proteins evolved by molecular exploitation: a novel hormone recruited into new functional partnerships two ancient receptors that had previously interacted with other ligands. The ancestral receptor's promiscuous capacity to fortuitously bind compounds that are slight structural variants of its original ligands set the stage for the evolution of this new interaction.

  9. Interactions between hormones and epilepsy.

    PubMed

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric activation of the hypothalamus with unilateral amygdala seizures. This may, again, be the basis for the occurrence of different reproductive endocrine disorders described for patients with left-sided or right-sided temporal lobe epilepsy. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men.

    PubMed

    van den Beld, Annewieke W; Visser, Theo J; Feelders, Richard A; Grobbee, Diederick E; Lamberts, Steven W J

    2005-12-01

    Physiological changes in thyroid hormone concentrations might be related to changes in the overall physical function in the elderly. We determined to what extent thyroid hormone concentrations are related to physical function and mortality in elderly men. A longitudinal population study (the Zoetermeer study) was conducted. Mortality was registered in the subsequent 4 yr. Four hundred three independently and ambulatory living men (aged 73-94 yr) participated. The study examined the association between serum thyroid hormones and parameters of physical function as well as the association with mortality. TSH, free T4 (FT4) total T4, T3, rT3, and T4-binding globulin were measured. Physical function was estimated by the number of problems in activities of daily living, a measure of physical performance score (PPS), leg extensor strength and grip strength, bone density, and body composition. Serum rT3 increased significantly with age and the presence of disease. Sixty-three men met the biochemical criteria for the low T3 syndrome (decreased serum T3 and increased serum rT3). This was associated with a lower PPS, independent of disease. Furthermore, higher serum FT4 (within the normal range of healthy adults) and rT3 (above the normal range of healthy adults) were related with a lower grip strength and PPS, independent of age and disease. Isolated low T3 was associated with a better PPS and a higher lean body mass. Low FT4 was related to a decreased risk of 4-yr mortality. In a population of independently living elderly men, higher FT4 and rT3 concentrations are associated with a lower physical function. High serum rT3 may result from a decreased peripheral metabolism of thyroid hormones due to the aging process itself and/or disease and may reflect a catabolic state. Low serum FT4 is associated with a better 4-yr survival; this may reflect an adaptive mechanism to prevent excessive catabolism.

  11. What Can We Learn from Rodents about Prolactin in Humans?

    PubMed Central

    Ben-Jonathan, Nira; LaPensee, Christopher R.; LaPensee, Elizabeth W.

    2008-01-01

    Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans. PMID:18057139

  12. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism).

    PubMed

    Daughaday, W H; Trivedi, B

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  13. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism).

    PubMed Central

    Daughaday, W H; Trivedi, B

    1987-01-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor. PMID:3474620

  14. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease

    PubMed Central

    Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873

  15. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  16. A Case of Unusual Clitoromegaly.

    PubMed

    Wooi Ch'ng, Tong; Umpaichitra, Vatcharapan

    2018-05-03

    Mild degree of clitoromegaly can be associated with patient with polycystic ovarian syndrome (PCOS). We describe an unusually significant clitoromegaly in a patient with PCOS. An 18-year old non-obese female referred for clitoromegaly. Her genitalia exam showed significant clitoral enlargement with a well-formed glans, clitoris measured at 35 mm for length and 10 mm for width. Pelvic ultrasound showed left ovarian cyst. Testosterone level ranged from 28.8 to 64.1 ng/dl (normal: 8.4-48.1 ng/dl) with normal sex hormone binding globulin. Other ovarian hormones were in acceptable ranges. This case demonstrates the coexistence of significant clitoromegaly, PCOS, and non-functioning ovarian cyst. Copyright © 2018. Published by Elsevier Inc.

  17. Pharmacology and function of melatonin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubocovich, M.L.

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that ismore » pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.« less

  18. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe.

    PubMed

    Ren, Xiao M; Guo, Liang-Hong

    2012-04-17

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions on experimental animals, and one of the proposed disruption mechanisms is the competitive binding of PBDE metabolites to TH transport proteins. In this report, a nonradioactive, site-specific fluorescein-thyroxine (F-T4) conjugate was designed and synthesized as a fluorescence probe to study the binding interaction of hydroxylated PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR), two major TH transport proteins in human plasma. Compared with free F-T4, the fluorescence intensity of TTR-bound conjugate was enhanced by as much as 2-fold, and the fluorescence polarization value of TBG-bound conjugate increased by more than 20-fold. These changes provide signal modulation mechanisms for F-T4 as a fluorescence probe. Based on fluorescence quantum yield and lifetime measurements, the fluorescence intensity enhancement was likely due to the elimination of intramolecular fluorescence quenching of fluorescein by T4 after F-T4 was bound to TTR. In circular dichroism and intrinsic tryptophan fluorescence measurements, F-T4 induced similar spectroscopic changes of the proteins as T4 did, suggesting that F-T4 bound to the proteins at the T4 binding site. By using F-T4 as the fluorescence probe in competitive binding assays, 11 OH-PBDEs with different levels of bromination and different hydroxylation positions were assessed for their binding affinity with TBG and TTR, respectively. The results indicate that the binding affinity generally increased with bromine number and OH position also played an important role. 3-OH-BDE-47 and 3'-OH-BDE-154 bound to TTR and TBG even stronger, respectively, than T4. With rising environmental level and high bioaccumulation capability, PBDEs have the potential to disrupt thyroid homeostasis by competitive binding with TH transport proteins.

  19. Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer.

    PubMed Central

    DeFranco, D; Yamamoto, K R

    1986-01-01

    The expression of genes fused downstream of the Moloney murine sarcoma virus (MoMSV) long terminal repeat is stimulated by glucocorticoids. We mapped the glucocorticoid response element that conferred this hormonal regulation and found that it is a hormone-dependent transcriptional enhancer, designated Sg; it resides within DNA fragments that also carry a previously described enhancer element (B. Levinson, G. Khoury, G. Vande Woude, and P. Gruss, Nature [London] 295:568-572, 1982), here termed Sa, whose activity is independent of the hormone. Nuclease footprinting revealed that purified glucocorticoid receptor bound at multiple discrete sites within and at the borders of the tandemly repeated sequence motif that defines Sa. The Sa and Sg activities stimulated the apparent efficiency of cognate or heterologous promoter utilization, individually providing modest enhancement and in concert yielding higher levels of activity. A deletion mutant lacking most of the tandem repeat but retaining a single receptor footprint sequence lost Sa activity but still conferred Sg activity. The two enhancer components could also be distinguished physiologically: both were operative within cultured rat fibroblasts, but only Sg activity was detectable in rat exocrine pancreas cells. Therefore, the sequence determinants of Sa and Sg activity may be interdigitated, and when both components are active, the receptor and a putative Sa factor can apparently bind and act simultaneously. We concluded that MoMSV enhancer activity is effected by at least two distinct binding factors, suggesting that combinatorial regulation of promoter function can be mediated even from a single genetic element. Images PMID:3023887

  20. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor.

    PubMed

    Thompson, P D; Hsieh, J C; Whitfield, G K; Haussler, C A; Jurutka, P W; Galligan, M A; Tillman, J B; Spindler, S R; Haussler, M R

    1999-12-01

    The vitamin D receptor (VDR) is a transcription factor believed to function as a heterodimer with the retinoid X receptor (RXR). However, it was reported [Schräder et al., 1994] that, on putative vitamin D response elements (VDREs) within the rat 9k and mouse 28k calcium binding protein genes (rCaBP 9k and mCaBP 28k), VDR and thyroid hormone receptor (TR) form heterodimers that transactivate in response to both 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and triiodothyronine (T(3)). We, therefore, examined associations of these receptors on the putative rCaBP 9k and mCaBP 28k VDREs, as well as on established VDREs from the rat osteocalcin (rOC) and mouse osteopontin (mOP) genes, plus the thyroid hormone response element (TRE) from the rat myosin heavy chain (rMHC) gene. In gel mobility shift assays, we found no evidence for VDR-TR heterodimer interaction with any tested element. Further, employing these hormone response elements linked to reporter genes in transfected cells, VDR and TR mediated responses to their cognate ligands only from the rOC/mOP and rMHC elements, respectively, while the CaBP elements were unresponsive to any combination of ligand(s). Utilizing the rOC and mOP VDREs, two distinct repressive actions of TR on VDR-mediated signaling were demonstrated: a T(3)-independent action, presumably via direct TR-RXR competition for DNA binding, and a T(3)-dependent repression, likely by diversion of limiting RXR from VDR-RXR toward the formation of TR-RXR heterodimers. The relative importance of these two mechanisms differed in a response element-specific manner. These results may provide a partial explanation for the observed association between hyperthyroidism and bone demineralization/osteoporosis. Copyright 1999 Wiley-Liss, Inc.

  1. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function.

    PubMed

    St John, Hillary C; Meyer, Mark B; Benkusky, Nancy A; Carlson, Alex H; Prideaux, Mathew; Bonewald, Lynda F; Pike, J Wesley

    2015-03-01

    Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions

    PubMed Central

    Slominski, Andrzej; Zmijewski, Michal; Pawelek, John

    2011-01-01

    Summary Evidence reveals that L-tyrosine and L-DOPA, besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as it would regulate the melanocyte functions through activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate older theory proposing that receptors for amino-acid derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates. PMID:21834848

  3. Overcoming Endocrine Resistance by Targeting ER/FoxA1/IL 8 Axis

    DTIC Science & Technology

    2016-10-01

    INTRODUCTION Approximately 75% of breast cancers express the hormone estrogen receptor α (ER). As a critical determinant in estrogen response and oncogenic...factor of estrogen receptor α (ER)–chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we...positive tumors. FOXA1 | estrogen receptor | breast cancer | transcriptional reprogramming | endocrine resistance About 75% of breast cancers express

  4. Contribution of TyrB26 to the Function and Stability of Insulin

    PubMed Central

    Pandyarajan, Vijay; Phillips, Nelson B.; Rege, Nischay; Lawrence, Michael C.; Whittaker, Jonathan; Weiss, Michael A.

    2016-01-01

    Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of TyrB26, a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the GluB26 analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although TyrB26 is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences. PMID:27129279

  5. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  6. A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization.

    PubMed Central

    Duquesnoy, P; Sobrier, M L; Duriez, B; Dastot, F; Buchanan, C R; Savage, M O; Preece, M A; Craescu, C T; Blouquit, Y; Goossens, M

    1994-01-01

    Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions. Images PMID:8137822

  7. A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization.

    PubMed

    Duquesnoy, P; Sobrier, M L; Duriez, B; Dastot, F; Buchanan, C R; Savage, M O; Preece, M A; Craescu, C T; Blouquit, Y; Goossens, M

    1994-03-15

    Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions.

  8. Characterization of the Drosophila Methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation.

    PubMed

    Miura, Ken; Oda, Masahito; Makita, Sumiko; Chinzei, Yasuo

    2005-03-01

    Juvenile hormones (JHs) of insects are sesquiterpenoids that regulate a great diversity of processes in development and reproduction. As yet the molecular modes of action of JH are poorly understood. The Methoprene-tolerant (Met) gene of Drosophila melanogaster has been found to be responsible for resistance to a JH analogue (JHA) insecticide, methoprene. Previous studies on Met have implicated its involvement in JH signaling, although direct evidence is lacking. We have now examined the product of Met (MET) in terms of its binding to JH and ligand-dependent gene regulation. In vitro synthesized MET directly bound to JH III with high affinity (Kd = 5.3 +/- 1.5 nm, mean +/- SD), consistent with the physiological JH concentration. In transient transfection assays using Drosophila S2 cells the yeast GAL4-DNA binding domain fused to MET exerted JH- or JHA-dependent activation of a reporter gene. Activation of the reporter gene was highly JH- or JHA-specific with the order of effectiveness: JH III > JH II > JH I > methoprene; compounds which are only structurally related to JH or JHA did not induce any activation. Localization of MET in the S2 cells was nuclear irrespective of the presence or absence of JH. These results suggest that MET may function as a JH-dependent transcription factor.

  9. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  10. Associations between andrological measures, hormones and semen quality in fertile Australian men: inverse relationship between obesity and sperm output.

    PubMed

    Stewart, T M; Liu, D Y; Garrett, C; Jørgensen, N; Brown, E H; Baker, H W G

    2009-07-01

    The World Health Organization developed a time to pregnancy (TTP) study (number of menstrual cycles taken to conceive) to determine whether the average TTP is increasing and semen quality decreasing with time. The present study describes clinical, semen and hormone characteristics obtained from male partners of pregnant women in Melbourne, Australia, and examines the associations between these characteristics. Male partners (n = 225) of pregnant women (16-32 weeks) who conceived naturally had physical examination, health and lifestyle questionnaires, semen and hormone (FSH, LH, sex hormone-binding globulin, testosterone and Inhibin B) analyses. Previously known associations between semen, hormone and clinical variables were confirmed as significant: sperm numbers (concentration and total sperm count) correlated positively with Inhibin B and inversely with FSH and left varicocele, while total testicular volume correlated positively with sperm numbers and Inhibin B and inversely with FSH. However, only abstinence, total testicular volume, varicocele grade and obesity (BMI > 30 kg/m2) were independently significantly related to total sperm count. Compared with those with BMI < 30 (n = 188), obese subjects (n = 35) had significantly lower total sperm count (mean 324 versus 231 million, P = 0.013) and Inhibin B (187 versus 140 pg/ml, P < 0.001) but not FSH (3.4 versus 4.0 IU/l, P = 0.6). Obese fertile men appear to have reduced testicular function. Whether this is cause or effect, i.e. adiposity impairing spermatogenesis or reduced testicular function promoting fat deposition, remains to be determined.

  11. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, M.; Ishii, S.

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reactionmore » time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.« less

  12. Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors

    PubMed Central

    Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J.; Vázquez, Jesús T.; Centeno, Nuria B.; Saraiva, Maria Joao; Damas, Ana M.; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio

    2009-01-01

    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186

  13. COMPARATIVE EMBRYONIC AND LARVAL DEVELOPMENTAL RESPONSES OF THE ESTUARINE GRASS SHRIMP (PALAEMONETES PUGIO) TO THE JUVENILE HORMONE AGONIST FENOXYCARB

    EPA Science Inventory

    This work was undertaken in order to develop a sensitive bioassay which indicates adverse effects of estuarine-applied insecticides on nontarget species. Newly developed 'third generation' insecticides are designed to act as hormone agonists and bind to endogenous insect hormone...

  14. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  15. An enzyme immunoassay for rat growth hormone - Applications to the study of growth hormone variants

    NASA Technical Reports Server (NTRS)

    Farrington, Marianne A.; Hymer, W. C.

    1987-01-01

    A sensitive and specific competitive enzyme immunoassay for rat growth hormone (GH) is described and its use in the detection of GH variants is demonstrated. In the present assay, soluble GH and GH adsorbed to a solid-phase support compete for monkey anti-GH antibody binding sites. The immobilized antibody-GH complex is detected and quantified using goat antimonkey immunoglobin G covalently conjugated to horseradish peroxidase. It is noted that the assay can be performed in 27 hours and that sensitivities in the range of 0.19 to 25 ng can be obtained in the region of 10 to 90 percent binding.

  16. Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.

    PubMed Central

    Pikler, G M; Webster, R A; Spelsberg, T C

    1976-01-01

    Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147

  17. The Cysteine-Rich Domain of the Macrophage Mannose Receptor Is a Multispecific Lectin That Recognizes Chondroitin Sulfates a and B and Sulfated Oligosaccharides of Blood Group Lewisa and Lewisx Types in Addition to the Sulfated N-Glycans of Lutropin

    PubMed Central

    Leteux, Christine; Chai, Wengang; Loveless, R. Wendy; Yuen, Chun-Ting; Uhlin-Hansen, Lars; Combarnous, Yves; Jankovic, Mila; Maric, Svetlana C.; Misulovin, Ziva; Nussenzweig, Michel C.; Ten Feizi

    2000-01-01

    The mannose receptor (MR) is an endocytic protein on macrophages and dendritic cells, as well as on hepatic endothelial, kidney mesangial, tracheal smooth muscle, and retinal pigment epithelial cells. The extracellular portion contains two types of carbohydrate-recognition domain (CRD): eight membrane-proximal C-type CRDs and a membrane-distal cysteine-rich domain (Cys-MR). The former bind mannose-, N-acetylglucosamine-, and fucose-terminating oligosaccharides, and may be important in innate immunity towards microbial pathogens, and in antigen trapping for processing and presentation in adaptive immunity. Cys-MR binds to the sulfated carbohydrate chains of pituitary hormones and may have a role in hormonal clearance. A second feature of Cys-MR is binding to macrophages in marginal zones of the spleen, and to B cell areas in germinal centers which may help direct MR-bearing cells toward germinal centers during the immune response. Here we describe two novel classes of carbohydrate ligand for Cys-MR: chondroitin-4 sulfate chains of the type found on proteoglycans produced by cells of the immune system, and sulfated blood group chains. We further demonstrate that Cys-MR interacts with cells in the spleen via the binding site for sulfated carbohydrates. Our data suggest that the three classes of sulfated carbohydrate ligands may variously regulate the trafficking and function of MR-bearing cells. PMID:10748230

  18. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing.

    PubMed

    Näreoja, Tuomas; Rosenholm, Jessica M; Lamminmäki, Urpo; Hänninen, Pekka E

    2017-05-01

    Thyrotropin or thyroid-stimulating hormone (TSH) is used as a marker for thyroid function. More precise and more sensitive immunoassays are needed to facilitate continuous monitoring of thyroid dysfunctions and to assess the efficacy of the selected therapy and dosage of medication. Moreover, most thyroid diseases are autoimmune diseases making TSH assays very prone to immunoassay interferences due to autoantibodies in the sample matrix. We have developed a super-sensitive TSH immunoassay utilizing nanoparticle labels with a detection limit of 60 nU L -1 in preprocessed serum samples by reducing nonspecific binding. The developed preprocessing step by affinity purification removed interfering compounds and improved the recovery of spiked TSH from serum. The sensitivity enhancement was achieved by stabilization of the protein corona of the nanoparticle bioconjugates and a spot-coated configuration of the active solid-phase that reduced sedimentation of the nanoparticle bioconjugates and their contact time with antibody-coated solid phase, thus making use of the higher association rate of specific binding due to high avidity nanoparticle bioconjugates. Graphical Abstract We were able to decrease the lowest limit of detection and increase sensitivity of TSH immunoassay using Eu(III)-nanoparticles. The improvement was achieved by decreasing binding time of nanoparticle bioconjugates by small capture area and fast circular rotation. Also, we applied a step to stabilize protein corona of the nanoparticles and a serum-preprocessing step with a structurally related antibody.

  19. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    PubMed

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  20. Effects of vitamin D supplementation during weight loss on sex hormones in postmenopausal women.

    PubMed

    Mason, Caitlin; De Dieu Tapsoba, Jean; Duggan, Catherine; Imayama, Ikuyo; Wang, Ching-Yun; Korde, Larissa A; Stanczyk, Frank; McTiernan, Anne

    2016-06-01

    The aim of the study was to compare the effects of vitamin D3 supplementation versus placebo on serum sex hormones in postmenopausal women completing a 12-month diet + exercise weight loss program. Two hundred eighteen overweight or obese women (50-75 y) with serum 25-hydroxyvitamin D at least 10 to less than 32 ng/mL ("insufficient") were randomized to either weight loss + 2,000 IU/day oral vitamin D3, or to weight loss + daily placebo. Serum sex hormone-binding globulin, estrone, total, free, and bioavailable estradiol, and testosterone were measured by radioimmunoassay before randomization and at 12 months. Mean changes were compared between groups (intent-to-treat) using generalized estimating equations. The 12-month changes in sex hormone-binding globulin, estrone, total, free, and bioavailable estradiol, and testosterone did not differ between groups (all P > 0.05). However, a greater increase in serum 25-hydroxyvitamin D was associated with a greater increase in sex hormone-binding globulin (Ptrend = 0.01), and larger decreases in free and bioavailable estradiol (Ptrend = 0.04, Ptrend = 0.03, respectively). In post-hoc analyses, we compared women randomized to vitamin D whose serum 25-hydroxyvitamin D remained insufficient (n = 38), to women who became replete (25-hydroxyvitamin D ≥32 ng/mL; n = 53). Replete women showed greater reductions in bioavailable estradiol (-1.8 vs -0.7 pg/mL), free testosterone (-0.8 vs -0.3 pg/mL), and bioavailable testosterone (-1.8 vs -0.6 ng/dL), and a greater increase in sex hormone-binding globulin (10.6 vs 4.7 nmol/L) (all P < 0.05), even after adjusting for differences in total 12-month weight loss. Overall, 12-month changes in sex hormone did not differ between groups. However, vitamin D repletion was associated with greater reductions in sex hormones during weight loss, with a possible dose-dependent effect. Future studies should test higher doses and target circulating 25-hydroxyvitamin D levels when measuring such effects.

  1. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  2. Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori

    PubMed Central

    Suzuki, Rintaro; Fujimoto, Zui; Shiotsuki, Takahiro; Tsuchiya, Wataru; Momma, Mitsuru; Tase, Akira; Miyazawa, Mitsuhiro; Yamazaki, Toshimasa

    2011-01-01

    Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling. PMID:22355650

  3. Impact of light exposure on thyroid-stimulating hormone results using the Siemens Advia Centaur TSH-3Ultra assay.

    PubMed

    Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn

    2017-09-01

    Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.

  4. Lignans from the roots of Urtica dioica and their metabolites bind to human sex hormone binding globulin (SHBG).

    PubMed

    Schöttner, M; Gansser, D; Spiteller, G

    1997-12-01

    Polar extracts of the stinging nettle (Urtica dioica L.) roots contain the ligans (+)-neoolivil, (-)-secoisolariciresinol, dehydrodiconiferyl alcohol, isolariciresinol, pinoresinol, and 3,4-divanillyltetrahydrofuran. These compounds were either isolated from Urtica roots, or obtained semisynthetically. Their affinity to human sex hormone binding globulin (SHBG) was tested in an in vitro assay. In addition, the main intestinal transformation products of plant lignans in humans, enterodiol and enterolactone, together with enterofuran were checked for their activity. All lignans except (-)-pinoresinol developed a binding affinity to SHBG in the in vitro assay. The affinity of (-)-3,4-divanillyltetrahydrofuran was outstandingly high. These findings are discussed with respect to potential beneficial effects of plant lignans on benign prostatic hyperplasia (BPH).

  5. Creatinine

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  6. Pesticides in mixture disrupt metabolic regulation: in silico and in vivo analysis of cumulative toxicity of mancozeb and imidacloprid on body weight of mice.

    PubMed

    Bhaskar, Rakesh; Mohanty, Banalata

    2014-09-01

    Pesticides acting as endocrine disrupting chemicals disrupt the homeostasis of body metabolism. The present study elucidated that the low dose coexposure of thyroid disrupting dithiocarbamate fungicide mancozeb (MCZ) and neonicotinoid insecticide imidacloprid (IMI) during lactation increased the risk of body weight gain in mice later in life. Body weight gain has been linked to pesticide-induced hypothyroidism and hyperprolactinemia and alteration of lipid profiles. In vivo results were substantiated with in silico molecular docking (MD) analysis that predicted the binding affinity of pesticides with thyroid hormone receptors (TRα and TRβ) and peroxisome proliferator activated receptor gamma (PPARγ), the major nuclear receptors of peripheral fat metabolism. Binding potency of MCZ and IMI was compared with that of T3, and its antagonist ethylene thiourea (ETU) as well as PPARγ agonist (rosiglitazone) and antagonist (HL005). MD simulation predicted that both MCZ and IMI may compete with T3 for binding with TRs. Imidazole group of IMI formed hydrogen bonds with TRs like that of ETU. MCZ may compete with rosiglitazone and HL005 for PPARγ, but IMI showed no affinity. Thus while both MCZ and IMI could disrupt the TRs functioning, MCZ alone may affect PPARγ. Coexposure of pesticides decreased the plasma thyroid hormones and increased the cholesterol and triglyceride. Individual pesticide exposure in low dose might not exert the threshold response to affect the receptors signaling further to cause hormonal/metabolic impairment. Thus, cumulative response of the mixture of thyroid disrupting pesticides can disrupt metabolic regulation through several pathways and contribute to gain in body weight. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Functional group and stereochemical requirements for substrate binding by ghrelin O-acyltransferase revealed by unnatural amino acid incorporation.

    PubMed

    Cleverdon, Elizabeth R; Davis, Tasha R; Hougland, James L

    2018-04-21

    Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Screening the Tox21 10K library for thyroid stimulating hormone receptor agonist and antagonist activity (SOT annual meeting)

    EPA Science Inventory

    Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...

  9. Endocrine changes of Paralichthys olivaceus after oral administration with exogenous growth hormone

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Zhu; Xu, De-Wu; Wang, Yong; Xu, Yong-Li; Zhang, Pei-Jun

    2000-12-01

    Recombinant salmon growth hormone contained in yeast was given for 5 months to flounder in its diet. Both free and total specific binding sites for the growth hormone were examined in liver membranes of control and treated fish. The association constants of both free and total specific binding sites were of the same order (1 nM-1), and no significant difference was found between any two groups in the capacity of their free binding sites. The capacity of total binding sites in the liver of treated fish increased significantly compared with that of control. Insulin-like growth factor I (IGF-I) levels in the plasma of treated fish increased by 22.61% (P<0.05), compared with that of control. While the T4 levels in plasma did not increase significantly (from 1.35±0.91 ng/ml to 2.29±1.13 ng/ml), T3 levels were elevated significantly (from 1.78±1.14 ng/ml to 4.87±1.22 ng/ml, P<0.01), as compared with that of control.

  10. Toxoplasmosis Testing

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  11. Helicobacter pylori Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  12. VMA Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  13. Vitamin A Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  14. B Vitamins Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  15. Celiac Disease Tests

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  16. Plasma Free Metanephrines

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  17. Dengue Fever Testing

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  18. Lactose Tolerance Tests

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  19. Uric Acid Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  20. Comprehensive Metabolic Panel

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  1. 5-HIAA Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  2. Phosphorus Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  3. Peritoneal Fluid Analysis

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  4. Serotonin Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  5. Throat Culture

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  6. TB Screening Tests

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  7. PTH Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  8. Blood Typing

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  9. AMA Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  10. Progesterone Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  11. Gram Stain

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  12. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 andmore » non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.« less

  13. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca; Yauk, Carole L.; Wade, Michael G.

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined withmore » chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given the important role of Barhl1 in brain development, we propose that perturbations of TH-mediated transcriptional control of Barhl1 may play a role in the impaired neurodevelopment induced by hypothyroidism.« less

  14. Dietary minerals, reproductive hormone levels and sporadic anovulation: associations in healthy women with regular menstrual cycles.

    PubMed

    Kim, Keewan; Wactawski-Wende, Jean; Michels, Kara A; Schliep, Karen C; Plowden, Torie C; Chaljub, Ellen N; Mumford, Sunni L

    2018-04-20

    Although minerals are linked to several reproductive outcomes, it is unknown whether dietary minerals are associated with ovulatory function. We hypothesised that low intakes of minerals would be associated with an increased risk of anovulation. We investigated associations between dietary mineral intake and both reproductive hormones and anovulation in healthy women in the BioCycle Study, which prospectively followed up 259 regularly menstruating women aged 18-44 years who were not taking mineral supplements for two menstrual cycles. Intakes of ten selected minerals were assessed through 24-h dietary recalls at up to four times per cycle in each participant. Oestradiol, progesterone, luteinising hormone (LH), follicle-stimulating hormone (FSH), sex-hormone-binding globulin and testosterone were measured in serum up to eight times per cycle. We used weighted linear mixed models to evaluate associations between minerals and hormones and generalised linear models for risk of anovulation. Compared with Na intake ≥1500 mg, Na intake <1500 mg was associated with higher levels of FSH (21·3 %; 95 % CI 7·5, 36·9) and LH (36·8 %; 95 % CI 16·5, 60·5) and lower levels of progesterone (-36·9 %; 95 % CI -56·5, -8·5). Na intake <1500 mg (risk ratio (RR) 2·70; 95 % CI 1·00, 7·31) and Mn intake <1·8 mg (RR 2·00; 95 % CI 1·02, 3·94) were associated with an increased risk of anovulation, compared with higher intakes, respectively. Other measured dietary minerals were not associated with ovulatory function. As essential minerals are mostly obtained via diet, our results comparing insufficient levels with sufficient levels highlight the need for future research on dietary nutrients and their associations with ovulatory cycles.

  15. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The enhanced biological activity of the analog, therefore, may be due to its resistance to inactivation by enzymes on the pituitary cell surface. The membrane-associated inactivating enzyme could play an important role in vivo in determining the concentration of intact LHRH available at the receptor site which initiates gonadotropin release.

  16. The effect of abdominal obesity in patients with polycystic ovary syndrome on metabolic parameters.

    PubMed

    Franik, G; Bizoń, A; Włoch, S; Pluta, D; Blukacz, Ł; Milnerowicz, H; Madej, P

    2017-11-01

    Polycystic ovarian syndrome and obesity contribute to the metabolic complications for women of reproductive age. The aim of present study was to analyze the effect of abdominal obesity expressed using waist/hip ratio (WHR) in patients with polycystic ovary syndrome on metabolic parameters. The study included 659 women with PCOS with WHR <0.8 and ≥0.8 aged between 17 and 44 years. Patients were tested for follicular stimulating hormone, luteinizing hormone, 17-beta-estradiol, dehydroepiandrosterone sulfate, androstenedione, sex hormone binding globulin, and total lipid profile during the follicular phase (within 3 and 5 days of their menstrual cycle). Also, fasting glucose and insulin concentrations, and after, oral-glucose glucose administration, were determinate. De Ritis and Castelli index I and II were calculated. Women with WHR ≥0.8 had higher concentration of glucose and  insulin (both fasting and after 120 min of oral administration of 75 g glucose), as well as HOMA-IR value, than women with WHR value < 0.8. Also, abdominal obesity disorders hormonal parameters. Higher free androgen index and lower concentration of sex hormone binding globulin and dehydroepiandrosterone sulfate were found in female with WHR ≥ 0.8. Follicular stimulating hormone, luteinizing hormone, androstenedione, and 17-beta-estradiol, were on similar level in both groups. Elevation in triglycerides, total cholesterol, and low-density lipoprotein levels, as well as decrease in high density lipoprotein level in serum of women with WHR value ≥ 0.8, were found when compared to women with WHR < 0.8. A statistically significant correlation was found between WHR value and glucose, insulin, sex hormone binding globulin, free androgen index and lipid profile parameters. Abdominal obesity causes additional disorders in metabolic and hormonal parameters in PCOS women, which confirmed changes in analyzed parameters between PCOS women with WHR < 0.8 and WHR ≥ 0.8 and statistically significant correlations between WHR value and analyzed parameters.

  17. Role of Growth Hormone in Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA 94:13215... Laron mouse, in which the gene coding for both GHR and GH binding protein has been disrupted or knocked out, with the C3(1)/Tag mouse, which develops...the Laron mouse). Nevertheless, the new model presented here demonstrates that the loss of GHR produced a significant reduction in the level of PIN in

  18. Plant constituents interfering with human sex hormone-binding globulin. Evaluation of a test method and its application to Urtica dioica root extracts.

    PubMed

    Gansser, D; Spiteller, G

    1995-01-01

    A test system is described, which allows the search for compounds interfering with human sex hormone-binding globulin (SHBG) even in complex plant extracts. The method has been evaluated and applied to Urtica dioica root extracts. The lignan secoisolariciresinol (5) as well as a mixture of isomeric (11 E)-9,10,13-trihydroxy-11-octadecenoic and (10 E)-9,12,13-trihydroxy-10-octadecenoic acids (3 and 4, resp.) were demonstrated to reduce binding activity of human SHBG. Methylation of the mixture of 3 and 4 increased its activity about 10-fold.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, R.A.; Rajatanavin, R.; Moring, A.F.

    Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of (/sup 125/I) T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any ofmore » these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of (/sup 125/I)T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated.« less

  20. von Willebrand Factor Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  1. C-Reactive Protein (CRP) Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  2. GGT (Gamma-Glutamyl Transferase) Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  3. Catecholamines, Plasma and Urine Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  4. PT and INR Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  5. Pleural Fluid Analysis Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  6. T3 (Triiodothyronine) Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  7. Tips on Blood Testing

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  8. CEA (Carcinoembryonic Antigen) Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  9. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    PubMed

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  10. Pathophysiology of Glucocorticoid Signaling.

    PubMed

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist Cetrorelix.

    PubMed Central

    Halmos, G; Schally, A V; Pinski, J; Vadillo-Buenfil, M; Groot, K

    1996-01-01

    Antagonists of luteinizing hormone-releasing hormone (LH-RH), unlike the LH-RH agonists, suppress gonadotropins and sex steroid secretion immediately after administration, without initial stimulatory effects. [Ac-D-Nal(2)1,D-Ph(4Cl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-R H (SB-75; Cetrorelix) is a modern, potent antagonistic analog of LH-RH. In this study, the binding characteristics of receptors for LH-RH in membrane fractions from rat anterior pituitaries were investigated after a single injection of Cetrorelix at a dose of 100 microg per rat. To determine whether the treatment with Cetrorelix can affect the concentration of measurable LH-RH binding sites, we applied an in vitro method to desaturate LH-RH receptors by chaotropic agents such as manganous chloride (MnCl2) and ammonium thiocyanate (NH4SCN). Our results show that the percentages of occupied LH-RH receptors at 1, 3, and 6 h after administration of Cetrorelix were approximately 28%, 14%, and 10%, respectively, of total receptors. At later time intervals, we could not detect occupied LH-RH binding sites. Ligand competition assays, following in vitro desaturation, demonstrated that rat pituitary LH-RH receptors were significantly (P < 0.01) down-regulated for at least 72 h after administration of Cetrorelix. The lowest receptor concentration was found 3-6 h after Cetrorelix treatment and a recovery in receptor number began within approximately 24 h. The down-regulation of LH-RH binding sites induced by Cetrorelix was accompanied by serum LH and testosterone suppression. Higher LH-RH receptor concentrations coincided with elevated serum hormone levels at later time intervals. Our results indicate that administration of LH-RH antagonist Cetrorelix produces a marked down-regulation of pituitary receptors for LH-RH and not merely an occupancy of binding sites. PMID:8637885

  13. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  14. Neurokinin B and serum albumin limit copper binding to mammalian gonadotropin releasing hormone.

    PubMed

    Gul, Ahmad Samir; Tran, Kevin K; Jones, Christopher E

    2018-02-26

    Gonadotropin releasing hormone (GnRH) triggers secretion of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary gland. GnRH is able to bind copper, and both in vitro and in vivo studies have suggested that the copper-GnRH complex is more potent at triggering gonadotropin release than GnRH alone. However, it remains unclear whether copper-GnRH is the active species in vivo. To explore this we have estimated the GnRH-copper affinity and have examined whether GnRH remains copper-bound in the presence of serum albumin and the neuropeptide neurokinin B, both copper-binding proteins that GnRH will encounter in vivo. We show that GnRH has a copper dissociation constant of ∼0.9 × 10 -9  M, however serum albumin and neurokinin B can extract metal from the copper-GnRH complex. It is therefore unlikely that a copper-GnRH complex will survive transit through the pituitary portal circulation and that any effect of copper must occur outside the bloodstream in the absence of neurokinin B. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Studies on Changes of β-Adrenergic Receptors in Polymorphonuclear Cell and Mononuclear Cell with the Changes of Thyroid Function

    PubMed Central

    Lee, Jong Do; You, Myung Hee; Kim, Young Seol; Kim, Jin Woo; Kim, Kwang Won; Kim, Sun Woo; Choi, Young Kil

    1986-01-01

    Although it has been well established that thyroid hormones increase β-adrenergic receptors of various tissues in the animal studies, there are controversies about the β-adrenergic receptor changes of human mononuclear cells and polymorphonuclear cells. The present study was performed to analyze the change of β-adrenergic receptor of those cells according to the thyroid functional status and to evaluate their usefulness in assessment of sympathetic hyperactivity. We measured [3H]-dihydroalprenolol binding to circulating mononuclear and polymorphonuclear cells from 18 patients with hyperthyrodism, 7 with hypothyroidism, 8 with euthyroid goiter and 21 normal controls. Only with polymorphonuclear cells the receptor concentration was significantly higher (P<0.01) in hyperthyroidism (46.07±4.78 fmol/mg protein) than in the normal control (28.42±2.06 fmol/mg protein) and the affinity constants of both cells were comparable to normal control values. And serum concentrations of T3 were not correlated well with the changes of receptor concentrations in hyperthyroidism. The patients with hypothyroidism and euthyroid goiter showed no significant difference in the receptor concentration and the affinity constants with both cell binding assays. These results indicate that thyroid hormones increase the receptor concentration in polymorphonuclear cells which might be responsible for the symptoms of sympathetic hyperactivity and the polymorphornuclear cells are useful for β-adrenergic receptor assay. PMID:15759381

  16. Urine Albumin and Albumin/ Creatinine Ratio

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  17. Total Protein and Albumin/Globulin Ratio Test

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...

  18. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    PubMed

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Regulation of the collagenase-3 receptor and its role in intracellular ligand processing in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Walling, H. W.; Chan, P. T.; Omura, T. H.; Barmina, O. Y.; Fiacco, G. J.; Jeffrey, J. J.; Partridge, N. C.

    1998-01-01

    We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.

  20. Structure of a phage display-derived variant of human growth hormone complexed to two copies of the extracellular domain of its receptor: evidence for strong structural coupling between receptor binding sites.

    PubMed

    Schiffer, Celia; Ultsch, Mark; Walsh, Scott; Somers, William; de Vos, Abraham M; Kossiakoff, Anthony

    2002-02-15

    The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type (wt) counterpart. Of the ten hormone-receptor H-bonds in the site, only one is the same as in the wt complex. Additionally, several regions of hGH(v) structure move up to 9A in forming the interface. The contacts between the C-terminal domains of two receptor ECDs (hGH(R1)- hGH(R2)) are conserved; however, the large changes in Site 1 appear to cause global changes in the domains of hGH(R1) that affect the hGH(v)-hGH(R2) interface indirectly. This coupling is manifested by large changes in the conformation of groups participating in the Site 2 interaction and results in a structure for the site that is reorganized extensively. The hGH(v)- hGH(R2) interface contains seven H-bonds, only one of which is found in the wt complex. Several groups on hGH(v) and hGH(R2) undergo conformational changes of up to 8 A. Asp116 of hGH(v) plays a central role in the reorganization of Site 2 by forming two new H-bonds to the side-chains of Trp104(R2) and Trp169(R2), which are the key binding determinants of the receptor. The fact that a different binding solution is possible for Site 2, where there were no mutations or binding selection pressures, indicates that the structural elements found in these molecules possess an inherent functional plasticity that enables them to bind to a wide variety of binding surfaces. Copyright 2002 Elsevier Science Ltd.

  1. Endocrine profiles and neuropsychologic correlates of functional hypothalamic amenorrhea in adolescents.

    PubMed

    Bomba, Monica; Gambera, Alessandro; Bonini, Luisa; Peroni, Maria; Neri, Francesca; Scagliola, Pasquale; Nacinovich, Renata

    2007-04-01

    To determine trigger factors and neuropsychologic correlates of functional hypothalamic amenorrhea (FHA) in adolescence and to evaluate the correlations with the endocrine-metabolic profile. Cross-sectional comparison of adolescents with FHA and eumenorrheic controls Academic medical institution Twenty adolescent girls with FHA (aged <18 years) and 20 normal cycling girls All subjects underwent endocrine-gynecologic (hormone) and neuropsychiatric (tests and interview) investigations. A separate semistructured interview was also used to investigate parents. Gonadotropins, leptin, prolactin, androgens, estrogens, cortisol, carrier proteins (SHBG, insulin-like growth factor-binding protein 1), and metabolic parameters (insulin, insulin-like growth factor 1, thyroid hormones) were assayed in FHA and control subjects. All girls were evaluated using a test for depression, a test for disordered eating, and a psychodynamic semistructured interview. Adolescents with FHA showed a particular susceptibility to common life events, restrictive disordered eating, depressive traits, and psychosomatic disorders. The endocrine-metabolic profile was strictly correlated to the severity of the psychopathology. Functional hypothalamic amenorrhea in adolescence is due to a particular neuropsychologic vulnerability to stress, probably related to familial relationship styles, expressed by a proportional endocrine impairment.

  2. Identification of three critical regions within mouse interleukin 2 by fine structural deletion analysis.

    PubMed Central

    Zurawski, S M; Zurawski, G

    1988-01-01

    We have analyzed structure--function relationships of the protein hormone murine interleukin 2 by fine structural deletion mapping. A total of 130 deletion mutant proteins, together with some substitution and insertion mutant proteins, was expressed in Escherichia coli and analyzed for their ability to sustain the proliferation of a cloned murine T cell line. This analysis has permitted a functional map of the protein to be drawn and classifies five segments of the protein, which together contain 48% of the sequence, as unessential to the biological activity of the protein. A further 26% of the protein is classified as important, but not crucial, for the activity. Three regions, consisting of amino acids 32-35, 66-77 and 119-141 contain the remaining 26% of the protein and are critical to the biological activity of the protein. The functional map is discussed in the context of the possible role of the identified critical regions in the structure of the hormone and its binding to the interleukin 2 receptor complex. Images PMID:3261239

  3. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  4. Cardiac distribution of the binding sites for natriuretic peptides in vertebrates.

    PubMed

    Cerra, M C

    1994-12-01

    Natriuretic peptides are hormones that play an important role in the cardiovascular control of mammalian and non-mammalian vertebrates. They have been classified into four groups. Of these, ANP (atrial natriuretic peptide), BNP (brain atriuretic peptides), CNP (C-type natriuretic peptide) are detected in cardiac and non cardiac tissues of all vertebrates; while VNP (ventricular natriuretic peptide) has been isolated only from the fish ventricle. All peptides have shown a high degree of sequence homology. The expression of the three principal types of natriuretic peptide (ANP, BNP and CNP) in cardiac tissues is developmentally and functionally regulated in a highly tissue-specific manner. Three types of natriuretic peptide receptors have been identified in numerous target tissues. Two receptors are transmembrane guanylyl cyclases (ANPR-A and ANPR-B) that mediate biological effects of natriuretic peptides; the third one (ANPR-C) has no guanylyl cyclase and is called "clearance receptor." The presence of natriuretic peptide binding sites in the heart suggests new aspects of paracrine control of cardiac function. A relevant localization of natriuretic peptide receptors was found in those cardiac regions particularly suitable for monitoring blood volume and pressure oscillations such as the inflow tract and the outflow tract. For example, in birds (quail) the highest levels of natriuretic peptide receptors were detected in the inflow tract represented by the vena cava. In both fish and birds, the outflow chamber, the bulbus cordis, had a high number of natriuretic peptide binding sites. In mammals, a remarkable concentration of natriuretic peptide receptors was also observed in the coronary vessels. This zoning of cardiac natriuretic peptide receptors indicates an intracardiac action of the hormones and adds a humoral dimension to the morphofunctional design of the vertebrate heart.

  5. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-11-22

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.

  6. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed Central

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-01-01

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital. PMID:811313

  7. STUDIES OF METABOLITE-PROTEIN INTERACTIONS: A REVIEW

    PubMed Central

    Matsuda, Ryan; Bi, Cong; Anguizola, Jeanethe; Sobansky, Matthew; Rodriquez, Elliot; Badilla, John Vargas; Zheng, Xiwei; Hage, Benjamin; Hage, David S.

    2014-01-01

    The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered. PMID:24321277

  8. Effects of N-acetylimidazole on oxytocin binding in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X.; Gorewit, R.C.; Currie, W.B.

    1990-01-01

    The effects of N-acetylimidazole on specific binding of oxytocin to microsomal fractions of bovine mammary gland were studied. N-acetylimidazole suppressed oxytocin binding, with time and concentration dependence. Decreased oxytocin binding activity appeared to be due to decreased affinity of the hormone for its receptor. Acetylation of oxytocin, rather than of oxytocin receptors, seemed to be responsible for the decreased binding.

  9. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  10. Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism.

    PubMed

    Chen, Wei-Jan; Yeh, Yung-Hsin; Lin, Kwang-Huei; Chang, Gwo-Jyh; Kuo, Chi-Tai

    2011-03-01

    Atrial fibrillation (AF) is a common complication in hyperthyroidism. Earlier studies demonstrate that thyroid hormone decreases L-type calcium channel (LCC) current expression with resultant shortening of action potential duration (APD), providing a substrate for AF. The aim of this study was to investigate the potential mechanism underlying the regulatory effect of thyroid hormone on LCC. In a hyperthyroid rat model, thyroid hormone (triiodothyronine [T3]) administration down-regulated atrial LCC expression. In vitro, treatment of murine atrial myocytes (HL-1) with T3 decreased the expression of LCC and its current, resulting in abbreviation of APD. Furthermore, T3 inhibited the activation of cyclic AMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Transient transfection studies in HL-1 cells indicated that T3 reduced LCC promoter activity. Deletion and mutation analysis of the LCC promoter region along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE was essential for T3-mediated LCC gene expression. Transfection of dominant-negative CREB (mutated Ser133) and mutant thyroid hormone receptor (TR, mutated Cys51) abolished the T3-dependent effects, suggesting an association between both transcriptional factors. Co-immunoprecipitation documented an increased binding of TR with CREB after T3 treatment. The transcriptional cross-talk 3 between TR and CREB bound to CRE mediates T3-inhibited CREB activity and LCC expression. Thyroid hormone-induced TR binding of CREB inhibits CREB activity and LCC current expression, which may contribute to AF. These findings provide an important mechanistic insight into hyperthyroidism-induced AF.

  11. An update on cannabis research.

    PubMed

    Husain, S; Khan, I

    1985-01-01

    A symposium of over 125 scientists, held in August 1984 at the campus of Oxford University, considered the latest developments concerning cannabis research. Evidence on the mode of tetrahydrocannabinol action on the central nervous system indicates that acetylcholine turnover in the hippocampus through a GABA-ergic mechanism is of major importance, though the role of the dopaminergic or serotoninergic mechanism and involvement of prostaglandins and c-AMP is not ruled out. The use of cannabis causes prominent and predictable effects on the heart, including increased work-load, increased plasma volume and postural hypotension, which could impose threats to the cannabis users with hypertension, cerebrovascular disease or coronary arteriosclerosis. Cannabis or tetrahydrocannabinol has damaging effects on the endocrine functions in both male and female of all animal species tested. Among possible mechanisms of action, it is suggested that tetrahydrocannabinol disrupts gonadal functions by depriving the testicular cells of their energy reserves by inhibition of cellular energetics, and that it stimulates androgen-binding protein secretion, which may account for oligospermia seen in chronic cannabis smokers. In addition to these direct effects on gonads, tetrahydrocannabinol interferes with hormonal secretions from the pituitary, including luteinizing hormones, follicle-stimulating hormones and prolactin. Research findings indicate that maternal and paternal exposure to cannabinoids can influence developmental and reproductive functions in the offspring, but it is difficult to separate possible teratogenic effects from subsequent gametotoxic and mutagenic potentials of cannabinoids.

  12. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  13. Displacement of Drugs from Human Serum Albumin: From Molecular Interactions to Clinical Significance.

    PubMed

    Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa

    2017-01-01

    Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  15. Associations of polychlorinated biphenyl exposure and endogenous hormones with diabetes in post-menopausal women previously employed at a capacitor manufacturing plant.

    PubMed

    Persky, Victoria; Piorkowski, Julie; Turyk, Mary; Freels, Sally; Chatterton, Robert; Dimos, John; Bradlow, H Leon; Chary, Lin Kaatz; Burse, Virlyn; Unterman, Terry; Sepkovic, Daniel; McCann, Kenneth

    2011-08-01

    There is an increasing body of literature showing associations of organochlorine exposure with risk of diabetes and insulin resistance. Some studies suggest that associations differ by gender and that diabetes risk, in turn, may be affected by endogenous steroid hormones. This report examines the relationships of serum PCBs and endogenous hormones with history of diabetes in a cohort of persons previously employed at a capacitor manufacturing plant. A total of 118 women were post-menopausal with complete data, of whom 93 were not using steroid hormones in 1996, at the time of examination, which included a survey of exposure and medical history, height, weight and collection of blood and urine for measurements of lipids, liver function, hematologic markers and endogenous hormones. This analysis examines relationships of serum polychlorinated biphenyls (PCBs), work exposure and endogenous hormones with self-reported history of diabetes after control for potential confounders. All PCB exposure groups were significantly related to history of diabetes, but not to insulin resistance as measured by the homeostatic model assessment of insulin resistance (HOMA-IR) in non-diabetics. Diabetes was also independently and inversely associated with follicle stimulating hormone (FSH), dehydroepiandrosterone sulfate (DHEAS) and triiodothyronine (T3) uptake. HOMA-IR was positively associated with body mass index (BMI) and C-reactive protein (CRP) and inversely associated with sex hormone binding globulin (SHBG) and T3 uptake after control for PCB exposure. Possible biologic mechanisms are discussed. This study confirms previous reports relating PCB exposure to diabetes and suggests possible hormonal pathways deserving further exploration. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  17. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    PubMed

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry,more » we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.« less

  19. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor.

    PubMed

    He, Junyi; Peng, Tao; Yang, Xianhai; Liu, Huihui

    2018-02-01

    Endocrine disrupting effect has become a central point of concern, and various biological mechanisms involve in the disruption of endocrine system. Recently, we have explored the mechanism of disrupting hormonal transport protein, through the binding affinity of sex hormone-binding globulin in different fish species. This study, serving as a companion article, focused on the mechanism of activating/inhibiting hormone receptor, by investigating the binding interaction of chemicals with the estrogen receptor (ER) of different fish species. We collected the relative binding affinity (RBA) of chemicals with 17β-estradiol binding to the ER of eight fish species. With this parameter as the endpoints, quantitative structure-activity relationship (QSAR) models were established using DRAGON descriptors. Statistical results indicated that the developed models had satisfactory goodness of fit, robustness and predictive ability. The Euclidean distance and Williams plot verified that these models had wide application domains, which covered a large number of structurally diverse chemicals. Based on the screened descriptors, we proposed an appropriate mechanism interpretation for the binding potency. Additionally, even though the same chemical had different affinities for ER from different fish species, the affinity of ER exhibited a high correlation for fish species within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes), which consistent with that in our previous study. Hence, when performing the endocrine disrupting effect assessment, the species diversity should be taken into account, but maybe the fish species in the same Order can be grouped together. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    PubMed

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  1. Physical activity and sex hormone levels in estradiol- and placebo-treated postmenopausal women.

    PubMed

    Choudhury, Farzana; Bernstein, Leslie; Hodis, Howard N; Stanczyk, Frank Z; Mack, Wendy J

    2011-10-01

    Postmenopausal changes in the hormonal milieu in women with or without hormone therapy are hypothesized to be the pathway for a number of menopause-associated modifications in physiology and disease risk. Physical activity may modify these changes in women's hormone profiles. The crucial yet complex relationship between physical activity and physiologic and pharmacologic sex hormone levels in postmenopausal women has not been investigated sufficiently. Using structured recall, physical activity was assessed longitudinally during a period of 2 years in 194 postmenopausal women (90 randomized to 1 mg 17β-estradiol treatment daily and 104 randomized to placebo) in the Estrogen in the Prevention of Atherosclerosis Trial. The levels of physical activity were correlated with the serum sex hormone and the serum hormone-binding globulin levels in each treatment group. Among the placebo-treated women, total energy expenditure was positively associated with sex hormone-binding globulin (SHBG; P < 0.001) and inversely associated with testosterones (total, bioavailable, or free) and androstenedione (P < 0.001 for all), as well as with estradiol (P = 0.02). In estradiol-treated women, estradiol levels were inversely associated with total energy expenditure (P = 0.002) and weekly hours spent in moderate or more vigorous physical activity (P = 0.001). Physical activity is associated with lower serum levels of estradiol in both hormone therapy-treated and untreated women. In placebo-treated women only, physical activity is associated with reduced androgen levels and elevated SHBG levels.

  2. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells.

    PubMed

    Kung, M H; Lee, Y J; Hsu, J T; Huang, M C; Ju, Y T

    2015-06-01

    Goat β-casein (CSN2) promoter has been extensively used to derive expression of recombinant therapeutic protein in transgenic goats; however, little direct evidence exists for signaling molecules and the cis-elements of goat CSN2 promoter in response to lactogenic hormone stimulation in goat mammary epithelial cells. Here, we use an immortalized caprine mammary epithelial cell line (CMC) to search for evidence of the above. Serial 5'-flanking regions deleted of promoter and intron 1 in goat CSN2 (-4,047 to +2,054) driven by firefly luciferase reporter gene were constructed and applied to measure promoter activity in CMC. The intron 1 region (+393 to +501) significantly decreased basal activity of the promoter. This finding contradicts other studies of the role of intron 1. The signal transducer and activator of transcription (STAT)5a played a significant role in activating promoter activity by prolactin stimulation. Hydrocortisone enhanced and prolonged the activity of STAT5a and promoter in CMC, but was independent of the glucocorticoid receptor response element. The minimum length of the CSN2 promoter segment in response to lactogenic stimulation was confirmed by 5' serial deletions. A cis-element located from -300 to -90 in proximal goat CSN2 promoter that is absent in bovine and human CSN2 promoter was newly identified. We demonstrated the presence of a STAT5a binding site (-102 to -82) and preservation of the guanosine nucleotide at position -90 based on responses to the presence of lactogenic hormone using internal deletions and point mutations of the predicted STAT5a binding site, and chromatin immunoprecipitation assay. Together, these findings demonstrate that the proximal -300 bp of goat CSN2 promoter containing the STAT5a binding site (-102 to -82) is the response element for lactogenic hormone stimulation. Additionally, intron 1 may be required for tissue or developmental stage-specific expression in mammary gland. The role of the far-distal regions of goat CSN2 promoter in high-level lactogenic hormone induction and specific expression require further examination. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Follitropin receptors in rat testis. Characterization with enzymatically 125I-labeled human follitropin.

    PubMed

    Ketelslegers, J M; Catt, K J

    1978-07-03

    The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.

  4. Differential processing of the two subunits of human choriogonadotropin (hCG) by granulosa cells. I. Preparation and characterization of selectively labeled hCG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landefeld, T.D.; Byrne, M.D.; Campbell, K.L.

    1981-12-01

    The alpha- and beta-subunits of hCG were radioiodinated and recombined with unlabeled complementary subunits. The resultant recombined hormones, selectively labeled in either the alpha- or beta-subunit, were separated from unrecombined subunit by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, extracted with Triton X-100, and characterized by binding analysis. The estimates of maximum binding (active fraction) of the two resultant selectively labeled, recombined hCG preparations, determined with excess receptor were 0.41 and 0.59. These values are similar to those obtained when hCG is labeled as an intact molecule. The specific activities of the recombined preparations were estimated by four different methods, and themore » resulting values were used in combination with the active fraction estimates to determine the concentrations of active free and bound hormone. Binding analyses were run using varying concentrations of both labeled and unlabeled hormone. Estimates of the equilibrium dissociation binding constant (Kd) and receptor capacity were calculated in three different ways. The mean estimates of capacity (52.6 and 52.7 fmol/mg tissue) and Kd (66.6 and 65.7 pM) for the two preparations were indistinguishable. Additionally, these values were similar to values reported previously for hCG radioiodinated as an intact molecule. The availability of well characterized, selectively labeled hCG preparations provides new tools for studying the mechanism of action and the target cell processing of the subunits of this hormone.« less

  5. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions.

    PubMed

    Baxter, Robert C

    2013-08-01

    In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.

  6. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    PubMed Central

    Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired. PMID:25961030

  7. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    PubMed

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  8. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  9. Growth hormone regulation of follicular growth.

    PubMed

    Lucy, Matthew C

    2011-01-01

    The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.

  10. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols.

    PubMed

    Midzak, Andrew; Papadopoulos, Vassilios

    2014-09-01

    Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Painless thyroiditis].

    PubMed

    Okamura, Ken; Fujikawa, Megumi; Bandai, Sachiko

    2006-12-01

    Painless thyroiditis is characterized by painless low-uptake thyrotoxicosis (thyrotoxicosis without hyperthyroidism). Destructive damage of the thyroid has been thought to be the mechanism for self-limited thyrotoxicosis. However, hydrolysis of thyroglobulin must be responsible for the release of excessive thyroid hormone. Low-uptake of iodine and excessive release of thyroid hormone suggest the uncoupling of hormone synthesis and hormone secretion in the thyroid gland. Suppressed serum TSH level, various cytokines or growth factors including TGFbeta1, and thyroglobulin itself may be responsible for the suppressed hormone synthesis. The mechanism for persistent hormone release despite suppressed hormone synthesis should be clarified. Quantitative TSH binding inhibitor immunoglobulin assay is helpful for the differential diagnosis of painless thyroiditis and Graves' hyperthyroidism.

  12. Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus.

    PubMed

    Grover, Sonam; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai

    2014-01-01

    Interaction of the small peptide hormone glucagon with glucagon receptor (GCGR) stimulates the release of glucose from the hepatic cells during fasting; hence GCGR performs a significant function in glucose homeostasis. Inhibiting the interaction between glucagon and its receptor has been reported to control hepatic glucose overproduction and thus GCGR has evolved as an attractive therapeutic target for the treatment of type II diabetes mellitus. In the present study, a large library of natural compounds was screened against 7 transmembrane domain of GCGR to identify novel therapeutic molecules that can inhibit the binding of glucagon with GCGR. Molecular dynamics simulations were performed to study the dynamic behaviour of the docked complexes and the molecular interactions between the screened compounds and the ligand binding residues of GCGR were analysed in detail. The top scoring compounds were also compared with already documented GCGR inhibitors- MK-0893 and LY2409021 for their binding affinity and other ADME properties. Finally, we have reported two natural drug like compounds PIB and CAA which showed good binding affinity for GCGR and are potent inhibitor of its functional activity. This study contributes evidence for application of these compounds as prospective small ligand molecules against type II diabetes. Novel natural drug like inhibitors against the 7 transmembrane domain of GCGR have been identified which showed high binding affinity and potent inhibition of GCGR.

  13. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheard, Laura B; Tan, Xu; Mao, Haibin

    2011-11-07

    Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved {alpha}-helix formore » COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.« less

  14. Substrate Induced Conformational Studies of the Hormone Binding Domain of the Human Estrogen Receptor by Fluorine NMR

    DTIC Science & Technology

    1998-07-01

    the progression of breast cancer and the estrogen receptor (ER) has been implicated in reproductive cancers . Our laboratory would like to understand how...function. ൖ. SUBJECT TERMS 15. NUMBER OF PAGES Breast Cancer 41 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF THIS 19...production of estrogen or estrogen like materials. Estrogen has been shown to be involved in the progression of breast cancer and the estrogen receptor (ER

  15. ON THE MECHANISM OF ACTION OF ADRENOCORTICOTROPIC HORMONE: THE BINDING OF CYCLIC-3′,5′-ADENOSINE MONOPHOSPHATE TO AN ADRENAL CORTICAL PROTEIN*

    PubMed Central

    Gill, Gordon N.; Garren, Leonard D.

    1969-01-01

    The binding of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) within the adrenal cortical cell was studied. Cyclic AMP binds specifically to a protein which is associated predominantly with the microsomal fraction of the cell. The binding protein was purified approximately 100-fold. PMID:4308274

  16. Effects of inhibitors of N-linked oligosaccharide processing on the biosynthesis and function of insulin and insulin-like growth factor-I receptors.

    PubMed

    Duronio, V; Jacobs, S; Romero, P A; Herscovics, A

    1988-04-15

    We have used specific inhibitors of oligosaccharide processing enzymes as probes to determine the involvement of oligosaccharide residues in the biosynthesis and function of insulin and insulin-like growth factor-I receptors. In a previous study (Duronio, V., Jacobs, S., and Cuatrecasas, P. (1986) J. Biol. Chem. 261, 970-975) swainsonine was used to inhibit mannosidase II, resulting in the production of receptors containing only hybrid-type oligosaccharides. These receptors had a slightly lower molecular weight and were much more sensitive to endoglycosidase H, but otherwise behaved identically to normal receptors. In this study, we used two compounds that inhibit oligosaccharide processing at earlier steps: (i) N-methyl-1-deoxynojirimycin (MedJN), which inhibits glucosidases I and II and yields glucosylated, high mannose oligosaccharides, and (ii) manno-1-deoxynojirimycin (MandJN), which inhibits mannosidase I and yields high mannose oligosaccharides. In the presence of MandJN, HepG2 cells synthesized receptors of lower molecular weight, which were cleaved into alpha and beta subunits and were able to bind hormone and autophosphorylate. These receptors were as sensitive to endoglycosidase H as receptors made in the presence of swainsonine. In the presence of MedJN, receptors of only slightly lower molecular weight than normal were synthesized and were shown to contain some glucosylated high mannose oligosaccharides. These receptors were able to bind hormone and retained hormone-sensitive autophosphorylation activity. In both cases, the incompletely processed receptors could be detected at the cell surface by cross-linking of iodinated hormone and susceptibility to trypsin digestion, although less receptor was present in cells treated with MedJN. Studies of receptor synthesis using pulse-chase labeling showed that the receptor precursors synthesized in the presence of MedJN were cleaved into alpha and beta subunits at a slower rate than normal receptors or those made in the presence of MandJN. Inhibition of oligosaccharide processing had no effect on the association of the receptor subunits into disulfide-linked oligomeric complexes.

  17. Polymorphisms in JMJD1C are associated with pubertal onset in boys and reproductive function in men.

    PubMed

    Mørup, Nina; Busch, Alexander Siegfried; Bang, Anne Kirstine; Nordkap, Loa; Nielsen, John E; Rajpert-De Meyts, Ewa; Juul, Anders; Jørgensen, Niels; Almstrup, Kristian

    2017-12-08

    JMJD1C, a member of the Jumonji-domain containing histone demethylases protein family, has been associated with levels of sex-hormone binding globulin (SHBG) and testosterone in men, and knock-out rodent models show age-dependent infertility. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) nearby JMJD1C are associated with pubertal onset in boys and with male reproduction. 671 peri-pubertal boys, 1,027 young men, 315 fertile men, and 252 infertile men were genotyped for two JMJD1C SNPs (rs7910927 and rs10822184). rs7910927 and rs10822184 showed high linkage. Boys with the rs7910927 TT genotype entered puberty 3.6 months earlier than their peers (p = 2.5 × 10 -2 ). In young men, the number of T alleles was associated with decreased levels of SHBG, follicle-stimulating hormone (FSH), testosterone, and testosterone x luteinizing hormone, as well as increased levels of Inhibin B, Inhibin B/FSH ratio, and testis size. No significant associations with semen parameters were observed and the genotype distribution was comparable among fertile and infertile men. In conclusion, genetic variation in the vicinity of JMJD1C had a surprisingly large impact on the age at pubertal onset in boys as well as levels of reproductive hormones and testis size in men, emphasizing the relationship between JMJD1C and reproductive functions.

  18. Purification of PRL receptors from toad kidney: Comparisons with rabbit mammary PRL receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunand, M.; Kraehenbuhl, J.P.; Rossier, B.C.

    1988-03-01

    The binding characteristics of the prolactin (PRL) receptors present in toad (Bufo marinus) kidneys were investigated and compared to those of PRL receptors present in rabbit mammary glands. The molecular characteristics of the Triton X-100 solubilized renal and mammary PRL receptors were assessed by gel filtration and by migration analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after affinity labeling of the binding sites with {sup 125}I-human growth hormone. Similar results were obtained for both receptors. Partial purification of the toad PRL receptor could be achieved by affinity chromatography. The molecular weight of this purified receptor could be determined bymore » analysis of SDS-PAGE. With the use of a polyclonal antiserum raised against a purified preparation of rabbit mammary PRL receptor, one or several antigenic epitope(s) could be identified on the core of the toad renal PRL receptor. In conclusion, although the structure and the biological role(s) of PRL have substantially changed during evolution, the receptor for this hormone has retained many of its structural features as could be assessed between an amphibian and a mammalian species on functionally different target tissues.« less

  19. Prostate Cancer Risk in Relation to IGF-1 and its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2007-05-01

    releasing hormone (GHRH), and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in...synthesis IGF1R IGF-I receptor GHRL Ghrelin GHSR Growth hormone secretagogue receptor IGFALS IGF binding protein, acid labile subunit IGFBP1 - 6...Hasinoff MJ, Fischer M, et al. Genetic linkage and association of the growth hormone secretagogue receptor ( ghrelin receptor) gene in human obesity. Diabetes

  20. The role of extracellular calcium in corticotropin-stimulated steroidogenesis.

    PubMed

    Cheitlin, R; Buckley, D I; Ramachandran, J

    1985-05-10

    The role of extracellular Ca2+ in the binding of corticotropin (ACTH) to adrenocortical cell receptors as well as in the post-binding events involved in steroidogenesis were investigated. Binding studies using [125I-Tyr23,Phe2,Nle4]ACTH (1-38) peptide showed that extracellular Ca2+ is essential not only for the interaction of ACTH with its receptor, but also for continued occupancy of the receptor. In view of the requirement of Ca2+ for binding the hormone to the receptor, the role of Ca2+ in post-receptor events was investigated by covalently attaching the hormone to its receptor by photoaffinity labeling in the presence of Ca2+. Persistent activation of steroidogenesis induced by photoaffinity labeling in the presence of Ca2+ was depressed when cells were incubated in medium containing EGTA but was unaffected when the cells were merely washed and incubated in Ca2+-free medium. In the presence of EGTA, 8-Br-cAMP partially restored persistent activation of steroidogenesis. The concentration of extracellular Ca2+ required for restoring steroidogenesis was 10-fold lower than the concentration of Ca2+ needed for optimal binding of ACTH to its receptor. These results suggest that the primary role of extracellular Ca2+ in the action of ACTH is to facilitate the association of the hormone with its receptor.

  1. Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans.

    PubMed

    Ketchesin, Kyle D; Stinnett, Gwen S; Seasholtz, Audrey F

    2017-09-01

    Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.

  2. [Hormonal regulation of metabolism in the human body in microgravity and during simulation of its physiological effects].

    PubMed

    Larina, I M

    2003-01-01

    The paper presents results of investigations into the effects of space flight and simulation experiments of various length on the hormonal regulation of metabolism in the human body. Microgravity was shown to instigate shifts on different levels of the hormonal regulation and consequent adjustment of metabolism to this new environment. For instance, adaptation occurs on the level of basal secretory activity resulting in altered metabolism and formation of a pool of hormones. Metabolism readaptation to the Earth's gravity is dependent on polymorphic processes in the system of hormonal regulation developing in the course of time. Trends in the hormonal regulation of water-electrolyte metabolism during early adaptation point to inequality of contributions of the antidiuretic hormone, natriuretic peptide, and the renin-angiotensin-aldosterone system. In the ground-based simulations responses of the hormonal regulation of water-electrolyte metabolism differ in intensity and types of hormones involved. Temperature variation can modify reactions of the comosis and volume regulating hormones at the beginning of adaptation. Physical-chemical regulation of calcium homeostasis in microgravity reveals itself by a rapid decline of the calcium-binding ability of blood buffers and, later on, degradation of the relative ability of extraplasmic structures to bind calcium. Qualitative and quantitative changes in the diurnal rhythm of the suprarenal steroidogenesis are indicative of modification of intensity of reactions of the main biosynthetic sequences. Countermeasures used by test-subjects in these investigations loosened significantly the aldosterone-secreting biosynthetic sequences but were favorable to the synthesis of testosterone and hydrocortisone. Some of the highly variable processes of hormonal regulation were mute to the diurnal rhythms in the pre-flight and preexperimental periods.

  3. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  4. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression.

    PubMed

    Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio

    2006-10-01

    Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of alphaGSU and FSHbeta gene expressions.

  5. Thyroid hormones: Possible roles in epilepsy pathology.

    PubMed

    Tamijani, Seyedeh Masoumeh Seyedhoseini; Karimi, Benyamin; Amini, Elham; Golpich, Mojtaba; Dargahi, Leila; Ali, Raymond Azman; Ibrahim, Norlinah Mohamed; Mohamed, Zahurin; Ghasemi, Rasoul; Ahmadiani, Abolhassan

    2015-09-01

    Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.

    2009-01-01

    Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511

  7. Interactions between antiepileptic drugs and hormones.

    PubMed

    Svalheim, Sigrid; Sveberg, Line; Mochol, Monika; Taubøll, Erik

    2015-05-01

    Antiepileptic drugs (AEDs) are known to have endocrine side effects in both men and women. These can affect fertility, sexuality, thyroid function, and bone health, all functions of major importance for well-being and quality of life. The liver enzyme inducing antiepileptic drugs (EIAEDs), like phenobarbital, phenytoin, and carbamazepine, and also valproate (VPA), a non-EIAED, are most likely to cause such side effects. AED treatment can alter the levels of different sex hormones. EIAEDs increase sex hormone binding globulin (SHBG) concentrations in both men and women. Over time, this elevation can lead to lower levels of bioactive testosterone and estradiol, which may cause menstrual disturbances, sexual problems, and eventually reduced fertility. VPA can cause weight gain in both men and women. In women, VPA can also lead to androgenization with increased serum testosterone concentrations, menstrual disturbances, and polycystic ovaries. Lamotrigine has not been shown to result in endocrine side effects. The newer AEDs have not yet been thoroughly studied, but case reports indicate that some of these drugs could also be suspected to cause such effects if endocrine changes commence after treatment initiation. It is important to be aware of possible endocrine side effects of AEDs as they can have a major impact on quality of life, and are, at least partly, reversible after AED discontinuation. Copyright © 2015. Published by Elsevier Ltd.

  8. Enhanced Striatal β1-Adrenergic Receptor Expression Following Hormone Loss in Adulthood Is Programmed by Both Early Sexual Differentiation and Puberty: A Study of Humans and Rats

    PubMed Central

    Perry, Adam N.; Westenbroek, Christel; Hedges, Valerie L.; Becker, Jill B.; Mermelstein, Paul G.

    2013-01-01

    After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence. PMID:23533220

  9. Fanconi anemia A is a nucleocytoplasmic shuttling molecule required for gonadotropin-releasing hormone (GnRH) transduction of the GnRH receptor.

    PubMed

    Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela

    2006-12-01

    GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.

  10. Fanconi Anemia a Is a Nucleocytoplasmic Shuttling Molecule Required for Gonadotropin-Releasing Hormone (GnRH) Transduction of the GnRH Receptor

    PubMed Central

    Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela

    2007-01-01

    GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common α- and hormone-specific β-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LβT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the αGsu and GnRHR but not the β-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the αGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer. PMID:16946016

  11. Reproductive Hormones and Subclinical Cardiovascular Disease in Midlife Women.

    PubMed

    Thurston, Rebecca C; Bhasin, Shalender; Chang, Yuefang; Barinas Mitchell, Emma; Matthews, Karen A; Jasuja, Ravi; Santoro, Nanette

    2018-05-18

    Reproductive hormones are understood to be important to the pathophysiology of cardiovascular disease (CVD) in women. However, standard estradiol (E2) and testosterone (T) assays lack sensitivity at the levels of postmenopausal women. Investigate relations of mass spectrometry-assessed estrone (E1), estradiol (E2), and testosterone (T), and sex hormone binding globulin (SHBG) and subclinical CVD in women. 304 peri- and postmenopausal women, aged 40-60 years, and free of clinical CVD underwent subclinical CVD measurements. E1, E2, and T were assayed using liquid chromatography-tandem mass spectrometry; Free T (FT) was estimated using ensemble allostery models. Associations between hormones and outcomes were analyzed using regression models adjusting for CVD risk factors. Carotid artery intima media thickness (IMT), inter-adventitial diameter (IAD), plaque; brachial flow mediated dilation (FMD). Higher E1 was related to higher FMD [b(SE)=.77(.37), p=.04], indicating better endothelial function. Higher E2 was related to lower IAD [b(SE)=-.07(.02), p=.004], indicating less carotid remodeling. Higher SHBG was related to higher FMD [b(SE)=1.31(.40), p=.001], yet higher IAD [b(SE)=.15(.06), p=.02] and carotid plaque [OR (95%CI)=1.84(1.16-2.91), p=.009]. Higher FT was associated with lower FMD [b(SE)=-1.58(.52), p=.003], yet lower IAD [b(SE)=-.19(.08), p=.01] and carotid plaque [OR(95%CI)=.49(.28-.88), p=.02]. Thus, higher SHBG and lower FT was associated with better endothelial function, yet greater carotid remodeling and plaque. Endogenous E1 levels were related to endothelial function and E2 to vascular remodeling, suggesting distinct roles of these estrogens. SHBG and free testosterone have a complex role and depend on the vessel under study.

  12. Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl.

    PubMed

    Wasser, Samuel K; Hunt, Kathleen E

    2005-06-01

    There is an urgent need for noninvasive methods to study reproduction and environmental stress in at-risk species such as the northern spotted owl (Strix occidentalis caurina). Two related owl species (barred owl and great horned owl) were used as surrogates to validate hormone assays for fecal metabolites of progesterone, 17beta-estradiol, testosterone, and corticosterone. Infusions of radiolabeled hormones showed that the owls excreted most hormone within 6 h. Feces and urine contained roughly equal amounts of hormone, and most fecal hormone metabolites were quite polar. The testosterone and corticosterone assays in this study bound to the major excreted metabolites of these hormones, but two progesterone assays did not appreciably bind to the major progesterone metabolites. All assays showed excellent parallelism with hydrolyzed and unhydrolyzed samples and with previously dried or undried fecal samples. Thus, samples do not require hydrolysis or prior drying. Samples from a female barred owl had significantly higher fecal estrogen, lower fecal testosterone, and higher fecal estrogen/testosterone ratio than samples from two male barred owls. The fecal estrogen/testosterone ratio was the most accurate predictor of owl gender, particularly if two or more samples are available from the same individual. Fecal corticosterone metabolites also demonstrated considerable utility for wild northern spotted owls. Fecal glucocorticoid levels varied by gender and breeding stage, being highest in male northern spotted owls early in the breeding season and highest in females when nestlings were fledging. Collectively, these studies show that noninvasive fecal hormone measurements show great promise for noninvasive assessment of reproduction and stress in wild owls.

  13. Hyperandrogenism in adolescent girls: relationship with the somatotrophic axis.

    PubMed

    Hernandez, María Isabel; López, Patricia; Gaete, Ximena; Villarroel, Claudio; Cavada, Gabriel; Avila, Alejandra; Iñiguez, German; Cassorla, Fernando

    2017-05-01

    During puberty there is a physiologic increase in adrenal and ovarian androgens. It has been suggested that the somatotrophic axis may be related to the development of hyperandrogenism and anovulation in non-obese adult women with polycystic ovarian syndrome (PCOS). The objective of the study was to investigate whether ovarian androgen secretion in young postmenarchal girls is related to the function of their somatotropic axis. This was a cross-sectional study of adolescent girls. We studied non-obese adolescent girls with hyperandrogenism (HA; n = 21) matched with control girls (C; n = 25) for chronological age, age at menarche and body mass index. We obtained a fasting blood sample for measurement of serum glucose, insulin, 17-hydroxyprogesterone (17OH-Prog), dehydroepiandrosterone-sulfate (DHEA-S), androstenedione, sex hormone-binding globulin (SHBG), total testosterone, IGF-I, IGF-II, IGFBP-1, IGFBP-3, ghrelin, leptin, AMH (antiMüllerian hormone), luteinizing hormone (LH) and follicle stimulating hormone (FSH) during the follicular phase of the menstrual period. We performed an oral glucose tolerance test to determine blood glucose, insulin and ghrelin levels and urine samples to measure urinary GH (growth hormone) levels. As expected, the hyperandrogenic girls had significantly higher Ferriman scores, basal total testosterone, free androgen index (FAI), androstenedione, AMH, and basal LH levels compared with the girls in controls. Serum IGF-I, IGF-II, IGFBP-3 and urinary GH did not differ between HA and C. There was a correlation between urinary GH and FAI in all girls (r 0.29, p < 0.05). In addition, in HA girls FAI correlated with insulin, homeostasis model assessment (HOMA) and ghrelin. We observed a correlation between urinary GH and FAI in the hyperandrogenic and control girls, suggesting that the function of the somatotrophic axis may influence the secretion of androgens in adolescent girls.

  14. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common pharmacogenetic variants.

  15. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  16. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.

    PubMed

    Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-04-01

    Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.

  17. The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element.

    PubMed

    Romine, L E; Wood, J R; Lamia, L A; Prendergast, P; Edwards, D P; Nardulli, A M

    1998-05-01

    We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.

  18. Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.

    PubMed

    Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A

    1987-02-01

    Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.

  19. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    PubMed Central

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike. PMID:27618178

  20. Substrate Binding Process and Mechanistic Functioning of Type 1 11β-Hydroxysteroid Dehydrogenase from Enhanced Sampling Methods

    PubMed Central

    Recanatini, Maurizio; Cavalli, Andrea

    2011-01-01

    In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant), and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a) the reason behind the functional dimerisation of 11β-HSD-1, b) the key role of Y177 in the cortisone binding event, c) the fine tuning of the active site degree of solvation, and d) the role of the S228-P237 loop in ligand recognition. PMID:21966510

  1. Insulin sensitivity and its relation to hormones in adolescent boys and girls.

    PubMed

    Aldhoon-Hainerová, Irena; Zamrazilová, Hana; Hill, Martin; Hainer, Vojtěch

    2017-02-01

    A subset of obese individuals lacks cardiometabolic impairment. We aimed to analyze hormonal profiles of insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) adolescents and determine hormonal predictors of homeostasis model of insulin resistance (HOMA-IR). A threshold of 3.16 of HOMA-IR was used to classify ISO (<3.16) IRO (≥3.16). In 702 individuals aged 13-18years (55.8% girls) anthropometric and laboratory [blood glucose, insulin, thyrotropin (TSH), free thyroxine (fT4), free triiodothyronine (fT3), sex hormone-binding globulin (SHBG), steroid hormones, luteinizing hormone, follicle stimulating hormone, prolactin, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like-peptide 1glucagon, leptin, resistin, visfatin, leptin, adiponectin and adipsin] assessments were performed. Orthogonal projections to latent structures and Mann-Whitney tests with Bonferroni correction were applied for statistical analysis. 52.6% girls and 42.9% boys were insulin sensitive. In the predictive model of HOMA-IR thyroid function tests, adiponectin, ghrelin and leptin concentrations played an important role in both genders. Prolactin, testosterone and glucagon contributed to the model only in boys, while progesterone and dehydroepiandrosterone sulfate levels only in girls. After Bonferroni correction levels of leptin, adiponectin, leptin/adiponectin ratio, SHBG and fT4/TSH ratio in both genders, testosterone and glucagon levels in boys and levels of TSH and fT3 in girls were related to insulin sensitivity. Metabolic health defined by HOMA-IR is partly predicted by various hormones. Some of them are gender specific. Free T4/TSH and leptin/adiponectin ratios are related to insulin sensitivity in both genders. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Xu, H. Eric

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineeredmore » as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.« less

  3. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    PubMed

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  5. [A 35-year-old man with gynaecomastia as the first symptom of hyperthyroidism].

    PubMed

    Mullens, A; van den Bruel, A; Vanderschueren, D

    2002-02-02

    A 35-year-old man suffered painful bilateral gynaecomastia for 2 months due to serious Graves' hyperthyroidism. During treatment with propylthiouracil and levothyroxine, the plasma concentrations of thyroid hormone, sex hormones and sex hormone-binding globulin normalised and the gynaecomastia disappeared. Gynaecomastia occurs in 30 to 40% of men diagnosed with Graves' hyperthyroidism. However, gynaecomastia as a presenting symptom of this autoimmune disease is uncommon.

  6. takeout-dependent longevity is associated with altered Juvenile Hormone signaling

    PubMed Central

    Chamseddin, Khalil H.; Khan, Sabina Q.; Nguyen, Mai L.H.; Antosh, Michael; Morris, Siti Nur Sarah; Kolli, Santharam; Neretti, Nicola; Helfand, Stephen L.; Bauer, Johannes H.

    2012-01-01

    In order to understand the molecular mechanisms of longevity regulation, we recently performed a screen designed to enrich for genes common to several longevity interventions. Using this approach, we identified the Drosophila melanogaster gene takeout. takeout is upregulated in a variety of long-lived flies, and extends life span when overexpressed. Here, we investigate the mechanisms of takeout-dependent longevity. takeout overexpression specifically in the fat body is sufficient to increase fly longevity and is additive to the longevity effects of dietary restriction. takeout long-lived flies do not show phenotypes often associated with increased longevity, such as enhanced stress resistance or major metabolic abnormalities. However, males exhibit greatly diminished courtship behavior, leading to a reduction in fertility. Interestingly, takeout contains a binding domain for Juvenile Hormone, a fly hormone that plays a role in the regulation of developmental transitions. Importantly, the longevity and courtship phenotypes of takeout overexpressing flies are reversed by treatment with the Juvenile Hormone analog methoprene. These data suggest that takeout is a key player in the tradeoff-switch between fertility and longevity. takeout may control fertility via modulation of courtship behavior. This regulation may occur through Juvenile Hormone binding to takeout and a subsequent reduction in Juvenile Hormone signaling activity. PMID:22940452

  7. Genome-wide association study of sex hormones, gonadotropins and sex hormone-binding protein in Chinese men.

    PubMed

    Chen, Zhuo; Tao, Sha; Gao, Yong; Zhang, Ju; Hu, Yanling; Mo, Linjian; Kim, Seong-Tae; Yang, Xiaobo; Tan, Aihua; Zhang, Haiying; Qin, Xue; Li, Li; Wu, Yongming; Zhang, Shijun; Zheng, S Lilly; Xu, Jianfeng; Mo, Zengnan; Sun, Jielin

    2013-12-01

    Sex hormones and gonadotropins exert a wide variety of effects in physiological and pathological processes. Accumulated evidence shows a strong heritable component of circulating concentrations of these hormones. Recently, several genome-wide association studies (GWASs) conducted in Caucasians have identified multiple loci that influence serum levels of sex hormones. However, the genetic determinants remain unknown in Chinese populations. In this study, we aimed to identify genetic variants associated with major sex hormones, gonadotropins, including testosterone, oestradiol, follicle-stimulating hormone (FSH), luteinising hormone (LH) and sex hormone binding globulin (SHBG) in a Chinese population. A two-stage GWAS was conducted in a total of 3495 healthy Chinese men (1999 subjects in the GWAS discovery stage and 1496 in the confirmation stage). We identified a novel genetic region at 15q21.2 (rs2414095 in CYP19A1), which was significantly associated with oestradiol and FSH in the Chinese population at a genome-wide significant level (p=6.54×10(-31) and 1.59×10(-16), respectively). Another single nucleotide polymorphism in CYP19A1 gene was significantly associated with oestradiol level (rs2445762, p=7.75×10(-28)). In addition, we confirmed the previous GWAS-identified locus at 17p13.1 for testosterone (rs2075230, p=1.13×10(-8)) and SHBG level (rs2075230, p=4.75×10(-19)) in the Chinese population. This study is the first GWAS investigation of genetic determinants of FSH and LH. The identification of novel susceptibility loci may provide more biological implications for the synthesis and metabolism of these hormones. More importantly, the confirmation of the genetic loci for testosterone and SHBG suggests common genetic components shared among different ethnicities.

  8. Do differences in female sex hormone levels contribute to gastro-oesophageal reflux disease?

    PubMed

    Menon, Shyam; Prew, Sandra; Parkes, Gill; Evans, Stephanie; Smith, Lynne; Nightingale, Peter; Trudgill, Nigel

    2013-07-01

    Hormone replacement therapy is associated with both reflux symptoms and oesophagitis. During pregnancy, elevated sex hormones are thought to contribute to the high prevalence of reflux symptoms. Increased female sex hormone levels may thus contribute to the aetiology of gastro-oesophageal reflux disease (GORD). To determine if female sex hormone levels are associated with symptomatic acid reflux. Women with GORD symptoms undergoing oesophageal pH monitoring were prospectively recruited. 'Cases' and 'controls' were defined by normal and excess total acid exposure on pH monitoring and were age-matched and BMI-matched. Case and control groups were further stratified into premenopausal and postmenopausal groups. Demographic data were collected, body morphological parameters were measured and oestradiol, oestrone, progesterone and sex hormone-binding globulin were measured. One hundred and twenty-one women [mean age 52 (SD 11.6) years] were recruited and 104 [mean age 51 (SD 11.6) years] were matched for age and BMI. Increasing BMI, as expected, correlated with increasing acid exposure [premenopausal (r=0.404, P=0.02), postmenopausal (r=0.401, P=0.01)]. Increasing BMI also correlated with sex hormone levels [premenopausal oestradiol (r=0.52, P=0.004), postmenopausal oestrone (r=0.364, P=0.01)]. In premenopausal women, sex hormone binding globulin (r=-0.27, P=0.05) and testosterone (r=0.29, P=0.05) correlated with increasing acid exposure, but oestradiol fell just short of significance (r=0.26, P=0.06). However, on matching for BMI, no association between sex hormones and increased acid exposure on pH monitoring was found on multivariate logistic regression analysis. Female sex hormone levels do not appear to contribute to GORD, once adjustment is made for the influence of increasing BMI.

  9. Receptor-binding region in human choriogonadotropin/lutropin. beta. subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keutmann, H.T.; Charlesworth, M.C.; Mason, K.A.

    1987-04-01

    Synthetic fragments have not been widely used thus far to evaluate structure-activity relations in the glycoprotein hormones. The authors prepared a series of peptides representing the intercysteine loop sequence (residues 38-57) in human choriogonadotropin (hCG) and lutropin (hLH) ..beta.. subunits, anticipating that it might be oriented toward the surface and accessible to receptors. The peptides were characterized chemically and tested for bioactivity by binding to rat ovarian membrane receptor and stimulation of Leydig cell testosterone production. The hCG..beta..-(38-57) and hLH..beta..-(38-57) peptides inhibited binding of /sup 125/I-labeled hCG half-maximally at 1.51 x 10/sup -4/ and 2.03 x 10/sup -5/ M, respectively,more » while other peptide hormones and fragments from elsewhere in the ..beta.. subunit were inactive. Both peptides stimulated testosterone production, with half-maximal responses at 3.55 x 10/sup -5/ M (hCG) and 2.18 x 10/sup -5/ M (hLH). By radioimmunoassay with an antibody to thyroglobulin-conjugated hCG..beta..-(38-57) peptide, native hCG and ..beta.. subunit were highly reactive, as were the reduced and carboxymethylated subunit and peptide. These results indicate that the 38-57 region of ..beta.. subunit is exposed on the surface and constitutes a component in the receptor-binding domain for hCG and hLH. A region of amphipathic-helical structure in the 38-57 sequence may promote hormone-receptor interactions in a manner proposed for several other peptide hormones.« less

  10. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    PubMed

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However, liver levels of GHR1 and GHR2 transcripts, and liver and muscle levels of IGF-I transcripts were unaffected by fasting. These results clearly indicate tissue specific expression and differential physiological regulation of GH family receptors in the tilapia.

  11. A Single Base Difference between Pit-1 Binding Sites at the hGH Promoter and Locus Control Region Specifies Distinct Pit-1 Conformations and Functions

    PubMed Central

    Shewchuk, Brian M.; Ho, Yugong; Liebhaber, Stephen A.; Cooke, Nancy E.

    2006-01-01

    Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located −14.5 kb to −32 kb relative to the hGH-N promoter. HSI, at −14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions. PMID:16914737

  12. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides.more » The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.« less

  13. Bisphenol A induces corticotropin-releasing hormone expression in the placental cells JEG-3.

    PubMed

    Huang, Hui; Tan, Wenjuan; Wang, C C; Leung, Lai K

    2012-11-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproduction. Placental corticotrophin-releasing hormone (CRH) is a peptide hormone which is involved in fetal development. Increased plasma CRH is associated with elevated risk of premature delivery. In the present study, we demonstrated that bisphenol A increased CRH mRNA expression in the placental JEG-3 cells at or above 25μM. Reporter gene assay also demonstrated that bisphenol A could induce CRH gene transactivity. Since cyclic AMP response element (CRE) is a major regulatory element located in CRH promoter, the sequence-specific binding activity was investigated by using electrophoretic mobility shift assay. Our data indicated that bisphenol A increased the CRE binding activity. Western analysis further illustrated that PKA could be the signal triggering the CRE binding and CRH gene transactivation. In summary, the present study demonstrated that bisphenol A could induce CRH expression in placental cells and the underlying signal transduction pathway was also described. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation.

    PubMed

    Wei, Li-Na

    Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.

  15. The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates.

    PubMed

    Nio-Kobayashi, Junko; Boswell, Lyndsey; Amano, Maho; Iwanaga, Toshihiko; Duncan, W Colin

    2014-12-01

    Luteal progesterone is fundamental for reproduction, but the molecular regulation of the corpus luteum (CL) in women remains unclear. Galectin-1 and galectin-3 bind to the sugar chains on cells to control key biological processes including cell function and fate. The expression and localization of LGALS1 and LGALS3 were analyzed by quantitative PCR and histochemical analysis, with special reference to α2,6-sialylation of glycoconjugates in carefully dated human CL collected across the menstrual cycle and after exposure to human chorionic gonadotrophin (hCG) in vivo. The effects of hCG and prostaglandin E2 on the expression of galectins and an α2,6-sialyltransferase 1 (ST6GAL1) in granulosa lutein cells were analyzed in vitro. Galectin-1 was predominantly localized to healthy granulosa lutein cells and galectin-3 was localized to macrophages and regressing granulosa lutein cells. Acute exposure to luteotrophic hormones (hCG and prostaglandin E2) up-regulated LGALS1 expression (P < .001). ST6GAL1, which catalyzes α2,6-sialylation to block galectin-1 binding, increased during luteolysis (P < .05) as did LGALS3 (P < .05). Luteotrophic hormones reduced ST6GAL1 and LGALS3 in vivo (P < .05) and in vitro (P < .001). There was an inverse correlation between the expression of ST6GAL1 and HSD3B1 (P < .01) and a distinct cellular relationship among α2,6-sialylation, 3β-hydroxysteroid dehydrogenase, and galectin expression. Galectin-1 is a luteotrophic factor whose binding is inhibited by α2,6-sialylation in the human CL during luteolysis. ST6GAL1 and galectin-3 expression is increased during luteolysis and associated with a loss of progesterone synthesis. Luteotrophic hormones differentially regulate galectin-1 and galectin-3/α2,6-sialylation in granulosa lutein cells, suggesting a novel galectin switch regulated by luteotrophic stimuli during luteolysis and luteal rescue.

  16. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions.

    PubMed

    Won, Jung Hee; Park, Jung Sik; Ju, Hyun Hee; Kim, Soyeon; Suh-Kim, Haeyoung; Ghil, Sung Ho

    2008-05-01

    Heterotrimeric GTP-binding proteins (G proteins) mediate signal transduction generated by neurotransmitters and hormones. Go, a member of the Go/Gi family, is the most abundant heterotrimeric G protein in the brain. Most mechanistic analyses on Go activation demonstrate that its action is mediated by the Gbetagamma dimer; downstream effectors for its alpha subunit (Goalpha) have not been clearly defined. Here, we employ the yeast two-hybrid system to screen for Goalpha-interacting partners in a cDNA library from human fetal brain. The transcription factor promyelocytic leukemia zinc finger protein (PLZF) specifically bound to Goalpha. Interactions between PLZF and Goalpha were confirmed using in vitro and in vivo affinity binding assays. Activated Goalpha interacted directly with PLZF, and enhanced its function as a transcriptional and cell growth suppressor. Notably, PLZF activity was additionally promoted by the Go/ialpha-coupled cannabinoid receptor (CB) in HL60 cells endogenously expressing CB and PLZF. These results collectively suggest that Goalpha modulates the function of PLZF via direct interactions. Our novel findings provide insights into the diverse cellular roles of Goalpha and its coupled receptor.

  17. Absence of specific binding of several putative neuro-transmitters to human fibroblasts.

    PubMed

    Berrettini, W H; Nadi, N S; Gershon, E S

    1983-01-01

    Fibroblasts were examined for specific binding sites of ten putative neurotransmitters to determine whether this tissue could be used in receptor studies of neurologic and psychiatric disorders. Stereospecific saturable binding was not found for any of the ligands: arginine vasopressin, neurotensin, somatostatin, angiotensin II, thyrotropin-releasing hormone (TRH), alpha-bungarotoxin, LSD, dihydromorphine, muscimol and spiperone.

  18. Design of an allosterically modulated doxycycline and doxorubicin drug-binding protein.

    PubMed

    Schmidt, Karin; Gardill, Bernd R; Kern, Alina; Kirchweger, Peter; Börsch, Michael; Muller, Yves A

    2018-05-14

    The allosteric interplay between distant functional sites present in a single protein provides for one of the most important regulatory mechanisms in biological systems. While the design of ligand-binding sites into proteins remains challenging, this holds even truer for the coupling of a newly engineered binding site to an allosteric mechanism that regulates the ligand affinity. Here it is shown how computational design algorithms enabled the introduction of doxycycline- and doxorubicin-binding sites into the serine proteinase inhibitor (serpin) family member α1-antichymotrypsin. Further engineering allowed exploitation of the proteinase-triggered serpin-typical S-to-R transition to modulate the ligand affinities. These design variants follow strategies observed in naturally occurring plasma globulins that allow for the targeted delivery of hormones in the blood. By analogy, we propose that the variants described in the present study could be further developed to allow for the delivery of the antibiotic doxycycline and the anticancer compound doxorubicin to tissues/locations that express specific proteinases, such as bacterial infection sites or tumor cells secreting matrix metalloproteinases.

  19. Structural Insight into Recognition of Plant Peptide Hormones by Receptors.

    PubMed

    Zhang, Heqiao; Han, Zhifu; Song, Wen; Chai, Jijie

    2016-11-07

    Secreted signaling peptides or peptide hormones play crucial roles in plant growth and development through coordination of cell-cell communication. Perception of peptide hormones in plants generally relies on membrane-localized receptor kinases (RKs). Progress has recently been made in structural elucidation of interactions between posttranslationally modified peptide hormones and RKs. The structural studies suggest conserved receptor binding and activation mechanisms of this type of peptide hormones involving their conserved C-termini. Here, we review these structural data and discuss how the conserved mechanisms can be used to match peptide-RK pairs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. A TSHR-LH/CGR chimera that measures functional thyroid-stimulating autoantibodies (TSAb) can predict remission or recurrence in Graves' patients undergoing antithyroid drug (ATD) treatment.

    PubMed

    Giuliani, Cesidio; Cerrone, Dominique; Harii, Norikazu; Thornton, Mark; Kohn, Leonard D; Dagia, Nilesh M; Bucci, Ines; Carpentieri, Maria; Di Nenno, Barbara; Di Blasio, Andrea; Vitti, Paolo; Monaco, Fabrizio; Napolitano, Giorgio

    2012-07-01

    A functional thyroid-stimulating autoantibodies (TSAb) assay using a thyroid-stimulating hormone receptor chimera (Mc4) appears to be clinically more useful than the commonly used assay, a binding assay that measures all the antibodies binding to the thyroid-stimulating hormone receptor without functional discrimination, in diagnosing patient with Graves' disease (GD). The objective of the study was to investigate whether an Mc4 assay can predict relapse/remission of hyperthyroidism after antithyroid drug (ATD) treatment in patients with GD. An Mc4 assay was used to prospectively track TSAb activity in GD patients treated with ATD over a 5-yr period. GD patients from the Chieti University participated in this study. Interventions included the assessment of patients' sera using the Mc4 assay, the Mc4-derivative assay (Thyretain), and a human monoclonal thyroid-stimulating hormone receptor antibody, M22 assay. The Mc4 assay, a sensitive index of remission and recurrence, was used in this study. The TSAb levels significantly decreased only in the remitting group as evidenced by Mc4 assay values at the end of ATD (0.96 ± 1.47, 10.9 ± 26.6. and 24.7 ± 37.5 arbitrary units for the remitting, relapsing, and unsuspended therapy groups, respectively). Additional prognostic help was obtained by thyroid volume measurements at the end of treatment. Although not statistically significant, the Mc4 assay has a trend toward improved positive predictive value (95.4 vs. 84.2 or 87.5%), specificity (96.4 vs. 86.4 and 90.9%), and accuracy (87.3 vs. 83.3 and 80.9%) comparing the Mc4, Thyretain, and M22 assays, respectively. Thyretain has a trend toward improved negative predictive value (82.6 vs. 81.8 and 76.9%) and sensitivity (80 vs. 77.8 and 70%) comparing Thyretain, Mc4, and M22 assays, respectively. The Mc4 assay is a clinically useful index of remission and relapse in patients with GD. Larger studies are required to confirm these findings.

  1. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a

    PubMed Central

    Casanueva, Felipe F.; Camiña, Jesus P.; Carreira, Marcos C.; Pazos, Yolanda; Varga, Jozsef L.; Schally, Andrew V.

    2008-01-01

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1–29)NH2 (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of 125I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1–42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control. PMID:19088192

  2. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    PubMed

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  3. Cerebrospinal fluid levels of corticotropin-releasing hormone in women with functional hypothalamic amenorrhea.

    PubMed

    Berga, S L; Loucks-Daniels, T L; Adler, L J; Chrousos, G P; Cameron, J L; Matthews, K A; Marcus, M D

    2000-04-01

    Women with functional hypothalamic amenorrhea are anovulatory because of reduced gonadotropin-releasing hormone drive. Several studies have documented hypercortisolemia, which suggests that functional hypothalamic amenorrhea is stress-induced. Further, with recovery (resumption of ovulation), cortisol decreased and gonadotropin-releasing hormone drive increased. Corticotropin-releasing hormone can increase cortisol and decrease gonadotropin-releasing hormone. To determine its role in functional hypothalamic amenorrhea, we measured corticotropin-releasing hormone in cerebrospinal fluid along with arginine vasopressin, another potent adrenocorticotropic hormone secretagog, and beta-endorphin, which is released by corticotropin-releasing hormone and can inhibit gonadotropin-releasing hormone. Corticotropin-releasing hormone, vasopressin, and beta-endorphin levels were measured in cerebrospinal fluid from 14 women with eumenorrhea and 15 women with functional hypothalamic amenorrhea. Levels of corticotropin-releasing hormone in cerebrospinal fluid and of vasopressin were comparable and beta-endorphin levels were lower in women with functional hypothalamic amenorrhea. In women with established functional hypothalamic amenorrhea, increased cortisol and reduced gonadotropin-releasing hormone are not sustained by elevated cerebrospinal-fluid corticotropin-releasing hormone, vasopressin, or beta-endorphin. These data do not exclude a role for these factors in the initiation of functional hypothalamic amenorrhea.

  4. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency.

    PubMed

    Ashkenazi-Hoffnung, Liat; Lebenthal, Yael; Wyatt, Alexander W; Ragge, Nicola K; Dateki, Sumito; Fukami, Maki; Ogata, Tsutomu; Phillip, Moshe; Gat-Yablonski, Galia

    2010-06-01

    Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.

  5. Functional cooperation between GATA factors and cJUN on the star promoter in MA-10 Leydig cells.

    PubMed

    Martin, Luc J; Bergeron, Francis; Viger, Robert S; Tremblay, Jacques J

    2012-01-01

    Steroid hormone biosynthesis requires the steroidogenic acute regulatory protein (STAR). STAR is part of a protein complex that transports cholesterol through the mitochondrial membrane where steroidogenesis begins. Several transcription factors participate to direct the proper spatiotemporal and hormonal regulation of the Star gene in Leydig cells. Mechanistically, this is believed to involve the functional interplay between many of these factors. Here we report a novel transcriptional cooperation between GATA factors and cJUN on the mouse Star and human STAR promoters in MA-10 Leydig cells. This cooperation was observed with different GATA members (GATA1, 4, and 6), whereas only cJUN could cooperate with GATA factors. GATA/cJUN transcriptional cooperation on the Star promoter is mediated via closely juxtaposed GATA and AP-1 binding motifs. Mutation of all functional GATA and cJUN elements abolished GATA/cJUN cooperation, which is in agreement with previous data reporting a direct interaction between GATA4 and cJUN in a heterologous system. These data add valuable new insights that further define the molecular mechanisms that govern Star transcription in steroidogenic cells of the testis.

  6. HORMONAL REGULATION OF GONADOTROPIN-RELEASING HORMONE RECEPTORS AND MRNA ACTIVITY IN OVINE PITUITARY CULTURE

    EPA Science Inventory

    Previous studies demonstrate that gonadotroph responsiveness to GnRH, GnRH binding, and the apparent number of GnRH receptors are all increased by 17B-estradiol (E) or inhibin (IN) in ovine pituitary cultures. rogesterone attenuates these effects. o explore differences between th...

  7. Recurrent and functional regulatory mutations in breast cancer.

    PubMed

    Rheinbay, Esther; Parasuraman, Prasanna; Grimsby, Jonna; Tiao, Grace; Engreitz, Jesse M; Kim, Jaegil; Lawrence, Michael S; Taylor-Weiner, Amaro; Rodriguez-Cuevas, Sergio; Rosenberg, Mara; Hess, Julian; Stewart, Chip; Maruvka, Yosef E; Stojanov, Petar; Cortes, Maria L; Seepo, Sara; Cibulskis, Carrie; Tracy, Adam; Pugh, Trevor J; Lee, Jesse; Zheng, Zongli; Ellisen, Leif W; Iafrate, A John; Boehm, Jesse S; Gabriel, Stacey B; Meyerson, Matthew; Golub, Todd R; Baselga, Jose; Hidalgo-Miranda, Alfredo; Shioda, Toshi; Bernards, Andre; Lander, Eric S; Getz, Gad

    2017-07-06

    Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.

  8. A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology.

    PubMed

    Ezcurra, Diego; Humaidan, Peter

    2014-10-03

    Gonadotropins extracted from the urine of post-menopausal women have traditionally been used to stimulate folliculogenesis in the treatment of infertility and in assisted reproductive technology (ART). Products, such as human menopausal gonadotropin (hMG), consist not only of a mixture of the hormones, follicle-stimulating hormone (FSH), luteinising hormone (LH) and human chorionic gonadotropin (hCG), but also other biologically active contaminants, such as growth factors, binding proteins and prion proteins. The actual amount of molecular LH in hMG preparations varies considerably due to the purification process, thus hCG, mimicking LH action, is added to standardise the product. However, unlike LH, hCG plays a different role during the natural human menstrual cycle. It is secreted by the embryo and placenta, and its main role is to support implantation and pregnancy. More recently, recombinant gonadotropins (r-hFSH and r-hLH) have become available for ART therapies. Recombinant LH contains only LH molecules. In the field of reproduction there has been controversy in recent years over whether r-hLH or hCG should be used for ART. This review examines the existing evidence for molecular and functional differences between LH and hCG and assesses the clinical implications of hCG-supplemented urinary therapy compared with recombinant therapies used for ART.

  9. A critical functional missense mutation (H173R) in the bovine PROP1 gene significantly affects growth traits in cattle.

    PubMed

    Pan, Chuanying; Wu, Chongyang; Jia, Wenchao; Xu, Yao; Lei, Chuzhao; Hu, Shenrong; Lan, Xianyong; Chen, Hong

    2013-12-01

    The PROP1 protein, encoded by the prophet of Pit-1 (PROP1) gene, exhibits both DNA-binding and transcriptional activation abilities. Its expression leads to the ontogenesis of growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), and pituitary hormone. The missense mutation H173R in PROP1 may result in deficiencies of GH, PRL, TSH, and Pit-1, thereby affecting growth traits. The objective of this study was to characterize the H173R mutation within the PROP1 gene and examine its associations with growth traits in cattle. Accordingly, the H173R mutation was genotyped in 1207 cows belonging to five Chinese native breeds. Three genotypes were identified among the specimens, with genotype AA being the major one. Consequently, the "G" allele was the minor allele. Association testing revealed that the H173R mutation was significantly associated with body weight, average daily weight gain and physical parameters in the analyzed breeds. Interestingly, the cows with genotype AG and/or AA had superior growth traits compared with those expressing the GG genotype, in all tested breeds. These findings revealed that the "A" allele had positive effects on growth traits, which was consistent with the increasing binding ability and enhanced activation capacity associated with the bovine isoform PROP1-173H, representing the "A" allele. Therefore, the H173R mutation can be considered as a DNA marker for selecting individuals with superior growth traits, thereby contributing to research on breeding and genetics in the beef industry. © 2013.

  10. The effect of lead intoxication on endocrine functions.

    PubMed

    Doumouchtsis, K K; Doumouchtsis, S K; Doumouchtsis, E K; Perrea, D N

    2009-02-01

    Studies on the effects of lead on the endocrine system are mainly based on occupationally lead-exposed workers and experimental animal models. Although evidence is conflicting, it has been reported that accumulation of lead affects the majority of the endocrine glands. In particular, it appears to have an effect on the hypothalamic-pituitary axis causing blunted TSH, GH, and FSH/LH responses to TRH, GHRH, and GnRH stimulation, respectively. Suppressed GH release has been reported, probably caused by reduced synthesis of GHRH, inhibition of GHRH release or reduced somatotrope responsiveness. Higher levels of PRL in lead intoxication have been reported. In short-term lead-exposed individuals, high LH and FSH levels are usually associated to normal testosterone concentrations, whereas in long-term exposed individuals' low testosterone levels do not induce high LH and FSH concentrations. These findings suggest that lead initially causes some subclinical testicular damage, followed by hypothalamic or pituitary disturbance when longer periods of exposure take place. Similarly, lead accumulates in granulosa cells of the ovary, causing delays in growth and pubertal development and reduced fertility in females. In the parenchyma of adrenals histological and cytological changes are demonstrated, causing changes in plasma basal and stress-mediated corticosterone concentrations and reduced cytosolic and nuclear glucocorticoid receptor binding. Thyroid hormone kinetics are also affected. Central defect of the thyroid axis or an alteration in T4 metabolism or binding to proteins may be involved in derangements in thyroid hormone action. Lead toxicity involves alterations on calcitropic hormones' homeostasis, which increase the risk of skeletal disorders.

  11. Biochemical markers for cardiovascular disease in recently postmenopausal women with or without hot flashes.

    PubMed

    Tuomikoski, Pauliina; Mikkola, Tomi S; Hämäläinen, Esa; Tikkanen, Matti J; Turpeinen, Ursula; Ylikorkala, Olavi

    2010-01-01

    Menopausal hot flashes may affect vascular function and perhaps explain conflicting data on cardiovascular disease (CVD) between observational and randomized hormone therapy (HT) studies. We prospectively assessed hot flash status in recently postmenopausal women and related it to a number of biochemical vascular surrogate markers for CVD. Healthy, nonsmoking women (n = 150) exhibiting a broad range (no, mild, moderate, severe) of hot flashes and an onset of menopause within the previous 0.5 to 3 years were studied with laboratory tests for lipids, lipoproteins, apolipoproteins, high-sensitivity C-reactive protein, and sex hormone-binding globulin. Apart from marked differences in hot flashes, the groups showed comparable levels of estrone, estradiol, or free estradiol index. The levels of total cholesterol (3.7-9.1 mmol/L) were similar between the groups (P = 0.744), and hypercholesterolemia (>6.5 mmol/L) was encountered equally often (P = 0.699). No difference was seen in high-, low-, or very low-density lipoproteins, triglycerides, apolipoprotein A-1, apolipoprotein B (or their ratio), or lipoprotein(a) between the groups. The levels of sex hormone-binding globulin and high-sensitivity C-reactive protein correlated negatively with each other (r = -0.204; P = 0.013) but showed no dependence on hot flashes (P = 0.531 and P = 0.215, respectively). No baseline difference in lipid or nonlipid CVD risk factors was observed between women with hot flashes (potential HT users) and women with no or mild hot flashes (potential HT nonusers). This may imply that hot flash status per se cannot explain the difference between observational and randomized trials.

  12. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  13. Association between endogenous sex steroid hormones and insulin-like growth factor proteins in US men.

    PubMed

    Papatheodorou, Stefania I; Rohrmann, Sabine; Lopez, David S; Bradwin, Gary; Joshu, Corinne E; Kanarek, Norma; Nelson, William G; Rifai, Nader; Platz, Elizabeth A; Tsilidis, Konstantinos K

    2014-03-01

    Sex steroid hormone concentrations and insulin-like growth factor (IGF) proteins have been independently associated with risk of cancer, chronic diseases, and mortality. However, studies that evaluated the inter-relation between the sex hormones and IGF pathways have provided mixed results. We examined the association between endogenous sex hormones and sex hormone-binding globulin (SHBG) with IGF-1 and IGF-binding protein 3 (IGFBP-3) in a population-based sample of US men. Data from 1,135 men aged 20 years or older participating in the third National Health and Nutrition Examination Survey (NHANES III) were analyzed. Weighted linear regression was used to estimate geometric means and 95 % confidence intervals for IGF-1 and IGFBP-3 concentrations by sex steroid hormones and SHBG after adjusting for age, race/ethnicity, body mass index, waist circumference, alcohol consumption, cigarette smoking, physical activity, diabetes, and mutually adjusting for other sex hormones and SHBG. No significant association was observed between sex steroid hormones, SHBG, and IGF-1 concentrations. Total estradiol (% difference in Q5 - Q1 geometric means -9.7 %; P-trend 0.05) and SHBG (% difference -7.3 %; P-trend 0.02) were modestly inversely associated with IGFBP-3. Total testosterone was modestly inversely associated with IGFBP-3 (% difference -6.2 %; P-trend 0.01), but this association disappeared after adjustment for total estradiol and SHBG (% difference 2.6 %; P-trend 0.23). Androstanediol glucuronide was not associated with IGFBP-3. These findings suggest that there may be inter-relationships between circulating total estradiol, SHBG, and IGFBP-3 concentrations. Future research may consider these inter-relationships when evaluating potential joint effects of the sex hormones and IGF pathways.

  14. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty - Phthalate contaminated-foodstuff episode in Taiwan.

    PubMed

    Wen, Hui-Ju; Chen, Chu-Chih; Wu, Ming-Tsang; Chen, Mei-Lien; Sun, Chien-Wen; Wu, Wen-Chiu; Huang, I-Wen; Huang, Po-Chin; Yu, Tzu-Yun; Hsiung, Chao A; Wang, Shu-Li

    2017-01-01

    In May 2011, a major incident involving phthalates-contaminated foodstuffs occurred in Taiwan. Di-(2-ethylhexyl) phthalate (DEHP) was added to foodstuffs, mainly juice, jelly, tea, sports drink, and dietary supplements. Concerns arose that normal pubertal development, especially reproductive hormone regulation in children, could be disrupted by DEHP exposure. To investigate the association between phthalate exposure and reproductive hormone levels among children following potential exposure to phthalate-tainted foodstuffs. A total of 239 children aged <12 years old were recruited from 3 hospitals in north, central, and south Taiwan after the episode. Structured questionnaires were used to collect the frequency and quantity of exposures to 5 categories of phthalate-contaminated foodstuffs to assess phthalate exposure in children. Urine samples were collected for the measurement of phthalate metabolites. The estimated daily intake of DEHP exposure at the time of the contamination incident occurred was calculated using both questionnaire data and urinary DEHP metabolite concentrations. Multiple regression analyses were applied to assess associations between phthalate exposure and reproductive hormone levels in children. After excluding children with missing data regarding exposure levels and hormone concentrations and girls with menstruation, 222 children were included in the statistical analyses. After adjustment for age and birth weight, girls with above median levels of urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and sum of mono-(2-ethylhexyl) phthalate concentrations had higher odds of above median follicle-stimulating hormone concentrations. Girls with above median estimated average daily DEHP exposures following the contamination episode also had higher odds of sex hormone-binding globulin above median levels. Phthalate exposure was associated with alterations of reproductive hormone levels in girls.

  15. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    PubMed

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediatedmore » by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.« less

  17. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  18. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster.

    PubMed

    Tolhuis, Bas; de Wit, Elzo; Muijrers, Inhua; Teunissen, Hans; Talhout, Wendy; van Steensel, Bas; van Lohuizen, Maarten

    2006-06-01

    Polycomb group (PcG) proteins maintain transcriptional repression of developmentally important genes and have been implicated in cell proliferation and stem cell self-renewal. We used a genome-wide approach to map binding patterns of PcG proteins (Pc, esc and Sce) in Drosophila melanogaster Kc cells. We found that Pc associates with large genomic regions of up to approximately 150 kb in size, hereafter referred to as 'Pc domains'. Sce and esc accompany Pc in most of these domains. PcG-bound chromatin is trimethylated at histone H3 Lys27 and is generally transcriptionally silent. Furthermore, PcG proteins preferentially bind to developmental genes. Many of these encode transcriptional regulators and key components of signal transduction pathways, including Wingless, Hedgehog, Notch and Delta. We also identify several new putative functions of PcG proteins, such as in steroid hormone biosynthesis. These results highlight the extensive involvement of PcG proteins in the coordination of development through the formation of large repressive chromatin domains.

  19. Identification of centrarchid hepcidins and evidence that 17β-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Robertson, L.S.; Iwanowicz, L.R.; Marranca, J.M.

    2009-01-01

    Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17β-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.

  20. Identification of centrarchid hepcidins and evidence that 17beta-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides).

    PubMed

    Robertson, Laura S; Iwanowicz, Luke R; Marranca, Jamie Marie

    2009-06-01

    Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17beta-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.

  1. Genetically modified mouse models to investigate thyroid development, function and growth.

    PubMed

    Löf, C; Patyra, K; Kero, A; Kero, J

    2018-06-01

    The thyroid gland produces thyroid hormones (TH), which are essential regulators for growth, development and metabolism. The thyroid is mainly controlled by the thyroid-stimulating hormone (TSH) that binds to its receptor (TSHR) on thyrocytes and mediates its action via different G protein-mediated signaling pathways. TSH primarily activates the G s -pathway, and at higher concentrations also the G q/11 -pathway, leading to an increase of intracellular cAMP and Ca 2+ , respectively. To date, the physiological importance of other G protein-mediated signaling pathways in thyrocytes is unclear. Congenital hypothyroidism (CH) is defined as the lack of TH at birth. In familial cases, high-throughput sequencing methods have facilitated the identification of novel mutations. Nevertheless, the precise etiology of CH yet remains unraveled in a proportion of cases. Genetically modified mouse models can reveal new pathophysiological mechanisms of thyroid diseases. Here, we will present an overview of genetic mouse models for thyroid diseases, which have provided crucial insights into thyroid gland development, function, and growth with a special focus on TSHR and microRNA signaling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Sex hormone-binding globulin and corticosteroid-binding globulin mRNA levels in infertile women with luteal phase deficiency.

    PubMed

    Misao, R; Nakanishi, Y; Fujimoto, J; Tamaya, T

    1995-09-01

    This study was designed to investigate the biological significance in intracellular expression of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) mRNA in uterine endometrium with luteal phase deficiency (designated as out-of-phase endometrium or low serum progesterone level). The levels of such mRNAs were measured by the quantitative reverse transcription-polymerase chain reaction. Under the normal serum 17 beta-estradiol and progesterone levels in the mid-luteal phase, the levels of SHBG and CBG mRNAs in the out-of-phase endometria were not significantly different from those in the normal endometria. On the other hand, SHBG and CBG mRNA levels in the endometria of low serum midluteal progesterone level were significantly (p < 0.05) reduced and raised, respectively, compared with normal levels. These findings suggest that the synthesis of endometrial steroid-binding proteins in the out-of-phase endometrium is conserved, as that in the in-phase endometrium, whereas the decreased progesterone level might up-regulate CBG expression with down-regulation of SHBG expression.

  3. Effect of adrenal hormones on thyroid secretion and thyroid hormones on adrenal secretion in the sheep.

    PubMed Central

    Falconer, I R; Jacks, F

    1975-01-01

    1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400

  4. Regucalcin Expression in Bovine Tissues and Its Regulation by Sex Steroid Hormones in Accessory Sex Glands

    PubMed Central

    Starvaggi Cucuzza, Laura; Divari, Sara; Mulasso, Chiara; Biolatti, Bartolomeo; Cannizzo, Francesca T.

    2014-01-01

    Regucalcin (RGN) is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle. PMID:25415588

  5. Gonadotropin-Inhibitory Hormone, the Piscine Ortholog of LPXRFa, Participates in 17β-Estradiol Feedback in Female Goldfish Reproduction.

    PubMed

    Qi, Xin; Zhou, Wenyi; Wang, Qingqing; Guo, Liang; Lu, Danqi; Lin, Haoran

    2017-04-01

    Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone, gonadotropin hormone, and steroidogenesis in teleosts. In the present study, we sought to determine whether 17β-estradiol (E2) acts directly on GnIH neurons to regulate reproduction in goldfish, a seasonal breeder, and we investigated the role of estrogen receptors (ERs) in mediating this process. We found that GnIH neurons coexpress three types of ERs. Ovariectomy and letrozole implantation into female goldfish at the vitellogenic stage elicited a substantial decrease in the expression of GnIH messenger RNA (mRNA), and E2 supplementation abolished this effect. In primary cultured hypothalamus cells, E2 increased GnIH mRNA levels; surprisingly, selective ERα and ERβ agonists showed opposite effects in regulating GnIH mRNA levels. Using genome walking, we isolated a 2329-bp section of the GnIH promoter sequence, and 7 half-estrogen response elements (EREs) were found in the promoter region. Luciferase assays and electrophoretic mobility shift assay results show that the half-ERE element at -2203 is the key site for competitive binding between ERα and ERβ. Ovariectomy and letrozole implantation into female goldfish in the maturating stage did not change the GnIH mRNA expression levels. Taken together, these findings suggest that E2 binds to multiple types of ERs, which competitively bind to the same half-ERE binding site of the GnIH promoter to achieve both positive and negative feedback in response to estrogen to regulate goldfish reproduction at different stages of ovarian development. Copyright © 2017 Endocrine Society.

  6. Rapid molecular evolution across amniotes of the IIS/TOR network

    PubMed Central

    McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.

    2015-01-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  7. Modeling of three dimensional structure of human alpha-fetoprotein complexed with diethylstilbestrol: docking and molecular dynamics simulation study.

    PubMed

    Terentiev, Alexander A; Moldogazieva, Nurbubu T; Levtsova, Olga V; Maximenko, Dmitry M; Borozdenko, Denis A; Shaitan, Konstantin V

    2012-04-01

    It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.

  8. Rapid molecular evolution across amniotes of the IIS/TOR network.

    PubMed

    McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S

    2015-06-02

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.

  9. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less

  10. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  11. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men

    PubMed Central

    Allen, N E; Appleby, P N; Davey, G K; Key, T J

    2000-01-01

    Mean serum insulin-like growth factor-I was 9% lower in 233 vegan men than in 226 meat-eaters and 237 vegetarians (P = 0.002). Vegans had higher testosterone levels than vegetarians and meat-eaters, but this was offset by higher sex hormone binding globulin, and there were no differences between diet groups in free testosterone, androstanediol glucuronide or luteinizing hormone. © 2000 Cancer Research Campaign PMID:10883675

  12. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families.

    PubMed

    Givens, Marjory L; Rave-Harel, Naama; Goonewardena, Vinodha D; Kurotani, Reiko; Berdy, Sara E; Swan, Christo H; Rubenstein, John L R; Robert, Benoit; Mellon, Pamela L

    2005-05-13

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.

  13. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  14. Melatonin and Hippo Pathway: Is There Existing Cross-Talk?

    PubMed

    Lo Sardo, Federica; Muti, Paola; Blandino, Giovanni; Strano, Sabrina

    2017-09-06

    Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.

  15. [Serum thyroxine-binding protein for determining the functional state of the thyroid gland in pregnant women with endemic goiter].

    PubMed

    Korol'kova, O A; Cheremukhin, V I

    1975-01-01

    A determination was made of the hormone-forming capacity of the thyroid gland in pregnent women under conditions of goiter endemic at various periods of pregnancy by trimesters (123-in healthy pregnant women, 206-with euthyroid goiter of the I degree, 271-or II degree, 90-of the II degree, and 4-of the IV degree). A method of zonal electrophoresis in the medinal-veronal buffer was applied. Thyrofixin with I131 isotope (made in the USSR) was used. With increase of the periods of pregnancy and the degree of euthyroid hyperplasia of the thyroid gland and goiter the thyroid gland function became elevated irrespective of age.

  16. Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE.

    PubMed

    Vicent, Guillermo P; Meliá, María J; Beato, Miguel

    2002-11-29

    Packaging of mouse mammary tumor virus (MMTV) promoter sequences in nucleosomes modulates access of DNA binding proteins and influences the interaction among DNA bound transcription factors. Here we analyze the binding of histone H1 to MMTV mononucleosomes assembled with recombinant histones and study its influence on nucleosome structure and stability as well as on progesterone receptor (PR) binding to the hormone responsive elements (HREs). The MMTV nucleosomes can be separated into three main populations, two of which exhibited precise translational positioning. Histone H1 bound preferentially to the 5' distal nucleosomal DNA protecting additional 27-28 nt from digestion by micrococcal nuclease. Binding of histone H1 was unaffected by prior crosslinking of protein and DNA in nucleosomes with formaldehyde. Neither the translational nor the rotational nucleosome positioning was altered by histone H1 binding, but the nucleosomes were stabilized as judged by the kinetics of nuclease cleavage. Unexpectedly, binding of recombinant PR to the exposed distal HRE-I in nucleosomes was enhanced in the presence of histone H1, as demonstrated by band shift and footprinting experiments. This enhanced PR affinity may contribute to the reported positive effect of histone H1 on the hormonal activation of MMTV reporter genes.

  17. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  18. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    PubMed

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin promoter in vitro.

  19. The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

    PubMed Central

    Basaria, Shehzad; Collins, Lauren; Dillon, E. Lichar; Orwoll, Katie; Storer, Thomas W.; Miciek, Renee; Ulloor, Jagadish; Zhang, Anqi; Eder, Richard; Zientek, Heather; Gordon, Gilad; Kazmi, Syed; Sheffield-Moore, Melinda

    2013-01-01

    Background. Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity. Objectives. To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones. Methods. In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention. Results. LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. Conclusions. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should evaluate its efficacy in improving physical function and health outcomes in select populations. PMID:22459616

  20. Steroids and endocrine disruptors--History, recent state of art and open questions.

    PubMed

    Hampl, Richard; Kubátová, Jana; Stárka, Luboslav

    2016-01-01

    This introductory chapter provides an overview of the levels and sites at which endocrine disruptors (EDs) affect steroid actions. In contrast to the special issue of Journal of Steroid Biochemistry and Molecular Biology published three years ago and devoted to EDs as such, this paper focuses on steroids. We tried to point to more recent findings and opened questions. EDs interfere with steroid biosynthesis and metabolism either as inhibitors of relevant enzymes, or at the level of their expression. Particular attention was paid to enzymes metabolizing steroid hormones to biologically active products in target cells, such as aromatase, 5α-reductase and 3β-, 11β- and 17β-hydroxysteroid dehydrogenases. An important target for EDs is also steroid acute regulatory protein (StAR), responsible for steroid precursor trafficking to mitochondria. EDs influence receptor-mediated steroid actions at both genomic and non-genomic levels. The remarkable differences in response to various steroid-receptor ligands led to a more detailed investigation of events following steroid/disruptor binding to the receptors and to the mapping of the signaling cascades and nuclear factors involved. A virtual screening of a large array of EDs with steroid receptors, known as in silico methods (≡computer simulation), is another promising approach for studying quantitative structure activity relationships and docking. New data may be expected on the effect of EDs on steroid hormone binding to selective plasma transport proteins, namely transcortin and sex hormone-binding globulin. Little information is available so far on the effects of EDs on the major hypothalamo-pituitary-adrenal/gonadal axes, of which the kisspeptin/GPR54 system is of particular importance. Kisspeptins act as stimulators for hormone-induced gonadotropin secretion and their expression is regulated by sex steroids via a feed-back mechanism. Kisspeptin is now believed to be one of the key factors triggering puberty in mammals, and various EDs affect its expression and function. Finally, advances in analytics of EDs, especially those persisting in the environment, in various body fluids (plasma, urine, seminal fluid, and follicular fluid) are mentioned. Surprisingly, relatively scarce information is available on the simultaneous determination of EDs and steroids in the same biological material. This article is part of a Special Issue entitled 'Endocrine disruptors & steroids'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding

    PubMed Central

    Flanagan, Colleen A.; Manilall, Ashmeetha

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501

  2. Biochemical and pharmacological characterization of the thyrotropin releasing hormone (TRH) receptor from clonal GH sub 4 C sub 1 pituitary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.J.

    1987-01-01

    The effect of drugs with anesthetic properties on the activity of the pituitary thyrotropin-releasing hormone (TRH) receptor was determined in the clonal GH{sub 4}C{sub 1} somatomammotropic cell line. Classic local anesthetics and other drugs with anesthetic activity inhibited binding of ({sup 3}H)methyl-TRH to cell receptors at concentrations known to produce anesthetic effects on the membrane. The inhibition of TRH receptor binding by tetracaine was competitive and temperature and pH dependent. Verapamil and tetracaine inhibited TRH-stimulated prolactin secretion at concentrations that inhibited peptide binding. TRH-stimulated prolactin secretion was equivalent with or without Ca{sup 2+} channel activity. Verapamil and tetracaine also inhibitedmore » basal prolactin and secretion stimulated by drugs that bypass membrane receptors, db-cAMP and TPA. These results indicate that inhibition of TRH binding and responses by diverse drugs results from an anesthetic effect on the cell membrane.« less

  3. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    PubMed Central

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  4. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins

    PubMed Central

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F.; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J.; Camiña, Jesús P.

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser362, Ser363 and Thr366 residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr350 and Ser349 are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  5. The Effects of Hormones and Vaginal Microflora on the Glycome of the Female Genital Tract: Cervical-Vaginal Fluid.

    PubMed

    Moncla, Bernard J; Chappell, Catherine A; Debo, Brian M; Meyn, Leslie A

    2016-01-01

    In this study, we characterized the glycome of cervical-vaginal fluid, collected with a Catamenial cup. We quantified: glycosidase levels; sialic acid and high mannose specific lectin binding; mucins, MUC1, MUC4, MUC5AC, MUC7; and albumin in the samples collected. These data were analyzed in the context of hormonal status (day of menstrual cycle, hormonal contraception use) and role, if any, of the type of the vaginal microflora present. When the Nugent score was used to stratify the subjects by microflora as normal, intermediate, or bacterial vaginosis, several important differences were observed. The activities of four of six glycosidases in the samples from women with bacterial vaginosis were significantly increased when compared to normal or intermediate women: sialidase, P = <0.001; α-galactosidase, P = 0.006; β-galactosidase, P = 0.005; α-glucosidase, P = 0.056. Sialic acid binding sites as measured by two lectins, Maackia amurensis and Sambucus nigra binding, were significantly lower in women with BV compared to women with normal and intermediate scores (P = <0.0001 and 0.008 respectively). High mannose binding sites, a measure of innate immunity were also significantly lower in women with BV (P = <0.001). Additionally, we observed significant increases in MUC1, MUC4, MUC5AC, and MUC7 concentrations in women with BV (P = <0.001, 0.001, <0.001, 0.02 respectively). Among normal women we found that the membrane bound mucin MUC4 and the secreted MUC5AC were decreased in postmenopausal women (P = 0.02 and 0.07 respectively), while MUC7 (secreted) was decreased in women using levonorgestrel-containing IUDs (P = 0.02). The number of sialic acid binding sites was lower in the postmenopausal group (P = 0.04), but the number of high mannose binding sites, measured with Griffithsin, was not significantly different among the 6 hormonal groups. The glycosidase levels in the cervical-vaginal mucus were rather low in the groups, with exception of α-glucosidase activity that was much lower in the postmenopausal group (P<0.001). These studies present compelling evidence that the vaginal ecosystem responds to the presence of different vaginal microorganisms. These effects were so influential that it required us to remove subjects with BV for data interpretation of the impact of hormones. We also suggest that certain changes occurring in vaginal/cervical proteins are due to bacteria or their products. Therefore, the quantitation of vaginal mucins and lectin binding offers a new method to monitor bacteria-host interactions in the female reproductive tract. The data suggest that some of the changes in these components are the result of host processing, such as the increases in mucin content, while the microflora is responsible for the increases in glycosidases and the decreases in lectin binding. The methods should be considered a valid marker for insult to the female genital tract.

  6. Intracellular calcium: a prerequisite for aldosterone action.

    PubMed

    Schäfer, C; Shahin, V; Albermann, L; Schillers, H; Hug, M J; Oberleithner, H

    2003-12-01

    Transport of salt and water in various tissues is under control of the mineralocorticoid hormone aldosterone. As a liphophilic hormone, aldosterone diffuses through the plasma membrane and, then, binds to cytosolic mineralocorticoid receptors in the target cells. After binding to nuclear pore complexes, the activated receptor is translocated to the nucleus where transcription processes are initiated. After a lag period of about 20 minutes hormone-specific early mRNA transcripts leave the nucleus through nuclear pores. Some of the steps in this cascade can be followed by electrophysiology in Xenopus laevis oocyte nuclei. In addition to the genomic pathway, aldosterone exerts a rapid pre-genomic response that involves an increase in intracellular calcium. In this study, we tested for the potential role of Ca(2+) in the genomic response of the hormone. We measured the electrical resistance across the nuclear envelope in response to aldosterone, in presence and absence of intracellular Ca(2+). Nuclear envelope electrical resistance reflects receptor binding to the nuclear pore complexes ("early" resistance peak, 2 minutes after aldosterone), ongoing transcription ("transient" resistance drop, 5-15 minutes after aldosterone) and mRNA export ("late" resistance peak, 20 minutes after aldosterone). Pre-injection of the Ca(2+) chelator EGTA eliminated all electrical responses evoked by aldosterone. The transient resistance drop and the late resistance peak, induced by the hormone, were prevented by the transcription inhibitor actinomycin D, coinjected with aldosterone, while the early resistance peak remained unaffected. We conclude that (i). the presence of intracellular Ca(2+) is a prerequisite for the genomic action of aldosterone. (ii). Intracellular calcium plays a role early in the signaling cascade, either in agonist-receptor interaction, or receptor transport/docking to the nuclear pore complexes.

  7. Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients

    PubMed Central

    Fetissov, Sergueï O.; Hallman, Jarmila; Oreland, Lars; af Klinteberg, Britt; Grenbäck, Eva; Hulting, Anna-Lena; Hökfelt, Tomas

    2002-01-01

    The hypothalamic arcuate nucleus is involved in the control of energy intake and expenditure and may participate in the pathogenesis of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Two systems are of particular interest in this respect, synthesizing α-melanocyte-stimulating hormone (α-MSH) and synthesizing neuropeptide Y, respectively. We report here that 42 of 57 (74%) AN and/or BN patients studied had in their plasma Abs that bind to melanotropes and/or corticotropes in the rat pituitary. Among these sera, 8 were found to bind selectively to α-MSH-positive neurons and their hypothalamic and extrahypothalamic projections as revealed with immunostaining on rat brain sections. Adsorption of these sera with α-MSH peptide abolished this immunostaining. In the pituitary, the immunostaining was blocked by adsorption with α-MSH or adrenocorticotropic hormone. Additionally, 3 AN/BN sera bound to luteinizing hormone-releasing hormone (LHRH)-positive terminals in the rat median eminence, but only 2 of them were adsorbed with LHRH. In the control subjects, 2 of 13 sera (16%) displayed similar to AN/BN staining. These data provide evidence that a significant subpopulation of AN/BN patients have autoantibodies that bind to α-MSH or adrenocorticotropic hormone, a finding pointing also to involvement of the stress axis. It remains to be established whether these Abs interfere with normal signal transduction in the brain melanocortin circuitry/LHRH system and/or in other central and peripheral sites relevant to food intake regulation, to what extent such effects are related to and/or could be involved in the pathophysiology or clinical presentation of AN/BN, and to what extent increased stress is an important factor for production of these autoantibodies. PMID:12486250

  8. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.

  9. Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue

    PubMed Central

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683

  10. Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

    PubMed Central

    Fu, Wei; Tang, Hao; Chen, Xiao; Zhao, Yao; Zheng, Lili; Pan, Sijian; Wang, Weiqing; Bian, Liuguan; Sun, Qingfang

    2016-01-01

    Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence. PMID:26824322

  11. GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2005-10-01

    Heterotrimeric G proteins and seven-transmembrane-spanning (7TM) receptors are implicated in rapid estrogen signaling. The orphan 7TM receptor GPR30 is linked to estrogen-mediated activation of adenylyl cyclase, release of epidermal growth factor (EGF)-related ligands, and specific estrogen binding. GPR30 acts independently of estrogen receptors, ERalpha and ERbeta, and probably functions as a heptahelical ER. 7TM receptors elicit signals that stimulate second messengers, and convey intracellular signals via EGF receptors. Identification of GPR30 as a Gs-coupled 7TM receptor that triggers release of heparin-binding EGF establishes its role in cell signaling cascades initiated by estrogens, and explains their capacity to activate second messengers and promote EGF-like effects. Thus, estrogen can signal by the same mechanism as various other hormones, through a specific 7TM receptor.

  12. Distinct nuclear body components, PML and SMRT, regulate the trans-acting function of HTLV-1 Tax oncoprotein.

    PubMed

    Ariumi, Yasuo; Ego, Takeshi; Kaida, Atsushi; Matsumoto, Mikiko; Pandolfi, Pier Paolo; Shimotohno, Kunitada

    2003-03-20

    Several viruses target cellular promyelocytic leukemia (PML)-nuclear bodies (PML-NBs) to induce their disruption, marked morphological changes in these structures or the relocation to PML-NB components to the cytoplasm of infected cells. PML conversely interferes with viral replication. We demonstrate that PML acts as a coactivator for the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein without direct binding. Tax was identified within interchromatin granule clusters (IGCs)/RNA splicing bodies (SBs), not PML-NBs; Tax expression did not affect PML-NB formation. Moreover, PML and CBP/p300 cooperatively activated Tax-mediated HTLV-1-LTR-dependent gene expression. Interestingly, two PML mutants, PML-RAR and PMLDelta216-331, which fail to form PML-NBs, could also coactivate Tax-mediated trans-acting function but had no effect on retinoic acid receptor (RAR)- or p53-dependent gene expression. In contrast, SMRT (silencing mediator for retinoic acid and thyroid hormone receptors), a nuclear corepressor found within the matrix-associated deacetylase (MAD) nuclear body, relocalized into Tax-associated nuclear bodies upon coexpression with Tax. SMRT coactivated the trans-acting function of Tax through direct binding. Coexpression of SMRT and PML resulted in an additive activation of Tax trans-acting function. Thus, crosstalk between distinct nuclear bodies may control Tax function.

  13. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site.

    PubMed

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-03-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  14. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, H.; Qiu, Y; Philo, J

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less

  15. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  16. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  17. Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content.

    PubMed

    Brooks, Nicole A; Wilcox, Gisela; Walker, Karen Z; Ashton, John F; Cox, Marc B; Stojanovska, Lily

    2008-01-01

    To examine the estrogenic and androgenic activity of Lepidium meyenii (Maca) and its effect on the hormonal profile and symptoms in postmenopausal women. Fourteen postmenopausal women completed a randomized, double-blind, placebo-controlled, crossover trial. They received 3.5 g/day of powered Maca for 6 weeks and matching placebo for 6 weeks, in either order, over a total of 12 weeks. At baseline and weeks 6 and 12 blood samples were collected for the measurement of estradiol, follicle-stimulating hormone, luteinizing hormone, and sex hormone-binding globulin, and the women completed the Greene Climacteric Scale to assess the severity of menopausal symptoms. In addition, aqueous and methanolic Maca extracts were tested for androgenic and estrogenic activity using a yeast-based hormone-dependent reporter assay. No differences were seen in serum concentrations of estradiol, follicle-stimulating hormone, luteinizing hormone, and sex hormone-binding globulin between baseline, Maca treatment, and placebo (P > 0.05). The Greene Climacteric Scale revealed a significant reduction in scores in the areas of psychological symptoms, including the subscales for anxiety and depression and sexual dysfunction after Maca consumption compared with both baseline and placebo (P < 0.05). These findings did not correlate with androgenic or alpha-estrogenic activity present in the Maca as no physiologically significant activity was observed in yeast-based assays employing up to 4 mg/mL Maca extract (equivalent to 200 mg/mL Maca). Preliminary findings show that Lepidium meyenii (Maca) (3.5 g/d) reduces psychological symptoms, including anxiety and depression, and lowers measures of sexual dysfunction in postmenopausal women independent of estrogenic and androgenic activity.

  18. Sex steroid hormones in relation to Barrett's esophagus: an analysis of the FINBAR Study.

    PubMed

    Cook, M B; Wood, S; Hyland, P L; Caron, P; Drahos, J; Falk, R T; Pfeiffer, R M; Dawsey, S M; Abnet, C C; Taylor, P R; Guillemette, C; Murray, L J; Anderson, L A

    2017-03-01

    Previously, we observed strong positive associations between circulating concentrations of free testosterone and free dihydrotestosterone (DHT) in relation to Barrett's esophagus in a US male military population. To replicate these findings, we conducted a second study of sex steroid hormones and Barrett's esophagus in the Factors Influencing the Barrett/Adenocarcinoma Relationship (FINBAR) Study based in Northern Ireland and Ireland. We used mass spectrometry to quantitate EDTA plasma concentrations of nine sex steroid hormones and ELISA to quantitate sex hormone-binding globulin in 177 male Barrett's esophagus cases and 185 male general population controls within the FINBAR Study. Free testosterone, free DHT, and free estradiol were estimated using standard formulas. Multivariable logistic regression estimated odds ratios (OR) and 95% confidence intervals (95%CI) of associations between exposures and Barrett's esophagus. While plasma hormone and sex hormone-binding globulin concentrations were not associated with all cases of Barrett's esophagus, we did observe positive associations with estrogens in younger men (e.g. estrone + estradiol OR continuous per ½ IQR   = 2.92, 95%CI:1.08, 7.89), and free androgens in men with higher waist-to-hip ratios (e.g. free testosterone OR continuous per ½ IQR   = 2.71, 95%CI:1.06, 6.92). Stratification by body mass index, antireflux medications, and geographic location did not materially affect the results. This study found evidence for associations between circulating sex steroid hormones and Barrett's esophagus in younger men and men with higher waist-to-hip ratios. Further studies are necessary to elucidate whether sex steroid hormones are consistently associated with esophageal adenocarcinogenesis. © 2017 American Society of Andrology and European Academy of Andrology.

  19. Sex hormones, sex hormone binding globulin, and vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Schousboe, John T; Harrison, Stephanie L; Ensrud, Kristine E; Black, Dennis; Cauley, Jane A; Cummings, Steven R; LeBlanc, Erin S; Laughlin, Gail A; Nielson, Carrie M; Broughton, Augusta; Kado, Deborah M; Hoffman, Andrew R; Jamal, Sophie A; Barrett-Connor, Elizabeth; Orwoll, Eric S

    2016-03-01

    The association between sex hormones and sex hormone binding globin (SHBG) with vertebral fractures in men is not well studied. In these analyses, we determined whether sex hormones and SHBG were associated with greater likelihood of vertebral fractures in a prospective cohort study of community dwelling older men. We included data from participants in MrOS who had been randomly selected for hormone measurement (N=1463, including 1054 with follow-up data 4.6years later). Major outcomes included prevalent vertebral fracture (semi-quantitative grade≥2, N=140, 9.6%) and new or worsening vertebral fracture (change in SQ grade≥1, N=55, 5.2%). Odds ratios per SD decrease in sex hormones and per SD increase in SHBG were estimated with logistic regression adjusted for potentially confounding factors, including age, bone mineral density, and other sex hormones. Higher SHBG was associated with a greater likelihood of prevalent vertebral fractures (OR: 1.38 per SD increase, 95% CI: 1.11, 1.72). Total estradiol analyzed as a continuous variable was not associated with prevalent vertebral fractures (OR per SD decrease: 0.86, 95% CI: 0.68 to 1.10). Men with total estradiol values ≤17pg/ml had a borderline higher likelihood of prevalent fracture than men with higher values (OR: 1.46, 95% CI: 0.99, 2.16). There was no association between total testosterone and prevalent fracture. In longitudinal analyses, SHBG (OR: 1.42 per SD increase, 95% CI: 1.03, 1.95) was associated with new or worsening vertebral fracture, but there was no association with total estradiol or total testosterone. In conclusion, higher SHBG (but not testosterone or estradiol) is an independent risk factor for vertebral fractures in older men. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans.

    PubMed

    Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen

    2013-01-01

    Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.

  1. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that inmore » all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.« less

  2. Testosterone during Pregnancy and Gender Role Behavior of Preschool Children: A Longitudinal, Population Study.

    ERIC Educational Resources Information Center

    Hines, Melissa; Golombok, Susan; Rust, John; Johnston, Katie J.; Golding, Jean

    2002-01-01

    Related blood levels of testosterone and sex hormone-binding globulin in pregnant women to gender role behavior among 342 male and 337 female offspring at 3.5 years. Found that testosterone levels related linearly to girls' gender role behavior. Neither hormone related to boys' gender role behavior. Other factors, including older brothers or…

  3. Stress Hormones and Their Regulation in a Captive Dolphin Population

    DTIC Science & Technology

    2014-09-30

    environmental stressors, many of which are anthropogenic. The resulting stress response provides for immediate physiological needs and manages recovery...of two broad components: 1) assessing baseline variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur...cortisol and aldosterone ) frequenctly observed in cetaceans; (2) determine the regulatory role of corticosteroid binding globulin (CBG) in

  4. Microgravity

    NASA Image and Video Library

    1992-03-12

    Contributes to many transport and regulatory processes and has multifunctional binding properties which range form various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator was Larry DeLucas.

  5. The Determination of Vitamin D-Dependent Calcium Binding Protein in Chick Intesting: An Undergraduate Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Lessard, George M.

    1980-01-01

    Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)

  6. Thyroid hormones and their effects: a new perspective.

    PubMed

    Hulbert, A J

    2000-11-01

    The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.

  7. Aromatic anchor at an invariant hormone-receptor interface: Function of insulin residue B24 with application to protein design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe B24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met B24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchormore » at the hormone-receptor interface. These findings motivated further substitution of Phe B24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha B24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha B24 analog, determined as an R 6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe B24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Finally, our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.« less

  8. Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles

    PubMed Central

    Kyono, Yasuhiro; Sachs, Laurent M.; Bilesimo, Patrice; Wen, Luan

    2016-01-01

    Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at −7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation. PMID:27779916

  9. Improvement in Growth After 1 Year of Growth Hormone Therapy in Well-Nourished Infants with Growth Retardation Secondary to Chronic Renal Failure: Results of a Multicenter, Controlled, Randomized, Open Clinical Trial

    PubMed Central

    Moreno, M. Llanos; Neto, Arlete; Ariceta, Gema; Vara, Julia; Alonso, Angel; Bueno, Alberto; Afonso, Alberto Caldas; Correia, António Jorge; Muley, Rafael; Barrios, Vicente; Gómez, Carlos; Argente, Jesús

    2010-01-01

    Background and objectives: Our aim was to evaluate the growth-promoting effect of growth hormone (GH) treatment in infants with chronic renal failure (CRF) and persistent growth retardation despite adequate nutritional and metabolic management. Design, setting, participants, & measurements: The study design included randomized, parallel groups in an open, multicenter trial comparing GH (0.33 mg/kg per wk) with nontreatment with GH during 12 months. Sixteen infants who had growth retardation, were aged 12 ± 3 months, had CRF (GFR ≤60 ml/min per 1.73 m2), and had adequate nutritional intake and good metabolic control were recruited from eight pediatric nephrology departments from Spain and Portugal. Main outcome measures were body length, body weight, bone age, biochemical and hormonal analyses, renal function, bone mass, and adverse effects. Results: Length gain in infants who were treated with GH was statistically greater (P < 0.05) than that of nontreated children (14.5 versus 9.5 cm/yr; SD score 1.43 versus −0.11). The GH-induced stimulation of growth was associated with no undesirable effects on bone maturation, renal failure progression, or metabolic control. In addition, GH treatment improved forearm bone mass and increased serum concentrations of total and free IGF-I and IGF-binding protein 3 (IGFBP-3), whereas IGF-II, IGFBP-1, IGFBP-2, GH-binding protein, ghrelin, and leptin were not modified. Conclusions: Infants with CRF and growth retardation despite good metabolic and nutritional control benefit from GH treatment without adverse effects during 12 months of therapy. PMID:20522533

  10. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design.

    PubMed

    Pandyarajan, Vijay; Smith, Brian J; Phillips, Nelson B; Whittaker, Linda; Cox, Gabriella P; Wickramasinghe, Nalinda; Menting, John G; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2014-12-12

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Variants in CYP17 and CYP19 cytochrome P450 genes are associated with onset of Alzheimer's disease in women with down syndrome.

    PubMed

    Chace, Constance; Pang, Deborah; Weng, Catherine; Temkin, Alexis; Lax, Simon; Silverman, Wayne; Zigman, Warren; Ferin, Michel; Lee, Joseph H; Tycko, Benjamin; Schupf, Nicole

    2012-01-01

    CYP17 and CYP19 are involved in the peripheral synthesis of estrogens, and polymorphisms in CYP17 and CYP19 have been associated with increased risk of estrogen-related disorders. Women with Down syndrome (DS) have early onset and high risk for Alzheimer's disease (AD). We conducted a prospective community-based cohort study to examine the relationship between SNPs in CYP17 and CYP19 and cumulative incidence of AD, hormone levels and sex hormone binding globulin in women with DS. Two hundred and thirty-five women with DS, 31 to 67 years of age and nondemented at initial examination, were assessed for cognitive and functional abilities, behavioral/psychiatric conditions, and health status at 14-20 month intervals over five assessment cycles. We genotyped these individuals for single-nucleotide polymorphisms (SNPs) in CYP17 and CYP19. Four SNPs in CYP17 were associated with a two and one half-fold increased risk of AD, independent of APOE genotype. Four SNPs in CYP19 were associated with a two-fold increased risk of AD, although three were significant only in those without an APOE ε4 allele. Further, carrying high risk alleles in both CYP17 and CYP19 was associated with an almost four-fold increased risk of AD (OR = 3.8, 95% CI, 1.6-9.5) and elevated sex hormone binding globulin in postmenopausal women. The main effect of the CYP17 and CYP19 variants was to decrease the age at onset. These findings suggest that genes contributing to estrogen bioavailability influence risk of AD in women with DS.

  12. Aromatic anchor at an invariant hormone-receptor interface: Function of insulin residue B24 with application to protein design

    DOE PAGES

    Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.; ...

    2014-10-10

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe B24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met B24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchormore » at the hormone-receptor interface. These findings motivated further substitution of Phe B24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha B24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha B24 analog, determined as an R 6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe B24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Finally, our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.« less

  13. Testosterone levels and cognition in elderly men: a review.

    PubMed

    Holland, J; Bandelow, S; Hogervorst, E

    2011-08-01

    Average testosterone levels and many cognitive functions show a decline with age. There is evidence to suggest that this association is not just age related. Results from cell culture and animal studies provide convincing evidence that testosterone could have protective effects on brain function. Alzheimer's disease (AD) is characterised by brain pathology affecting cognitive function and AD prevalence increases with age. Testosterone levels are lower in AD cases compared to controls, and some studies have suggested that low free testosterone (FT) may precede AD onset. Men with AD may show accelerated endocrinological ageing, characterised by an earlier lowering of thyroid stimulating hormone, an earlier increase in sex hormone binding globulin (SHBG), a subsequent earlier decrease in FT and an earlier increase in gonadotropin levels in response to this. Positive associations have been found between testosterone levels and global cognition, memory, executive functions and spatial performance in observational studies. However, non-significant associations were also reported. It may be that an optimal level of testosterone exists at which some cognitive functions are improved. This may be modified with an older age, with a shifting of the optimal testosterone curve to maintain cognition to the left and a lower optimal level thus needed to be beneficial for the brain. Genetic factors, such as APOE and CAG polymorphisms may further interact with testosterone levels in their effects on cognition. The roles of SHBG, gonadotropins, thyroid hormones and estrogens in maintaining cognitive function and preventing dementia in men are also not completely understood and should be investigated further. Hypogonadal men do not seem to benefit from testosterone supplementation but small scale, short term intervention studies in eugonadal men with and without cognitive impairments have shown promising results. Larger randomised, controlled trials are needed to further investigate testosterone treatment in protecting against cognitive decline and/or dementia. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Changes of Serum Angiotensin-Converting Enzyme Activity During Treatment of Patients with Graves’ Disease*

    PubMed Central

    Lee, Dong Soo; Chung, June-Key; Cho, Bo Youn; Koh, Chang-Soon; Lee, Munho

    1986-01-01

    Serum angiotensin-converting enzyme activity was measured spectrophotometrically, and serum thyrotropin-binding-inhibitory immunoglobulin (TBII) activity was measured by radioreceptor assay in normal subjects and in patients with Graves’ disease serially before and during treatment, and these activities were compared with each other and with thyroid hormone levels in various thyroid functional status. Correlation between serum angiotensin-converting enzyme activity and serum thyroid hormone level was pursued with relation to the changes of thyroid functional status in patients with Graves’ disease during treatment. Serum angiotensin-converting enzyme activity was significantly elevated in patients with hyperthyroid Graves’ disease before the start of treatment (35 ± 13 nmol/min/ml, n=50), and not in patients with Graves’ disease, euthyroid state during treatment with antithyroid drugs or radioactive iodine (23 ± 9 nmol/min/ml, n=12), but decreased significantly in patients with Graves’ disease, hypothyroid state transiently during treatment (15 ± 4 nmol/min/ml, n=12), respectively in comparison with normal control subjects. Serum angiotensin-converting enzyme activity was positively correlated with the log value of serum T3 concentration (r=0.62, p<0.001, n=95), and with the log value of free thyroxine index (r=0.66, p<0.001, n=91) but not statistically significantly with serum TBII activity. Serum angiotensin-converting enzyme activity was followed in 11 patients with initially increased activity and the activity decreased in proportion to serum thyroid hormone level during treatment, irrespective of treatment modality. It is suggested that thyroid hormones play a role in the increase and decrease of serum angiotensin-converting enzyme activity directly or indirectly influencing the peripheral tissues (probably reticuloendothelial cells or peripheral endothelial cells) in patients with Graves’ disease. PMID:15759385

  15. Effects of simvastatin and pravastatin on gonadal function in male hypercholesterolemic patients.

    PubMed

    Dobs, A S; Miller, S; Neri, G; Weiss, S; Tate, A C; Shapiro, D R; Musliner, T A

    2000-01-01

    Inhibition of cholesterol biosynthesis by hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors could, in theory, adversely affect male gonadal function because cholesterol is a precursor of steroid hormones. The objective of this randomized double-blind trial was to compare the effects of simvastatin, pravastatin, and placebo on gonadal testosterone production and spermatogenesis. After a 6-week placebo and lipid-lowering diet run-in period, 159 male patients aged 21 to 55 years with type IIa or IIb hypercholesterolemia, low-density lipoprotein (LDL) cholesterol between 145 and 240 mg/dL, and normal basal levels of testosterone were randomly assigned to treatment with simvastatin 20 mg (n = 40), simvastatin 40 mg (n = 41), pravastatin 40 mg (n = 39), or placebo (n = 39) once daily. After 24 weeks of treatment, mean total cholesterol levels were decreased 24% to 27% and mean LDL cholesterol was decreased 30% to 34% in the 3 active-treatment groups (P < .001 for all comparisons to placebo). At 24 weeks, there were no statistically significant differences between the placebo group and any of the active-treatment groups for the change from baseline in testosterone, human chorionic gonadotropin (hCG)stimulated testosterone, free testosterone index, follicle-stimulating hormone (FSH), luteinizing hormone (LH), or sex hormone-binding globulin (SHBG). Moreover, there were no statistically significant differences at week 12 or week 24 for the change from baseline in sperm concentration, ejaculate volume, or sperm motility for any active treatment relative to placebo. Both simvastatin and pravastatin were well tolerated. In summary, we found no evidence for clinically meaningful effects of simvastatin or pravastatin on gonadal testosterone production, testosterone reserve, or multiple parameters of semen quality.

  16. Recombinant human leptin in women with hypothalamic amenorrhea.

    PubMed

    Welt, Corrine K; Chan, Jean L; Bullen, John; Murphy, Robyn; Smith, Patricia; DePaoli, Alex M; Karalis, Aspasia; Mantzoros, Christos S

    2004-09-02

    Disruptions in hypothalamic-gonadal and other endocrine axes due to energy deficits are associated with low levels of the adipocyte-secreted hormone leptin and may result in hypothalamic amenorrhea. We hypothesized that exogenous recombinant leptin replacement would improve reproductive and neuroendocrine function in women with hypothalamic amenorrhea. Eight women with hypothalamic amenorrhea due to strenuous exercise or low weight were studied for one month before receiving recombinant human leptin and then while receiving treatment for up to three months. Six control subjects with hypothalamic amenorrhea received no treatment and were studied for a mean (+/-SD) of 8.5+/-8.1 months. Luteinizing hormone (LH) pulsatility, body weight, ovarian variables, and hormone levels did not change significantly over time in the controls and during a one-month control period before recombinant leptin therapy in the treated subjects. In contrast, recombinant leptin treatment increased mean LH levels and LH pulse frequency after two weeks and increased maximal follicular diameter, the number of dominant follicles, ovarian volume, and estradiol levels over a period of three months. Three patients had an ovulatory menstrual cycle (P<0.05 for the comparison with an expected rate of spontaneous ovulation of 10 percent); two others had preovulatory follicular development and withdrawal bleeding during treatment (P<0.05). Recombinant leptin significantly increased levels of free triiodothyronine, free thyroxine, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, bone alkaline phosphatase, and osteocalcin but not cortisol, corticotropin, or urinary N-telopeptide. Leptin administration for the relative leptin deficiency in women with hypothalamic amenorrhea appears to improve reproductive, thyroid, and growth hormone axes and markers of bone formation, suggesting that leptin, a peripheral signal reflecting the adequacy of energy stores, is required for normal reproductive and neuroendocrine function. Copyright 2004 Massachusetts Medical Society

  17. The moderating impact of lifestyle factors on sex steroids, sexual activities and aging in Asian men

    PubMed Central

    Goh, Victor HH; Tong, Terry YY

    2011-01-01

    The present study sought to evaluate the relative associations of exercise, sleep and other lifestyle habits with aging, sex hormones, percent body fat (%BF) and sexual activities in men living in the community. A better understanding of this complex interrelationship is important in helping the formulation of modalities for a holistic approach to the management of aging men. The results showed that age is a major determinant for many physiological parameters, including sleep, hormonal and metabolic parameters, some lifestyle factors and sexual activities. Testosterone (T), bioavailable testosterone (BioT) and dehydroepiandrosterone sulphate (DHEAS) concentrations decreased with age, while estradiol (E2), sex hormone-binding globulin (SHBG) and %BF increased with age. In addition, there exist intricate associations among hormonal and lifestyle factors, %BF and age. High-intensity exercise and longer duration of sleep were associated with higher concentrations of T and BioT. T was shown to be associated positively with men who were engaged in masturbation. DHEAS was associated with men wanting more sex and with good morning penile rigidity. Older Singaporean men tended to sleep for shorter duration, but exercised more intensely than younger men. Coital and masturbation frequencies decreased with age, and a significantly greater number of younger men were engaged in masturbation. Relationship between the partners is a key determinant of sexuality in men. It appears that T may have a limited, while dehydroepiandrosterone (DHEA) have a greater role than previously suggest, as a motivational signal for sexual function in men. Both biological and psychosocial factors interact with each other to influence sexual functions in men. Hence, a biopsychosocial approach may be more appropriate for a more lasting resolution to sexual dysfunctions in men. PMID:21532602

  18. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    PubMed

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO ( BmFOXO ) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The moderating impact of lifestyle factors on sex steroids, sexual activities and aging in Asian men.

    PubMed

    Goh, Victor H H; Tong, Terry Y Y

    2011-07-01

    The present study sought to evaluate the relative associations of exercise, sleep and other lifestyle habits with aging, sex hormones, percent body fat (%BF) and sexual activities in men living in the community. A better understanding of this complex interrelationship is important in helping the formulation of modalities for a holistic approach to the management of aging men. The results showed that age is a major determinant for many physiological parameters, including sleep, hormonal and metabolic parameters, some lifestyle factors and sexual activities. Testosterone (T), bioavailable testosterone (BioT) and dehydroepiandrosterone sulphate (DHEAS) concentrations decreased with age, while estradiol (E2), sex hormone-binding globulin (SHBG) and %BF increased with age. In addition, there exist intricate associations among hormonal and lifestyle factors, %BF and age. High-intensity exercise and longer duration of sleep were associated with higher concentrations of T and BioT. T was shown to be associated positively with men who were engaged in masturbation. DHEAS was associated with men wanting more sex and with good morning penile rigidity. Older Singaporean men tended to sleep for shorter duration, but exercised more intensely than younger men. Coital and masturbation frequencies decreased with age, and a significantly greater number of younger men were engaged in masturbation. Relationship between the partners is a key determinant of sexuality in men. It appears that T may have a limited, while dehydroepiandrosterone (DHEA) have a greater role than previously suggest, as a motivational signal for sexual function in men. Both biological and psychosocial factors interact with each other to influence sexual functions in men. Hence, a biopsychosocial approach may be more appropriate for a more lasting resolution to sexual dysfunctions in men.

  20. Sex hormones and the risk of type 2 diabetes mellitus: A 9-year follow up among elderly men in Finland.

    PubMed

    Salminen, Marika; Vahlberg, Tero; Räihä, Ismo; Niskanen, Leo; Kivelä, Sirkka-Liisa; Irjala, Kerttu

    2015-05-01

    To analyze whether sex hormone levels predict the incidence of type2 diabetes among elderly Finnish men. This was a prospective population-based study, with a 9-year follow up period. The study population in the municipality of Lieto, Finland, consisted of elderly (age ≥64 years) men free of type 2 diabetes at baseline in 1998-1999 (n = 430). Body mass index and cardiovascular disease-adjusted hazard ratios and their 95% confidence intervals for type 2 diabetes predicted by testosterone, free testosterone, sex hormone-binding globulin, luteinizing hormone, and testosterone/luteinizing hormone were estimated. A total of 30 new cases of type 2 diabetes developed during the follow-up period. After adjustment, only higher levels of testosterone (hazard ratio for one-unit increase 0.93, 95% confidence interval 0.87-0.99, P = 0.020) and free testosterone (hazard ratio for 10-unit increase 0.96, 95% confidence interval 0.91-1.00, P = 0.044) were associated with a lower risk of incident type 2 diabetes during the follow up. These associations (0.94, 95% confidence interval 0.87-1.00, P = 0.050 and 0.95, 95% confidence interval 0.90-1.00, P = 0.035, respectively) persisted even after additional adjustment of sex hormone-binding globulin. Higher levels of testosterone and free testosterone independently predicted a reduced risk of type 2 diabetes in the elderly men. © 2014 Japan Geriatrics Society.

  1. Eppin: a molecular strategy for male contraception.

    PubMed

    Wang, Zengjun; Widgren, E E; Richardson, R T; Orand, M G

    2007-01-01

    New male contraceptives, both hormonal and non-hormonal, have many obstacles to overcome before they reach the market as a product. For hormonal contraceptives the long-term efficacy of oligospermia in a large population of unselected men remains to be determined. For nonhormonal contraception target selection remains a primary goal. Immunocontraception, which showed great promise for many years, has recently lost its appeal. Nevertheless, immunocontraception can be utilised as a strategy, particularly in primates, to discern the function of target molecules in the male. As an example, we discuss Eppin, an epididymal protease inhibitor that coats the surface of human spermatozoa. Because Eppin is predicted to be a serine protease inhibitor with chymotrypsin-like specificity and binds semenogelin, the natural substrate of PSA (prostate specific antigen, a serine protease), we investigated whether Eppin would modulate PSA activity and the hydrolysis of semenogelin. Additionally, because antibodies to Eppin provide contraception in male monkeys, we investigated whether antibodies to Eppin would inhibit the PSA hydrolysis of semenogelin. Eppin is a specific inhibitor of PSA activity that requires leucine 87, Eppin's P1 reactive site. Although Eppin modulates the hydrolysis of semenogelin by PSA, antibodies to Eppin do not inhibit PSA activity.

  2. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis

    PubMed Central

    Unterholzner, Simon J.; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G.; Mayer, Klaus F.; Sieberer, Tobias; Poppenberger, Brigitte

    2015-01-01

    Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone’s growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants. PMID:26243314

  3. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamoto, M.; Nakano, R.; Iwasaki, M.

    The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate thatmore » the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.« less

  4. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  5. Role of cyclophilins in somatolactogenic action.

    PubMed

    Rycyzyn, M A; Clevenger, C V

    2000-01-01

    Prolactin (PRL) and growth hormone (GH) are members of the somatolactogenic hormone family, the pleiotropic actions of which are necessary for vertebrate growth and mammary differentiation. The basis for the specific function of these hormones has remained uncertain; however, their action is associated with internalization and translocation into the nucleus. A yeast two-hybrid screen identified an interaction between PRL and cyclophilin B (CypB), a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum (ER), extracellular space, and nucleus. The interaction between CypB and PRL/GH was confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the proliferation of PRL- and GH-dependent cell lines 18- and 40-fold, respectively. The potentiation of PRL action by CypB was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. Immunogold electron microscopy has revealed this retrotransport to occur via a vesicular pathway. A CypB mutant, termed CypB-NT, was generated that lacked the putative wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the somatolactogenic hormone family.

  6. A Validation of Extraction Methods for Noninvasive Sampling of Glucocorticoids in Free-Living Ground Squirrels

    PubMed Central

    Mateo, Jill M.; Cavigelli, Sonia A.

    2008-01-01

    Fecal hormone assays provide a powerful tool for noninvasive monitoring of endocrine status in wild animals. In this study we validated a protocol for extracting and measuring glucocorticoids in free-living and captive Belding’s ground squirrels (Spermophilus beldingi). We first compared two commonly used extraction protocols to determine which performed better with commercially available antibodies. We next verified the preferred extraction method by correlating circulating and fecal glucocorticoid measures from a group of individuals over time. For this comparison, we used both a cortisol and a corticosterone antibody to determine which had greater affinity to the fecal metabolites. Cortisol was the primary circulating glucocorticoid, but both hormones were present in well above detectable concentrations in the blood, which does not occur in other sciurids. In addition, the cortisol antibody showed greater binding with the fecal extracts than did the corticosterone antibody. Finally, we used adrenocorticotropic hormone and dexamethasone challenges to demonstrate that changes in adrenal functioning are reflected in changing fecal corticoid levels. These results suggest that our extraction protocol provides a fast, reliable assay of stress hormones in free-living ground squirrels without the confounding influence of short-term rises in glucocorticoid concentrations caused by handling and restraint stress and that it can facilitate ecological and evolutionary studies of stress in wild species. PMID:16228945

  7. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    PubMed Central

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  8. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    PubMed

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  9. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome.

    PubMed

    Akdis, Deniz; Saguner, Ardan M; Shah, Khooshbu; Wei, Chuanyu; Medeiros-Domingo, Argelia; von Eckardstein, Arnold; Lüscher, Thomas F; Brunckhorst, Corinna; Chen, H S Vincent; Duru, Firat

    2017-05-14

    Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is characterized by fibrofatty infiltration of the myocardium and ventricular arrhythmias that may lead to sudden cardiac death. It has been observed that male patients develop the disease earlier and present with more severe phenotypes as compared to females. Thus, we hypothesized that serum levels of sex hormones may contribute to major arrhythmic cardiovascular events (MACE) in patients with ARVC/D. The serum levels of five sex hormones, sex hormone-binding globulin, high sensitivity troponin T, pro-brain natriuretic peptide, cholesterol, triglycerides, insulin, and glucose were measured in 54 ARVC/D patients (72% male). Twenty-six patients (48%) experienced MACE. Total and free testosterone levels were significantly increased in males with MACE as compared to males with a favourable outcome, whereas estradiol was significantly lower in females with MACE as compared to females with a favourable outcome. Increased testosterone levels remained independently associated with MACE in males after adjusting for age, body mass index, Task Force criteria, ventricular function, and desmosomal mutation status. Furthermore, an induced pluripotent stem cell-derived ARVC/D cardiomyocyte model was used to investigate the effects of sex hormones. In this model, testosterone worsened and estradiol improved ARVC/D-related pathologies such as cardiomyocyte apoptosis and lipogenesis, strongly supporting our clinical findings. Elevated serum testosterone levels in males and decreased estradiol levels in females are independently associated with MACE in ARVC/D, and directly influence disease pathology. Therefore, determining the levels of sex hormones may be useful for risk stratification and may open a new window for preventive interventions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    PubMed

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziendzikowska, K., E-mail: k.dziendzikowska@gmail

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Agmore » I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats. • Regulation of male reproductive function is differently modulated by AgNPs and AgSPs. • Endocrine-mediated toxicity of AgNPs/AgSPs increased over time. • AgNPs/AgSPs alter male reproductive function regulation at the transcriptional level.« less

  12. Function of gonadotropin-releasing hormone in olfaction.

    PubMed

    Wirsig-Wiechmann, C R

    2001-06-01

    Gonadotropin-releasing hormone (GnRH) is present within neurons of the nervus terminalis, the zeroeth cranial nerve. In all vertebrate species, except in sharks where it is a separate nerve, the nervus terminalis consists of a chain of neurons embedded within olfactory or vomeronasal nerves in the nasal cavity. The function of the GnRH component of the nervus terminalis is thought to be neuromodulatory. Our research on GnRH effects on olfaction confirms this hypothesis. The processes of GnRH neural cell bodies located within chemosensory nerves project centrally into the ventral forebrain and peripherally into the lamina propria of the nasal chemosensory mucosa. GnRH receptors are expressed by chemosensory neurons as shown by RT-PCR/Southern blotting and GnRH agonist binding studies. Patch-clamp studies have shown that GnRH alters the responses of isolated chemosensory neurons to natural or electrophysiological stimulation through the modulation of voltage-gated and receptor-gated channels. Behavioral experiments demonstrate that interfering with the nasal GnRH system leads to deficits in mating behavior. These studies suggest that the function of the intranasal GnRH system is to modify olfactory information, perhaps at reproductively auspicious times. We speculate that the purpose of this altered olfactory sense is to make pheromones more detectable and salient.

  13. [Thyroid hormone metabolism and action].

    PubMed

    Köhrle, Josef

    2004-05-01

    Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.

  14. DR-78, a novel Drosophila melanogaster genomic DNA fragment highly homologous to the DNA-binding domain of thyroid hormone-retinoic acid-vitamin D receptor subfamily.

    PubMed

    Martín-Blanco, E; Kornberg, T B

    1993-11-16

    Degenerate oligodeoxyribonucleotides were designed for both ends of the DNA-binding domain of members of the nuclear receptor superfamily. PCR amplified Drosophila melanogaster DNA was purified and cloned (DR plasmids). Genomic lambda DASH clones were identified at high stringency with an amplified DR-78 plasmid DNA and isolated. The partial sequence shows a very probable open reading frame which would encode a peptide highly homologous to members of the thyroid hormone-retinoic acid-vitamin D receptor subfamily. The fragment corresponds to a single copy gene and was mapped at position 78D of chromosome three by in situ hybridization.

  15. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    PubMed

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  16. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    PubMed Central

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  17. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering.

    PubMed

    Mohammadi, Hiwa; Joghataei, Mohammad Taghi; Rahimi, Zohreh; Faghihi, Faezeh; Khazaie, Habibolah; Farhangdoost, Hashem; Mehrpour, Masoud

    2017-12-01

    Developmental stuttering is known to be a sexually dimorphic and male-biased speech motor control disorder. In the present case-control study, we investigated the relationship between developmental stuttering and steroid hormones. Serum levels of testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), oestradiol, progesterone, cortisol, and sex hormone binding globulin (SHBG), as well as the 2nd/4th digit ratio (2D:4D), an indicator of prenatal testosterone level, were compared between children who stutter (CWS) and children who do not stutter (CWNS). Moreover, two SNPs (CYP17 -34 T:C (MSP AI) and CYP19 T:C (Trp:Arg)) of cytochrome P450, which is involved in steroid metabolism pathways, were analysed between the groups. Our results showed significantly higher levels of testosterone, DHT, and oestradiol in CWS in comparison with CWNS. The severity of stuttering was positively correlated with the serum levels of testosterone, DHEA, and cortisol, whereas no association was seen between the stuttering and digit ratio, progesterone, or SHBG. The CYP17CC genotype was significantly associated with the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Short-chain analogs of luteinizing hormone-releasing hormone containing cytotoxic moieties.

    PubMed

    Janáky, T; Juhász, A; Rékási, Z; Serfözö, P; Pinski, J; Bokser, L; Srkalovic, G; Milovanovic, S; Redding, T W; Halmos, G

    1992-11-01

    Five hexapeptide and heptapeptide analogs of luteinizing hormone-releasing hormone (LH-RH) were synthesized for use as carriers for cytotoxic compounds. These short analogs were expected to enhance target selectivity of the antineoplastic agents linked to them. Native LH-RH-(3-9) and LH-RH-(4-9) containing D-lysine and D-ornithine at position 6 were amidated with ethylamine and acylated on the N terminus. The receptor-binding affinity of one hexapeptide carrier AJ-41 (Ac-Ser-Tyr-D-Lys-Leu-Arg-Pro-NH-Et) to human breast cancer cell membranes was similar to that of [D-Trp6]LH-RH. Alkylating nitrogen mustards (melphalan, Ac-melphalan), anthraquinone derivatives including anticancer antibiotic doxorubicin, antimetabolite (methotrexate), and cisplatin-like platinum complex were linked to these peptides through their omega-amino group at position 6. The hybrid molecules showed no LH-RH agonistic activity in vitro and in vivo but had nontypical antagonistic effects on pituitary cells in vitro at the doses tested. These analogs showed a wide range of receptor-binding affinities to rat pituitaries and cell membranes of human breast cancer and rat Dunning prostate cancer. Several of these conjugates exerted some cytotoxic effects on MCF-7 breast cancer cell line.

  19. Short-chain analogs of luteinizing hormone-releasing hormone containing cytotoxic moieties.

    PubMed Central

    Janáky, T; Juhász, A; Rékási, Z; Serfözö, P; Pinski, J; Bokser, L; Srkalovic, G; Milovanovic, S; Redding, T W; Halmos, G

    1992-01-01

    Five hexapeptide and heptapeptide analogs of luteinizing hormone-releasing hormone (LH-RH) were synthesized for use as carriers for cytotoxic compounds. These short analogs were expected to enhance target selectivity of the antineoplastic agents linked to them. Native LH-RH-(3-9) and LH-RH-(4-9) containing D-lysine and D-ornithine at position 6 were amidated with ethylamine and acylated on the N terminus. The receptor-binding affinity of one hexapeptide carrier AJ-41 (Ac-Ser-Tyr-D-Lys-Leu-Arg-Pro-NH-Et) to human breast cancer cell membranes was similar to that of [D-Trp6]LH-RH. Alkylating nitrogen mustards (melphalan, Ac-melphalan), anthraquinone derivatives including anticancer antibiotic doxorubicin, antimetabolite (methotrexate), and cisplatin-like platinum complex were linked to these peptides through their omega-amino group at position 6. The hybrid molecules showed no LH-RH agonistic activity in vitro and in vivo but had nontypical antagonistic effects on pituitary cells in vitro at the doses tested. These analogs showed a wide range of receptor-binding affinities to rat pituitaries and cell membranes of human breast cancer and rat Dunning prostate cancer. Several of these conjugates exerted some cytotoxic effects on MCF-7 breast cancer cell line. PMID:1332035

  20. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    PubMed

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Purification and characterization of rat liver nuclear thyroid hormone receptors.

    PubMed Central

    Ichikawa, K; DeGroot, L J

    1987-01-01

    Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly provides classical native rat liver T3 nuclear receptor in useful quantity and purity and of the highest specific activity so far reported. Images PMID:3472213

  2. Hierarchy within the mammary STAT5-driven Wap super-enhancer.

    PubMed

    Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar

    2016-08-01

    Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.

  3. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  4. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  5. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  6. Obesity and Breast Cancer

    DTIC Science & Technology

    2005-07-01

    serum INS, IGF-I and binding proteins, triglycerides, HDL - cholesterol , total and free steroids, sex hormone binding globulin, adiponectin, leptin, and...collection of information is estimated to average 1 hour per response , including the time for reviewing instructions, searching existing data sources...Bioinformatics, Biostatistics, Computer Science, Digital Mammography, Magnetic Resonance Imaging, Tissue Arrays, Gene Polymorphisms , Animal Models, Clinical

  7. Computer Model of Aspirin bound to Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Contributes to many transport and regulatory processes and has multifunctional binding properties which range form various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream.

  8. Crystal Structures of the β2-Adrenergic Receptor

    NASA Astrophysics Data System (ADS)

    Weis, William I.; Rosenbaum, Daniel M.; Rasmussen, Søren G. F.; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Yao, Xiao-Jie; Day, Peter W.; Parnot, Charles; Fung, Juan J.; Ratnala, Venkata R. P.; Kobilka, Brian K.; Cherezov, Vadim; Hanson, Michael A.; Kuhn, Peter; Stevens, Raymond C.; Edwards, Patricia C.; Schertler, Gebhard F. X.; Burghammer, Manfred; Sanishvili, Ruslan; Fischetti, Robert F.; Masood, Asna; Rohrer, Daniel K.

    G protein coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome, and are responsible for the majority of signal transduction events involving hormones and neuro-transmitters across the cell membrane. GPCRs that bind to diffusible ligands have low natural abundance, are relatively unstable in detergents, and display basal G protein activation even in the absence of ligands. To overcome these problems two approaches were taken to obtain crystal structures of the β2-adrenergic receptor (β2AR), a well-characterized GPCR that binds cate-cholamine hormones. The receptor was bound to the partial inverse agonist carazolol and co-crystallized with a Fab made to a three-dimensional epitope formed by the third intracellular loop (ICL3), or by replacement of ICL3 with T4 lysozyme. Small crystals were obtained in lipid bicelles (β2AR-Fab) or lipidic cubic phase (β2AR-T4 lysozyme), and diffraction data were obtained using microfocus technology. The structures provide insights into the basal activity of the receptor, the structural features that enable binding of diffusible ligands, and the coupling between ligand binding and G-protein activation.

  9. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice.

    PubMed

    Li, Yuesheng; Knapp, Joanne R; Kopchick, John J

    2003-02-01

    Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.

  10. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation

    PubMed Central

    Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.

    2017-01-01

    Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325

  11. Central peptidergic mechanisms controlling reproductive hormone secretion: novel methodology reveals a role for the natriuretic peptides.

    PubMed

    Samson, W K; Alexander, B D; Skala, K D; Huang, F L; Fulton, R J

    1992-05-01

    A variety of neural factors can influence reproductive hormone secretion by neuromodulatory actions within the hypothalamus or neuroendocrine actions within the anterior pituitary gland. Passive immunoneutralization and antagonist administration protocols have suggested physiological roles for a number of these factors; however, both experimental approaches have severe technical limitations. We have developed novel methodology utilizing cytotoxin cell targeting with neuropeptides linked to the toxic A chain of the plant cytotoxin ricin. With this methodology we can target and destroy in vivo or in vitro cells bearing receptors for that peptide. Ricin A chain conjugated to atrial natriuretic peptide (ANP), a neuropeptide known to pharmacologically inhibit luteinizing hormone-releasing hormone (LHRH) release, was injected into the cerebroventricular system of intact, cycling rats and ovariectomized rats. Cytotoxin conjugate treatment significantly lengthened the estrous cycle. In ovariectomized rats the luteinizing hormone surge induced by steroid priming was completely inhibited. LHRH content of the median eminences of these rats was not significantly altered. These data suggest that ANP binding to clearance receptors in the hypothalamus displaces the C-type natriuretic peptide (CNP) from the shared clearance receptor, making more CNP available to inhibit LHRH release. In the absence of cells bearing the clearance receptor all available CNP binds to the ANPR-B receptor and exerts its effect via an inhibitory interneuron, since LHRH fibers are spared by this treatment.

  12. THE RELATIONSHIP BETWEEN SEX HORMONES, SEX HORMONE BINDING GLOBULIN AND PERIPHERAL ARTERY DISEASE IN OLDER PERSONS

    PubMed Central

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, MM; Ferrucci, L; Ceda, GP

    2014-01-01

    Objective The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Methods Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) <0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. Results The mean age (± SD) of the 419 men and 502 women was 75.0 ± 6.8 years (Sixty two participants (41 men, 21 women) had ABI<0.90. Men with PAD had SHBG levels lower than men without PAD (p=0.03). SHBG was negatively and independently associated with PAD in men (p=0.028). but not in women. The relationship was however attenuated after adjusting for sex hormones (p=0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p=0.01). Conclusions Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. PMID:23102785

  13. The relationship between sex hormones, sex hormone binding globulin and peripheral artery disease in older persons.

    PubMed

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, M M; Ferrucci, L; Ceda, G P

    2012-12-01

    The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) < 0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. The mean age (±SD) of the 419 men and 502 women was 75.0 ± 6.8 years. Sixty two participants (41 men, 21 women) had ABI < 0.90. Men with PAD had SHBG levels lower than men without PAD (p = 0.03). SHBG was negatively and independently associated with PAD in men (p = 0.028) but not in women. The relationship was however attenuated after adjusting for sex hormones (p = 0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p = 0.01). Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Reproductive Steroid Hormones and Recurrence-Free Survival in Women with a History of Breast Cancer

    PubMed Central

    Rock, Cheryl L.; Flatt, Shirley W.; Laughlin, Gail A.; Gold, Ellen B.; Thomson, Cynthia A.; Natarajan, Loki; Jones, Lovell A.; Caan, Bette J.; Stefanick, Marcia L.; Hajek, Richard A.; Al-Delaimy, Wael K.; Stanczyk, Frank Z.; Pierce, John P.

    2008-01-01

    Epidemiologic studies fairly consistently show in postmenopausal women that reproductive steroid hormones contribute to primary breast cancer risk, and this association is strongly supported by experimental studies using laboratory animals and model systems. Evidence linking sex hormone concentrations with risk for recurrence in women diagnosed with breast cancer is limited; however, beneficial effects of antiestrogenic therapy on recurrence-free survival suggest that these hormones affect progression and risk for recurrence. This study examined whether baseline serum concentrations of estradiol, testosterone, and sex hormone binding globulin were associated with recurrence-free survival in a nested case-control cohort of women from a randomized diet trial (Women's Healthy Eating and Living Study) who were followed for >7 years after diagnosis. In 153 case-control pairs of perimenopausal and postmenopausal women in this analysis, total estradiol [hazard ratio (HR), 1.41 per unit increase in log concentration; 95% confidence interval (95% CI), 1.01−1.97], bioavailable estradiol (HR, 1.26; 95% CI, 1.03−1.53), and free estradiol (HR, 1.31; 95% CI, 1.03−1.65) concentrations were significantly associated with risk for recurrence. Recurred women had an average total estradiol concentration that was double that of nonrecurred women (22.7 versus 10.8 pg/mL; P = 0.05). Testosterone and sex hormone binding globulin concentrations did not differ between cases and controls and were not associated with risk for recurrence. Although genetic and metabolic factors likely modulate the relationship between circulating sex hormones and risk, results from this study provide evidence that higher serum estrogen concentration contributes to risk for recurrence in women diagnosed with early stage breast cancer. PMID:18323413

  15. Evidence of insulin-like growth factor binding protein-3 proteolysis during growth hormone stimulation testing.

    PubMed

    Nwosu, Benjamin U; Soyka, Leslie A; Angelescu, Amanda; Lee, Mary M

    2011-01-01

    The ternary complex is composed of insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3 and acid labile subunit (ALS). Growth hormone (GH) promotes IGFBP-3 proteolysis to release free IGF-I, ALS, and IGFBP-3 fragments. Our aim was to determine whether elevated GH levels during GH stimulation testing would trigger IGFBP-3 proteolysis. This prospective study of 10 short prepubertal children (height standard deviation score -2.37 +/- 0.31) used arginine and GH releasing hormone stimulation to study dynamic changes in the ternary complex moieties. IGFBP-3 was measured in two assays: a radioimmunoassay (RIA) that detects both cleaved and intact IGFBP-3; and an immunochemiluminescence assay (ICMA) that detects only intact IGFBP-3. IGFBP-3 measured by RIA increased by 19% (p < 0.05), while IGFBP-3 measured by ICMA did not significantly increase (6.1%). The significant increase in IGFBP-3 measured by RIA, but not ICMA, provides evidence of IGFBP-3 proteolysis during acute GH stimulation.

  16. ESR1 ligand binding domain mutations in hormone-resistant breast cancer

    PubMed Central

    Toy, Weiyi; Shen, Yang; Won, Helen; Green, Bradley; Sakr, Rita A.; Will, Marie; Li, Zhiqiang; Gala, Kinisha; Fanning, Sean; King, Tari A.; Hudis, Clifford; Chen, David; Taran, Tetiana; Hortobagyi, Gabriel; Greene, Geoffrey; Berger, Michael; Baselga, Jose; Chandarlapaty, Sarat

    2013-01-01

    Seventy percent of breast cancers express estrogen receptor (ER) and most of these are sensitive to ER inhibition. However, many such tumors become refractory to inhibition of estrogen action in the metastatic setting for unknown reasons. We conducted a comprehensive genetic analysis of two independent cohorts of metastatic ER+ breast tumors and identified mutations in the ligand binding domain (LBD) of ESR1 in 14/80 cases. These included highly recurrent mutations p.Tyr537Ser/Asn and p.Asp538Gly. Molecular dynamics simulations suggest the Tyr537Ser and Asp538Gly structures lead to hydrogen bonding of the mutant amino acid with Asp351, thus favoring the receptor’s agonist conformation. Consistent with this model, mutant receptors drive ER-dependent transcription and proliferation in the absence of hormone and reduce the efficacy of ER antagonists. These data implicate LBD mutant forms of ER in mediating clinical resistance to hormonal therapy and suggest that more potent ER antagonists may have significant therapeutic benefit. PMID:24185512

  17. Photoaffinity-labeling and fluorescence-distribution studies of gonadotropin-releasing hormone receptors in ovarian granulosa cells.

    PubMed Central

    Hazum, E; Nimrod, A

    1982-01-01

    Photoaffinity labeling of rat ovarian granulosa cells and membrane preparations with a bioactive photoaffinity derivative of gonadotropin-releasing hormone resulted in identification of two specific components with apparent molecular weights of 60,000 and 54,000. Fluorescent visualization of gonadotropin-releasing hormone receptors in these cells, by using a bioactive rhodamine derivative of the hormone, indicated that the fluorescently labeled receptors were initially distributed uniformly on the cell surface and then formed patches that subsequently internalized (at 37 degrees C) into endocytic vesicles. These processes were dependent on specific binding sites for the rhodamine-labeled peptide on the granulosa cells. These studies may provide an experimental basis for understanding the molecular events involved in the action of the hormone in the ovary. Images PMID:6281784

  18. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling.

    PubMed

    Dietz, Karl-Josef; Vogel, Marc Oliver; Viehhauser, Andrea

    2010-09-01

    To optimize acclimation responses to environmental growth conditions, plants integrate and weigh a diversity of input signals. Signal integration within the signalling networks occurs at different sites including the level of transcription factor activation. Accumulating evidence assigns a major and diversified role in environmental signal integration to the family of APETALA 2/ethylene response element binding protein (AP2/EREBP) transcription factors. Presently, the Plant Transcription Factor Database 3.0 assigns 147 gene loci to this family in Arabidopsis thaliana, 200 in Populus trichocarpa and 163 in Oryza sativa subsp. japonica as compared to 13 to 14 in unicellular algae ( http://plntfdb.bio.uni-potsdam.de/v3.0/ ). AP2/EREBP transcription factors have been implicated in hormone, sugar and redox signalling in context of abiotic stresses such as cold and drought. This review exemplarily addresses present-day knowledge of selected AP2/EREBP with focus on a function in stress signal integration and retrograde signalling and defines AP2/EREBP-linked gene networks from transcriptional profiling-based graphical Gaussian models. The latter approach suggests highly interlinked functions of AP2/EREBPs in retrograde and stress signalling.

  19. Honey bee (Apis mellifera) transferrin-gene structure and the role of ecdysteroids in the developmental regulation of its expression.

    PubMed

    do Nascimento, Adriana Mendes; Cuvillier-Hot, Virginie; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2004-05-01

    Social life is prone to invasion by microorganisms, and binding of ferric ions by transferrin is an efficient strategy to restrict their access to iron. In this study, we isolated cDNA and genomic clones encoding an Apis mellifera transferrin (AmTRF) gene. It has an open reading frame (ORF) of 2136 bp spread over nine exons. The deduced protein sequence comprises 686 amino acid residues plus a 26 residues signal sequence, giving a predicted molecular mass of 76 kDa. Comparison of the deduced AmTRF amino acid sequence with known insect transferrins revealed significant similarity extending over the entire sequence. It clusters with monoferric transferrins, with which it shares putative iron-binding residues in the N-terminal lobe. In a functional analysis of AmTRF expression in honey bee development, we monitored its expression profile in the larval and pupal stages. The negative regulation of AmTRF by ecdysteroids deduced from the developmental expression profile was confirmed by experimental treatment of spinning-stage honey bee larvae with 20-hydroxyecdysone, and of fourth instar-larvae with juvenile hormone. A juvenile hormone application to spinning-stage larvae, in contrast, had only a minor effect on AmTRF transcript levels. This is the first study implicating ecdysteroids in the developmental regulation of transferrin expression in an insect species.

  20. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3

    PubMed Central

    Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric

    2015-01-01

    Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846

Top