Science.gov

Sample records for hormone receptor deficiency

  1. Growth hormone deficiency - children

    MedlinePlus

    Growth hormone deficiency means the pituitary gland does not make enough growth hormone. ... The pituitary gland is located at the base of the brain. This gland controls the body's balance of hormones. It ...

  2. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  3. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  4. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency.

    PubMed

    Guevara-Aguirre, Jaime; Rosenbloom, Arlan L

    2015-01-01

    Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal.

  5. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans.

    PubMed

    Nashiro, Kaoru; Guevara-Aguirre, Jaime; Braskie, Meredith N; Hafzalla, George W; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M; Mather, Mara; Nelson, Marvin D; Guevara, Alexandra; Teran, Enrique; Longo, Valter D

    2017-02-15

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits.SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive

  6. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans

    PubMed Central

    Nashiro, Kaoru; Braskie, Meredith N.; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M.; Nelson, Marvin D.; Guevara, Alexandra

    2017-01-01

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits. SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive

  7. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  8. Contribution of human growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to isolated severe growth hormone deficiency (ISGHD) and normal adult height.

    PubMed

    Camats, Núria; Fernández-Cancio, Mónica; Carrascosa, Antonio; Andaluz, Pilar; Albisu, M Ángeles; Clemente, María; Gussinyé, Miquel; Yeste, Diego; Audí, Laura

    2012-10-01

    Molecular causes of isolated severe growth hormone deficiency (ISGHD) in several genes have been established. The aim of this study was to analyse the contribution of growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to GH deficiency in a series of prepubertal ISGHD patients and to normal adult height. A systematic GHRHR gene sequence analysis was performed in 69 ISGHD patients and 60 normal adult height controls (NAHC). Four GHRHR single-nucleotide polymorphisms (SNPs) were genotyped in 248 additional NAHC. An analysis was performed on individual SNPs and combined genotype associations with diagnosis in ISGHD patients and with height-SDS in NAHC. Twenty-one SNPs were found. P3, P13, P15 and P20 had not been previously described. Patients and controls shared 12 SNPs (P1, P2, P4-P11, P16 and P21). Significantly different frequencies of the heterozygous genotype and alternate allele were detected in P9 (exon 4, rs4988498) and P12 (intron 6, rs35609199); P9 heterozygous genotype frequencies were similar in patients and the shortest control group (heights between -2 and -1 SDS) and significantly different in controls (heights between -1 and +2 SDS). GHRHR P9 together with 4 GH1 SNP genotypes contributed to 6·2% of height-SDS variation in the entire 308 NAHC. This study established the GHRHR gene sequence variation map in ISGHD patients and NAHC. No evidence of GHRHR mutation contribution to ISGHD was found in this population, although P9 and P12 SNP frequencies were significantly different between ISGHD and NAHC. Thus, the gene sequence may contribute to normal adult height, as demonstrated in NAHC. © 2012 Blackwell Publishing Ltd.

  9. Relationship between initial treatment effect of recombinant human growth hormone and exon 3 polymorphism of growth hormone receptor in Chinese children with growth hormone deficiency

    PubMed Central

    Zheng, Zhangqian; Cao, Lingfeng; Pei, Zhou; Zhi, Dijing; Zhao, Zhuhui; Xi, Li; Cheng, Ruoqian; Luo, Feihong

    2015-01-01

    The aim of this study is to investigate the frequency distribution of exon 3 deleted (d3-GHR) genetic polymorphism of growth hormone receptor (GHR) in growth hormone deficient (GHD) Chinese children and to explore the correlation between the growth promoting effects of recombinant human growth hormone (rhGH) and exon 3 genetic polymorphism of GHR in GHD children. In this study, 111 GHD (excluded small for gestational age) children were treated with rhGH (0.20 mg/kg/week) for six months. The body height (Ht), body weight, bone age (BA) and growth velocity (GV) were measured before and after six months of treatment. The d3-GHR and full length GHR (fl-GHR) were analyzed to detect the frequency distribution of two isoforms and their influence on growth promoting effect of rhGH. The results indicated that the frequencies of fl/fl, fl/d3 and d3/d3 GHR genotypes were 67.6%, 18.9% and 13.5%. After six months of GH therapy, there were significant differences of ΔGV (ΔGV: 10.77±3.40 cm/year vs 12.18±3.08 cm/year) (P<0.05) and ΔHt (ΔHt: 5.38±1.70 cm vs 6.09±1.54 cm) (P<0.05) were found among GHD children with different genotypes (fl/fl vs fl/d3 and d3/d3). In conclusion, the frequency distribution of three GHR genotypes in 111 Chinese GHD children was different from that reported in Caucasian, indicating the existence of ethnic difference of exon 3 GHR polymorphism. There was a closely relationship between GHR genotypes and growth-promoting effect of rhGH in Chinese GHD children. PMID:26221355

  10. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice

    PubMed Central

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities. PMID:27489502

  11. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice.

    PubMed

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3 (-/-) and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities.

  12. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Genetic Testing (4 links) Genetic Testing Registry: Ateleiotic dwarfism Genetic Testing Registry: Autosomal dominant isolated somatotropin deficiency ... in my area? Other Names for This Condition dwarfism, growth hormone deficiency dwarfism, pituitary growth hormone deficiency ...

  13. Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice.

    PubMed

    Jakubcakova, Vladimira; Flachskamm, Cornelia; Deussing, Jan M; Kimura, Mayumi

    2011-11-01

    In response to infectious stimuli, enhanced non-rapid eye movement sleep (NREMS) occurs, which is driven by pro-inflammatory cytokines. Those cytokines further elicit the release of corticotropin-releasing hormone (CRH), resulting in the activation of the hypothalamic-pituitary-adrenocortical axis. Signals of CRH are mediated by two receptor types, namely CRH-R1 and -R2. The role of CRH-R1 in wake-promoting effects of CRH has been rather clarified, whereas the involvement of CRH-R2 in sleep-wake regulation is poorly understood. To investigate whether CRH-R2 interferes with sleep responses to immune challenge, this study examined effects of bacterial lipopolysaccharide (LPS) on sleep in CRH-R2 deficient (KO) mice. CRH-R2 KO mice and control littermates (CL) were implanted with electrodes for recording electroencephalogram (EEG) and electromyogram. After recovery, LPS was applied by intraperitoneal injection at doses of 0.1, 1.0, or 10 μg at dark onset. In response to LPS injection NREMS of both genotypes was enhanced in a dose-dependent manner. However, CRH-R2 KO mice showed a larger increase, in particular after 10 μg of LPS compared to CL mice. During postinjection, reduced delta power for NREMS was detected in both genotypes after each dose, but the highest dose evoked a marked elevation of EEG activity in a limited frequency band (4 Hz). However, the EEG power of lower frequencies (1-2 Hz) increased more in CRH-R2 KO than in CL mice. The results indicated that CRH-R2 KO mice show greater NREMS responses to LPS, providing evidence that CRH-R2 participates in sleep-wake regulation via an interaction with the activated immune system. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications.

  15. Thyroid Stimulating Hormone Receptor

    PubMed Central

    Tuncel, Murat

    2017-01-01

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases. PMID:28117293

  16. Thyroid Stimulating Hormone Receptor.

    PubMed

    Tuncel, Murat

    2016-01-05

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  17. Growth Hormone Deficiency in Adults

    MedlinePlus

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Learn About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ...

  18. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter.

    PubMed

    Ock, Sangmi; Ahn, Jihyun; Lee, Seok Hong; Kang, Hyun; Offermanns, Stefan; Ahn, Hwa Young; Jo, Young Suk; Shong, Minho; Cho, Bo Youn; Jo, Daewoong; Abel, E Dale; Lee, Tae Jin; Park, Woo Jin; Lee, In-Kyu; Kim, Jaetaek

    2013-12-01

    Although thyroid-stimulating hormone (TSH) is known to be a major regulator of thyroid hormone biosynthesis and thyroid growth, insulin-like growth factor 1 (IGF-1) is required for mediating thyrocyte growth in concert with TSH in vitro. We generated mice with thyrocyte-selective ablation of IGF-1 receptor (TIGF1RKO) to explore the role of IGF-1 receptor signaling on thyroid function and growth. In 5-wk-old TIGF1RKO mice, serum thyroxine (T4) concentrations were decreased by 30% in concert with a 43% down-regulation of the monocarboxylate transporter 8 (MCT8), which is involved in T4 secretion. Despite a 3.5-fold increase in circulating concentrations of TSH, thyroid architecture and size were normal. Furthermore, thyrocyte area was increased by 40% in WT thyroids after 10 d TSH injection, but this effect was absent in TSH-injected TIGF1RKO mice. WT mice treated with methimazole and sodium perchlorate for 2 or 6 wk exhibited pronounced goiter development (2.0 and 5.4-fold, respectively), but in TIGF1RKO mice, goiter development was completely abrogated. These data reveal an essential role for IGF-1 receptor signaling in the regulation of thyroid function and TSH-stimulated goitrogenesis.

  19. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  20. [Changes in the expression of receptors of steroid hormones in the development of partial androgen deficiency of aging men (PADAM)].

    PubMed

    Pecherskiĭ, A V; Semiglazov, V F; Komiakov, B K; Guliev, B G; Gorelov, A I; Novikov, A I; Pecherskiĭ, V I; Simonov, N N; Guliaev, A V; Samusenko, I A; Vonskiĭ, M S; Muttenberg, A G; Loran, O B

    2005-01-01

    This work is devoted to the vital topic of the influence of partial androgen deficiency of aging men (PADAM) on the development of cells with androgen receptors. The results obtained in this study suggest a conclusion that the production of testosterone by some tumors and tissues of the peritumorous zone, which is accompanied by increased proliferative activity and disturbance of the regulation of the cell cycle, is caused by PADAM. The given changes are directed at compensating for testicular deficiency (in particular at overcoming the androgen-dependent stage of development of androgen-sensitive cells). These changes are a partial manifestation of metabolic syndrome (X-syndrome). The atypical cells, which unavoidably develop during metabolic syndrome, are dealt with by means of the immune system, whose capabilities become less and less adequate in the given circumstances.

  1. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes

    PubMed Central

    Matsuoka, Yoko; Furuyashiki, Tomoyuki; Bito, Haruhiko; Ushikubi, Fumitaka; Tanaka, Yasuhiro; Kobayashi, Takuya; Muro, Seiji; Satoh, Noriko; Kayahara, Tetsuro; Higashi, Mikito; Mizoguchi, Akira; Shichi, Hitoshi; Fukuda, Yoshihiro; Nakao, Kazuwa; Narumiya, Shuh

    2003-01-01

    Sickness evokes various neural responses, one of which is activation of the hypothalamo–pituitary–adrenal (HPA) axis. This response can be induced experimentally by injection of bacterial lipopolysaccharide (LPS) or inflammatory cytokines such as IL-1. Although prostaglandins (PGs) long have been implicated in LPS-induced HPA axis activation, the mechanism downstream of PGs remained unsettled. By using mice lacking each of the four PGE receptors (EP1–EP4) and an EP1-selective antagonist, ONO-8713, we showed that both EP1 and EP3 are required for adrenocorticotropic hormone release in response to LPS. Analysis of c-Fos expression as a marker for neuronal activity indicated that both EP1 and EP3 contribute to activation of neurons in the paraventricular nucleus of the hypothalamus (PVN). This analysis also revealed that EP1, but not EP3, is involved in LPS-induced activation of the central nucleus of the amygdala. EP1 immunostaining in the PVN revealed its localization at synapses on corticotropin-releasing hormone-containing neurons. These findings suggest that EP1- and EP3-mediated neuronal pathways converge at corticotropin-releasing hormone-containing neurons in the PVN to induce HPA axis activation upon sickness. PMID:12642666

  2. Cortistatin vaccination--a solution to growth hormone deficiency.

    PubMed

    Moaeen-ud-Din, M; Malik, Nosheen; Guo, Yang Li; Ali, Ahmad; Babar, Masroor Ellahi

    2009-12-01

    Cortistatin and somatostatin are neuropeptides which have inhibitory effects on growth hormone through common five receptors. Although, both have inhibitory effects but, only cortistatin has direct inhibitory effects on growth hormone secretagogue and is more potent inhibitor of growth hormone than somatostatin. This control of growth hormone can be manipulated through immunoneutralization of cortistatin through cortistatin DNA vaccine rather than antibodies application. A DNA vaccine of cortistatin can be produced using recombinant DNA technology in a eukaryotic expression system and will serve as a tool not to only alleviate the growth hormone deficiency problems in human but, can also be used to improve growth rate in farm animals.

  3. Genetics Home Reference: combined pituitary hormone deficiency

    MedlinePlus

    ... People with combined pituitary hormone deficiency may have hypothyroidism, which is underactivity of the butterfly-shaped thyroid gland in the lower neck. Hypothyroidism can cause many symptoms, including weight gain and ...

  4. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  5. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  6. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed.

  7. Growth Hormone Deficiency in Children

    MedlinePlus

    ... brain. In children, GH is essential for normal growth, muscle and bone strength, and distribution of body fat. ... Delayed puberty What are the side effects of growth hormone therapy? Mild to moderate side ... Muscle or joint pain • Mildly underactive thyroid gland • Swelling ...

  8. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  9. Hmrbase: a database of hormones and their receptors

    PubMed Central

    Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS

    2009-01-01

    Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, Drug

  10. Growth hormone deficiency in treated acromegaly.

    PubMed

    Mazziotti, Gherardo; Marzullo, Paolo; Doga, Mauro; Aimaretti, Gianluca; Giustina, Andrea

    2015-01-01

    Growth hormone deficiency (GHD) of the adult is characterized by reduced quality of life (QoL) and physical fitness, skeletal fragility, and increased weight and cardiovascular risk. Hypopituitarism may develop in patients after definitive treatment of acromegaly, but an exact prevalence of GHD in this population is still uncertain owing to limited awareness and the scarce and conflicting data available on this topic. Because acromegaly and GHD may yield adverse consequences on similar target systems, the final outcomes of some complications of acromegaly may be further affected by the occurrence of GHD. However, it is still largely unknown whether patients with post-acromegaly GHD may benefit from GH replacement. We review the diagnostic, clinical, and therapeutic aspects of GHD in adult patients treated for acromegaly.

  11. Nuclear hormone receptors in chordates.

    PubMed

    Bertrand, Stéphanie; Belgacem, Mohamed R; Escriva, Hector

    2011-03-01

    In order to understand evolution of the endocrine systems in chordates, study of the evolution of the nuclear receptors (NRs), which mediate the cellular responses to several key hormones, is of major interest. Thanks to the sequencing of several complete genomes of different species in the three chordate phyla, we now have a global view of the evolution of the nuclear receptors gene content in this lineage. The challenge is now to understand how the function of the different receptors evolved during the invertebrate-chordate to vertebrate transition by studying the functional properties of the NRs using comparative approaches in different species. The best available model system to answer this question is the cephalochordate amphioxus which has a NR gene complement close to that of the chordate ancestor. Here we review the available data concerning the function of the amphioxus NRs, and we discuss some evolutionary scenarios that can be drawn from these results. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Psychomotor retardation in a girl with complete growth hormone deficiency.

    PubMed

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  13. Hypoglycemia associated with clonidine testing for growth hormone deficiency.

    PubMed

    Huang, C; Banerjee, K; Sochett, E; Perlman, K; Wherrett, D; Daneman, D

    2001-08-01

    We have observed 4 cases of hypoglycemia associated with clonidine stimulation of growth hormone secretion; only one patient had growth hormone deficiency. Significant drowsiness after administration of clonidine may prolong the period of fasting in these children and mask early signs and symptoms, leading to severe hypoglycemia.

  14. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males.

    PubMed

    Allensworth-James, Melody L; Odle, Angela; Haney, Anessa; Childs, Gwen

    2015-09-01

    Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2-3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%-42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes.

  15. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males

    PubMed Central

    Odle, Angela; Haney, Anessa; Childs, Gwen

    2015-01-01

    Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2–3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%–42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes. PMID:26168341

  16. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  17. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  18. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  19. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis.

    PubMed

    Heard, Melissa E; Velarde, Michael C; Giudice, Linda C; Simmen, Frank A; Simmen, Rosalia C M

    2015-06-01

    Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis.

  20. Novel mutations associated with combined pituitary hormone deficiency.

    PubMed

    Romero, Christopher J; Pine-Twaddell, Elyse; Radovick, Sally

    2011-06-01

    The pituitary gland produces hormones that play important roles in both the development and the homeostasis of the body. A deficiency of two or several of these pituitary hormones, known as combined pituitary hormone deficiency, may present in infants or children due to an unknown etiology and is considered congenital or idiopathic. Advancements in our understanding of pituitary development have provided a genetic basis to explain the pathophysiological basis of pituitary hormone disease. Nevertheless, there are several challenges to the precise characterization of abnormal genotypes; these exist secondary to the complexities of several of the hypothalamic/pituitary developmental factors and signals, which ultimately integrate in a temporal and spatial dependent manner to produce a mature gland. Furthermore, the clinical presentation of pituitary hormone disease may be dynamic as subsequent hormone deficiencies may develop over time. The characterization of patients with mutations in genes responsible for pituitary development provides an opportunity to discover potential novel mechanisms responsible for pituitary pathophysiology. The focus of this review is to report the most recent mutations in genes responsible for pituitary development in patients with hypopituitarism and emphasize the importance to physicians and researchers for characterizing these patients. Continuing efforts toward understanding the molecular basis of pituitary development as well as genetic screening of patients with pituitary disease will offer new insights into both diagnostic and potential therapeutic options that will decrease the morbidity and mortality in patients with hypopituitarism.

  1. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  2. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  3. Rapid steroid hormone actions via membrane receptors.

    PubMed

    Schwartz, Nofrat; Verma, Anjali; Bivens, Caroline B; Schwartz, Zvi; Boyan, Barbara D

    2016-09-01

    Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modification of Chromatin Structure by the Thyroid Hormone Receptor.

    PubMed

    Li; Sachs; Shi; Wolffe

    1999-05-01

    Pioneering experiments and recent observations have established the thyroid hormone receptor as a master manipulator of the chromosomal environment in targeting the activation and repression of transcription. Here we review how the thyroid hormone receptor is assembled into chromatin, where in the absence of thyroid hormone the receptor recruits histone deacetylase to silence transcription. On addition of hormone, the receptor undergoes a conformational change that leads to the release of deacetylase, while facilitating the recruitment of transcriptional coactivators that act as histone acetyltransferases. We discuss the biological importance of these observations for gene control by the thyroid hormone receptor and for oncogenic transformation by the mutated thyroid hormone receptor, v-ErbA.

  5. Growth Hormone Deficiency in a Case of Crouzon Syndrome with Hydrocephalus

    PubMed Central

    Wen, Mei-Hong; Hsiao, Hui-Pin; Chao, Mei-Chyn; Tsai, Fuu-Jen

    2010-01-01

    Crouzon syndrome is one of the most common craniofacial syndromes and is inherited as autosomal dominant with variable expression. We report an 11 and a half-year-old boy with Crouzon syndrome with severe growth retardation. He had hydrocephalus since infancy and recently suffered from frequent dizziness. His bone age was only 5 years according to the Greulich and Pyle atlas. Magnetic resonance imaging showed shallow orbits, obstructive hydrocephalus, and cerebellar tonsil herniation. Growth hormone provocative tests revealed a reduced peak growth hormone response in both insulin and clonidine tests. Severe iron deficiency anemia was noted at the same time. Molecular analysis identified a common mutation point of Cys278Phe for Crouzon syndrome in exon IIIa of the fibroblast growth factor receptor 2 (FGFR2) gene. Since growth retardation is not a common feature of Crouzon syndrome, we reviewed the literature for the incidence of hydrocephalus in Crouzon syndrome and the association with growth hormone deficiency. PMID:20585360

  6. Growth hormone deficiency in a case of crouzon syndrome with hydrocephalus.

    PubMed

    Wen, Mei-Hong; Hsiao, Hui-Pin; Chao, Mei-Chyn; Tsai, Fuu-Jen

    2010-01-01

    Crouzon syndrome is one of the most common craniofacial syndromes and is inherited as autosomal dominant with variable expression. We report an 11 and a half-year-old boy with Crouzon syndrome with severe growth retardation. He had hydrocephalus since infancy and recently suffered from frequent dizziness. His bone age was only 5 years according to the Greulich and Pyle atlas. Magnetic resonance imaging showed shallow orbits, obstructive hydrocephalus, and cerebellar tonsil herniation. Growth hormone provocative tests revealed a reduced peak growth hormone response in both insulin and clonidine tests. Severe iron deficiency anemia was noted at the same time. Molecular analysis identified a common mutation point of Cys278Phe for Crouzon syndrome in exon IIIa of the fibroblast growth factor receptor 2 (FGFR2) gene. Since growth retardation is not a common feature of Crouzon syndrome, we reviewed the literature for the incidence of hydrocephalus in Crouzon syndrome and the association with growth hormone deficiency.

  7. Nuclear hormone receptors in podocytes

    PubMed Central

    2012-01-01

    Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses. PMID:22995171

  8. Recurrent infantile hypoglycemia due to combined fructose-1,6-diphosphatase deficiency and growth hormone deficiency.

    PubMed

    Takagi, Dania; Ben-Ari, Josef; Nemet, Dan; Zeharia, Avraham; Eliakim, Alon

    2013-01-01

    A 14-month-old female infant presented with recurrent episodes of acute gastroenteritis accompanied by severe metabolic acidosis and hypoglycemia. Physical examination showed hepatomegaly. Laboratory evaluation revealed elevated hepatic enzymes, prolonged prothrombin time, hyperuricemia, and extremely elevated lactate and alanine levels. Glucagon injection during hypoglycemia resulted in a further decrease of blood glucose. She was treated with glucose-containing intravenous fluids, with rapid improvement and normalization of her blood pH and glucose levels. Hormonal assessment during two episodes of hypoglycemia indicated growth hormone (GH) deficiency. However, as isolated GH deficiency could not explain all other concomitant features, such as severe lactic acidosis, hepatomegaly, impaired liver function, and hyperuricemia, the possibility of a combined defect was suggested. Further lymphocytic enzymatic investigation revealed fructose-1,6-diphosphatase deficiency and molecular genetic analysis demonstrated frame shift mutation in the FBP1 gene. This enzyme deficiency causes a rare metabolic disorder not previously described in combination with GH deficiency.

  9. Lymphocyte activation and capping of hormone receptors.

    PubMed

    Bourguignon, L Y; Jy, W; Majercik, M H; Bourguignon, G J

    1988-06-01

    In this study both a ligand-dependent treatment [concanavalin A (Con A)] and a ligand-independent treatment [high-voltage pulsed galvanic stimulation (HVPGS)] have been used to initiate lymphocyte activation via a transmembrane signaling process. Our results show that both treatments cause the exposure of two different hormone [insulin and interleukin-2 (IL-2)] receptors within the first 5 min of stimulation. When either insulin or IL-2 is present in the culture medium, the stimulated lymphocytes undergo the following responses: (1) increased free intracellular Ca2+ activity; (2) aggregation of insulin or IL-2 receptors into patch/cap structures; (3) tyrosine-kinase-specific phosphorylation of a 32-kd membrane protein; and finally (4) induction of DNA synthesis. Further analysis indicates that hormone receptor capping is inhibited by (1) cytochalasin D, suggesting the involvement of microfilaments; (2) sodium azide, indicating a requirement for ATP production; and (3) W-5, W-7, and W-12 drugs, implying a need for Ca2+/calmodulin activity. Treatment with these metabolic or cytoskeletal inhibitors also prevents both the tyrosine-kinase-specific protein phosphorylation and DNA synthesis which normally follow hormone receptor capping. Double immunofluorescence staining shows that actomyosin, Ca2+/calmodulin, and myosin light-chain kinase are all closely associated with the insulin and IL-2 receptor cap structures. These findings strongly suggest that an actomyosin-mediated contractile system (regulated by Ca2+, calmodulin, and myosin light-chain kinase in an energy-dependent manner) is required not only for the collection of insulin and IL-2 receptors into patch and cap structures but also for the subsequent activation of tyrosine kinase and the initiation of DNA synthesis. We, therefore, propose that the exposure and subsequent patching/capping of at least one hormone receptor are required for the activation of mouse splenic T-lymphocytes.

  10. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  11. Anthropometric measurements in patients with growth hormone deficiency before treatment with human growth hormone.

    PubMed

    Zachmann, M; Fernandez, F; Tassinari, D; Thakker, R; Prader, A

    1980-05-01

    In 74 children (52 males, 22 females) with growth hormone (GH) deficiency (30 cases with isolated GH-deficiency, two of them familial; 4 familial and one isolated case with tendency for formation of antibodies against hGH; 29 with other pituitary hormone defects; 10 craniopharyngiomas), various anthropometric measurements were analyzed before treatment with hGH. In all groups, standing height, sitting height, and subischial leg height were equally retarded, and bihumeral width was more retarded than biiliac width; the head was relatively large; fat tissue was increased with subscapular skinfolds being greater than triceps skinfolds, indicating relative obestiy of the trunk; muscle and/or bone mass was reduced. In isolated GH-deficiency, head shape was slightly scaphoid; in combined defects, it was round, and in craniopharyngioma cases, it was brachycephalic. It is concluded that antrhopometric measurements may help in differentiating the type of GH-deficiency.

  12. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with isolated growth hormone deficiency due to organic causes.

    PubMed

    Child, Christopher J; Blum, Werner F; Deal, Cheri; Zimmermann, Alan G; Quigley, Charmian A; Drop, Stenvert L S; Cutler, Gordon B; Rosenfeld, Ron G

    2016-05-01

    To determine characteristics of children initially diagnosed with isolated growth hormone deficiency (IGHD) of organic aetiology, who later developed multiple pituitary hormone deficiencies (MPHD). Data were analysed for 716 growth hormone-treated children with organic IGHD, who were growth hormone-naïve at baseline in the multinational, observational Genetics and Neuroendocrinology of Short Stature International Study. Development of MPHD was ascertained from investigator-provided diagnoses, adverse events and concomitant medications. Analyses were performed for all patients and separately for those who developed MPHD within 4.5 years or had >3.5 years follow-up and continued to have IGHD (4-year cohort). MPHD developed in 71/716 (9.9%) children overall, and in 60/290 (20.7%) in the 4-year cohort. The most frequent additional deficiencies were thyroid-stimulating hormone (47 patients) and gonadotropins (23 patients). Compared with those who remained with IGHD, children who developed MPHD had more severe GHD at study entry, significantly lower baseline insulin-like growth factor1, peak stimulated growth hormone, and more frequent diagnosis of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Multivariate logistic regression analyses identified female gender, longer follow-up, higher baseline age and lower peak stimulated growth hormone as predictors of MPHD development. MPHD is more likely to develop in patients with severe organic IGHD, especially those with history of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Older baseline age, female gender and longer follow-up duration were also associated with higher incidence of MPHD. Long-term monitoring of pituitary function is recommended, irrespective of the aetiology of GHD. © 2016 European Society of Endocrinology.

  13. Hereditary gingival fibromatosis associated with growth hormone deficiency.

    PubMed

    Oikarinen, K; Salo, T; Käär, M L; Lahtela, P; Altonen, M

    1990-10-01

    A case report of gingival fibromatosis in association with growth hormone (GH) deficiency due to a lack of growth hormone releasing factor (GRF) is presented. The girl is the youngest member of a family of eight children, five of whom lack the same hormone and have or have had similar gingival enlargements. After the growth hormone deficiency had been diagnosed and hormone substitute administered the dental age of the girl presented came closer to that of her age and sex-matched controls but did not reach the corresponding values even though the teeth were exposed by excising the overgrown gingiva. Test fibroblasts cultured from the overgrown gingiva proliferated at a slower rate than those cultured from age-matched controls. Total RNA was extracted from the test and three control fibroblasts and examined by Northern hybridisation using cDNAs for pro alpha 1(I) and pro alpha 1(III) chains. The amount of type I and III procollagen mRNAs were lower in the test fibroblasts as compared to the controls.

  14. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  15. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  16. Concomitant occurrence of Turner syndrome and growth hormone deficiency.

    PubMed

    Yu, Jung; Shin, Ha Young; Lee, Chong Guk; Kim, Jae Hyun

    2016-11-01

    Turner syndrome (TS) is a genetic disorder in phenotypic females that has characteristic physical features and presents as partial or complete absence of the second sex chromosome. Growth hormone deficiency (GHD) is a condition caused by insufficient release of growth hormone from the pituitary gland. The concomitant occurrence of TS and GHD is rare and has not yet been reported in Korea. Here we report 2 cases of TS and GHD. In case 1, GHD was initially diagnosed. Karyotyping was performed because of the presence of the typical phenotype and poor response to growth hormone therapy, which revealed 45,X/45,X+mar. The patient showed increased growth velocity after the growth hormone dose was increased. In case 2, a growth hormone provocation test and chromosomal analysis were performed simultaneously because of decreased growth velocity and the typical TS phenotype, which showed GHD and a mosaic karyotype of 45,X/46,XX. The patient showed spontaneous pubertal development. In female patients with short stature, it is important to perform a throughout physical examination and test for hormonal and chromosomal abnormalities because diagnostic accuracy is important for treatment and prognosis.

  17. Concomitant occurrence of Turner syndrome and growth hormone deficiency

    PubMed Central

    Yu, Jung; Shin, Ha Young; Lee, Chong Guk

    2016-01-01

    Turner syndrome (TS) is a genetic disorder in phenotypic females that has characteristic physical features and presents as partial or complete absence of the second sex chromosome. Growth hormone deficiency (GHD) is a condition caused by insufficient release of growth hormone from the pituitary gland. The concomitant occurrence of TS and GHD is rare and has not yet been reported in Korea. Here we report 2 cases of TS and GHD. In case 1, GHD was initially diagnosed. Karyotyping was performed because of the presence of the typical phenotype and poor response to growth hormone therapy, which revealed 45,X/45,X+mar. The patient showed increased growth velocity after the growth hormone dose was increased. In case 2, a growth hormone provocation test and chromosomal analysis were performed simultaneously because of decreased growth velocity and the typical TS phenotype, which showed GHD and a mosaic karyotype of 45,X/46,XX. The patient showed spontaneous pubertal development. In female patients with short stature, it is important to perform a throughout physical examination and test for hormonal and chromosomal abnormalities because diagnostic accuracy is important for treatment and prognosis. PMID:28018463

  18. Isolated growth hormone deficiency type 2: from gene to therapy.

    PubMed

    Miletta, Maria Consolata; Lochmatter, Didier; Pektovic, Vibor; Mullis, Primus-E

    2012-01-01

    Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.

  19. Peptic ulceration may be a hormonal deficiency disease.

    PubMed

    Love, Jack W

    2008-01-01

    Evidence is reviewed that Helicobacter pylori infection may cause a deficiency of the hormone secretin that allows peptic ulcer disease to develop by impairing the body's defenses to gastric acid. Secretin is released into the circulation from the S-cells of the duodenal crypts in response to gastric acid entering the duodenum. Once in the circulation, secretin has five well-documented effects that protect the upper intestine from gastric acid: it stimulates secretion of bicarbonate rich exocrine pancreatic juice; it stimulates secretion of alkaline bile; it stimulates secretion of alkaline mucus from the duodenal submucosal glands of Brunner; it inhibits the humoral phase of gastric secretion; and it inhibits gastric motility, thereby delaying gastric emptying. Impaired secretin release and reduced duodenal S-cells have been documented in peptic ulcer patients compared with control patients. Clinical evidence that patients with H. pylori infection and peptic ulceration have increased gastric secretion and motility and decreased duodenal bicarbonate response to gastric acid, all of which normalize after eradication of the infection, could be explained by reversible impairment of the secretin mechanism. Gastric metaplasia in the duodenum with H. pylori infection is known to reduce the S-cell population. The fact that not all patients with H. pylori infection develop peptic ulceration suggests that degree of secretin deficiency determined by extent of the infection must reach a critical level for peptic ulceration to occur. Peptic ulceration may be a hormonal deficiency disease, a result of secretin deficiency caused by H. pylori infection. It may be the first example of a specific hormonal deficiency disease caused by a specific bacterial infection.

  20. Concomitant therapies (glucocorticoids and sex hormones) in adult patients with growth hormone deficiency.

    PubMed

    Scaroni, C; Ceccato, F; Rizzati, S; Mantero, F

    2008-09-01

    Adult-onset GH deficiency (GHD), mostly due to organic lesions of the pituitary-hypothalamic region, is frequently associated with multiple anterior pituitary deficiencies that need long-term substitutive treatment. The GH-IGF-I axis may play an important role in modulating peripheral metabolism of hormones (adrenal, thyroid, and sex hormones) and these interactions may have clinically significant implications on the phenotypes of adult GHD patients and on the effects of the combined replacement hormonal treatment of this condition. By accelerating the peripheral metabolism of cortisol, GH therapy may precipitate adrenal insufficiency in susceptible hypopituitary patients; estrogen replacement blunts the response to GH in women whereas in men with androgen substitution the responsivity increases over time. Endocrinologists should be mindful of these phenomena when starting patients with hypopituitarism on GH replacement therapy.

  1. Baraitser and Winter syndrome with growth hormone deficiency

    PubMed Central

    Chentli, Farida; Zellagui, Hadjer

    2014-01-01

    Baraitser–Winter syndrome (BWS), first reported in 1988, is apparently due to genetic abnormalities that are still not well-defined, although many gene abnormalities are already discovered and de novo missense changes in the cytoplasmic actin-encoding genes (called ACTB and ACTG1) have been recently discovered. The syndrome combines facial and cerebral malformations. Facial malformations totally or partially present in the same patient are: Iris coloboma, bilateral ptosis, hypertelorism, broad nasal bridge, and prominent epicanthic folds. The various brain malformations are probably responsible for growth and mental retardation. To the best of our knowledge, the syndrome is very rare as few cases have been reported so far. Our aim was to describe a child with a phenotype that looks like BWS with proved partial growth hormone (GH) deficiency which was not reported before. A girl aged 7-year-old of consanguineous parents was referred for short stature and mental retardation. Clinical examination showed dwarfism and a delay in her mental development. Other clinical features included: Strabismus, epicanthic folds, broad nasal bridge, and brain anomalies such as lissencephaly, bilateral hygroma, and cerebral atrophy. Hormonal assessment showed partial GH deficiency without other endocrine disorders. Our case looks exactly like BWS. However, apart from facial and cerebral abnormalities, there is a partial GH deficiency which can explain the harmonious short stature. This case seems worth to be reported as it adds GH deficiency to the very rare syndrome. PMID:25624931

  2. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    PubMed

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  3. Nuclear hormone receptors put immunity on sterols

    PubMed Central

    Santori, Fabio R.

    2015-01-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and non-classic (all others) NHRs; 17 non-classic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and non-sterol intermediates and derivatives, is a source of ligands for many classic and non-classic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review we summarize the roles of non-classic NHRs and their potential ligands in the immune system. PMID:26222181

  4. The effects of iodine deficiency on thyroid hormone deiodination.

    PubMed

    Obregon, Maria-Jesus; Escobar del Rey, Francisco; Morreale de Escobar, Gabriella

    2005-08-01

    hormones of maternal origin are available to the embryo early in development and continue contributing to fetal thyroid hormone status, even after onset of fetal thyroid secretion. In the case of congenital hypothyroidism and normal maternal T(4), the transfer of the latter, together with increased D2 activity, protects the fetal brain from T(3) deficiency, even when it may be insufficient to maintain euthyroidism in other fetal tissues. Practically all of the T(3) found in the fetal brain is derived locally from T(4), and not from circulating T(3). In the case of severe iodine deficiency, both the embryo and the mother are T(4)-deficient; therefore, the fetal brain is exposed to T(3)-deficiency, both before and after onset of fetal thyroid function. This leads to irreversible alterations and damage to the central nervous system (i.e. abnormal corticogenesis). Moreover, because intrathyroidal autoregulatory mechanisms are not yet operative in the fetus, both T(4) and T(3) continue to be very low until birth, and the fetus is not only hypothyroxinemic, similar to its mother, but also clinically and biochemically hypothyroid.

  5. Luteinizing hormone-releasing hormone agonists in premenopausal hormone receptor-positive breast cancer.

    PubMed

    Tan, Sing-Huang; Wolff, Antonio C

    2007-02-01

    Ovarian function suppression for the treatment of premenopausal breast cancer was first used in the late 19th century. Traditionally, ovarian function suppression had been accomplished irreversibly via irradiation or surgery, but analogues of the luteinizing hormone-releasing hormone (LH-RH) have emerged as reliable and reversible agents for this purpose, especially the LH-RH agonists. Luteinizing hormone-releasing hormone antagonists are in earlier stages of development in breast cancer and are not currently in clinical use. Luteinizing hormonereleasing hormone agonists act by pituitary desensitization and receptor downregulation, thereby suppressing gonadotrophin release. Limited information is available comparing the efficacies of the depot preparations of various agonists, but pharmacodynamic studies have shown comparable suppressive capabilities on estradiol and luteinizing hormone. At present, only monthly goserelin is Food and Drug Administration-approved for the treatment of estrogen receptor-positive, premenopausal metastatic breast cancer in the United States. Luteinizing hormone-releasing hormone agonists have proven to be as effective as surgical oophorectomy in premenopausal advanced breast cancer. They offer similar outcomes compared with tamoxifen, but the endocrine combination appears to be more effective than LH-RH agonists alone. In the adjuvant setting, LH-RH agonists versus no therapy reduce the annual odds of recurrence and death in women aged>50 years with estrogen receptor-positive tumors. Luteinizing hormone-releasing hormone agonists alone or in combination with tamoxifen have shown disease-free survival rates similar to chemotherapy with CMF (cyclophosphamide/methotrexate/5-fluorouracil). Outcomes of chemotherapy with or without LH-RH agonists are comparable, though a few trials favor the combination in young premenopausal women (aged<40 years). Adjuvant LH-RH agonists with or without tamoxifen might be as efficacious as tamoxifen alone

  6. Focus on growth hormone deficiency and bone in adults.

    PubMed

    Tritos, Nicholas A

    2017-02-01

    Growth hormone (GH) exerts several effects on the skeleton, mediated either directly or indirectly, leading to increased bone formation and resorption rates. Patients with growth hormone deficiency (GHD) of adult onset have decreased bone mineral density (BMD) and increased fracture risk. Some, but not all, studies have found that adults with childhood onset GHD also have lower BMD than healthy controls. Adults with GHD of childhood onset have smaller bone dimensions, leading to possible underestimation of areal BMD (measured by dual energy X-ray absorptiometry), thus potentially confounding the interpretation of densitometric data. Available data suggest that patients with childhood onset GHD are at increased fracture risk. Prospective studies and some clinical trials found that GH replacement for at least 18-24 months leads to increased BMD. Retrospective and prospective data suggest that GH replacement is associated with decreased fracture risk in adults. However, data from randomized clinical trials are lacking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Growth hormone deficiency in children and young adults.

    PubMed

    Oświęcimska, Joanna; Roczniak, Wojciech; Mikołajczak, Agata; Szymlak, Agnieszka

    2016-09-13

    Growth hormone (GH) is a naturally occurring polypeptide hormone produced by somatotropic cells in the anterior pituitary. The main function of somatotropin is stimulation of linear growth, but it also affects carbohydrate metabolism, increases bone mass and has potent lipolytic, antinatriuretic and antidiuretic effects. Growth hormone deficiency (GHD) may occur both in children and in adults. At the moment there is no gold standard for the diagnosis of GHD, and the diagnosis should take into account clinical, auxological, biochemical and radiological changes and, if necessary, genetic testing. Recent studies have highlighted that the biochemical diagnosis of GH deficiency is still imperfect. Stimuli used in the tests are non-physiological, and various substances are characterized by a different mechanism of action and potency. A few years ago it was thought that GHD treatment in children must be completed at the end of linear growth. Studies performed in the last two decades have shown that GHD deficiency in adults may result in complex clinical problems, and if untreated shortens the life expectancy and worsens its comfort. Discontinuation of GH therapy after the final height has been reached in fact negatively impacts the physiological processes associated with the transition phase, which is the period of human life between achieving the final height and 25-30 years of age. Given the adverse metabolic effects of GH treatment interruption after linear growth has been completed, the latest recommendations propose reassessment of GH secretion in the period at least one month after cessation of treatment and continuation of the therapy in case of persistent deficit.

  8. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    EPA Science Inventory

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  9. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    EPA Science Inventory

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  10. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice.

    PubMed

    Datta, Nabanita S; Samra, Tareq A; Abou-Samra, Abdul B

    2012-05-01

    Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3-6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH.

  11. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice

    PubMed Central

    Samra, Tareq A.; Abou-Samra, Abdul B.

    2012-01-01

    Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3–6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH. PMID:22338074

  12. Multiple Hormonal Deficiencies in Anabolic Hormones Are Found in Frail Older Women: The Women's Health and Aging Studies

    PubMed Central

    Xue, Qian-Li; Fried, Linda P.

    2009-01-01

    Background Alterations in anabolic hormones are theorized to contribute to aging and frailty, with most studies focusing on the relationship between individual hormones and specific age-associated diseases. We hypothesized that associations with frailty would most likely manifest in the presence of deficits in multiple anabolic hormones. Methods The relationships of serum levels of total IGF-1, DHEAS, and free testosterone (T) with frailty status (nonfrail, prefrail, or frail) were analyzed in 494 women aged 70–79 years enrolled in the Women's Health and Aging Studies I or II. Using multivariate polytomous regression, we calculated the odds of frailty for deficiency in each hormone (defined as the bottom quartile of the hormone) individually, as well as for a count of the hormones. Results For each hormone, in adjusted analyses, those with the deficiency were more likely to be frail than those without the deficiency, although this did not achieve statistical significance (IGF-1: odds ratio [OR] 1.82, confidence interval [CI] 0.81–4.08; DHEAS: OR 1.68, CI 0.77–3.69; free T: OR 2.03, CI 0.89–4.64). Compared with those with no hormonal deficiencies, those with one deficiency were not more likely to be frail (OR 1.15, CI 0.49–2.68), whereas those with two or three deficiencies had a very high likelihood of being frail (OR 2.79, CI 1.06–7.32), in adjusted models. Conclusions The absolute burden of anabolic hormonal deficiencies is a stronger predictor of frailty status than the type of hormonal deficiency, and the relationship is nonlinear. These analyses suggest generalized endocrine dysfunction in the frailty syndrome. PMID:19182229

  13. Exceptional Association Between Klinefelter Syndrome and Growth Hormone Deficiency.

    PubMed

    Doubi, Sana; Amrani, Zoubida; Ouahabi, Hanan El; Boujraf, Saïd; Ajdi, Farida

    2015-01-01

    Klinefelter syndrome (KS) is characterized in adults by the combination of a tall stature, small testes, gynecomastia, and azoospermia. This case is described in a North African population of the Mediterranean region of North Africa. We report the case of a male 16 years old, of Arab ethnic origin, and diagnosed with this syndrome, who had a small height in relation to a growth hormone (GH) deficiency and a history of absence seizures (generalized myoclonic epilepsy). The patient's size was <-2.8 standard deviation (SD) with weight <-3 SD. GH deficiency was isolated and confirmed by two dynamic tests (insulin - hypoglycemia tolerance test and clonidine) with normal hypothalamic magnetic resonance imaging (MRI). GH supplementation using recombinant GH was advocated, while gonadotropin treatment was deferred. Small size in children or adolescents should not eliminate the diagnosis of Klinefelter syndrome - on the contrary, the presence of any associated sign (brain maturation, delay in puberty, aggressiveness) should encourage one to request a karyotype for the diagnosis and appropriate care of any case of KS that can be associated with GH deficiency, or which is in a variant form (isochromosome Xq, 49,XXXXY).

  14. Fungal exposure endocrinopathy in sinusitis with growth hormone deficiency: Dennis-Robertson syndrome.

    PubMed

    Dennis, Donald; Robertson, David; Curtis, Luke; Black, Judson

    2009-01-01

    A retrospective study was carried out on 79 patients with a history of mold exposure, fatigue, and chronic rhinosinusitis (CRS) to determine whether there is a causal relationship between fungal exposure and chronic sinusitis, fatigue, and anterior hypopituitarism, especially growth hormone deficiency (GHD). Of the patients, 94% had a history of CRS, endoscopically and/or computed tomography (CT) confirmed; 100% had chronic fatigue and 100% had either significant history of indoor mold exposure and/or positive mold plate testing as measured by settle plates, with an average colony count of 21 (0-4 normal). A total of 62 had positive mold plate testing and 17 had positive history of mold exposure. Of 75, 73 (97.3%) had positive serum immunoglobulin G (IgG)-specific antibodies to fungal antigens. Out of 8, 7 were positive for urinary trichothecenes. Resting levels of insulin-like growth factor 1 (IGF-1) averaged 123 ng/mL (range 43-285, normal 88-249 ng/mL). Despite normal resting levels of IGF-1, significant deficiency of serum human growth hormone (GH) was confirmed by insulin tolerance test (ITT) in 40 of 50 tested. In all, 51% (40/79) were GH deficient. Primary or secondary hypothyroidism in T3 and/or T4 was seen in 81% (64/79) patients; 75% (59/79) had adrenocorticotrophic hormone (ACTH) deficiency. Fungal exposure endocrinopathy likely represents the major cause of GHD, affecting approximately 4.8 million people compared to approximately known 60,000 cases from all other causes. A literature review indicates a possible mechanism of GHD in fungal exposure is that the fungal glucan receptors in the lenticulostellate cells of the anterior pituitary bind to fungal cells wall glucans and activate the innate immune system, which activates macrophages that destroy the fungus and lenticulostellate tissue. Treatment of patients included normal saline nasal irrigations, antifungal and antibiotic nasal sprays, appropriate use of oral antibiotics and antifungals, facial

  15. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    PubMed Central

    Ide, Hiroki; Miyamoto, Hiroshi

    2015-01-01

    There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression. PMID:26770009

  16. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with idiopathic isolated GH deficiency.

    PubMed

    Blum, Werner F; Deal, Cheri; Zimmermann, Alan G; Shavrikova, Elena P; Child, Christopher J; Quigley, Charmian A; Drop, Stenvert L S; Cutler, Gordon B; Rosenfeld, Ron G

    2014-01-01

    We assessed the characteristics of children initially diagnosed with idiopathic isolated GH deficiency (IGHD) who later developed additional (multiple) pituitary hormone deficiencies (MPHD). Data were analyzed for 5805 pediatric patients with idiopathic IGHD, who were GH-naïve at baseline and GH-treated in the multinational, observational Genetics and Neuroendocrinology of Short Stature International Study. Development of MPHD was assessed from investigator diagnoses, adverse events, and concomitant medications. Analyses were performed for all patients and for those who developed MPHD within 4.5 years or had ≥3.5 years, follow-up and continued to have IGHD (4-year cohort). MPHD developed in 118/5805 (2.0%) children overall, and in 96/1757 (5.5%) in the 4-year cohort. Patients who developed MPHD had more profound GHD, with decreased height SDS, IGF1 SDS and peak stimulated GH, and greater height decrement vs target, compared with children who continued to have IGHD (P<0.001 for each variable). Delivery complications, congenital anomalies, and perinatal/neonatal adverse events occurred more frequently in patients who developed MPHD. The most frequent additional deficiency was TSH (82 patients overall); four patients developed two pituitary hormone deficiencies and one developed three deficiencies. Multivariable logistic regression indicated that years of follow-up (odds ratio 1.55), baseline age (1.17), baseline height SDS (0.69), and peak stimulated GH (0.64) were associated with the development of MPHD. MPHD is more likely to develop in patients with more severe idiopathic IGHD. Older baseline age, lower baseline height SDS, and longer follow-up duration are associated with increased risk of development of MPHD.

  17. Multiple exportins influence thyroid hormone receptor localization

    PubMed Central

    Subramanian, Kelly S.; Dziedzic, Rose C.; Nelson, Hallie N.; Stern, Mary E.; Roggero, Vincent R.; Bondzi, Cornelius; Allison, Lizabeth A.

    2015-01-01

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted towards the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function. PMID:25911113

  18. Multiple exportins influence thyroid hormone receptor localization.

    PubMed

    Subramanian, Kelly S; Dziedzic, Rose C; Nelson, Hallie N; Stern, Mary E; Roggero, Vincent R; Bondzi, Cornelius; Allison, Lizabeth A

    2015-08-15

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted toward the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function.

  19. Minireview: Nuclear Receptor-Controlled Steroid Hormone Synthesis and Metabolism

    PubMed Central

    He, Jinhan; Cheng, Qiuqiong; Xie, Wen

    2010-01-01

    Steroid hormones are essential in normal physiology whereas disruptions in hormonal homeostasis represent an important etiological factor for many human diseases. Steroid hormones exert most of their functions through the binding and activation of nuclear hormone receptors (NRs or NHRs), a superfamily of DNA-binding and often ligand-dependent transcription factors. In recent years, accumulating evidence has suggested that NRs can also regulate the biosynthesis and metabolism of steroid hormones. This review will focus on the recent progress in our understanding of the regulatory role of NRs in hormonal homeostasis and the implications of this regulation in physiology and diseases. PMID:19762543

  20. Radioactive probes for adrenocorticotropic hormone receptors

    SciTech Connect

    Hofmann, K.; Romovacek, H.; Stehle, C.J.; Finn, F.M.; Bothner-By, A.A.; Mishra, P.K.

    1986-03-25

    Our attempts to develop adrenocorticotropic hormone (ACTH) analogues that can be employed for ACTH receptor identification and isolation began with the synthesis of ACTH fragments containing N epsilon-(dethiobiotinyl)lysine (dethiobiocytin) amide in position 25 to be used for affinity chromatographic purification of hormone-receptor complexes on Sepharose-immobilized avidin resins. Because labeling ACTH or ACTH fragments by conventional iodination techniques destroys biological activity due to oxidation of Met4 and incorporation of iodine into Tyr2, we have prepared (Phe2,Nle4)ACTH1-24, (Phe2,Nle4,biocytin25)ACTH1-25 amide, and (Phe2,Nle4,dethiobiocytin25)ACTH1-25 amide by conventional synthetic techniques. The HPLC profiles and amino acid analyses of the final products indicate that the materials are of a high degree of purity. The amount of tertiary butylation of the Trp residue in the peptides was assessed by NMR and was found to be less than 0.5%. All three peptides are equipotent with the standard ACTH1-24 as concerns their ability to stimulate steroidogenesis and cAMP formation in bovine adrenal cortical cells. Iodination of (Phe2,Nle4)ACTH1-24, with iodogen as the oxidizing agent, has been accomplished without any detectable loss of biological activity. The mono- and diiodo derivatives of (Phe2,Nle4)ACTH1-24 have been prepared, separated by HPLC, and assayed for biological activity. Both peptides have the full capacity to stimulate steroidogenesis and cAMP production in bovine adrenal cortical cells.

  1. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  2. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    PubMed

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Adult Growth Hormone Deficiency – Benefits, Side Effects, and Risks of Growth Hormone Replacement

    PubMed Central

    Reed, Mary L.; Merriam, George R.; Kargi, Atil Y.

    2013-01-01

    Deficiency of growth hormone (GH) in adults results in a syndrome characterized by decreased muscle mass and exercise capacity, increased visceral fat, impaired quality of life, unfavorable alterations in lipid profile and markers of cardiovascular risk, decrease in bone mass and integrity, and increased mortality. When dosed appropriately, GH replacement therapy (GHRT) is well tolerated, with a low incidence of side effects, and improves most of the alterations observed in GH deficiency (GHD); beneficial effects on mortality, cardiovascular events, and fracture rates, however, remain to be conclusively demonstrated. The potential of GH to act as a mitogen has resulted in concern over the possibility of increased de novo tumors or recurrence of pre-existing malignancies in individuals treated with GH. Though studies of adults who received GHRT in childhood have produced conflicting reports in this regard, long-term surveillance of adult GHRT has not demonstrated increased cancer risk or mortality. PMID:23761782

  4. Rasch Measurement in the Assessment of Growth Hormone Deficiency in Adult Patients.

    ERIC Educational Resources Information Center

    Prieto, Luis; Roset, Montse; Badia, Xavier

    2001-01-01

    Tested the metric properties of a Spanish version of the Assessment of Growth Hormone Deficiency in Adults (AGHDA) questionnaire through Rasch analysis with a sample of 356 adult patients in Spain. Results suggest that the Spanish AGHDA could be a useful complement of the clinical evaluation of growth hormone deficiency patients at group and…

  5. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  6. Prader-Willi syndrome and growth hormone deficiency.

    PubMed

    Aycan, Zehra; Baş, Veysel Nijat

    2014-01-01

    Prader-Willi syndrome (PWS) is a rare multisystem genetic disorder demonstrating great variability with changing clinical features during patient's life. It is characterized by severe hypotonia with poor sucking and feeding difficulties in early infancy, followed by excessive eating and gradual development of morbid obesity in later infancy or early childhood. The phenotype is most probably due to hypothalamic dysfunction which is also responsible for growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies, central adrenal insufficiency and hypogonadism. The multidimensional problems of patients with PWS can be managed with multidisciplinary approach. Reduced GH secretion, low peak GH response to stimulation, decreased spontaneous GH secretion and low serum IGF-1 levels in PWS patients have been documented in many studies. GH therapy has multiple beneficial effects on growth and body composition, motor and mental development in PWS patients. The recommended dosage for GH is 0.5-1 mg/m2/day. GH therapy should not be started in the presence of obstructive sleep apnea syndrome, adenotonsillar hypertrophy, severe obesity and diabetes mellitus. GH treatment should be considered for patients with genetically confirmed PWS in conjunction with dietary, environmental and life-style measures.

  7. Improved response of growth hormone to growth hormone-releasing hormone and reversible chronic thyroiditis after hydrocortisone replacement in isolated adrenocorticotropic hormone deficiency.

    PubMed

    Inagaki, Miho; Sato, Haruhiro; Miyamoto, Yoshiyasu; Hirukawa, Takashi; Sawaya, Asako; Miyakogawa, Takayo; Tatsumi, Ryoko; Kakuta, Takatoshi

    2009-07-20

    We report a 44-year-old Japanese man who showed a reversible blunted response of growth hormone (GH) to GH-releasing hormone (GRH) stimulation test and reversible chronic thyroiditis accompanied by isolated ACTH deficiency. He was admitted to our hospital because of severe general malaise, hypotension, and hypoglycemia. He showed repeated attacks of hypoglycemia, and his serum sodium level gradually decreased. Finally, he was referred to the endocrinology division, where his adrenocorticotropic hormone (ACTH) and cortisol values were found to be low, and his GH level was slightly elevated. An increased value of thyroid stimulating hormone (TSH) and decreased values of free triidothyronine and free thyroxine were observed along with anti-thyroglobulin antibody, suggesting chronic thyroiditis. Pituitary stimulation tests revealed a blunted response of ACTH and cortisol to corticotropin-releasing hormone, and a blunted response of GH to GRH. Hydrocortisone replacement was then started, and this improved the patient's general condition. His hypothyroid state gradually ameliorated and his titer of anti-thyroglobulin antibody decreased to the normal range. Pituitary function was re-evaluated with GRH stimulation test under a maintenance dose of 20 mg/day hydrocortisone and showed a normal response of GH to GRH. It is suggested that re-evaluation of pituitary and thyroid function is useful for diagnosing isolated ACTH deficiency after starting a maintenance dose of hydrocortisone in order to avoid unnecessary replacement of thyroid hormone.

  8. Growth hormone receptor polymorphisms and growth hormone response to stimulation test: a pilot study.

    PubMed

    Pagani, Sara; DE Filippo, Gianpaolo; Genoni, Giulia; Rendina, Domenico; Meazza, Cristina; Bozzola, Elena; Bona, Gianni; Bozzola, Mauro

    2016-06-29

    No gold standard pharmacological stimulation test exists for the diagnosis of growth hormone deficiency (GHD). In addition, the genetic factors that influence growth hormone (GH) responses remain unclear. This study aimed to determine whether polymorphisms in exon 6 of the GH receptor gene influence responses to the L-arginine GH stimulation test. This study included 27 prepubertal patients with confirmed GHD. GHD was defined as a peak GH level <8 ng/ml in response to pharmacological stimulation. The mean GH peak after L-arginine stimulation was 2.9 ± 2.9 ng/ml. The included patients had the following genotypes at the third position of codon 168: AA (n=1), AG (n=15) and GG (n=11). Patients carrying the AA and AG genotypes exhibited stronger responses to arginine than patients with the GG genotype (3.1 ± 2.7 vs. 1.5 ± 1.3 ng/ml, p = 0.01). The approach employed in this study could elucidate GH profiles under physiological and pathological conditions, facilitating improved interpretation of pharmacological stimulation tests.

  9. [Cornelia de Lange Syndrome and multiple hormonal deficiency, an unusual association. Clinical case].

    PubMed

    Mora-Bautista, Víctor M; Mendoza-Rojas, Víctor; Contreras-García, Gustavo A

    2017-06-01

    Cornelia de Lange syndrome is a genetic disease characterized by distinctive facial features, failure to thrive, microcephaly and several malformations associated. Its main endocrinological features are anomalies of the genitalia. We present a 13-year-old boy, who suffered from complicated aspiration pneumonia and showed Cornelia de Lange syndrome phenotype, with global developmental delay, suction-swallowing abnormalities, short stature and abnormal genitalia associated. His bone age was delayed, so he underwent full endocrinological panel. Central hypothyroidism, growth hormone deficiency and low luteinizing hormone-follicle-stimulating hormone levels were observed and multiple pituitary hormone deficiencies diagnosis was made. Basal cortisol, adrenocorticotropic hormone and prolactin levels were normal. He received thyroid hormonal substitution. Multiple pituitary hormone deficiencies are an unusual feature of De Lange syndrome. We suggest evaluating all different endocrine axes in these patients. Sociedad Argentina de Pediatría.

  10. Growth hormone treatment in non-growth hormone-deficient children

    PubMed Central

    Carta, Luisanna; Ibba, Anastasia; Guzzetti, Chiara

    2014-01-01

    Until 1985 growth hormone (GH) was obtained from pituitary extracts, and was available in limited amounts only to treat severe growth hormone deficiency (GHD). With the availability of unlimited quantities of GH obtained from recombinant DNA technology, researchers started to explore new modalities to treat GHD children, as well as to treat a number of other non-GHD conditions. Although with some differences between different countries, GH treatment is indicated in children with Turner syndrome, chronic renal insufficiency, Prader-Willi syndrome, deletions/mutations of the SHOX gene, as well as in short children born small for gestational age and with idiopathic short stature. Available data from controlled trials indicate that GH treatment increases adult height in patients with Turner syndrome, in patients with chronic renal insufficiency, and in short children born small for gestational age. Patients with SHOX deficiency seem to respond to treatment similarly to Turner syndrome. GH treatment in children with idiopathic short stature produces a modest mean increase in adult height but the response in the individual patient is unpredictable. Uncontrolled studies indicate that GH treatment may be beneficial also in children with Noonan syndrome. In patients with Prader-Willi syndrome GH treatment normalizes growth and improves body composition and cognitive function. In any indication the response to GH seems correlated to the dose and the duration of treatment. GH treatment is generally safe with no major adverse effects being recorded in any condition. PMID:24926456

  11. Impaired Hair Growth and Wound Healing in Mice Lacking Thyroid Hormone Receptors

    PubMed Central

    Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M.; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies. PMID:25254665

  12. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  13. Autoinduction of nuclear hormone receptors during metamorphosis and its significance.

    PubMed

    Tata, J R

    2000-01-01

    Metamorphosis is a most dramatic example of hormonally regulated genetic reprogramming during postembryonic development. The initiation and sustenance of the process are under the control of ecdysteroids in invertebrates and thyroid hormone, 3,3', 5-triiodothyronine, in oviparous vertebrates. Their actions are inhibited or potentiated by other endogenous or exogenous hormones - juvenile hormone in invertebrates and prolactin and glucocorticoids in vertebrates. The nuclear receptors for ecdysteroids and thyroid hormone are the most closely related members of the steroid/retinoid/thyroid hormone receptor supergene family. In many pre-metamorphic amphibia and insects, the onset of natural metamorphosis and the administration of the exogenous hormones to the early larvae are characterized by a substantial and rapid autoinduction of the respective nuclear receptors. This review will largely deal with the phenomenon of receptor autoinduction during amphibian metamorphosis, although many of its features resemble those in insect metamorphosis. In the frog Xenopus, thyroid hormone receptor autoinduction has been shown to be brought about by the direct interaction between the receptor protein and the thyroid-responsive elements in the promoter of its own gene. Three lines of evidence point towards the involvement of receptor autoinduction in the process of initiation of amphibian metamorphosis: (1) a close association between the extent of inhibition or potentiation by prolactin and glucocorticoid, respectively, and metamorphic response in whole tadpoles and in organ and cell cultures; (2) thyroid hormone fails to upregulate the expression of its own receptor in obligatorily neotenic amphibia but does so in facultatively neotenic amphibia; and (3) dominant-negative receptors known to block hormonal response prevent the autoinduction of wild-type Xenopus receptors in vivo and in cell lines. Autoinduction is not restricted to insect and amphibian metamorphic hormones but is

  14. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  15. Oncogenic mutations of thyroid hormone receptor β

    PubMed Central

    Park, Jeong Won; Zhao, Li; Willingham, Mark; Cheng, Sheue-yann

    2015-01-01

    The C-terminal frame-shift mutant of the thyroid hormone receptor TRβ1, PV, functions as an oncogene. An important question is whether the oncogenic activity of mutated TRβ1 is uniquely dependent on the PV mutated sequence. Using four C-terminal frame-shift mutants—PV, Mkar, Mdbs, and AM—we examined that region in the oncogenic actions of TRβ1 mutants. Remarkably, these C-terminal mutants induced similar growth of tumors in mouse xenograft models. Molecular analyses showed that they physically interacted with the p85α regulatory subunit of PI3K similarly in cells. In vitro GST-binding assay showed that they bound to the C-terminal Src-homology 2 (CSH2) of p85α with markedly higher avidity. The sustained association of mutants with p85α led to activation of the common PI3K-AKT-ERK/STAT3 signaling to promote cell proliferation and invasion and to inhibit apoptosis. Thus, these results argue against the oncogenic activity of PV being uniquely dependent on the PV mutated sequence. Rather, these four mutants could favor a C-terminal conformation that interacted with the CSH2 domain of p85α to initiate activation of PI3K to relay downstream signaling to promote tumorigenesis. Thus, we propose that the mutated C-terminal region of TRβ1 could function as an “onco-domain” and TRβ1 is a potential therapeutic target. PMID:25924236

  16. Hormone-binding assay using living bacteria expressing eukaryotic receptors.

    PubMed

    Romanov, Georgy A; Lomin, Sergey N

    2009-01-01

    Studies on hormone-receptor interaction include, as a rule, isolation and extensive purification of the receptor protein or a particular receptor-containing fraction. To bypass these time- and resource-consuming procedures, we proposed a live cell-based assay using transgenic bacteria expressing single eukaryotic receptors. We describe here 3H-cytokinin binding to corresponding plant receptors as an example. The method includes procedures of bacteria growing, incubation with labeled hormone, separation of bound from unbound ligand, determination of radioactivity in bacterial precipitates, and mathematical analysis of primary data. The established simple protocol for specific labeling hormone-binding sites in intact bacteria allows determination of the main parameters of the ligand-receptor interaction.

  17. Laboratory diagnosis of multiple pituitary hormone deficiencies: issues with testing of the growth and thyroid axes.

    PubMed

    Nakamoto, Jon

    2009-01-01

    Clinical manifestations of hypopituitarism are variable and depend on the severity of hormone deficiency, creating a diagnostic challenge for diagnosis of the non-classical patient who may have a less severe growth hormone (GH) deficiency and only a suggestion of possible hypothyroidism. Laboratory tests contribute to the diagnostic process, but the tests for growth and thyroid dysfunction, two of the most common manifestations of multiple pituitary hormone deficiency, are some of the most problematic from a methodological perspective. Patients in the "grey zone" of diagnosis, for whom there is no distinct dividing line or gold standard diagnostic test, are the focus of this article. Issues relating to the use of laboratory tests involving GH, insulin-like growth factor-I, and free thyroxine in the diagnosis of GH and thyroid deficiency are reviewed. Assay harmonization initiatives are required before clinical research studies are performed to establish diagnostic thresholds for GH and thyroid hormone deficiencies.

  18. Effect of growth hormone (GH)-releasing hormone (GRH) on plasma GH in relation to magnitude and duration of GH deficiency in 26 children and adults with isolated GH deficiency or multiple pituitary hormone deficiencies: evidence for hypothalamic GRH deficiency.

    PubMed

    Schriock, E A; Lustig, R H; Rosenthal, S M; Kaplan, S L; Grumbach, M M

    1984-06-01

    Synthetic, amidated, 44 amino acid GH-releasing hormone ( GRH -44) was administered iv at a dose of 5 micrograms/kg to 20 patients with severe GH deficiency (GHD), 6 children and adolescents with partial GHD, and 6 non-GH deficient ( NGHD ) children and adolescents. The 17 patients with severe GHD that responded to GRH -44 had lower peak concentrations of plasma GH than the NGHD individuals (5.0 +/- 1.2 (SEM) vs. 27.2 +/- 3.5 ng/ml; P less than 0.0001). The children and adolescents with severe GHD tended to have higher peak GH responses to GRH -44 than the GHD adults (6.9 +/- 1.7 vs. 2.4 +/- 0.3 ng/ml) although the difference was not significant. The peak GH concentration was attained earlier in the GHD children and adolescents than in the GHD adults (28 +/- 4.7 vs. 69.3 +/- 13 min, P less than 0.004). There was a negative correlation between chronological age and peak plasma GH response to GRH in the children and adolescents with severe GHD (r = -0.758, P less than 0.02). Children and adolescents with partial GHD had a higher mean peak concentration of plasma GH (13. 1 +/- 1.8 ng/ml) than the children, adolescents, and adults with severe GHD (P less than 0.04), but one lower than the NGHD children and adolescents (P less than 0.05). In both severe and partial GHD the GH response to GRH was greater than that elicited by standard pharmacological tests. Serum somatomedin-C did not increase after a single pulse of GRH -44 in the 12 GHD patients studied. PRL increased minimally 30 min after 5 micrograms/kg iv GRH -44 in patients with multiple hypothalamic-pituitary hormone deficiencies but not in patients with isolated GHD or in NGHD individuals. The GH responses to GRH suggest that the majority of patients with isolated GHD as well as those with multiple hypothalamic-pituitary hormone deficiencies have deficiency of hypothalamic GRH . Lack of a GH response to a single pulse of GRH does not exclude GRH deficiency as priming of the somatotrope with multiple pulses of

  19. Current status of hormone therapy in patients with hormone receptor positive (HR+) advanced breast cancer.

    PubMed

    Dalmau, Elsa; Armengol-Alonso, Alejandra; Muñoz, Montserrat; Seguí-Palmer, Miguel Ángel

    2014-12-01

    The natural history of HR+ breast cancer tends to be different from hormone receptor-negative disease in terms of time to recurrence, site of recurrence and overall aggressiveness of the disease. The developmental strategies of hormone therapy for the treatment of breast cancer have led to the classes of selective estrogen receptor modulators, selective estrogen receptor downregulators, and aromatase inhibitors. These therapeutic options have improved breast cancer outcomes in the metastatic setting, thereby delaying the need for chemotherapy. However, a subset of hormone receptor-positive breast cancers do not benefit from endocrine therapy (intrinsic resistance), and all HR+ metastatic breast cancers ultimately develop resistance to hormonal therapies (acquired resistance). Considering the multiple pathways involved in the HR network, targeting other components of pathologically activated intracellular signaling in breast cancer may prove to be a new direction in clinical research. This review focuses on current and emerging treatments for HR+ metastatic breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Luteinizing hormone promotes gonadal tumorigenesis in inhibin-deficient mice

    PubMed Central

    Nagaraja, Ankur K.; Agno, Julio E.; Kumar, T. Rajendra; Matzuk, Martin M.

    2009-01-01

    Summary The inhibins are secreted α:β heterodimers of the TGF-β superfamily that are mainly synthesized in Sertoli cells and granulosa cells, and are critical regulators of testicular and ovarian development and function. Mice homozygous for a targeted deletion of the inhibin α subunit gene (Inha-/-) develop sex cord-stromal tumors in a gonadotropin-dependent manner. Here, we determine the contribution of LH to gonadal tumorigenesis by generating mice deficient in both inhibins and LH. Inha-/-Lhb-/- mice have increased survival and delayed tumor progression, and these observations correlate with lower serum FSH and estradiol levels compared to Inha-/- controls. Double mutant testicular tumors demonstrate decreased expression of cyclin D2, while double mutant ovarian tumors have elevated expression of p15INK4b and trend toward higher levels of p27Kip1. We conclude that LH is not required for tumor formation in the absence of inhibins but promotes tumor progression, likely through alterations in serum hormone levels and cell cycle regulators. PMID:18657590

  1. Laryngeal and vocal evaluation in untreated growth hormone deficient adults

    PubMed Central

    Barreto, Valéria M.P.; D'Ávila, Jeferson S.; Sales, Neuza J.; Gonçalves, Maria Inês R.; Seabra, Juliane Dantas; Salvatori, Roberto; Aguiar-Oliveira, Manuel H.

    2009-01-01

    OBJECTIVE To evaluate the consequences of lifetime, severe and untreated isolated growth hormone deficiency (IGHD) on vocal and laryngeal function. STUDY DESIGN Cross-sectional. SUBJECTS AND METHODS A total of 23 IGHD adult subjects and 22 controls were administered a questionnaire about vocal complaints and harmful voice habits, and underwent video-laryngostroboscopic examination, voice evaluation by perceptual-auditory analysis with GRBAS scale including grade of dysphonia, roughness, breathiness, asthenia and strain items, objective voice evaluation by maximum phonation time (MPT), and acoustic analysis. RESULTS There was no difference in vocal complaints between IGHD subjects and controls. Vocal abuse and smoking were more frequent in IGHD subjects. IGHD subjects presented higher values for roughness, breathiness, and strain. Laryngopharyngeal reflux (LPR) signs and laryngeal constriction were more frequent in IGHD individuals. MPT was similar in the two groups. Fundamental frequency was higher in IGHD females and males. Harmonic to noise ratio was higher in IGHD in both genders and shimmer was lower in IGHD females. CONCLUSIONS IGHD subjects have higher prevalence of signs of LPR and laryngeal constriction, with high pitch in both genders, which suggests a prominent role of IGHD on these parameters. PMID:19130959

  2. Adrenergic receptor control mechanism for growth hormone secretion.

    PubMed

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  3. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size.

  4. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  5. Intrinsic disorder in nuclear hormone receptors.

    PubMed

    Krasowski, Matthew D; Reschly, Erica J; Ekins, Sean

    2008-10-01

    Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in "hub" human NHRs that have 10 or more downstream proteins in their interaction networks compared to "non-hub" NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts ( Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets.

  6. INTRINSIC DISORDER IN NUCLEAR HORMONE RECEPTORS

    PubMed Central

    Krasowski, Matthew D.; Reschly, Erica J.; Ekins, Sean

    2009-01-01

    Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in “hub” human NHRs that have 10 or more downstream proteins in their interaction networks compared to “non-hub” NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts (Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets. PMID:18651760

  7. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  8. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  9. Combination growth hormone and gonadotropin releasing hormone analog therapy in 11beta-hydroxylase deficiency.

    PubMed

    Bajpai, Anurag; Kabra, Madhulika; Menon, P S N

    2006-06-01

    Diagnosis of 11beta-hydroxylase deficiency was made in a boy at the age of 2 1/2 years on the basis of peripheral precocious puberty, growth acceleration (height standard deviation score +4.4) with advanced skeletal maturation (bone age 8.4 years) and elevated deoxycortisol levels. Glucocorticoid supplementation led to normalization of blood pressure but was associated with progression to central precocious puberty and increase in bone age resulting in decrease in predicted adult height to 133.7 cm (target height 163 cm). The child was started on GnRH analog (triptorelin 3.75 mg every 28 days), which led to improvement in predicted adult height by 3.1 cm over 15 months. Addition of growth hormone (0.1 IU/kg/day) resulted in improvement in predicted adult height (151 cm) and height deficit (12 cm) over the next 3.6 years. Final height (151 cm) exceeded predicted height at the initiation of GnRH analog treatment by 17.3 cm. This report suggests that combination GH and GnRH analog treatment may be useful in improving height outcome in children with 11beta-hydroxylase deficiency and compromised final height.

  10. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and

  11. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  12. Receptors for parathyroid hormone and parathyroid hormone-related peptide: from molecular cloning to definition of diseases.

    PubMed

    Jüppner, H; Schipani, E

    1996-07-01

    The parathyroid hormone/parathyroid hormone-related peptide receptor belongs to a distinct family of G protein-coupled receptors, the members of which usually signal through at least two second messenger systems, adenylate cyclase and phospholipase C. The parathyroid hormone/ parathyroid hormone-related peptide receptor is most abundantly expressed in bone, kidney and growth-plate chondrocytes, and, at lower levels, in a variety of fetal and adult tissues. To search for human diseases that are caused by parathyroid hormone/parathyroid hormone-related peptide receptor defects, genomic DNA of patients with pseudohypoparathyroidism type Ib and of patients with Jansen's metaphyseal chondrodysplasia was screened for mutations in all coding exons of the receptor gene. Inactivating parathyroid hormone/parathyroid hormone-related peptide receptor mutations were excluded in patients with pseudohypoparathyroidism type Ib. However, a receptor mutation that causes agonist-independent, constitutive cAMP accumulation was identified in a patient with Jansen's metaphyseal chondrodysplasia, a rare form of short-limbed dwarfism associated with hypercalcemia despite normal or low concentrations of parathyroid hormone and parathyroid hormone-related peptide. These findings allow the conclusion to be drawn that parathyroid hormone/parathyroid hormone-related peptide receptors mediate the endocrine actions of parathyroid hormone, which are required for the control of calcium homeostasis and the autocrine-paracrine actions of parathyroid hormone-related peptide, which are required for normal growth-plate development.

  13. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  14. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance.

    PubMed

    Cuneo, R C; Salomon, F; Wiles, C M; Hesp, R; Sönksen, P H

    1991-02-01

    Growth hormone (GH) treatment in adults with GH deficiency increases lean body mass and thigh muscle cross-sectional area. The functional significance of this was examined by incremental cycle ergometry in 24 GH-deficient adults treated in a double-blind placebo-controlled trial with recombinant DNA human GH (rhGH) for 6 mo (0.07 U/kg body wt daily). Compared with placebo, the rhGH group increased mean maximal O2 uptake (VO2max) (+406 +/- 71 vs. +133 +/- 84 ml/min; P = 0.016) and maximal power output (+24.6 +/- 4.3 vs. +9.7 +/- 4.8 W; P = 0.047), without differences in maximal heart rate or ventilation. Forced expiratory volume in 1 s, vital capacity, and corrected CO gas transfer were within normal limits and did not change with treatment. Mean predicted VO2max, based on height and age, increased from 78.9 to 96.0% in the rhGH group (compared with 78.5 and 85.0% for placebo; P = 0.036). The anaerobic ventilatory threshold increased in the rhGH group (+159 +/- 39 vs. +1 +/- 51 ml/min; P = 0.02). The improvement in VO2max was noted when expressed per kilogram body weight but not lean body mass or thigh muscle area. We conclude that rhGH treatment in adults with GH deficiency improves and normalizes maximal exercise performance and improves submaximal exercise performance and that these changes are related to increases in lean body mass and muscle mass. Improved cardiac output may also contribute to the effect of rhGH on exercise performance.

  15. Efficacy and Safety of Sustained-Release Recombinant Human Growth Hormone in Korean Adults with Growth Hormone Deficiency

    PubMed Central

    Kim, Youngsook; Hong, Jae Won; Chung, Yoon-Sok; Kim, Sung-Woon; Cho, Yong-Wook; Kim, Jin Hwa; Kim, Byung-Joon

    2014-01-01

    Purpose The administration of recombinant human growth hormone in adults with growth hormone deficiency has been known to improve metabolic impairment and quality of life. Patients, however, have to tolerate daily injections of growth hormone. The efficacy, safety, and compliance of weekly administered sustained-release recombinant human growth hormone (SR-rhGH, Declage™) supplement in patients with growth hormone deficiency were evaluated. Materials and Methods This trial is 12-week prospective, single-arm, open-label trial. Men and women aged ≥20 years with diagnosed growth hormone deficiency (caused by pituitary tumor, trauma and other pituitary diseases) were eligible for this study. Each subject was given 2 mg (6 IU) of SR-rhGH once a week, subcutaneously for 12 weeks. Efficacy and safety at baseline and within 30 days after the 12th injection were assessed and compared. Score of Assessment of Growth Hormone Deficiency in Adults (AGHDA score) for quality of life and serum IGF-1 level. Results The IGF-1 level of 108.67±74.03 ng/mL was increased to 129.01±68.37 ng/mL (p=0.0111) and the AGHDA QoL score was decreased from 9.80±6.51 to 7.55±5.76 (p<0.0001) at week 12 compared with those at baseline. Adverse events included pain, swelling, erythema, and warmth sensation at the administration site, but many adverse events gradually disappeared during the investigation. Conclusion Weekly administered SR-rhGH for 12 weeks effectively increased IGF-1 level and improved the quality of life in patients with GH deficiency without serious adverse events. PMID:24954335

  16. Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification.

    PubMed

    Souza, Anita H O; Farias, Maria I T; Salvatori, Roberto; Silva, Gabriella M F; Santana, João A M; Pereira, Francisco A; de Paula, Francisco J A; Valença, Eugenia H O; Melo, Enaldo V; Barbosa, Rita A A; Pereira, Rossana M C; Gois-Junior, Miburge B; Aguiar-Oliveira, Manuel H

    2014-09-01

    The GH/IGF-I axis has essential roles in regulating bone and vascular status. The age-related decrease in GH secretion ("somatopause") may contribute to osteoporosis and atherosclerosis, commonly observed in the elderly. Adult-onset GH deficiency (GHD) has been reported to be associated with reduced bone mineral density (BMD), increased risk of fractures, and premature atherosclerosis. We have shown the young adult individuals with isolated GHD (IGHD) due to a homozygous for the c.57+1G>A GHRH receptor gene mutation have normal volumetric BMD (vBMD), and not develop premature atherosclerosis, despite adverse risk factor profile. However, the bone and vascular impact of lifetime GHD on the aging process remains unknown. We studied a group of ten older IGHD subjects (≥60 years) homozygous for the mutation, comparing them with 20 age- and gender-matched controls (CO). Areal BMD was measured, and vBMD was calculated at the lumbar spine and total hip. Vertebral fractures and abdominal aortic calcifications (expressed as calcium score) were also assessed. Areal BMD was lower in IGHD, but vBMD was similar in the two groups. The percent of fractured individuals was similar, but the mean number of fractures per individual was lower in IGHD than CO. Calcium score was similar in the two groups. A positive correlation was found between calcium score and number of fractures. Untreated lifetime IGHD has beneficial consequences on bone status and does not have a deleterious effect on abdominal aorta calcification.

  17. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  18. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2017-03-28

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  19. Growth hormone deficiency: new approaches to the diagnosis.

    PubMed

    Binder, Gerhard

    2011-09-01

    . Because of the well known intrinsic diagnostic inaccuracy of any GH test, the correct selection of the child to be tested remains of utmost importance. The diagnosis of growth hormone deficiency (GHD) in childhood is guided by recommendations of national and international consensus statements which are based on the experience of experts. Most of these recommendations reach only a low level of evidence. Research on two central topics of these guidelines has recently been published by us and will be reviewed here.

  20. Isolated adrenocorticotropic hormone deficiency development during chemotherapy for gastric cancer: a case report

    PubMed Central

    2014-01-01

    Introduction Isolated adrenocorticotropic hormone deficiency is an endocrinological disorder characterized by loss of adrenocorticotropic hormone and resultant adrenal insufficiency. Affected patients often present with fatigue, anorexia, and hyponatremia. Although the number of reported cases has been recently increasing, isolated adrenocorticotropic hormone deficiency combined with malignant neoplasia is very rare. Here we describe a patient with gastric cancer who developed unexpected isolated adrenocorticotropic hormone deficiency during chemotherapy. Case presentation A 72-year-old Japanese man was admitted to our hospital because of febrile neutropenia due to chemotherapy for gastric cancer recurrence. Although the neutropenia and fever immediately improved, he became unable to take any oral medications and was bedridden 1 week after admission. His serum sodium level abruptly decreased to 122mEq/L on the fifth day of hospitalization. We performed endocrinological studies to investigate the cause of his hyponatremia and plasma hyposmolality. His plasma adrenocorticotropic hormone and cortisol levels were very low. However, his serum levels of all other anterior pituitary hormones were slightly elevated. We then performed a corticotropin-releasing hormone test, which showed that neither his plasma adrenocorticotropic hormone nor cortisol level responded to corticotropin-releasing hormone stimulation. We definitively diagnosed isolated adrenocorticotropic hormone deficiency based on these findings. Hydrocortisone replacement therapy was begun at 20mg/day, resulting in a marked improvement in his anorexia and general fatigue within a few days. His serum sodium level was also normalized immediately after the administration of hydrocortisone. He was discharged from our hospital on the 50th day of hospitalization. Conclusions The present case is the second report of a patient with concurrent isolated adrenocorticotropic hormone deficiency and gastric cancer and the

  1. Growth hormone replacement therapy reduces risk of cancer in adult with growth hormone deficiency: A meta-analysis

    PubMed Central

    Li, Zhanzhan; Zhou, Qin; Li, Yanyan; Fu, Jun; Huang, Xinqiong; Shen, Liangfang

    2016-01-01

    The risk of growth hormone on cancer in adult with growth hormone deficiency remains unclear. We carried out a meta-analysis to evaluate the risk of cancer in adult with and without growth hormone replacement therapy. We searched PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases up to 31 July 2016 for eligible studies. Pooled risk ratio (RR) with 95% confidence interval (CI) was calculated using fixed-or random-effects models if appropriate. The Newcastle-Ottawa Scale was used to assess the study quality. Two retrospective and seven prospective studies with a total of 11191 participants were included in the final analysis. The results from fixed-effects model showed this therapy was associated with the deceased risk of cancer in adult with growth hormone deficiency (RR=0.69, 95%CI: 0.59-0.82), with low heterogeneity within studies (I2=39.0%, P=0.108). We performed sensitivity analyses by sequentially omitting one study each time, and the pooled RRs did not materially change, indicating that our results were statistically stable. Begger's and Egger's tests suggested that there was no publication bias (Z=-0.63, P=0.520; t=0.16, P=0.874). Our study suggests that growth hormone replacement therapy could reduce risk of cancer in adult with growth hormone deficiency. PMID:27835910

  2. Growth hormone (GH-1) gene deletions in children with isolated growth hormone deficiency (IGHD).

    PubMed

    Desai, Meena P; Mithbawkar, Shilpa M; Upadhye, Pradnya S; Shalia, Kavita K

    2012-07-01

    To detect growth hormone GH-1 gene deletions (6.7 kb, 7.6 kb, 7 kb) in familial/nonfamilial isolated growth hormone deficiency (IGHD) and note their clinical and investigative profile. Thirty (M16,F14) prepubertal IGHD patients aged 0.25 to 14 y, from 25 families were screened. Duration of growth failure, relevant history, clinical phenotype, and height SDS were recorded. Peak GH response to Clonidine (0.15 mg/m(2)), IGF-1, IGFBP-3 and pituitary/target gland hormones were studied. Genomic DNA of patients and family was analysed by PCR and DNA fragments were visualized on agarose gel electrophoresis. This series was divided into deletion +ve, Group I (n=12,40%) inclusive of six familial/six nonfamilial patients, and deletion -ve Group II (n=18,60%), 5 familial/13 nonfamilial cases; in total 11/30 were familial. Onset of growth failure was earlier in Group I (p<0.001) mean 1.1 vs 4.7 y. Mean height SDS was -7 vs. -4.5 in Groups I/II (p<0.01), age at presentation 5.1 vs 8.6 y. Overhanging forehead, prominent eyes, hypoplastic facies characterized Group I with FBS <50 mg/dl in 50% and very low peak GH <0.04 vs 2.04 ng/ml (p<0.001) in Group II. In both groups IGF-1 and IGFBP3 were low, other hormones were normal and MRI showed hypoplastic adenohypophysis. 40% had GH-1 gene deletion (6.7 kb deletion in 83%, 7.6 kb and a compound heterozygote in 8% each). In this series of 30 IGHD patients, frequency of GH-1 gene deletions (12/30) was 40%, and 54% among familial patients, and 31% with height SDS>-4. 83% had 6.7 kb deletion. Height SDS>-4, clinical phenotype, peak GH<1 ng/ml and hypoglycemia characterised IGHD Type IA.

  3. Serum transferrin receptor: a quantitative measure of tissue iron deficiency.

    PubMed

    Skikne, B S; Flowers, C H; Cook, J D

    1990-05-01

    This study was undertaken to evaluate the role of serum transferrin receptor measurements in the assessment of iron status. Repeated phlebotomies were performed in 14 normal volunteer subjects to obtain varying degrees of iron deficiency. Serial measurements of serum iron, total iron-binding capacity, mean cell volume (MCV), free erythrocyte protoporphyrin (FEP), red cell mean index, serum ferritin, and serum transferrin receptor were performed throughout the phlebotomy program. There was no change in receptor levels during the phase of storage iron depletion. When the serum ferritin level reached subnormal values there was an increase in serum receptor levels, which continued throughout the phlebotomy program. Functional iron deficiency was defined as a reduction in body iron beyond the point of depleted iron stores. The serum receptor level was a more sensitive and reliable guide to the degree of functional iron deficiency than either the FEP or MCV. Our studies indicate that the serum receptor measurement is of particular value in identifying mild iron deficiency of recent onset. The iron status of a population can be fully assessed by using serum ferritin as a measure of iron stores, serum receptor as a measure of mild tissue iron deficiency, and hemoglobin concentration as a measure of advanced iron deficiency.

  4. Growth hormone deficiency and pituitary malformation in a recurrent Cat-Eye syndrome: a family report.

    PubMed

    Jedraszak, Guillaume; Braun, Karine; Receveur, Aline; Decamp, Matthieu; Andrieux, Joris; Rabbind Singh, Amrathlal; Copin, Henri; Bremond-Gignac, Dominique; Mathieu, Michèle; Rochette, Jacques; Morin, Gilles

    2015-10-01

    Growth hormone deficiency affects roughly between one in 3000 and one in 4000 children with most instances of growth hormone deficiency being idiopathic. Growth hormone deficiency can also be associated with genetic diseases or chromosome abnormalities. Association of growth hormone deficiency together with hypothalamic-pituitary axis malformation and Cat-Eye syndrome is a very rare condition. We report a family with two brothers presenting with growth delay due to a growth hormone deficiency associated with a polymalformation syndrome. They both displayed pre-auricular pits and tags, imperforate anus and Duane retraction syndrome. Both parents and a third unaffected son displayed normal growth pattern. Cerebral MRI showed a hypothalamic-pituitary axis malformation in the two affected brothers. Cytogenetic studies revealed a type I small supernumerary marker chromosome derived from chromosome 22 resulting in a tetrasomy 22pter-22q11.21 characteristic of the Cat-Eye syndrome. The small supernumerary marker chromosome was present in the two affected sons and the mother in a mosaic state. Patients with short stature due to growth hormone deficiency should be evaluated for chromosomal abnormality. Family study should not be underestimated.

  5. [Hormonal deficiencies in the elderly: is there a role for replacement therapy?].

    PubMed

    Racaru-Honciuc, Valentina; Betea, Daniela; Scheen, André J

    2014-08-27

    Biological aging is characterized by a progressive loss of the secretion of various hormones, a phenomenon that leads some physicians to propose an anti-aging hormonal therapy. It is mandatory to differentiate: 1) the physiological functional loss, which is a natural phenomenon without clear deleterious consequences on health and should not be compensated by the administration of hormones only to restore plasma levels similar to those measured in young people and 2) a pathological defect that deserves a replacement therapy to correct the endocrine deficiency and improve the health status of older individuals. This article considers the deficiencies in insulin, thyroid hormones, growth hormone, dehydroepiandrosterone (DHEA) and testosterone. For each hormone, a benefit/risk ratio of a so-called replacement therapy will be analyzed.

  6. Type 2 diabetes mellitus accompanied by isolated adrenocorticotropic hormone deficiency and gastric cancer.

    PubMed

    Kamiya, Yuji; Murakami, Masami

    2009-01-01

    A 69-year-old man with type 2 diabetes mellitus was admitted to our hospital because of appetite loss, nausea and vomiting. Gastroscopy revealed gastric cancer. Levels of plasma cortisol were decreased. Neither adrenocorticotropic hormone (ACTH) nor cortisol levels were adequately increased in response to a mixed intravenous administration of corticotropin-releasing hormone, growth hormone-releasing hormone, thyrotropin-releasing hormone and lutenizing hormone-releasing hormone, although other pituitary hormones were increased adequately. He was diagnosed as having isolated ACTH deficiency (IAD). Anti-pituitary antibody and anti-parietal cell antibody were positive. At least in part, these antibodies may play pathogenic roles of development of IAD and gastric cancer.

  7. Frequent development of combined pituitary hormone deficiency in patients initially diagnosed as isolated growth hormone deficiency: a long term follow-up of patients from a single center.

    PubMed

    Otto, Aline P; França, Marcela M; Correa, Fernanda A; Costalonga, Everlayny F; Leite, Claudia C; Mendonca, Berenice B; Arnhold, Ivo J P; Carvalho, Luciani R S; Jorge, Alexander A L

    2015-08-01

    Children initially diagnosed with isolated GH deficiency (IGHD) have a variable rate to progress to combined pituitary hormone deficiency (CPHD) during follow-up. To evaluate the development of CPHD in a group of childhood-onset IGHD followed at a single tertiary center over a long period of time. We retrospectively analyzed data from 83 patients initially diagnosed as IGHD with a mean follow-up of 15.2 years. The Kaplan-Meier method and Cox regression analysis was used to estimate the temporal progression and to identify risk factors to development of CPHD over time. From 83 patients initially with IGHD, 37 (45%) developed CPHD after a median time of follow up of 5.4 years (range from 1.2 to 21 years). LH and FSH deficiencies were the most common pituitary hormone (38%) deficiencies developed followed by TSH (31%), ACTH (12%) and ADH deficiency (5%). ADH deficiency (3.1 ± 1 years from GHD diagnosis) presented earlier and ACTH deficiency (9.3 ± 3.5 years) presented later during follow up compared to LH/FSH (8.3 ± 4 years) and TSH (7.5 ± 5.6 years) deficiencies. In a Cox regression model, pituitary stalk abnormalities was the strongest risk factor for the development of CPHD (hazard ratio of 3.28; p = 0.002). Our study indicated a high frequency of development of CPHD in patients initially diagnosed as IGHD at childhood. Half of our patients with IGHD developed the second hormone deficiency after 5 years of diagnosis, reinforcing the need for lifelong monitoring of pituitary function in these patients.

  8. Type-2 Iodothyronine 5′Deiodinase (D2) in Skeletal Muscle of C57Bl/6 Mice. II. Evidence for a Role of D2 in the Hypermetabolism of Thyroid Hormone Receptor α-Deficient Mice

    PubMed Central

    Ramadan, W.; Marsili, A.; Larsen, P. R.; Zavacki, A. M.

    2011-01-01

    Mice with ablation of the Thra gene have cold intolerance due to an as yet undefined defect in the activation of brown adipose tissue (BAT) uncoupling protein (UCP). They develop an alternate form of facultative thermogenesis, activated at temperatures below thermoneutrality and associated with hypermetabolism and reduced sensitivity to diet-induced obesity. A consistent finding in Thra-0/0 mice is increased type-2 iodothyronine deiodinase (D2) mRNA in skeletal muscle and other tissues. With an improved assay to measure D2 activity, we show here that this enzyme activity is increased in proportion to the mRNA and as a function of the ambient cold. The activation is mediated by the sympathetic nervous system in Thra-0/0, as it is in wild-type genotype mice, but the sympathetic nervous system effect is greater in Thra-0/0 mice. Using D2-ablated mice (Dio2−/−), we reported elsewhere and show here that, in spite of sharing a severe deficiency in BAT thermogenesis with Thra-0/0 and UCP1-knockout mice, they do not have an increase in oxygen consumption, and they gain more weight than wild-type controls when fed a high-fat diet. UCP3 mRNA is highly responsive to thyroid hormone, and it is increased in Thra-0/0 mice, particularly when fed high-fat diets. We show here that muscle UCP3 mRNA in hypothyroid Thra-0/0 mice is responsive to small dose-short regimens of T4, indicating a role for locally, D2-generated T3. Lastly, we show that bile acids stimulate not only BAT but also muscle D2 activity, and this is associated with stimulation of muscle UCP3 mRNA expression provided T4 is present. These observations strongly support the concept that enhanced D2 activity in Thra-0/0 plays a critical role in their alternate form of facultative thermogenesis, stimulating increased fat oxidation by increasing local T3 generation in skeletal muscle. PMID:21652727

  9. Estrogen Receptor Polymorphisms and the Vascular Effects of Hormone Therapy

    PubMed Central

    Rossouw, Jacques; Bray, Paul; Liu, Jingmin; Kooperberg, Charles; Hsia, Judith; Lewis, Cora; Cushman, Mary; Bonds, Denise; Hendrix, Susan; Papanicolaou, George; Howard, Tim; Herrington, David

    2010-01-01

    Objective To test whether estrogen receptor polymorphisms modify the effects of postmenopausal hormone therapy on biomarkers and on risk of coronary heart disease events, stroke, or venous thrombo-embolism. Methods and Results The design was a nested case-control study in the Women’s Health Initiative trials of postmenopausal hormone therapy. The study included all cases in the first 4 years: coronary heart disease, 359; stroke, 248; venous thrombo-embolism, 217). Six estrogen receptor-αand one estrogen receptor-β polymorphisms were genotyped; 8 biomarkers known to be affected by hormone therapy were measured at baseline and one year after randomization. The polymorphisms were not associated with risk of vascular events, and did not modify the increased risks of coronary heart disease, stroke, or venous thrombo-embolism due to hormone therapy. However, a reduced response of plasmin-antiplasmin (PAP) to hormone therapy was noted for ESR1 IVS1-354 (interaction P<0.0001, corrected for multiple comparisons P=0.014) and ESR1 IVS1-1415 (interaction P<0.0001, corrected P= 0.014). Conclusions Estrogen receptor polymorphisms reduce the effect of postmenopausal hormone therapy on PAP, a marker of coagulation and fibrinolysis. However screening for ER polymorphisms to identify women at less risk of adverse cardiovascular outcomes is not likely to be useful for making HT treatment decisions. PMID:21106950

  10. Ethanol-induced developmental neurodegeneration in secretin receptor-deficient mice.

    PubMed

    Hwang, Dong-Woo; Givens, Bennet; Nishijima, Ichiko

    2009-05-06

    Alcohol exposure during brain development induces neuronal cell death in the brain. Several neuroactive peptides have been shown to protect against alcohol-induced cell death. Secretin is a peptide hormone, and the secretin receptor is expressed in the gut and the brain. To explore a potential role of secretin signal against ethanol neurotoxicity during brain development, secretin receptor-deficient mice were exposed to ethanol on postnatal day 4. We identified significant ethanol-induced apoptosis in the external granular layer of the secretin receptor-deficient cerebellum and in the striatum after ethanol treatment. During the early postnatal period, there is a proliferation of granular cell progenitors that reside in the external granular layer. The results suggest that secretin signal plays a neuroprotective role of neuronal progenitor cells against the neurotoxicity of ethanol.

  11. Effect of growth hormone therapy on Taiwanese children with growth hormone deficiency.

    PubMed

    Huang, Ying-Hua; Wai, Yau-Yau; Van, Yang-Hau; Lo, Fu-Sung

    2012-07-01

    Human growth hormone (GH) has been successfully used in children with GH deficiency (GHD). However, there are few published data on the effect of GH in Taiwanese children with GHD. We performed a retrospective cohort study to identify factors influencing the effect of GH therapy on ethnic Chinese children with GHD in Taiwan. Idiopathic GHD can be classified into isolated GHD (IGHD) and multiple pituitary hormone deficiency (MPHD). The study looked at the effect of GH on the auxological, biochemical, and imaging parameters of 51 patients (13 girls and 38 boys) in three different diagnostic groups: MPHD (n = 12), IGHD (n = 8), and transient GHD (TGHD; n = 31). TGHD is defined as a GH peak >10 μg/L in re-evaluation by two GH stimulation tests approximately 6 months after discontinuation of GH therapy. The height velocity for first-year GH therapy was 7.61 ± 1.46, 8.14 ± 1.92, and 9.99 ± 2.75 cm/y in the TGHD, IGHD, and MPHD groups, respectively. After post hoc comparison, the MPHD group had a significantly accelerated height velocity in the first year compared to the TGHD group. Correlation analysis showed that a change in height standard deviation score (SDS) in the first year had a significant negative correlation with the following variables: peak GH (r = -0.52, p < 0.001), pretreatment height SDS (r = -0.49, p < 0.001), and height-target height (Ht-TH) SDS (r = -0.49, p < 0.001). Change in height SDS in the first 2 years had a significantly negative correlation with peak GH (r = -0.51, p < 0.001), insulin-like growth factor-1 SDS (r = -0.35, p = 0.022), height SDS (r = -0.60, p < 0.001), difference between bone age and chronological age (r = -0.46, p = 0.001), and Ht-TH SDS (r = -0.50, p = 0.001). After using multiple linear regression, the pretreatment GH peak value was found to be significantly associated with height increments after 1 year of GH treatment (B = -0.07, p = 0.014). The administration of GH to children with GHD results in a pronounced

  12. Thyroid hormone receptors in brain development and function.

    PubMed

    Bernal, Juan

    2007-03-01

    Thyroid hormones are important during development of the mammalian brain, acting on migration and differentiation of neural cells, synaptogenesis, and myelination. The actions of thyroid hormones are mediated through nuclear thyroid hormone receptors (TRs) and regulation of gene expression. The purpose of this article is to review the role of TRs in brain maturation. In developing humans maternal and fetal thyroid glands provide thyroid hormones to the fetal brain, but the timing of receptor ontogeny agrees with clinical data on the importance of the maternal thyroid gland before midgestation. Several TR isoforms, which are encoded by the THRA and THRB genes, are expressed in the brain, with the most common being TRalpha1. Deletion of TRalpha1 in rodents is not, however, equivalent to hormone deprivation and, paradoxically, even prevents the effects of hypothyroidism. Unliganded receptor activity is, therefore, probably an important factor in causing the harmful effects of hypothyroidism. Accordingly, expression of a mutant receptor with impaired triiodothyronine (T(3)) binding and dominant negative activity affected cerebellar development and motor performance. TRs are also involved in adult brain function. TRalpha1 deletion, or expression of a dominant negative mutant receptor, induces consistent behavioral changes in adult mice, leading to severe anxiety and morphological changes in the hippocampus.

  13. Growth hormone-releasing hormone is produced by adipocytes and regulates lipolysis through growth hormone receptor.

    PubMed

    Rodríguez-Pacheco, F; Gutierrez-Repiso, C; García-Serrano, S; Ho-Plagaro, A; Gómez-Zumaquero, J M; Valdes, S; Gonzalo, M; Rivas-Becerra, J; Montiel-Casado, C; Rojo-Martínez, G; García-Escobar, E; García-Fuentes, E

    2017-10-01

    Growth hormone-releasing hormone (GHRH) has a crucial role in growth hormone (GH) secretion, but little is known about its production by adipocytes and its involvement in adipocyte metabolism. To determine whether GHRH and its receptor (GHRH-R) are present in human adipocytes and to study their levels in obesity. Also, to analyze the effects of GHRH on human adipocyte differentiation and lipolysis. GHRH/GHRH-R and GH/GH-R mRNA expression levels were analyzed in human mature adipocytes from non-obese and morbidly obese subjects. Human mesenchymal stem cells (HMSC) were differentiated to adipocytes with GHRH (10(-14)-10(-8) M). Adipocyte differentiation, lipolysis and gene expression were measured and the effect of GH-R silencing was determined. Mature adipocytes from morbidly obese subjects showed a higher expression of GHRH and GH-R, and a lower expression of GHRH-R and GH than non-obese subjects (P<0.05). A total of 10(-14)-10(-10) M GHRH induced an inhibition of lipid accumulation and PPAR-γ expression (P<0.05), and an increase in glycerol release and HSL expression (P<0.05) in human differentiated adipocytes. A total of 10(-12)-10(-8) M GHRH decreased GHRH-R expression in human differentiated adipocytes (P<0.05). A total of 10(-10)-10(-8) M GHRH increased GH and GH-R expression in human differentiated adipocytes (P<0.05). The effects of GHRH at 10(-10) M on adipocyte differentiation and lipolysis were blocked when GH-R expression was silenced. GHRH and GHRH-R are expressed in human adipocytes and are negatively associated. GHRH at low doses may exert an anti-obesity effect by inhibiting HMSC differentiation in adipocytes and by increasing adipocyte lipolysis in an autocrine or paracrine pathway. These effects are mediated by GH and GH-R.

  14. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency.

    PubMed

    Pérez-Sieira, S; López, M; Nogueiras, R; Tovar, S

    2014-03-03

    The NR4A is a subfamily of the orphan nuclear receptors (NR) superfamily constituted by three well characterized members: Nur77 (NR4A1), Nurr1 (NR4A2) and Nor 1 (NR4A3). They are implicated in numerous biological processes as DNA repair, arteriosclerosis, cell apoptosis, carcinogenesis and metabolism. Several studies have demonstrated the role of this subfamily on glucose metabolism, insulin sensitivity and energy balance. These studies have focused mainly in liver and skeletal muscle. However, its potential role in white adipose tissue (WAT), one of the most important tissues involved in the regulation of energy homeostasis, is not well-studied. The aim of this work was to elucidate the regulation of NR4A in WAT under different physiological and pathophysiological settings involved in energy balance such as fasting, postnatal development, gender, hormonal deficiency and pregnancy. We compared NR4A mRNA expression of Nur77, Nurr1 and Nor 1 and found a clear regulation by nutritional status, since the expression of the 3 isoforms is increased after fasting in a leptin-independent manner and sex steroid hormones also modulate NR4A expression in males and females. Our findings indicate that NR4A are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in glucose metabolism and energy status.

  15. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency

    PubMed Central

    Pérez-Sieira, S.; López, M.; Nogueiras, R.; Tovar, S.

    2014-01-01

    The NR4A is a subfamily of the orphan nuclear receptors (NR) superfamily constituted by three well characterized members: Nur77 (NR4A1), Nurr1 (NR4A2) and Nor 1 (NR4A3). They are implicated in numerous biological processes as DNA repair, arteriosclerosis, cell apoptosis, carcinogenesis and metabolism. Several studies have demonstrated the role of this subfamily on glucose metabolism, insulin sensitivity and energy balance. These studies have focused mainly in liver and skeletal muscle. However, its potential role in white adipose tissue (WAT), one of the most important tissues involved in the regulation of energy homeostasis, is not well-studied. The aim of this work was to elucidate the regulation of NR4A in WAT under different physiological and pathophysiological settings involved in energy balance such as fasting, postnatal development, gender, hormonal deficiency and pregnancy. We compared NR4A mRNA expression of Nur77, Nurr1 and Nor 1 and found a clear regulation by nutritional status, since the expression of the 3 isoforms is increased after fasting in a leptin-independent manner and sex steroid hormones also modulate NR4A expression in males and females. Our findings indicate that NR4A are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in glucose metabolism and energy status. PMID:24584059

  16. [Benefits and risks of growth hormone in adults with growth hormone deficiency].

    PubMed

    Díez, Juan J; Cordido, Fernando

    2014-10-21

    Adult growth hormone (GH) deficiency is a well-recognized clinical syndrome with adverse health consequences. Many of these may improve after replacement therapy with recombinant GH. This treatment induces an increase in lean body mass and a decrease in fat mass. In long-term studies, bone mineral density increases and muscle strength improves. Health-related quality of life tends to increase after treatment with GH. Lipid profile and markers of cardiovascular risk also improve with therapy. Nevertheless, GH replacement therapy is not without risk. According to some studies, GH increases blood glucose, body mass index and waist circumference and may promote long-term development of diabetes and metabolic syndrome. Risk of neoplasia does not appear to be increased in adults treated with GH, but there are some high-risk subgroups. Methodological shortcomings and difficulties inherent to long-term studies prevent definitive conclusions about the relationship between GH and survival. Therefore, research in this field should remain active. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  17. Fifty years ago: the quest for steroid hormone receptors.

    PubMed

    Rousseau, Guy G

    2013-08-15

    In 1963 Peter Karlson put forward the revolutionary "hormone-gene" hypothesis, which would change drastically the way in which steroid hormones were thought to act at the time. From a historical perspective, this review relates the acceptance of this initially controversial idea, the discovery of the steroid receptors and the key experiments that have led to the current understanding of the mechanism of steroid hormone action. It shows how, over 50years, the field has widened beyond all expectation and has contributed to major advances not only in endocrinology, but also in molecular biology, pharmacology and therapeutics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. LOX-1: a male hormone-regulated scavenger receptor for atherosclerosis.

    PubMed

    Gao, Song; Geng, Yong-Jian

    2013-01-01

    Lectin-like oxidized LDL receptor-1 (LOX-1) is a unique scavenger receptor that mediates the binding and uptake of oxidized LDL (ox-LDL) by vascular cells during the development of atherosclerosis. Exposure to ox-LDL induces LOX-1 expression and LOX-1-dependent biological activities, such as activation of NF-κB, a nuclear factor important for signal transduction in inflammation. Accumulating evidence indicates that male hormones may regulate expression of LOX-1 and NF-κB as well as atherogenesis. Deficiency or low levels of the male hormone testosterone promote LOX-1 expression and NF-κB activation, while testosterone replacement therapy reduces the expression of LOX-1 and the activation of NF-κB, thereby protecting the arterial wall against atherogenesis.

  19. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  20. [Parathyroid hormone receptors: from cloning to physiological, physiopathological and clinical implications].

    PubMed

    Mannstadt, M; Drüeke, T B

    1997-01-01

    It has long been known that parathyroid hormone (PTH) exerts its effects on target tissues via its binding to a membrane receptor. Recently, several types of PTH receptors have been identified. The first receptor which has been cloned and well characterized is "PTH/PTHrP receptor-1". It is activated not only by PTH, but also by PTH-related peptide (PTHrP), via a signal transduction system involving G-proteins, adenylate cyclase and phospholipase C. It is expressed in many tissues, in addition to kidney and bone. The results of recent studies are suggestive of the existence of additional PTH receptors. One or several receptors are probably expressed in the keratinocyte and the glomerular podocyte which are not identical with PTH/ PTHrP receptor-1. A third receptor, which has been cloned recently and called "PTH2 receptor", recognizes solely PTH. It is expressed in brain, pancreas, testis and placenta. Its function is unknown. There is also evidence for a fourth receptor, called "C-PTH receptor", recognizing C-terminal PTH fragments which are generally considered to be biologically inactive. The regulation of these receptors is subject to intensive research. Down-regulation of PTH/PTHrP receptor-1 mRNA expression could explain the well-known resistance to the action of PTH in chronic renal failure. In contrast, the receptor mRNA is up-regulated in vitamin D deficiency, despite a similar tissue resistance to PTH. A mutation of PTH/PTHrP receptor-1 causes Jansen-type metaphyseal chondrodysplasia. However, no alteration of the PTH/PTHrP receptor-1 gene structure has been found in type 1b pseudohypoparathyroidism.

  1. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment.

    PubMed

    Hulchiy, Mariana; Zhang, Hua; Cline, J Mark; Hirschberg, Angelica Lindén; Sahlin, Lena

    2012-11-01

    Thyroid gland dysfunction is associated with menstrual cycle disturbances, infertility, and increased risk of miscarriage, but the mechanisms are poorly understood. However, little is known about the regulation of these receptors in the uterus. The aim of this study was to determine the effects of long-term treatment with steroid hormones on the expression, distribution, and regulation of the receptors for thyrotropin-releasing hormone (TRHR) and thyroid-stimulating hormone (TSHR), thyroid hormone receptor α1/α2 (THRα1/α2), and THRβ1 in the uterus of surgically menopausal monkeys. Eighty-eight cynomolgus macaques were ovariectomized and treated orally with conjugated equine estrogens (CEE; n = 20), a combination of CEE and medroxyprogesterone acetate (MPA; n = 20), or tibolone (n = 28) for 2 years. The control group (OvxC; n = 20) received no treatment. Immunohistochemistry was used to evaluate the protein expression and distribution of the receptors in luminal epithelium, glands, stroma, and myometrium of the uterus. Immunostaining of TRHR, TSHR, and THRs was detected in all uterine compartments. Epithelial immunostaining of TRHR was down-regulated in the CEE + MPA group, whereas in stroma, both TRHR and TSHR were increased by CEE + MPA treatment as compared with OvxC. TRHR immunoreactivity was up-regulated, but THRα and THRβ were down-regulated, in the myometrium of the CEE and CEE + MPA groups. The thyroid-stimulating hormone level was higher in the CEE and tibolone groups as compared with OvxC, but the level of free thyroxin did not differ between groups. All receptors involved in thyroid hormone function are expressed in monkey uterus, and they are all regulated by long-term steroid hormone treatment. These findings suggest that there is a possibility of direct actions of thyroid hormones, thyroid-stimulating hormone and thyrotropin-releasing hormone on uterine function.

  2. Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol

    PubMed Central

    Mody, Istvan

    2008-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl− and HCO3− (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids. PMID:17714830

  3. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  4. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  5. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  6. Replacement treatment with biosynthetic human growth hormone in growth hormone-deficient hypopituitary adults.

    PubMed

    Beshyah, S A; Freemantle, C; Shahi, M; Anyaoku, V; Merson, S; Lynch, S; Skinner, E; Sharp, P; Foale, R; Johnston, D G

    1995-01-01

    The physiological role of growth hormone in adult life has recently attracted increased interest. We have studied the clinical effects and the effects on body composition of prolonged replacement with biosynthetic human GH in a large number of hypopituitary adults. A randomized double blind placebo controlled trial for 6 months followed by an open trial of GH treatment for 12 months. GH daily dose was 0.04 (0.02-0.05) IU/kg s.c. Forty GH deficient hypopituitary patients (19 M, 21 F; aged 19-67 years) on conventional replacement therapy were studied. Serum insulin like growth factor I (IGF-I), skinfold thickness, total body potassium, total body water (TBW), exercise tolerance and muscle strength, and well-being. During the 6-month double blind phase, two GH treated patients withdrew because of adverse events. Lean body mass (LBM) increased and percentage body fat (%BF) decreased on GH but not on placebo (P) (LBM: (GH: from 48.5 +/- 9.6 to 49.6 +/- 9.5 kg; P: from 50.9 +/- 9.2 to 50.1 +/- 9.0 kg, P < 0.05 GH vs P) and %BF (GH: from 34.7 +/- 11.4 to 34.2 +/- 10.7; P: from 37.4 +/- 7.6 to 38.7 +/- 8.1, P < 0.05 GH vs P)). TBW increased on GH (P < 0.01) but not on P. No change was observed in waist-to-hip ratio or in muscle strength. During longer-term follow-up combining the double blind and open phase components of the study, 34, 27 and 11 patients received GH for 6, 12 and 18 months respectively. Patients dropped out because of adverse events or lack of perceived benefit. Skinfold thicknesses decreased significantly at 6 and 12 months and the waist circumference at 6 months. Waist-to-hip ratio decreased significantly on GH at 12 months. LBM increased on GH treatment from 49.6 +/- 9.1 to 51.6 +/- 9.4 kg (P < 0.0006), 51.9 +/- 8.9 kg (P < 0.07) and 53.1 +/- 10.5 kg (P < 0.0001) at 6, 12 and 18 months respectively. Percentage body fat decreased on GH from 37.2 +/- 10.7 to 34.7 +/- 10.1 (P < 0.005), 35.1 +/- 12.8 (NS) and 34.5 +/- 8.6 (P < 0.04) at 6,12 and 18 months

  7. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors.

    PubMed

    Lu, Changxue; Cheng, Sheue-Yann

    2010-03-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis.

  8. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  9. Growth hormone deficiency and diabetes insipidus as a complication of endoscopic third ventriculostomy.

    PubMed

    Tafuri, Kimberly S; Wilson, Thomas A

    2012-12-01

    Endoscopic third ventriculostomy (ETV) has become the procedure of choice for the treatment of obstructive hydrocephalus in children and adults. Endocrinological complications of ETV in children are rare. Diabetes insipidus (DI) is the most common and accounts for only 0.5% of complications from ETV. The majority of documented cases are transient. To date, there are no documented cases of multiple pituitary hormone deficiencies. We present here a 6-year-old girl with growth hormone deficiency and permanent DI which developed as a complication of ETV. This patient is unique in both demonstrating multiple pituitary hormone deficiencies and the classical triphasic response of DI after ETV. We postulate that these complications were caused by compression of the pituitary stalk and hypothalamic injury during the procedure. We compare our case presentation to experimental studies conducted in rats.

  10. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency.

    PubMed

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-03-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences.

  11. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency

    PubMed Central

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-01-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542

  12. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  13. Nuclear hormone receptor assays for drug discovery.

    PubMed

    Rosen, Jon; Marschke, Keith; Rungta, Deepa

    2003-03-01

    Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that control diverse aspects of growth, development and homeostasis, making them exciting and important targets for drug discovery. In this review, some of the recent advances in our understanding of NRs, and their application to the discovery of new ligands, will be discussed.

  14. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  15. Aromatase inhibitors affect vaginal proliferation and steroid hormone receptors.

    PubMed

    Kallak, Theodora Kunovac; Baumgart, Juliane; Göransson, Emma; Nilsson, Kerstin; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2014-04-01

    Women with breast cancer who are treated with aromatase inhibitors often experience vaginal atrophy symptoms and sexual dysfunction. This work aims to study proliferation and the presence and distribution of steroid hormone receptors in vaginal biopsies in relation to vaginal atrophy and vaginal pH in women with breast cancer who are on adjuvant endocrine treatment and in healthy postmenopausal women. This is a cross-sectional study that compares postmenopausal aromatase inhibitor-treated women with breast cancer (n = 15) with tamoxifen-treated women with breast cancer (n = 16) and age-matched postmenopausal women without treatment (n = 19) or with vaginal estrogen therapy (n = 16). Immunohistochemistry was used to study proliferation and steroid hormone receptor staining intensity. Data was correlated with estrogen and androgen levels, vaginal atrophy scores, and vaginal pH. Aromatase inhibitor-treated women had a lower grade of proliferation, weaker progesterone receptor staining, and stronger androgen receptor staining, which correlated with plasma estrone levels, vaginal atrophy scores, and vaginal pH. Women with aromatase inhibitor-treated breast cancer exhibit reduced proliferation and altered steroid hormone receptor staining intensity in the vagina, which are related to clinical signs of vaginal atrophy. Although these effects are most probably attributable to estrogen suppression, a possible local inhibition of aromatase cannot be ruled out.

  16. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    PubMed Central

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  17. Dietary modification of metabolic pathways via nuclear hormone receptors.

    PubMed

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.

  18. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398-401. Citation ... and human weight regulation: lessons from experiments of nature. Ann Acad Med Singapore. 2009 Jan;38(1): ...

  19. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    PubMed

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  20. Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection.

    PubMed

    Bendo, Luana; Casanova, Monise; Figueira, Ana Carolina M; Polikarpov, Igor; Zucolotto, Valtencir

    2014-05-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific ligand agonists, including the natural hormones T3 (triiodothyronine) and T4 (thyroxine), and the synthetic agonists TRIAC (3,5,3'-triiodothyroacetic acid) and GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl phenoxy) acetic acid]. Detection was performed via impedance spectroscopy. The biosensors were capable of distinguishing between the thyroid hormones T3 and T4, and/or the analogues TRIAC and GC-1 at concentrations as low as 50 nM. The detection and separation of thyroid hormones and analogue ligands by impedance techniques represents an innovative tool in the field of nanomedicine because it allows the design of inexpensive devices for the rapid and real-time detection of distinct ligand/receptor systems.

  1. A Critical Appraisal of Growth Hormone Therapy in Growth Hormone Deficiency and Turner Syndrome Patients in Turkey

    PubMed Central

    Yavaş Abalı, Zehra; Darendeliler, Feyza; Neyzi, Olcay

    2016-01-01

    Early detection of abnormal growth, identification of the underlying cause, and appropriate treatment of the medical condition is an important issue for children with short stature. Growth hormone (GH) therapy is widely used in GH-deficient children and also in non-GH-deficient short stature cases who have findings conforming to certain indications. Efficacy of GH therapy has been shown in a multitude of short- and long-term studies. Age at onset of GH therapy is the most important factor for a successful treatment outcome. Optimal dosing is also essential. The aim of this review was to focus on challenges in the early diagnosis and appropriate management of short stature due to GH deficiency (GHD) and Turner syndrome. These are the most frequent two indications for GH therapy in Turkey approved by the Ministry of Health for coverage by the national insurance system. PMID:27354120

  2. Increased male-male courtship in ecdysone receptor deficient adult flies.

    PubMed

    Ganter, Geoffrey K; Walton, Kelsey L; Merriman, Jacob O; Salmon, Mark V; Brooks, Krista M; Maddula, Swathi; Kravitz, Edward A

    2007-05-01

    Male-male courtship is infrequent among mature adult Drosophila melanogaster. After pairs of mature adult males expressing a temperature-sensitive allele of the ecdysone receptor (EcR) gene were treated at a restrictive temperature, however, they engaged in elevated levels of male-male courtship. EcR-deficient males courted wildtype males and females, but were not courted by wildtype males. These results suggest that the ecdysone steroid hormone system may have a role in courtship initiation by adult male fruit flies.

  3. Nuclear hormone receptors in parasitic helminths

    PubMed Central

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss. PMID:20600585

  4. Evolutionary aspects of growth hormones and prolactins and their receptors

    SciTech Connect

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of /sup 125/I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of /sup 125/I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum.

  5. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2015-01-01

    The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis. PMID:26491440

  6. Immunohistochemical localization of sex hormone receptors in two Raillietina tapeworms.

    PubMed

    Chen, L; Sun, Y M; Mu, L; Zeng, Y; Li, H Y; Yang, T H

    2017-03-08

    Sex hormone receptors play critical roles in development and reproduction. However, it is not known whether they exist in Raillietina tapeworms, and if they do, whether they have a similar function to that in vertebrates. We examined the immunohistochemical distributions of androgen receptors (ARs), estrogen receptors (ERs), and progesterone receptors (PRs) in the tissues of two tapeworm species: Raillietina echinobothrida and Raillietina tetragona. Immunopositive ARs were found in the entire reproductive system of R. echinobothrida, including the testes, ovaries, and oocysts, and weakly immunopositive ERs and PRs were found in the testes, ovaries, and oocysts. Immunopositive ARs were also found throughout the entire reproductive system of R. tetragona, including the testes, ovaries, and oocysts, and weakly immunopositive ERs were in the testes and oocysts; the PRs were distributed in an immunonegative manner. The results show that androgens and their receptors play critical roles in reproductive system development in the two tapeworms. The immunoreactivity and tissue localizations of the sex hormone receptors suggest that, in both species, they have similar functions as in vertebrates, and modulate reproduction.

  7. Growth hormone receptor signaling is dispensable for HSC function and aging

    PubMed Central

    Stewart, Morag H.; Gutierrez-Martinez, Paula; Beerman, Isabel; Garrison, Brian; Gallagher, Emily J.; LeRoith, Derek

    2014-01-01

    Growth hormone receptor (Ghr) signaling is important in a wide variety of cellular processes including aging; however, the role of Ghr signaling in hematopoietic stem cell (HSC) biology remains unexplored. Within the hematopoietic system, Ghr is expressed in a highly HSC-specific manner and is significantly upregulated during aging. Exposure of young and old HSCs to recombinant growth hormone ex vivo led to diminished short-term reconstitution and restored B-cell output from old HSCs. Hematopoietic-specific genetic deletion of Ghr neither impacted steady-state hematopoiesis nor serial transplantation potential. Repeat challenge with 5-fluorouracil showed that Ghr was dispensable for HSC activation and homeostatic recovery in vivo and, after challenge, Ghr-deficient HSCs functioned normally through serial transplantation. Although exogenous Gh induces age-dependent HSC effects, these results indicate that Ghr signaling appears largely dispensable for HSC function and aging. PMID:25274507

  8. DNA methylation and hormone receptor status in breast cancer.

    PubMed

    Benevolenskaya, Elizaveta V; Islam, Abul B M M K; Ahsan, Habibul; Kibriya, Muhammad G; Jasmine, Farzana; Wolff, Ben; Al-Alem, Umaima; Wiley, Elizabeth; Kajdacsy-Balla, Andre; Macias, Virgilia; Rauscher, Garth H

    2016-01-01

    We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA). DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity. Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when

  9. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.

  10. A structural view of nuclear hormone receptor: endocrine disruptor interactions.

    PubMed

    le Maire, Albane; Bourguet, William; Balaguer, Patrick

    2010-04-01

    Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system by interfering with hormone biosynthesis, metabolism, or action. The molecular mechanisms of EDCs involve different pathways including interactions with nuclear hormone receptors (NHRs) which are primary targets of a large variety of environmental contaminants. Here, based on the crystal structures currently available in the Protein Data Bank, we review recent studies showing the many ways in which EDCs interact with NHRs and impact their signaling pathways. Like the estrogenic chemical diethylstilbestrol, some EDCs mimic the natural hormones through conserved protein-ligand contacts, while others, such as organotins, employ radically different binding mechanisms. Such structure-based knowledge, in addition to providing a better understanding of EDC activities, can be used to predict the endocrine-disrupting potential of environmental pollutants and may have applications in drug discovery.

  11. Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib.

    PubMed

    Sano, Shinichiro; Iwata, Hiromi; Matsubara, Keiko; Fukami, Maki; Kagami, Masayo; Ogata, Tsutomu

    2015-01-01

    Pseudohypoparathyroidism (PHP) is associated with compromised signal transductions via PTH receptor (PTH-R) and other G-protein-coupled receptors including GHRH-R. To date, while GH deficiency (GHD) has been reported in multiple patients with PHP-Ia caused by mutations on the maternally expressed GNAS coding regions and in two patients with sporadic form of PHP-Ib accompanied by broad methylation defects of maternally derived GNAS differentially methylated regions (DMRs), it has not been identified in a patient with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) accompanied by an STX16 microdeletion and an isolated loss of methylation (LOM) at exon A/B-DMR. We studied 5 4/12-year-old monozygotic twins with short stature (both -3.4 SD) and GHD (peak GH values, <6.0 μg/L after arginine and clonidine stimulations). Molecular studies revealed maternally derived STX16 microdeletions and isolated LOMs at exon A/B-DMR in the twins, confirming the diagnosis of AD-PHP-Ib. GNAS mutation was not identified, and neither mutation nor copy number variation was detected in GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1 in the twins. The results, in conjunction with the previous finding that GNAS shows maternal expression in the pituitary, suggest that GHD of the twins is primarily ascribed to compromised GHRH-R signaling caused by AD-PTH-Ib. Thus, resistance to multiple hormones including GHRH should be considered in AD-PHP-Ib.

  12. Relationship between pituitary stalk (PS) visibility and the severity of hormone deficiencies: PS interruption syndrome revisited.

    PubMed

    Wang, Weiqing; Wang, Shuwei; Jiang, Yiran; Yan, Fuhua; Su, Tingwei; Zhou, Weiwei; Jiang, Lei; Zhang, Yifei; Ning, Guang

    2015-09-01

    Pituitary stalk interruption syndrome (PSIS) is a rare cause of combined pituitary hormone deficiency characterized by a triad shown in pituitary imaging, yet it has never been evaluated due to the visibility of pituitary stalk (PS) in imaging findings. The major objective of the study was to systematically describe the disease including clinical presentations, imaging findings and to estimate the severity of anterior pituitary hormone deficiency based on the visibility of the PS. This was a retrospective study including 74 adult patients with PSIS in Shanghai Clinical Center for Endocrine and Metabolic Diseases between January 2010 and June 2014. Sixty had invisible PS according to the findings on MRI, while the rest had a thin or intersected PS. Basic characteristics and hormonal status were compared. Of the 74 patients with PSIS, age at diagnosis was 25 (22-28) years. Absent pubertal development (97·3%) was the most common presenting symptom, followed by short stature. Insulin tolerance test (ITT) and gonadotrophin-releasing hormone (GnRH) stimulation test were used to evaluate the function of anterior pituitary. The prevalence of isolated deficiency in growth hormone (GH), gonadotrophins, corticotrophin and thyrotrophin were 100%, 97·2%, 88·2% and 70·3%, respectively. Although the ratio of each deficiency did not vary between patients with invisible PS and with visible PS, panhypopituitarism occurred significantly more frequent in patients with invisible PS. Patients with invisible PS had significantly lower levels of luteinizing hormone (LH), follicle stimulation hormone (FSH) and hormones from targeted glands including morning cortisol, 24-h urine free cortisol, free triiodothyronine (FT3), free thyroxine (FT4) and testosterone (T) in male than patients with visible PS. Moreover, patients with invisible PS had lower peak LH and FSH in GnRH stimulation test, and higher peak cortisol in ITT while peak GH remained unchanged between two groups. The prevalence

  13. Hormone receptors expression in phyllodes tumors of the breast.

    PubMed

    Kim, Yeong-Hui; Kim, Ga-Eon; Lee, Ji Shin; Lee, Jae Hyuk; Nam, Jong Hee; Choi, Chan; Park, Min Ho; Yoon, Jung Han

    2012-02-01

    To ascertain the hormonal receptor profiles of the epithelial and stromal components of phyllodes tumors (PTs) and determine their relationship with stromal proliferation. Eighty-two PTs (50 benign, 22 borderline, and 10 malignant) were studied. Automated immunohistochemical staining for estrogen receptor (ER)-alpha and -beta, progesterone receptor (PR), androgen receptor (AR), and Ki-67 was performed using tissue microarray blocks, and their expression was assessed in both the stromal and epithelial components. The epithelial component demonstrated the expression for ER-alpha (45.6%, 36 of 79), ER-beta (37.2%, 29 of 78), PR (91.1%, 72 of 79), and AR (10.1%, 8 of 79). The stromal component was positive for ER-beta (29.3%, 24 of 82) only. The epithelial expression of ER-beta was found to be significantly correlated with the epithelial expression of AR (r = 0.352, p = 0.002). No association was found between hormone receptor expression and PT tumor grade. Stromal Ki-67 expression was statistically correlated with epithelial ER-beta, epithelial AR, and stromal ER-beta expression. Epithelial and stromal ER-beta and epithelial AR expression in PTs was correlated with the proliferative rate in the stromal component. Immunohistochemical examination of ER-beta and AR may have some impact on the postoperative management of patients with PTs.

  14. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  15. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice.

    PubMed

    Trajkovic-Arsic, Marija; Visser, Theo J; Darras, Veerle M; Friesema, Edith C H; Schlott, Bernhard; Mittag, Jens; Bauer, Karl; Heuer, Heike

    2010-02-01

    Patients carrying inactivating mutations in the gene encoding the thyroid hormone transporting monocarboxylate transporter (MCT)-8 suffer from a severe form of psychomotor retardation and exhibit abnormal serum thyroid hormone levels. The thyroidal phenotype characterized by high-serum T(3) and low-serum T(4) levels is also found in mice mutants deficient in MCT8 although the cause of these abnormalities is still unknown. Here we describe the consequences of MCT8 deficiency for renal thyroid hormone transport, metabolism, and function by studying MCT8 null mice and wild-type littermates. Whereas serum and urinary parameters do not indicate a strongly altered renal function, a pronounced induction of iodothyronine deiodinase type 1 expression together with increased renal T(3) and T(4) content point to a general hyperthyroid state of the kidneys in the absence of MCT8. Surprisingly, accumulation of peripherally injected T(4) and T(3) into the kidneys was found to be enhanced in the absence of MCT8, indicating that MCT8 deficiency either directly interferes with the renal efflux of thyroid hormones or activates indirectly other renal thyroid hormone transporters that preferentially mediate the renal uptake of thyroid hormones. Our findings indicate that the enhanced uptake and accumulation of T(4) in the kidneys of MCT8 null mice together with the increased renal conversion of T(4) into T(3) by increased renal deiodinase type 1 activities contributes to the generation of the low-serum T(4) and the increase in circulating T(3) levels, a hallmark of MCT8 deficiency.

  16. Dopamine D(3) receptor deficiency sensitizes mice to iron deficiency-related deficits in motor learning.

    PubMed

    Klinker, F; Hasan, K; Dowling, P; Paulus, W; Liebetanz, D

    2011-07-07

    Iron deficiency is a widespread form of malnutrition and is known to interfere with cognitive performance and development. To elucidate the role of dopamine D3 and iron deficiency (ID) in inducing cognitive deficits, we studied wildtype and D3 knockout mice on normal or iron-deficient diets subjected to a running wheel-based motor skill sequence. Surprisingly, ID alone had no effect on motor learning in this study, whereas combined ID and dopamine D(3) receptor (D3R)-deficiency significantly interfered with the acquisition of motor skills. Reduced D3R function may serve as a predisposing factor towards ID-related effects on motor learning. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Three Novel Missense Mutations within the LHX4 Gene Are Associated with Variable Pituitary Hormone Deficiencies

    PubMed Central

    Pfaeffle, Roland W.; Hunter, Chad S.; Savage, Jesse J.; Duran-Prado, Mario; Mullen, Rachel D.; Neeb, Zachary P.; Eiholzer, Urs; Hesse, Volker; Haddad, Nadine G.; Stobbe, Heike M.; Blum, Werner F.; Weigel, Johannes F. W.; Rhodes, Simon J.

    2008-01-01

    Context: The LHX4 LIM-homeodomain transcription factor has essential roles in pituitary gland and nervous system development. Heterozygous mutations in LHX4 are associated with combined pituitary hormone deficiency. Objectives: Our objectives were to determine the nature and frequency of LHX4 mutations in patients with pituitary hormone deficiency and to examine the functional outcomes of observed mutations. Design: The LHX4 gene sequence was determined from patient DNA. The biochemical and gene regulatory properties of aberrant LHX4 proteins were characterized using structural predictions, pituitary gene transcription assays, and DNA binding experiments. Patients: A total of 253 patients from 245 pedigrees with GH deficiency and deficiency of at least one additional pituitary hormone was included in the study. Results: In five patients, three types of heterozygous missense mutations in LHX4 that result in substitution of conserved amino acids were identified. One substitution is between the LIM domains (R84C); the others are in the homeodomain (L190R; A210P). The patients have GH deficiency; some also display reductions in TSH, LH, FSH, or ACTH, and aberrant pituitary morphology. Structural models predict that the aberrant L190R and A210P LHX4 proteins would have impaired DNA binding and gene activation properties. Consistent with these models, EMSAs and transfection experiments using pituitary gene promoters demonstrate that whereas the R84C form has reduced activity, the L190R and A210P proteins are inactive. Conclusions: LHX4 mutations are a relatively rare cause of combined pituitary hormone deficiency. This report extends the range of phenotypes associated with LHX4 gene mutations and describes three novel exonic mutations in the gene. PMID:18073311

  18. Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron-deficient veal calves.

    PubMed

    Ceppi, A; Blum, J W

    1994-08-01

    Effects of subcutaneous (s.c.) administration of 50 micrograms/kg body weight of recombinant bovine growth hormone (rbGH) or saline were studied for 11 weeks in 40 intact male veal calves supplied 50 mg or 10 mg of iron (Fe)/kg of milk replacer (MR). Feed intake, average daily gain and growth: feed ratio were reduced in Fe-deficient calves, but not significantly influenced by rbGH. Plasma Fe and haemoglobin concentration, red-cell number and packed cell volume were decreased in Fe-deficient calves (P < 0.05) and rbGH further reduced red-cell number in Fe-deficient calves (P < 0.05). The age-dependent increase of total Fe binding capacity was greater in Fe-deficient calves and enhanced by rbGH (P < 0.05). Plasma urea concentrations increased, whereas glucose (G) and triiodothyronine (T3) levels decreased in Fe-deficient calves. rbGH significantly increased G in calves fed MR containing 50 mg/kg (P < 0.05) and influenced urea concentrations (P < 0.05). Plasma insulin (I) and IGF-I concentrations were lower in Fe-deficient calves (P < 0.05). Plasma GH in the first hours after rbGH injections increased (P < 0.05) to higher levels in calves fed 10 than in those fed 50 mg Fe/kg MR, but incremental changes were comparable. In conclusion, low Fe intake caused haematologic, metabolic and endocrine changes. Plasma IGF-I, I and T3 concentrations after rbGH administration and effects of rbGH on IGF-I in Fe-deficient calves were reduced, even though plasma GH levels were increased.

  19. Serum transferrin receptors in detection of iron deficiency in pregnancy.

    PubMed

    Rusia, U; Flowers, C; Madan, N; Agarwal, N; Sood, S K; Sikka, M

    1999-08-01

    A prospective hospital-based study was conducted to evaluate the efficacy of serum transferrin receptors in the detection of iron deficiency in pregnant women. The iron status of 100 pregnant women with single uncomplicated term pregnancies in the first stage of labor was established using standard laboratory measures. These included complete hemogram, red cell indices, serum iron, percent transferrin saturation, and serum ferritin. In addition, serum transferrin receptor (STFR) was estimated. The results of 81 women with complete laboratory profiles were analyzed. Thirty-five (43.2%) women were anemic (hemoglobin <11 g/dl). Hemoglobin (Hb) showed a significant correlation with MCH, MCHC, serum iron, and percent transferrin saturation, suggesting that the anemia was likely to be due to iron deficiency. The mean STFR level was 18.05+/-9.9 mg/l in the anemic women and was significantly raised (p<0.001) compared with that of the nonanemic women. STFR correlated significantly with Hb (p<0.001), MCH (p<0.05), MCHC (p<0.01), serum iron (p<0.01), and percent transferrin saturation (p<0.01) and also showed a highly significant correlation with the degree of anemia. Serum ferritin in these women did not correlate with Hb, and only 54.4% of the women had levels <12 ng/ml, which does not reflect the true prevalence of iron deficiency. Serum transferrin receptor estimation is thus a useful measure for detecting iron deficiency in pregnancy.

  20. The influence of growth hormone (GH) deficiency and GH replacement on quality of life in GH-deficient patients.

    PubMed

    Deijen, J B; van der Veen, E A

    1999-01-01

    The total absence of hormones such as cortisol or thyroxine causes death within weeks. Lack of estrogen or testosterone is followed by infertility and impaired sexual functioning. Relative deficiencies of almost all classical hormones have a substantial impact on quality of life (QOL). However, in contrast to virtually all aspects of metabolism, QOL is difficult to measure. Only recently have tests been developed to assess general QOL, whereas specific tests address those aspects of QOL affected only in specific situations or disease states. For example, in rheumatoid arthritis and other chronic disabling diseases, the use of measures of QOL to assess treatment modalities is almost routine. In diseases with overt metabolic disturbances attention is generally focused on changes in metabolic parameters and the issue of QOL is neglected. Although very few practising endocrinologists will not support the idea that they specialize in improving QOL, its assessment in patients with endocrinological disorders began only recently--in patients with growth hormone (GH) deficiency only 10 years ago. It became apparent that GH deficiency in adult life is unmistakably followed by changes in parameters that determine QOL. In adults with childhood-onset GH deficiency, the unemployment rate is higher and the marriage rate lower than in the general population. Another symbol of success in life, the possession of a driver's licence, is less frequently attained by these patients. Most patients with adult-onset GH deficiency score unfavourably in questionnaires such as the Nottingham Health Profile. GH substitution is now available on a scale large enough to enable studies to be made of the effects on QOL in adults. The first studies were reported in 1989. However, only in the last few years have studies appeared in which sufficient number of patients and sufficient length of treatment were reported to allow a more objective judgement of the effectiveness of GH substitution. Although

  1. Expression of luteinizing hormone receptors in the mouse penis.

    PubMed

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  2. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF1 receptor-deficient (CRF1-/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF1-/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF1-/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF1-/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF1-/- mice by exogenous corticosterone does not affect CRF1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  4. Desensitization of parathyroid hormone receptors on cultured bone cells

    SciTech Connect

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D. )

    1990-12-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. (Nle8,Nle18,Tyr34)bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with (125I)PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself.

  5. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  6. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  7. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis.

    PubMed

    Mohan, Vishwa; Sinha, Rohit A; Pathak, Amrita; Rastogi, Leena; Kumar, Praveen; Pal, Amit; Godbole, Madan M

    2012-10-01

    Neuronal progenitor cell proliferation and their optimum number are indispensable for neurogenesis, which is determined by cell cycle length and cell cycle quitting rate of the dividing progenitors. These processes are tightly orchestrated by transcription factors like Tbr2, Pax6, and E2f-1. Radial glia and intermediate progenitor cells (IPC) through direct and indirect neurogenesis maintain surface area and neocortical thickness during development. Here we show that fetal neurogenesis is maternal thyroid hormone (MTH) dependent with differential effect on direct and indirect neurogenesis. MTH deficiency (MTHD) impairs direct neurogenesis through initial down-regulation of Pax6 and diminished progenitor pool with recovery even before the onset of fetal thyroid function (FTF). However, persistent decrease in Tbr2 positive IPCs, diminished NeuN positivity in layers I-III of neocortex, and reduced cortical thickness indicate a non-compensatory impairment in indirect neurogenesis. TH deficiency causes disrupted cell cycle kinetics and deranged neurogenesis. It specifically affects indirect neurogenesis governed by intermediate progenitor cells (IPCs). TH replacement in hypothyroid dams partially restored the rate of neurogenesis in the fetal neocortex. Taken together we describe a novel role of maternal TH in promoting IPCs derived neuronal differentiation in developing neo-cortex. We have also shown for the first time that ventricular zone progenitors are TH responsive as they express its receptor, TR alpha-1, transporters (MCT8) and deiodinases. This study highlights the importance of maternal thyroid hormone (TH) even before the start of the fetal thyroid function.

  8. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  9. Incretin hormone receptors are required for normal beta cell development and function in female mice.

    PubMed

    Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo

    2016-05-01

    The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment

  10. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up

    PubMed Central

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye

    2015-01-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups. PMID:27169080

  11. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up.

    PubMed

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye; Park, Ji Hyun

    2015-10-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups.

  12. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.

  13. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  14. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance.

    PubMed

    Dierich, A; Sairam, M R; Monaco, L; Fimia, G M; Gansmuller, A; LeMeur, M; Sassone-Corsi, P

    1998-11-10

    Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R -/- mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R -/- mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.

  15. An unusual combination of Klinefelter syndrome and growth hormone deficiency in a prepubertal child.

    PubMed

    Ramesh, Jayanthy; Nagasatyavani, Mudiganti; Venkateswarlu, Javvadii; Nagender, Jakka

    2014-09-01

    Klinefelter syndrome (KS) is the most common chromosomal aneuploidy in males. It is very difficult to diagnose this disorder in childhood due to absence of significant manifestations before puberty. These patients usually present with tall stature. We report a case of KS with short stature due to growth hormone deficiency. The boy's height was below the 3rd centile with significant delay in bone age. He responded well to growth hormone injections. In view of mental subnormality karyotyping was done, which revealed KS (47XXY).

  16. Evolution of gonadotropin-inhibitory hormone receptor and its ligand.

    PubMed

    Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2014-12-01

    Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide inhibitor of gonadotropin secretion, which was first identified in the Japanese quail hypothalamus. GnIH peptides share a C-terminal LPXRFamide (X=L or Q) motif in most vertebrates. The receptor for GnIH (GnIHR) is the seven-transmembrane G protein-coupled receptor 147 (GPR147) that inhibits cAMP production. GPR147 is also named neuropeptide FF (NPFF) receptor 1 (NPFFR1), because it also binds NPFF that has a C-terminal PQRFamide motif. To understand the evolutionary history of the GnIH system in the animal kingdom, we searched for receptors structurally similar to GnIHR in the genome of six mammals (human, mouse, rat, cattle, cat, and rabbit), five birds (pigeon, chicken, turkey, budgerigar, and zebra finch), one reptile (green anole), one amphibian (Western clawed flog), six fishes (zebrafish, Nile tilapia, Fugu, coelacanth, spotted gar, and lamprey), one hemichordate (acorn worm), one echinoderm (purple sea urchin), one mollusk (California sea hare), seven insects (pea aphid, African malaria mosquito, honey bee, buff-tailed bumblebee, fruit fly, jewel wasp, and red flour beetle), one cnidarian (hydra), and constructed phylogenetic trees by neighbor joining (NJ) and maximum likelihood (ML) methods. A multiple sequence alignment of the receptors showed highly conserved seven-transmembrane domains as well as disulfide bridge sites between the first and second extracellular loops, including the receptor of hydra. Both NJ and ML analyses grouped the receptors of vertebrates into NPFFR1 and NPFFR2 (GPR74), and the receptors of insects into the receptor for SIFamide peptides that share a C-terminal YRKPPFNGSIFamide motif. Although human, quail and zebrafish GnIHR (NPFFR1) were most structurally similar to SIFamide receptor of fruit fly in the Famide peptide (FMRFamide, neuropeptide F, short neuropeptide F, drosulfakinin, myosuppressin, SIFamide) receptor families, the amino acid sequences and the peptide coding

  17. Affinity labeling of rat liver thyroid hormone nuclear receptor.

    PubMed Central

    Nikodem, V M; Cheng, S Y; Rall, J E

    1980-01-01

    The thyroid hormone receptor from rat liver nuclei has been covalently labeled with the N-bromoacetyl derivatives of L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Displacement binding studies showed that, in the presence of 100-fold molar excess of unlabeled N-bromoacetyl-T3 or T4, binding of [125I]T3 or [125I]T4 was nearly totally inhibited. Heat inactivation of the receptor (55 degrees C for 15 min) resulted in parallel losses in the binding of T3 (95%) and N-bromoacetyl-T3 (93%). These results indicated that T3 and T4 and their bromoacetyl derivatives compete for the same binding site. The nuclear receptor showed identical behavior in high-pressure liquid chromatography (HPLC) whether bound to T3 or T4 or covalently labeled with their bromoacetyl derivatives. HPLC provided a single-step 100-fold purification of the nuclear receptor. Na-DodSO4 gel electrophoresis of the nuclear receptor labeled with N-bromoacetyl derivatives of [125I]T3 or [125I]T4 showed one major radioactive component with a molecular weight of 56,000. Furthermore, in the absence of denaturant, the nuclear receptor either bound to [125I]T3 or covalently labeled with N-bromoacetyl-[125I]T3 showed identical mobility. These results suggested that the nuclear receptor is a single polypeptide chain and binds either T3 or T4. Nuclear receptors covalently linked with N-bromoacetyl derivatives of [125I]T3 or [125I]T4 may be useful as a marker for the preparative purification of receptor. PMID:6261237

  18. Effect of copper deficiency on the content and secretion of pancreatic islet hormones

    SciTech Connect

    Bhathena, S.J.; Voyles, N.R.; Timmers, K.I.; Fields, M.; Kennedy, B.W.; Recant, L.

    1986-03-01

    Experimental copper (Cu) deficiency in rats is characterized by glucose intolerance and hyperlipemia. Its severity is increased by dietary fructose (F) as compared to starch (S). Since islet hormones are intimately involved in carbohydrate metabolism the authors studied the effects of Cu deficiency on their content and secretion. Rats were fed Cu deficient (CuD) (0.6 ..mu..g Cu/g) or Cu supplemented (6.0 ..mu..g Cu/g) diets with either 62% F or S for 7 weeks after weaning. Feeding CuD diets decreased plasma insulin (I) (P < 0.001) but not plasma glucagon (G). F feeding compared to S magnified the effects of Cu deficiency. Total pancreatic content of I in CuD rats was increased threefold (P < 0.001). Total somatostatin content increased significantly only in the pancreas of CuD rats fed F. Although total G content was not altered in CuD rats, when G was expressed per g protein or g wet weight, significant increases were found in CuD rats fed F. Thus, of the islet hormones, the major effect of Cu deficiency was on I. When pancreata were perfused in vitro with high glucose, pancreas from CuD rats had reduced insulin response. Thus, cellular functions dependent on Cu are involved in maintaining the ability of the islets of Langerhans to secrete I in a normal fashion.

  19. Cat eye syndrome and growth hormone deficiency with pituitary anomalies: a case report and review of the literature.

    PubMed

    Melo, Cláudia; Gama-de-Sousa, Susana; Almeida, Filipa; Rendeiro, Paula; Tavares, Purificação; Cardoso, Helena; Carvalho, Sónia

    2013-10-15

    Cat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported. A review on short stature and growth hormone deficiency in cat eye syndrome is conducted.

  20. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  1. [Intracellular calcium channels, hormone receptors and intercellular calcium waves].

    PubMed

    Tordjmann, T; Tran, D; Berthon, B; Jacquemin, E; Guillon, G; Combettes, L; Claret, M

    1998-01-01

    The hormone-mediated intercellular Ca2+ waves were analyzed in multiplets of rat hepatocytes by video imaging of fura2 fluorescence. These multicellular systems are composed of groups of several cells (doublets to quintuplets) issued from the liver cell plate, a one cell-thick cord of about 20 hepatocytes long between portal and centrolobular veins. When the multiplets were homogeneously bathed with the glycogenolytic agonists vasopressin, noradrenaline, angiotensin II and ATP, they showed highly organized Ca2+ signals. Surprisingly, for a given agonist, the primary rises in intracellular Ca2+ concentration ([Ca2+]i) originated invariably in the same hepatocyte, then was propagated in a sequential manner to the nearest connected cells (cell 2, then 3, cell 4 in a quadruplet, for example). The sequential activation of the cells appeared to be an intrinsic property of multiplets of rat hepatocytes. The same sequence was observed at each train of oscillations occurring between cells. The order of [Ca2+]i responses was modified neither by repeated additions of hormones nor by the hormonal dose. The mechanical disruption of an intermediate cell did not prevent the activation of the next cell. These results suggest that each hepatocyte in the multiplet displays its own sensitivity to the hormone and that a gradient of sensitivity between each cell could be responsible for directing the intercellular Ca2+ wave. To test this hypothesis, we selectively isolated rat hepatocytes from periportal (PP) and perivenous (PV) areas of the liver cell plate. Periportal (PP) and perivenous (PV) rat hepatocyte suspensions were loaded with quin2/AM and hormonal responses were studied in a spectrofluorimeter. Noradrenaline, angiotensin II, and vasopressin-induced [Ca2+]i rises were greater in PV than in PP hepatocytes. In contrast, PP cells were more responsive than PV cells to ATP. The function of the InsP3 receptor (InsP3R) was also studied by measuring the InsP3-mediated 45Ca2+ release

  2. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms

    SciTech Connect

    Kyllo, J.H.; Collins, M.M.; Vetter, K.L.

    1996-03-29

    Genetic screening techniques using simple sequence repeat polymorphisms were applied to investigate the molecular nature of congenital isolated adrenocorticotropic hormone (ACTH) deficiency. We hypothesize that this rare cause of hypocortisolism shared by a brother and sister with two unaffected sibs and unaffected parents is inherited as an autosomal recessive single gene mutation. Genes involved in the hypothalamic-pituitary axis controlling cortisol sufficiency were investigated for a causal role in this disorder. Southern blotting showed no detectable mutations of the gene encoding pro-opiomelanocortin (POMC), the ACTH precursor. Other candidate genes subsequently considered were those encoding neuroendocrine convertase-1, and neuroendocrine convertase-2 (NEC-1, NEC-2), and corticotropin releasing hormone (CRH). Tests for linkage were performed using polymorphic di- and tetranucleotide simple sequence repeat markers flanking the reported map locations for POMC, NEC-1, NEC-2, and CRH. The chromosomal haplotypes determined by the markers flanking the loci for POMC, NEC-1, and NEC-2 were not compatible with linkage. However, 22 individual markers defining the chromosomal haplotypes flanking CRH were compatible with linkage of the disorder to the immediate area of this gene of chromosome 8. Based on these data, we hypothesize that the ACTH deficiency in this family is due to an abnormality of CRH gene structure or expression. These results illustrate the useful application of high density genetic maps constructed with simple sequence repeat markers for inclusion/exclusion studies of candidate genes in even very small nuclear families segregating for unusual phenotypes. 25 refs., 5 figs., 2 tabs.

  3. Dual role for ubiquitin in plant steroid hormone receptor endocytosis

    PubMed Central

    Martins, Sara; Dohmann, Esther M. N.; Dompierre, Jim; Fischer, Wolfgang; Pojer, Florence; Jaillais, Yvon; Satiat-Jeunemaître, Béatrice; Chory, Joanne; Geldner, Niko; Vert, Grégory

    2015-01-01

    Brassinosteroids (BRs) are plant steroid hormones that control many aspects of plant growth and development. BRs are perceived at the cell-surface by the plasma membrane-localized receptor complex composed of the receptor kinase BRI1 and its co-receptor BAK1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Artificially ubiquitinated BRI1 is recognized at the trans-Golgi Network/Early Endosomes (TGN/EE) and rapidly routed for vacuolar degradation. Mass spectrometry analyses identified residue K866 as an in vivo ubiquitination target in BRI1 involved in the negative regulation of BRI1. Model prediction revealed several redundant ubiquitination sites required for the endosomal sorting and vacuolar targeting of BRI1. Using total internal reflection fluorescence microscopy (TIRF), we also uncovered a role for BRI1 ubiquitination in promoting internalization from the cell-surface. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is a fundamental control mechanism for BR responses in plants. Altogether, our results identify K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development. PMID:25608221

  4. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors

    PubMed Central

    Nataraja, Selvaraj G.; Yu, Henry N.; Palmer, Stephen S.

    2015-01-01

    Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models

  5. Long-term effects of growth hormone replacement therapy on thyroid function in adults with growth hormone deficiency.

    PubMed

    Losa, Marco; Scavini, Marina; Gatti, Elisa; Rossini, Alessandro; Madaschi, Sara; Formenti, Ilaria; Caumo, Andrea; Stidley, Christine A; Lanzi, Roberto

    2008-12-01

    Clinical studies on the effect of growth hormone (GH) on thyroid function in patients with GH deficiency are contradictory. Further, the majority of published observations are limited to the first 6-12 months of GH replacement therapy. The aim of our study was to estimate the incidence of clinically relevant hypothyroidism in a cohort of patients with adult GH deficiency (AGHD) during long-term therapy with recombinant human GH (rhGH). The study was designed as a retrospective collection of data on thyroid function in 49 AGHD patients of whom 44 (90%) had multiple hormone deficiency. Thirty-seven patients (76%) were on stable levothyroxine (LT4) replacement therapy (HYPO), and 12 (24%) were euthyroid (EUT). Therapy with rhGH was started at a dose of 3.5 microg/kg body weight and adjusted according to insulin-like growth factor-I (IGF-I) levels. At baseline, 6 months, 12 months, and yearly thereafter we measured free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone, and IGF-I. Study outcome was fT4 level below the normal range (9 pmol/L), irrespectively of fT3 or thyroid-stimulating hormone levels. During a follow-up of 115 patient-years, mean fT4 level decreased significantly, although remaining within the normal range (p = 0.0242; month 48 vs. baseline). The largest decrease was between baseline and month 6, when fT4 decreased of 1.43 pmol/L (95% confidence interval, 0.33-2.53) per 1 unit (microg/kg body weight) increase in rhGH dose. The incidence of hypothyroidism was 1.2 (HYPO group) and 6.7 (EUT group) events per 100 patient-years. We confirm that in patients with AGHD, rhGH therapy is associated with a small, although significant, decrement of fT4 in the first 6 months of replacement therapy. However, the incidence of hypothyroidism is low. Monitoring of thyroid function during rhGH therapy is advisable, particularly in the first year of therapy when the largest decrease in fT4 occurs.

  6. Aromatic Anchor at an Invariant Hormone-Receptor Interface

    PubMed Central

    Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.; Whittaker, Linda; Cox, Gabriella P.; Wickramasinghe, Nalinda; Menting, John G.; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Weiss, Michael A.

    2014-01-01

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of PheB24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, MetB24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of PheB24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [ChaB24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the ChaB24 analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of PheB24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. PMID:25305014

  7. Stories of experiences of care for growth hormone deficiency: the CRESCERE project

    PubMed Central

    Marini, Maria G; Chesi, Paola; Mazzanti, Laura; Guazzarotti, Laura; Toni, Teresa D; Salerno, Maria C; Officioso, Annunziata; Parpagnoli, Maria; Angeletti, Cristina; Faienza, Maria F; Iezzi, Maria L; Aversa, Tommaso; Sacchetti, Cinzia

    2016-01-01

    Aims: Growth hormone deficiency therapy is demanding for patients and caregivers. Teams engaged in the clinical management of growth hormone deficiency therapy need to know how families live with this condition, to provide an adequate support and prevent the risk of withdrawal from therapy. Methods: Using Narrative Medicine, testimonies from patients, their parents and providers of care were collected from 11 Italian centers. Narrations were analyzed throughout an elaboration of recurring words and expressions. Results: Although care management and outcomes were considered satisfying in the 182 collected narratives, recurring signals of intolerance among adolescents and the worry of not being well informed about side effects among parents are open issues. Conclusion: Narratives found that communication issues could decrease adherence and influence the physicians’ clinical practice. PMID:28031934

  8. Isolated adrenocorticotropic hormone deficiency due to probable lymphocytic hypophysitis in a woman

    PubMed Central

    Kacem, Faten Hadj; Charfi, Nadia; Mnif, Mouna Feki; Kamoun, Mahdi; Akid, Faouzi; Mnif, Fatma; Naceur, Basma Ben; Rekik, Nabila; Mnif, Zainab; Abid, Mohamed

    2013-01-01

    We report a 22-year-old woman who presented with asthenia, weight loss and hypotension in which extensive pituitary and adrenal investigations were diagnostic of isolated adrenocorticotropic hormone deficiency (IAD) of pituitary origin. Magnetic resonance imaging of the hypothalamus and pituitary showed a normal-sized pituitary, with no mass lesion. The diagnosis of IAD probably secondary to lymphocytic hypophysitis (LYH) was made. IAD is able to be the way of presentation of LYH, although the disease could or could not turn into a panhypopituitarism. Prompt recognition of this potentially fatal condition is important because of the availability of effective treatment. Indeed, regular endocrine and imaging follow up is important for patients with IAD and normal initial pituitary imaging results to detect early new-onset pituitary hormones deficiencies or imaging abnormalities. PMID:24251125

  9. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  10. Adherence and discontinuation of oral hormonal therapy in patients with hormone receptor positive breast cancer.

    PubMed

    Ayres, Lorena Rocha; Baldoni, André de Oliveira; Borges, Anna Paula de Sá; Pereira, Leonardo Régis Leira

    2014-02-01

    Oral treatment in women with breast cancer has been increasingly used. However, a potentially negative side of oral medication is poor patient adherence and/or discontinuation, which reduces the treatment effectiveness, accelerating progression of the disease and reducing the patient survival rate. To compare the rates of adherence and/or discontinuation and the methodologies used to assess these outcomes. It was conducted an integrative review of original articles published from 2000 to 2012, in which their primary outcome was to quantify medication adherence and/or discontinuation of oral hormonal therapy in patients with hormone receptor positive breast cancer. Original studies were searched in the PubMed/MEDLINE, Scopus, Embase and SciELO databases. The Medical Subject Heading was used to define descriptors. The descriptor "breast neoplasms" was used in all combinations. Each of the descriptors "medication adherence" and "patient compliance" were combined with each of the following descriptors "tamoxifen", "aromatase inhibitors", "selective estrogen receptor modulators", or the terms "letrozole", "anastrozole", and "exemestane". Twenty-four original articles were included. Our study showed a wide range of adherence and discontinuation rates, ranging from 45-95.7 and 12-73 %, respectively. Regarding the methodological development of the selected articles, a high prevalence (87.5 %) of prospective and/or retrospective longitudinal studies was found. In addition, there was a high prevalence of studies using a database (70.8 %). Among some of the studies, it was shown that patient adherence to hormonal therapy gradually reduces, while discontinuation increases during the treatment. It was observed a great diversity among rates of adherence and/or discontinuation of hormonal therapy for breast cancer, which may be due to a lack of methodology standardization. Therefore, adequate and validated methods to ensure reliability of the results and allow comparison in the

  11. Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.

    PubMed

    Mantelmacher, Fernanda Dana; Fishman, Sigal; Cohen, Keren; Pasmanik Chor, Metsada; Yamada, Yuichiro; Zvibel, Isabel; Varol, Chen

    2017-04-15

    The bone marrow (BM) contains controlled specialized microenvironments, or niches, that regulate the quiescence, proliferation, and differentiation of hematopoietic stem and progenitor cells (HSPC). The glucose-dependent insulinotropic polypeptide (GIP) is a gut-derived incretin hormone that mediates postprandial insulin secretion and has anabolic effects on adipose tissue. Previous studies demonstrated altered bone microarchitecture in mice deficient for GIP receptor (Gipr(-/-) ), as well as the expression of high-affinity GIP receptor by distinct cells constructing the BM HSPC niche. Nevertheless, the involvement of GIP in the process of BM hematopoiesis remains elusive. In this article, we show significantly reduced representation and proliferation of HSPC and myeloid progenitors in the BM of Gipr(-/-) mice. This was further manifested by reduced levels of BM and circulating differentiated immune cells in young and old adult mice. Moreover, GIP signaling was required for the establishment of supportive BM HSPC niches during HSPC repopulation in radioablated BM chimera mice. Finally, molecular profiling of various factors involved in retention, survival, and expansion of HSPC revealed significantly lower expression of the Notch-receptor ligands Jagged 1 and Jagged 2 in osteoblast-enriched bone extracts from Gipr(-/-) mice, which are important for HSPC expansion. In addition, there was increased expression of CXCL12, a factor important for HSPC retention and quiescence, in whole-BM extracts from Gipr(-/-) mice. Collectively, our data suggest that the metabolic hormone GIP plays an important role in BM hematopoiesis.

  12. An audit of growth hormone replacement for GH-deficient adults in Scotland.

    PubMed

    Philip, Sam; Howat, Isobel; Carson, Maggie; Booth, Anne; Campbell, Karen; Grant, Donna; Patterson, Catherine; Schofield, Christopher; Bevan, John; Patrick, Alan; Leese, Graham; Connell, John

    2013-04-01

    Guidelines on the clinical use of growth hormone therapy in adults were issued by the UK National Institute for Clinical Excellence (NICE) in August 2003. We conducted a retrospective clinical audit on the use of growth hormone (GH) in Scotland to evaluate the use of these guidelines and their impact on clinical practice. The audit had two phases. In phase I, the impact of NICE criteria on specialist endocrine practice in starting and continuing GH replacement was assessed. In phase II, the reasons why some adults in Scotland with growth hormone deficiency were not on replacement therapy were evaluated. A retrospective cross-sectional case note review was carried out of all adult patients being followed up for growth hormone deficiency during the study period (1 March 2005 to 31 March 2008). Phase I of the audit included 208 patients and phase II 108 patients. Sellar tumours were the main cause of GH deficiency in both phases of the audit. In phase I, 53 patients (77%) had an AGHDA-QoL score >11 documented before commencing GH post-NICE guidance, compared with 35 (25%) pre-NICE guidance. Overall, only 39 patients (18%) met the full NICE criteria for starting and continuing GH (pre-NICE, 11%; post-NICE, 35%). Phase II indicated that the main reasons for not starting GH included perceived satisfactory quality of life (n = 47, 43%), patient reluctance (16, 15%) or a medical contraindication (16, 15%). Although the use of quality of life assessments has increased following publication of the NICE guidelines, most adults on GH in Scotland did not fulfil the complete set of NICE criteria. The main reason for not starting GH therapy in adult GH-deficient patients was perceived satisfactory quality of life. © 2012 Blackwell Publishing Ltd.

  13. 47,+(9q-) in unrelated three children with plasma growth hormone deficiency.

    PubMed

    Fujita, H; Shimazaki, M; Takeuchi, T; Hayakawa, Y; Oura, T

    1976-03-12

    Marker chromosomes carried by unrelated 3 cases were identified as a part of No. 9 chromosome through the analysis of the chromatid fine structure after trypsin-giemsa treatment. They showed characteristic features of that 9p trisomic syndrome which were described by Rethoré et al. (1973). In addition to those features, some clinical and laboratory findings on growth hormon deficiency were disclosed in this report.

  14. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  15. Expression of growth hormone receptor in the human brain.

    PubMed

    Castro, J R; Costoya, J A; Gallego, R; Prieto, A; Arce, V M; Señarís, R

    2000-03-10

    This study was designed to investigate the presence of growth hormone receptor (GHR) expression in the human brain tissue, both normal and tumoral, as well as in the human glioblastoma cell line U87MG. Reverse transcription-polymerase chain reaction revealed the presence of GHR mRNA in all brain samples investigated and in U87MG cells. GHR immunoreactivity was also detected in this cell line using both immunocytochemistry and western blotting. All together, our data demonstrate the existence of GHR expression within the central nervous system (CNS), thus supporting a possible role for GH in the CNS physiology.

  16. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency.

    PubMed

    Wilson-Pérez, Hilary E; Chambers, Adam P; Ryan, Karen K; Li, Bailing; Sandoval, Darleen A; Stoffers, Doris; Drucker, Daniel J; Pérez-Tilve, Diego; Seeley, Randy J

    2013-07-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor-deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery.

  17. Educating children and families about growth hormone deficiency and its management: part 1.

    PubMed

    Collin, Jacqueline; Whitehead, Amanda; Walker, Jenny

    2016-02-01

    The management of growth hormone deficiency is long term. Children may be diagnosed at pre-school age meaning relationships with the paediatric endocrine team may last more than 15 years. The education role of the paediatric endocrine nurse specialist is essential in working in partnership with families over a long period of time. Children and young people have changing needs for information to help them understand their condition and growth hormone deficiency treatment as they grow up. Developing positive working relationships with parents, children and young people enables their developmental needs and the context in which they live their lives to be central to any educational planning for them. Addressing developmental needs when providing information on growth hormone deficiency to children and young people reinforces the need for education to be an ongoing process and not a one-off event. This is part one of a two-part article. The second part will be published in the March issue of Nursing Children and Young People and it focuses on educating children, young people and their parents about the condition, and includes case studies.

  18. Frequency of mutations in PROP-1 gene in Turkish children with combined pituitary hormone deficiency.

    PubMed

    Kandemir, Nurgün; Vurallı, Doğuş; Taşkıran, Ekim; Gönç, Nazlı; Özön, Alev; Alikaşifoğlu, Ayfer; Yılmaz, Engin

    2012-01-01

    Mutations in the prophet of Pit-1 (PROP-1) gene are responsible for most of the cases of combined pituitary hormone deficiencies (CPHD). We performed this study to determine the prevalence of PROP-1 mutations in a group of Turkish children with CPHD. Fifty-three children with the diagnosis of CPHD were included in this study. Clinical data were obtained from medical files, and hormonal evaluation and genetic screening for PROP-1 mutations were performed. A homozygous S109X mutation was found in the second exon in two brothers, and they had growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies and normal prolactin levels. In the third exon of the PROP-1 gene, a heterozygous A142T polymorphism was found in 14 patients and a homozygous A142T polymorphism was found in 3 patients. In the first exon, a homozygous A9A polymorphism was found in 7 patients and a heterozygous A9A polymorphism was found in 31 patients. We assumed that mutations in the PROP-1 gene in cases with CPHD were expected to be more prevalent in our population due to consanguinity, but it was found that these mutations were far less than expected and that it was rare in non-familial cases.

  19. Yeast-based reporter assays for the functional characterization of cochaperone interactions with steroid hormone receptors.

    PubMed

    Balsiger, Heather A; Cox, Marc B

    2009-01-01

    Steroid hormone receptor-mediated reporter assays in the budding yeast Saccharomyces cerevisiae have been an invaluable tool for the identification and functional characterization of steroid hormone receptor-associated chaperones and cochaperones. This chapter describes a hormone-inducible androgen receptor-mediated beta-galactosidase reporter assay in yeast. In addition, the immunophilin FKBP52 is used as a specific example of a receptor-associated cochaperone that acts as a positive regulator of receptor function. With the right combination of receptor and cochaperone expression plasmids, reporter plasmid, and ligand, the assay protocol described here could be used to functionally characterize a wide variety of nuclear receptor-cochaperone interactions. In addition to the functional characterization of receptor regulatory proteins, a modified version of this assay is currently being used to screen compound libraries for selective FKBP52 inhibitors that represent attractive therapeutic candidates for the treatment of steroid hormone receptor-associated diseases.

  20. Cobalt deficiency effects on trace elements, hormones and enzymes involved in energy metabolism of cattle.

    PubMed

    Stangl, G I; Schwarz, F J; Kirchgessner, M

    1999-03-01

    This study was conducted to investigate the physiological consequences of long-term moderate cobalt deficiency in beef cattle, which have not hitherto been studied in detail. Cobalt deficiency was induced in cattle by feeding two groups of animals either a basal corn silage-based diet that was moderately low in cobalt (83 micrograms Co/kg), or the same diet supplemented with cobalt to a total of 200 micrograms per kg, for 43 weeks. Cobalt deficiency was induced, as judged by inappetance, diminished growth gain and a markedly reduced vitamin B12 status in serum and liver. The long-term cobalt deprivation which was primarily a combination of reduced feed intake and a tissue vitamin B12 deficiency did not show evidence of a significant dysfunction of energy metabolism. The activities of glucose-6-phosphate dehydrogenase and cytochrome oxidase in liver remained unaffected by cobalt deficiency, nor was there a significant change in serum glucose level of cattle on the cobalt-deprived diet. However, analysis of thyroid hormone status indicated a slight reduction of type I thyroxine monodeiodinase activity in liver accompanied by a significant reduction of the triiodothyronine level in serum. The diminished liver vitamin B12 level resulted in significantly reduced folate level in this tissue, reduced concentrations of heme-depending blood parameters. Moreover cobalt deficiency or rather vitamin B12 deficiency was accompanied by a dramatic accumulation of the trace elements iron and nickel in liver. These results indicate that long-term moderate cobalt deficiency may induce a number of physiological changes in cattle, but a follow-up study, which excluded different feed levels by including a pair-fed control group, will be necessary to actually obtain the single effect of cobalt deficiency in cattle.

  1. Bisphenol A influences oestrogen- and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture.

    PubMed

    Somogyi, Virág; Horváth, Tamás L; Tóth, István; Bartha, Tibor; Frenyó, László Vilmos; Kiss, Dávid Sándor; Jócsák, Gergely; Kerti, Annamária; Naftolin, Frederick; Zsarnovszky, Attila

    2016-12-01

    Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E2) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10(-10) M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E2) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E2. The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand-receptor interaction.

  2. Toward gene therapy for growth hormone deficiency via salivary gland expression of growth hormone.

    PubMed

    Racz, G Z; Zheng, C; Goldsmith, C M; Baum, B J; Cawley, N X

    2015-03-01

    Salivary glands are useful targets for gene therapeutics. After gene transfer into salivary glands, regulated secretory pathway proteins, such as human growth hormone, are secreted into saliva, whereas constitutive secretory pathway proteins, such as erythropoietin, are secreted into the bloodstream. Secretion of human growth hormone (hGH) into the saliva is not therapeutically useful. In this study, we attempted to redirect the secretion of transgenic hGH from the saliva to the serum by site-directed mutagenesis. We tested hGH mutants first in vitro with AtT20 cells, a model endocrine cell line that exhibits polarized secretion of regulated secretory pathway proteins. Selected mutants were further studied in vivo using adenoviral-mediated gene transfer to rat submandibular glands. We identified two mutants with differences in secretion behavior compared to wild-type hGH. One mutant, ΔN1-6 , was detected in the serum of transduced rats, demonstrating that expression of this mutant in the salivary gland resulted in its secretion through the constitutive secretory pathway. This study demonstrates that mutagenesis of therapeutic proteins normally destined for the regulated secretory pathway may result in their secretion via the constitutive secretory pathway into the circulation for potential therapeutic benefit. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  4. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  5. Ontogeny of hepatic bovine growth hormone receptors in cattle.

    PubMed

    Badinga, L; Collier, R J; Thatcher, W W; Wilcox, C J; Head, H H; Bazer, F W

    1991-05-01

    A series of studies examined the binding characteristics and ontogeny of hepatic growth hormone binding sites in dairy bulls on d 2, 30, 180, and 365 of age. Binding of iodinated recombinant bovine growth hormone ([125I]rbGH) to liver membrane receptors was membrane protein-dependent. Receptors were considered growth hormone-specific, because physiological concentrations of bovine prolactin (bPRL) failed to displace [125I]rbGH from bovine hepatocyte membranes. Only 50% of [125I]rbGH was bound reversibly to hepatic microsomes. Addition of dithiothreitol (DTT) to the receptor-assay buffer increased the binding of [125I]rbGH to hepatic membranes in a time-dependent manner. Moderate concentrations of Ca++ and Mg++ in the receptor-assay buffer had no detectable effects on binding of [125I]rbGH to hepatic microsomes. In growing dairy bulls, specific binding of [125I]rbGH per milligram of membrane protein increased from 1.9 +/- 1.8% at d 2 to 14.1 +/- 1.8% at d 180 and then declined to 5.2 +/- 1.6% at d 365. Likewise, concentration of insulin-like growth factor (IGF)-I in serum was low during the 1st mo of age (d 2, 13.3 +/- 8.8 ng/ml; d 30, 9.7 +/- 8.8 ng/ml), but it became maximal at d 180 (151.0 +/- 8.8 ng/ml). Circulating concentrations of IGF-II increased linearly during the 1st yr of growth. Serum concentrations of GH, triiodothyronine, and thyroxine declined from 39.9 +/- 6.5, 2.7 +/- .2, and 75.4 +/- 4.6 ng/ml at d 2 to 16.5 +/- 6.5, 1.3 +/- .2, and 53.4 +/- 4.6 ng/ml at d 30, respectively, and remained low through 1 yr of age. Insulin concentration in serum did not change significantly with development. Results indicated that increasing concentrations of specific bGH receptors in the bovine liver may play a key role in regulating postnatal growth in cattle.

  6. Identification of Growth Hormone Receptor in Plexiform Neurofibromas of Patients with Neurofibromatosis Type 1

    PubMed Central

    Cunha, Karin Soares Gonçalves; Barboza, Eliane Porto; da Fonseca, Eliene Carvalho

    2008-01-01

    OBJECTIVE The aim of this study was to investigate the presence of growth hormone receptor in plexiform neurofibromas of neurofibromatosis type 1 patients. INTRODUCTION The development of multiple neurofibromas is one of the major features of neurofibromatosis type 1. Since neurofibromas commonly grow during periods of hormonal change, especially during puberty and pregnancy, it has been suggested that hormones may influence neurofibromatosis type 1 neurofibromas. A recent study showed that the majority of localized neurofibromas from neurofibromatosis type 1 patients have growth hormone receptor. METHODS Growth hormone receptor expression was investigated in 5 plexiform neurofibromas using immunohistochemistry. RESULTS Four of the 5 plexiform neurofibromas were immunopositive for growth hormone receptor. CONCLUSION This study suggests that growth hormone may influence the development of plexiform neurofibromas in patients with neurofibromatosis type 1. PMID:18297205

  7. Regulation of growth hormone secretion by (pro)renin receptor.

    PubMed

    Tani, Yuji; Yamada, Shozo; Inoshita, Naoko; Hirata, Yukio; Shichiri, Masayoshi

    2015-06-03

    (Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H(+)-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.

  8. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  9. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  10. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones

    PubMed Central

    Tourkova, Irina L.; Witt, Michelle R.; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J.; Blair, Harry C.

    2014-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in FSH-R null mice. Here we describe a FSH-R knockout bone formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express follicle stimulating hormone receptor (FSH-R), to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1–3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones. PMID:25118101

  11. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    PubMed

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones.

  12. Adult height after long term treatment with recombinant growth hormone for idiopathic isolated growth hormone deficiency: observational follow up study of the French population based registry

    PubMed Central

    Carel, Jean-Claude; Ecosse, Emmanuel; Nicolino, Marc; Tauber, Maïté; Leger, Juliane; Cabrol, Sylvie; Bastié-Sigeac, Irène; Chaussain, Jean-Louis; Coste, Joël

    2002-01-01

    Objective To evaluate the efficacy of recombinant growth hormone for increasing adult height in children treated for idiopathic isolated growth hormone deficiency. Design Observational follow up study. Setting Population based registry. Participants All 2852 French children diagnosed as having isolated idiopathic growth hormone deficiency whose treatment started between 1987 and 1992 and ended before 1996. Main outcome measures Change in height between the start of treatment and adulthood; classification of patients according to whether treatment was completed as scheduled or stopped early. Results Adult height was obtained for 2165 (76%) patients. The mean dose of growth hormone at start of treatment was 0.42 IU/kg/week. Height gain was 1.1 (SD 0.9) standard deviation (SD) scores, resulting in an adult height of –1.6 (0.9) SD score (girls, 154 (5) cm; boys, 167 (6) cm). Patients who completed the treatment gained 1.0 (0.7) SD score of height in 3.6 (1.4) years. Patients with treatments stopped early gained 0.6 (0.6) SD score in 2.7 (1.4) years while receiving treatment and a further 0.4 (0.9) SD score after the end of treatment. Most of the variation in height gain was explained by regression towards the mean, patients' characteristics, and delay in starting puberty. Severe growth hormone deficiency was associated with better outcome. Each year of treatment was associated with a gain of 0.2 SD score(1.3 cm). Conclusion The effect of growth hormone is unclear in many patients treated for so called idiopathic isolated growth hormone deficiency. Most of the patients have pubertal delay and a spontaneous growth potential, which must be taken into account when measuring the effect and cost effectiveness of treatments. Growth hormone deficiency should be clearly distinguished from pubertal delay, and criteria should restrict the definition to patients with severely and permanently altered growth hormone secretion as our results support the use of growth hormone in

  13. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    PubMed Central

    Dobolyi, Arpád; Dimitrov, Eugene; Palkovits, Miklós; Usdin, Ted B.

    2012-01-01

    The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders

  14. Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status

    PubMed Central

    Xu, Yan; Zheng, Yi-Zi; Liu, Yi-Rong; Lang, Guan-Tian; Qiao, Feng; Hu, Xin; Shao, Zhi-Ming

    2016-01-01

    In this study we sought to correlate androgen receptor (AR) expression with tumor progression and disease-free survival (DFS) in breast cancer patients. We investigated AR expression in 450 breast cancer patients. We found that breast cancers expressing the estrogen receptor (ER) are more likely to co-express AR compared to ER-negative cancers (56.0% versus 28.1%, P < 0.001). In addition, we found that AR expression is correlated with increased DFS in patients with luminal breast cancer (P < 0.001), and decreased DFS in TNBC (triple negative breast cancer, P = 0.014). In addition, patients with HR+ tumors (Hormone receptor positive tumors) expressing low levels of AR have the lowest DFS among all receptor combinations. We also propose a novel prognostic model using AR receptor status, BRCA1, and present data showing that our model is more predictive of disease free survival compared to the traditional TMN staging system. PMID:27285752

  15. Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency.

    PubMed

    Birla, Shweta; Khadgawat, Rajesh; Jyotsna, Viveka P; Jain, Vandana; Garg, M K; Bhalla, Ashu Seith; Sharma, Arundhati

    2016-08-01

    Human growth is an elementary process which starts at conception and continues through different stages of development under the influence of growth hormone (GH) secreted by the anterior pituitary gland. Variation affecting the production, release and functional activity of GH leads to growth hormone deficiency (GHD), which is of two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD may result from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1, POU1F1 and HESX1. The present study reports on the molecular screening of GHRHR and GH1 in IGHD patients. A total of 116 clinically diagnosed IGHD patients and 100 controls were enrolled for the study after taking informed consent. Family history was noted and 5ml blood sample was drawn. Anatomical and/or morphological pituitary gland alterations were studied using magnetic resonance imaging (MRI). DNA from blood samples was processed for screening the GHRHR and GH1 by Sanger sequencing. Mean age at presentation of the 116 patients (67 males and 49 females) was 11.71±3.5years. Mean height standard deviation score (SDS) and weight SDS were -4.5 and -3.5 respectively. Nine (7.8%) were familial and parental consanguinity was present in 21 (19.8%) families. Eighty-three patients underwent MRI and morphological alterations of the pituitary were observed in 39 (46.9%). GH1 and GHRHR screening revealed eleven variations in 24 (21%) patients of which, four were novel deleterious, one novel non-pathogenic and six reported changes. GHRHR contributed more to IGHD in our patients which confirmed that GHRHR should be screened first before GH1 in our population. Identification of GH1 and GHRHR variations helped in defining our mutational spectrum which will play a crucial role in providing predictive and prenatal genetic testing to the patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate

    PubMed Central

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-01-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin–testosterone–oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin–testosterone–oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes. PMID:21039986

  17. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate.

    PubMed

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-12-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin-testosterone-oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin-testosterone-oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes.

  18. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity.

    PubMed

    Wasim, Muhammad; Awan, Fazli Rabbi; Najam, Syeda Sadia; Khan, Abdul Rehman; Khan, Haq Nawaz

    2016-10-01

    Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity.

  19. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    PubMed

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-04-12

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption.

  20. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation

    PubMed Central

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M.

    2016-01-01

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP–PPR system during root morphogenesis and tooth eruption. PMID:27068606

  1. Hepatic receptors for homologous growth hormone in the eel

    SciTech Connect

    Hirano, T. )

    1991-03-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver.

  2. Effects of treatment with recombinant human growth hormone on insulin sensitivity and glucose metabolism in adults with growth hormone deficiency.

    PubMed

    Fowelin, J; Attvall, S; Lager, I; Bengtsson, B A

    1993-11-01

    In a double-blind, cross-over, placebo-controlled trial, the effect of 26 weeks of replacement therapy with recombinant human growth hormone (rhGH) on insulin sensitivity and glucose metabolism in nine patients with adult-onset growth hormone deficiency was studied with a euglycemic clamp. Glucose production and utilization were studied with D-(3-3H)-glucose infusions. Comparisons were made with placebo treatment for 6 and 26 weeks, respectively. GH therapy for 6 weeks increased fasting plasma concentrations of glucose and insulin. However, after 26 weeks of GH treatment, no significant changes in glucose or insulin concentrations were recorded. GH treatment induced a marked change in insulin action evident after 6 weeks of therapy as shown by lower glucose infusion rates (GIRs) during the clamp compared with placebo treatment (2.6 +/- 0.4 v 4.1 +/- 0.7 mg.kg-1.min-1). This change in insulin action was due to a decreased insulin effect on glucose utilization. After 26 weeks of GH therapy, there was no significant difference in GIRs. During placebo treatment, insulin sensitivity and insulin, glucose, and nonesterified fatty acid (NEFA) concentrations were unchanged compared with concentrations measured before the study. Thus GH replacement therapy induces a change in insulin action in GH-deficient individuals. Whether this change represents a decrease in insulin action (ie, insulin resistance) or a restoration of action to normal is presently unclear, since a healthy control group was not included in the study. During long-term treatment, the present study suggests that the change in insulin action can be reversed, probably secondarily to changes in body composition.

  3. Growth and hormonal profile from birth to adolescence of a girl with aromatase deficiency.

    PubMed

    Verma, Nishant; Jain, Vandana; Birla, Shweta; Jain, Richa; Sharma, Arundhati

    2012-01-01

    Aromatase deficiency is a rare autosomal recessive disorder caused by mutations in the CYP19A1 gene and characterized by lack of conversion of androgens to estrogens. It presents with virilization of pregnant mothers during the antenatal period, and virilization of female fetuses at birth. Affected subjects of either gender later manifest with features of estrogen deficiency and androgen excess. We describe the clinical course of an Indian girl with aromatase deficiency from birth to 16 years of age. Estrogen replacement was begun at age 13.5 years. The child's growth, hormonal, radiological, and metabolic parameters were monitored throughout the course of treatment. The child presented with obesity, tall stature, delayed bone age, osteoporosis, hyperinsulinemia with acanthosis nigricans, and hypergonadotropic hypogonadism with cystic ovaries. Estrogen replacement resulted in a plateauing of height, improvement of bone maturation, and pubertal progression with the disappearance of ovarian cysts. However, hyperinsulinemia and acanthosis nigricans persisted despite estrogen replacement and metformin. Genetic analysis revealed a homozygous arginine to cysteine substitution at codon 435 in exon 10 of CYP19A1. This is the first case of aromatase deficiency reported from India. This case highlights the role of estrogen in skeletal maturation and mineralization and the effect of estrogen deficiency and androgen excess over glucose metabolism in adolescent females.

  4. Efficacy and safety of growth hormone treatment in adults with growth hormone deficiency: a systematic review of studies on morbidity.

    PubMed

    van Bunderen, Christa C; van Varsseveld, Nadège C; Erfurth, Eva Marie; Ket, Johannes C F; Drent, Madeleine L

    2014-07-01

    Due to the positive effects demonstrated in randomized clinical trials on cardiovascular surrogate markers and bone metabolism, a positive effect of growth hormone (GH) treatment on clinically relevant end-points seems feasible. In this review, we discuss the long-term efficacy and safety of GH treatment in adult patients with growth hormone deficiency (GHD) with emphasis on morbidity: fatal and nonfatal cardiovascular disease (CVD) and stroke, fractures, fatal and nonfatal malignancies and recurrences, and diabetes mellitus. A positive effect of GH treatment on CVD and fracture risk could be concluded, but study design limitations have to be considered. Stroke and secondary brain tumours remained more prevalent. However, other contributing factors have to be taken into account. Regrowth and recurrences of (peri)pituitary tumours were not increased in patients with GH treatment compared to similar patients without GH treatment. All fatal and nonfatal malignancies were not more prevalent in GH-treated adults compared to the general population. However, follow-up time is still relatively short. The studies on diabetes are difficult to interpret, and more evidence is awaited. In clinical practice, a more individualized assessment seems appropriate, taking into consideration the underlying diagnosis of GHD, other treatment regimens, metabolic profile and the additional beneficial effects of GH set against the possible risks. Large and thoroughly conducted observational studies are needed and seem the only feasible way to inform the ongoing debate on health care costs, drug safety and clinical outcomes.

  5. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  6. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Zinc deficiency (ZD) without starvation affects thyroid hormone metabolism of rats

    SciTech Connect

    Lukaski, H.C.; Smith, S.M.; Hall, C.B.; Bucher, D.R. )

    1991-03-15

    Young rats fed diets severely deficient in Zn exhibit impaired growth and endocrine function. These hormone effects may be confounded by cyclical feeding and starvation. To examine the effects of zinc deficiency (ZD) with and without starvation, 40 male weanling Sprague-Dawley rats were fed a semipurified diet containing all essential nutrients and 30 ppm Zn until they weighed 150 g, then were matched by weight into four groups and were fed one of the following diets for 28d: ad lib control Zn diet, marginal ZD diet, severe ZD diet, and C diet pair-fed (PF) in amounts consumed by matched ZD1 rat. Food intake was depressed in ZD1; body weights were reduced in ZD1 and PF. There was no difference in either food intake or weight gain between C and ZD6. ZD reduced liver and femur Zn concentrations. Plasma thyroxine (T{sub 4}) concentration was greater in ZD6 then ZD1 or PF, but less than C; triodothyronine concentration was less in PF than C, but similar to ZD1 and ZD6. Hepatic T{sub 4}-5{prime}-deiodinase activity was greater in ZD6 than ZD1 or PF, but less than C. These findings indicate that altered thyroid hormone metabolism of severe ZD is related to Zn intake and starvation, whereas ZD uncomplicated by starvation affects peripheral deiodination of T{sub 4}, and suggests altered rates of thyroid hormone synthesis or degradation.

  8. [Structural characteristics of prolactin, growth hormone and their receptors as determinants of biological actions].

    PubMed

    Sandoval Sánchez, G C; Fonseca, M E; Ochoa Resendiz, R; Zárate Treviño, A

    1998-08-01

    The pituitary hormones prolactin and growth hormone are structurally related. Both hormones exist in the circulation in several molecular forms, differing in aminoacid sequences, posttranslational modifications and fragments produced by proteolytic cleavage. Heterogencity may produce a diversity of inmunological and biological actions. It has been suggested that each of this forms may be a isohormone with a different physiological role. The predominance of one of them in serun could account for the complex and often contradictory actions of the hormones. In addition receptors also have structural homology and so the possibility exist that these hormones share binding affinity to the receptors and can produce endocrinological problems in some special conditions.

  9. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor. beta

    SciTech Connect

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J. )

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine {yields} cytosine replacement in the codon for amino acid 340 resulted in a glycine {yields} arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor {beta} gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor {beta} gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  10. Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice.

    PubMed

    Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son

    2014-01-01

    Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.

  11. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  12. Unreplaced Sex Steroid Deficiency, Corticotropin Deficiency, and Lower IGF-I Are Associated with Lower Bone Mineral Density in Adults with Growth Hormone Deficiency: A KIMS Database Analysis

    PubMed Central

    Greenspan, Susan L.; King, Donna; Hamrahian, Amir; Cook, David M.; Jönsson, Peter J.; Wajnrajch, Michael P.; Koltowska-Häggstrom, Maria; Biller, Beverly M. K.

    2011-01-01

    Context: GH deficiency (GHD) is associated with low bone mineral density (BMD). Risk factors for lower BMD in this GHD population have not been fully elucidated. In particular, there are limited published data in GH-naïve subjects. Objective: The objective of the study was to identify endocrine correlates of low BMD in treatment-naïve adult GHD subjects. Design: This was a retrospective analysis of data extracted from the (Pfizer International Metabolic Study) KIMS database. Setting: The study was an international epidemiological survey of more than 15,000 adult GHD patients from 31 countries. Patients: A total of 1218 subjects with stringently defined GHD of adult onset (641 women and 577 men) who were GH naïve and had BMD measured in the posterior anterior lumbar spine and femoral neck by dual-energy X-ray absorptiometry. Main Outcome Measures: Variables associated with standardized BMD (sBMD) in adult-onset GHD were examined. Results: In the LS, body mass index (r = 0.13, P < 0.01), unreplaced sex steroid deficiency (r = −0.17, P < 0.0001), and corticotropin deficiency (r = −0.11, P < 0.01) were independently associated with sBMD. In the FN, age (r = −0.19, P < 0.0001), female gender (r = −0.18, P < 0.0001), body mass index (r = 0.21, P < 0.0001), and decreased IGF-I sd scores (r = 0.10, P < 0.001) were independently associated with sBMD. Conclusions: Hormone variables associated with lower sBMD in patients with adult-onset GHD include unreplaced sex steroid deficiency and corticotropin deficiency in the LS and lower IGF-I SDS in the FN. PMID:21367928

  13. Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency

    PubMed Central

    Wilson-Pérez, Hilary E.; Chambers, Adam P.; Ryan, Karen K.; Li, Bailing; Sandoval, Darleen A.; Stoffers, Doris; Drucker, Daniel J.; Pérez-Tilve, Diego; Seeley, Randy J.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor–deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery. PMID:23434938

  14. Is immune system-related hypertension associated with ovarian hormone deficiency?

    PubMed

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2016-03-01

    What is the topic of this review? This review summarizes recent data on the role of ovarian hormones and sex in inflammation-related hypertension. What advances does it highlight? The adaptive immune system has recently been implicated in the development of hypertension in males but not in females. The role of the immune system in the development of hypertension in women and its relationship to ovarian hormone production are highlighted. The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  15. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome

    PubMed Central

    Vurallı, Doğuş; Gönç, Nazlı; Vidaud, Dominique; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2016-01-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD. PMID:26758488

  16. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome.

    PubMed

    Vurallı, Doğuş; Gönç, Nazlı; Vidaud, Dominique; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2016-03-05

    Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD.

  17. Is immune system-related hypertension associated with ovarian hormone deficiency?

    PubMed Central

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2017-01-01

    The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. PMID:26419911

  18. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation.

    PubMed

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok; Cho, Min Hyun

    2016-04-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient.

  19. Resistance to thyroid hormone due to defective thyroid receptor alpha

    PubMed Central

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  20. Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1

    PubMed Central

    Ng, Lily; Cordas, Emily; Wu, Xuefeng; Vella, Kristen R.; Hollenberg, Anthony N.

    2015-01-01

    A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrbb1 reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood. PMID:26241124

  1. Toll-like receptor signaling in primary immune deficiencies

    PubMed Central

    Maglione, Paul J.; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 (HSV-1) encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell (pDC) defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  2. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor α1 can be ameliorated by T3 treatment

    PubMed Central

    Venero, César; Guadaño-Ferraz, Ana; Herrero, Ana Isabel; Nordström, Kristina; Manzano, Jimena; de Escobar, Gabriella Moreale; Bernal, Juan; Vennström, Björn

    2005-01-01

    The transcriptional properties of unliganded thyroid hormone receptors are thought to cause the misdevelopment during hypothyroidism of several functions essential for adult life. To specifically determine the role of unliganded thyroid hormone receptor α1 (TRα1) in neuronal tissues, we introduced a mutation into the mouse TRα1 gene that lowers affinity to thyroid hormone (TH) 10-fold. The resulting heterozygous mice exhibit several distinct neurological abnormalities: extreme anxiety, reduced recognition memory, and locomotor dysfunction. The anxiety and memory deficiencies were relieved by treatment with high levels of TH in adulthood, an effect that correlated with a normalization of GABAergic inhibitory interneurons in the hippocampal CA1 region. In contrast, a post-natal TH treatment was necessary and sufficient for ameliorating the adult locomotor dysfunction. Here, the hormone treatment normalized the otherwise delayed cerebellar development. The data thus identify two novel and distinct functions of an unliganded TRα1 during development and adulthood, respectively. PMID:16131613

  3. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    PubMed

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway.

  4. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination.

    PubMed

    Refetoff, Samuel; Dumitrescu, Alexandra M

    2007-06-01

    At least six major steps are required for secreted thyroid hormone (TH) to exert its action on target tissues. Mutations interfering with three of these steps have been so far identified. The first recognized defect, which causes resistance to TH, involves the TH receptor beta gene and has been given the acronym RTH. Occurring in approximately 1 per 40,000 newborns, more than 1000 affected subjects, from 339 families, have been identified. The gene defect remains unknown in 15% of subjects with RTH. Two novel syndromes causing reduced sensitivity to TH were recently identified. One, producing severe psychomotor defects in > 100 males from 26 families, is caused by mutations in the cell-membrane transporter of TH, MCT8; the second, affecting the intracellular metabolism of TH in four individuals from two families, is caused by mutations in the SECISBP2 gene, which is required for the synthesis of selenoproteins, including TH deiodinases.

  5. NFKB2 mutation in common variable immunodeficiency and isolated adrenocorticotropic hormone deficiency

    PubMed Central

    Shi, Chuan; Wang, Fen; Tong, Anli; Zhang, Xiao-Qian; Song, Hong-Mei; Liu, Zheng-Yin; Lyu, Wei; Liu, Yue-Hua; Xia, Wei-Bo

    2016-01-01

    Abstract Background Common variable immunodeficiency (CVID) with central adrenal insufficiency is a recently defined clinical syndrome caused by mutations in the nuclear factor kappa-B subunit 2 (NFKB2) gene. We present the first case of NFKB2 mutation in Asian population. Methods and Results An 18-year-old Chinese female with adrenocorticotropic hormone (ACTH) deficiency was admitted due to adrenal crisis and pneumonia. She had a history of recurrent respiratory infections since childhood and ectodermal abnormalities were noted during physical examination. Immunologic tests revealed panhypogammaglobulinemia and deficient natural killer (NK)-cell function. DNA sequencing of NFKB2 identified a heterozygous nonsense mutation (c.2563 A>T, p.855: Lys>∗) in the patient but not her parents. Conclusion Clinicians should be alert to comorbidities of adrenal insufficiency and ectodermal dysplasia in CVID patients as these might suggest a rare hereditary syndrome caused by NFKB2 mutation. PMID:27749582

  6. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  7. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance.

    PubMed

    Ando, S; Sarlis, N J; Krishnan, J; Feng, X; Refetoff, S; Zhang, M Q; Oldfield, E H; Yen, P M

    2001-09-01

    Patients with TSH-secreting pituitary tumors (TSHomas) have high serum TSH levels despite elevated thyroid hormone levels. The mechanism for this defect in the negative regulation of TSH secretion is not known. We performed RT-PCR to detect mutations in TRbeta from a surgically resected TSHoma. Analyses of the RT-PCR products revealed a 135-bp deletion within the sixth exon that encodes the ligand-binding domain of TRbeta2. This deletion was caused by alternative splicing of TRbeta2 mRNA, as near-consensus splice sequences were found at the junction site and no deletion or mutations were detected in the tumoral genomic DNA. This TRbeta variant (TRbeta2spl) lacked thyroid hormone binding and had impaired T3-dependent negative regulation of both TSHbeta and glycoprotein hormone alpha-subunit genes in cotransfection studies. Furthermore, TRbeta2spl showed dominant negative activity against the wild-type TRbeta2. These findings strongly suggest that aberrant alternative splicing of TRbeta2 mRNA generated an abnormal TR protein that accounted for the defective negative regulation of TSH in the TSHoma. This is the first example of aberrant alternative splicing of a nuclear hormone receptor causing hormonal dysregulation. This novel posttranscriptional mechanism for generating abnormal receptors may occur in other hormone-resistant states or tumors in which no receptor mutation is detected in genomic DNA.

  8. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  9. Hormone receptor status and survival of medullary breast cancer patients

    PubMed Central

    Aksoy, Asude; Odabas, Hatice; Kaya, Serap; Bozkurt, Oktay; Degirmenci, Mustafa; Topcu, Turkan O.; Aytekin, Aydın; Arpaci, Erkan; Avci, Nilufer; Pilanci, Kezban N.; Cinkir, Havva Y.; Bozkaya, Yakup; Cirak, Yalcin; Gumus, Mahmut

    2017-01-01

    Objectives: To analyze the relationship between clinical features, hormonal receptor status, and survival in patients who were diagnosed with medullary breast cancer (MBC). Methods: Demographic characteristics, histopathological features, and survival statuses of 201 patients diagnosed with MBC between 1995 and 2015 were retrospectively recorded. Survival analyses were conducted with uni- and multivariate cox regression analysis. Results: Median follow-up time was 54 (4-272) months. Median patient age at the time of diagnosis was 47 years old (26-90). Of the patients, 91.5% were triple negative. Five-year recurrence free survival time (RFS) rate was 87.4% and overalll survival (OS) rate 95.7%. For RFS, progesterone receptor (PR) negativity, atypical histopathological evaluation, absence of lymphovascular invasion, smaller tumor, lower nodal involvement were found to be favourable prognostic factors by univariate analysis (p<0.05). The PR negativity and smaller tumor were found to be favourable factors by univariate analysis (p<0.05). However, none of these factors were determined as significant independent prognostic factors for OS (p>0.05). Conclusion: Turkish MBC patients exhibited good prognosis, which was comparable with survival outcomes achieved in the literature. The PR negativity was related to a better RFS and OS rates. PMID:28133688

  10. Estrogen and Progesterone hormone receptor expression in oral cavity cancer.

    PubMed

    Grimm, M; Biegner, T; Teriete, P; Hoefert, S; Krimmel, M; Munz, A; Reinert, S

    2016-09-01

    Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC.

  11. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  12. Interspecies comparison of renal cortical receptors for parathyroid hormone and parathyroid hormone-related protein

    SciTech Connect

    Orloff, J.J.; Goumas, D.; Wu, T.L.; Stewart, A.F. )

    1991-03-01

    Parathyroid hormone (PTH) and PTH-related proteins (PTHrP) interact with a common receptor in rat bone cells and in canine renal membranes with similar affinity, but PTHrP are substantially less potent than PTH in stimulating adenylate cyclase in canine renal membranes; in contrast, PTH and PTHrP are equipotent in stimulating adenylate cyclase in rat bone cells. This discrepancy has been largely viewed as reflecting differences in the relative efficiency of signal transduction of PTHrP between bone and kidney assay systems. To test the alternative (but not mutually exclusive) hypothesis that these differences could reflect interspecies differences in PTH receptors, we have characterized the bioactivity of amino-terminal PTHrP and PTH in rat and human renal cortical membranes (RCM) and compared them to results we previously reported in canine RCM. The stability of PTH and PTHrP peptides under binding and adenylate cyclase assay conditions was greater than 80% for each species. Competitive inhibition of ({sup 125}I)(Tyr36)hPTHrP-(1-36)NH{sub 2} binding to rat RCM by bPTH-(1-34) and (Tyr36)hPTHrP-(1-36)NH{sub 2} yielded nearly identical binding dissociation constants (3.7 and 3.6 nM, respectively), and binding to human RCM demonstrated slightly greater potency for PTHrP (0.5 nM) than for PTH (0.9 nM). Similarly, adenylate cyclase stimulating activity was equivalent for the two peptides in rat RCM, but PTHrP was twofold more potent than PTH in human RCM. Covalent photoaffinity labeling of protease-protected rat RCM yielded an apparent 80 kD receptor protein, and cross-linking of human RCM labeled an 85 kD receptor, indistinguishable in size from the canine renal PTH receptor. We conclude that rat, canine, and human renal cortical PTH receptors exhibit species specificity.

  13. A phase 2 trial of long-acting TransCon growth hormone in adult GH deficiency.

    PubMed

    Höybye, Charlotte; Pfeiffer, Andreas F H; Ferone, Diego; Christiansen, Jens Sandahl; Gilfoyle, David; Christoffersen, Eva Dam; Mortensen, Eva; Leff, Jonathan A; Beckert, Michael

    2017-04-01

    TransCon growth hormone is a sustained-release human growth hormone prodrug under development in which unmodified growth hormone is transiently linked to a carrier molecule. It is intended as an alternative to daily growth hormone in the treatment of growth hormone deficiency. This was a multi-center, randomized, open-label, active-controlled trial designed to compare the safety (including tolerability and immunogenicity), pharmacokinetics and pharmacodynamics of three doses of weekly TransCon GH to daily growth hormone (Omnitrope). Thirty-seven adult males and females diagnosed with adult growth hormone deficiency and stable on growth hormone replacement therapy for at least 3 months were, following a wash-out period, randomized (regardless of their pre-study dose) to one of three TransCon GH doses (0.02, 0.04 and 0.08 mg GH/kg/week) or Omnitrope 0.04 mg GH/kg/week (divided into 7 equal daily doses) for 4 weeks. Main outcomes evaluated were adverse events, immunogenicity and growth hormone and insulin-like growth factor 1 levels. TransCon GH was well tolerated; fatigue and headache were the most frequent drug-related adverse events and reported in all groups. No lipoatrophy or nodule formation was reported. No anti-growth hormone-binding antibodies were detected. TransCon GH demonstrated a linear, dose-dependent increase in growth hormone exposure without accumulation. Growth hormone maximum serum concentration and insulin-like growth factor 1 exposure were similar after TransCon GH or Omnitrope administered at comparable doses. The results suggest that long-acting TransCon GH has a profile similar to daily growth hormone but with a more convenient dosing regimen. These findings support further TransCon GH development. © 2017 The authors.

  14. Effect of growth hormone treatment on craniofacial growth in children: Idiopathic short stature versus growth hormone deficiency.

    PubMed

    Choi, Sung-Hwan; Fan, Dong; Hwang, Mi-Soo; Lee, Hee-Kyung; Hwang, Chung-Ju

    2017-04-01

    Few studies have evaluated craniofacial growth in boys and girls with idiopathic short stature (ISS) during growth hormone (GH) treatment. The aim of this study was to evaluate the effect of GH treatment on craniofacial growth in children with ISS, compared with those with growth hormone deficiency (GHD). This study included 36 children (mean age, 11.3 ± 1.8 years) who were treated with GH consecutively. Lateral cephalograms were analyzed before and 2 years after start of GH treatment. There were no significant differences in age and sex between ISS and GHD groups and the reference group from semilongitudinal study (10 boys and 8 girls from each group). Before treatment, girls with ISS showed a skeletal Class II facial profile compared with the GHD and reference groups (p = 0.003). During GH treatment, the amount of maxillary length increased beyond norm in the ISS and GHD groups in boys (p = 0.035) > 3 standard deviation score (SDS). Meanwhile, mandibular ramus height (p = 0.001), corpus length, and total mandibular length (p = 0.007 for both) increased more in girls with ISS than in girls with GHD. Lower and total anterior facial heights increased more in girls with ISS than in girls with GHD (p = 0.021 and p = 0.007, respectively), > 7-11 SDS. GH should be administered carefully when treating girls with ISS, because GH treatment has great effects on vertical overgrowth of the mandible and can result in longer face. Copyright © 2016. Published by Elsevier B.V.

  15. Reproductive and hormonal factors, family history, and breast cancer according to the hormonal receptor status.

    PubMed

    Rosato, Valentina; Bosetti, Cristina; Negri, Eva; Talamini, Renato; Dal Maso, Luigino; Malvezzi, Matteo; Falcini, Fabio; Montella, Maurizio; La Vecchia, Carlo

    2014-09-01

    The aim of this study was to investigate the association between breast cancer risk, reproductive factors, and family history of breast cancer by the estrogen receptor (ER) and progesterone receptor (PR) status. We analyzed data from an Italian case-control study including 1075 women with incident breast cancer and 1477 hospital controls. We estimated the odds ratios (ORs) of breast cancer using unconditional logistic regression models including major recognized risk factors for breast cancer. Stronger associations with ER+ than with ER- breast cancer were observed for parity (OR: 0.7 vs. 0.9 for ≥ 3 births vs. nulliparae), age at first birth (OR: 1.6 vs. 1.2 for age ≥ 30 vs. <25 years), menopausal status (OR: 0.7 vs. 0.8 for postmenopause vs. pre/perimenopause), age at menopause (OR: 1.3 vs. 1.2 for menopause at age ≥ 50 vs. <50 years), and family history of breast cancer (OR: 2.2 vs. 1.4). Among the ER+ patients, the presence of PR+ did not appreciably modify any of the risk estimates. The association with age at menarche and hormone replacement therapy use was neither significant nor heterogeneous across ER and PR subtypes. In conclusion, we found stronger associations with selected menstrual and reproductive factors for ER+ (PR+) than for ER- (PR-) breast cancers, though in the absence of significant heterogeneity.

  16. CHHBP: a newly identified receptor of crustacean hyperglycemic hormone.

    PubMed

    Li, Ran; Tian, Jin-Ze; Zhuang, Cui-Heng; Zhang, Yi-Chen; Geng, Xu-Yun; Zhu, Li-Na; Sun, Jin-Sheng

    2016-04-15

    Crustacean hyperglycemic hormone (CHH) is a neurohormone found only in arthropods that plays a pivotal role in the regulation of hemolymph glucose levels, molting and stress responses. Although it was determined that a membrane guanylyl cyclase (GC) acts as the CHH receptor in the Y-organ during ecdysteroidogenesis, the identity of the CHH receptor in the hepatopancreas has not been established. In this study, we identified CHH binding protein (CHHBP), as a potential receptor by screening the annotated unigenes from the transcriptome of ITALIC! Eriocheir sinensis, after removal of the eyestalk. Analysis of the binding affinity between CHH and CHHBP provided direct evidence that CHH interacts with CHHBP in a specific binding mode. Subsequent analysis showed that CHHBP is expressed primarily in the hepatopancreas where it localizes to the cell membrane. In addition, real-time PCR analysis showed that ITALIC! CHHBPtranscript levels gradually increase in the hepatopancreas following eyestalk ablation. RNAi-mediated suppression of ITALIC! CHHBPexpression resulted in decreased glucose levels. Furthermore, the reduction of blood glucose induced by ITALIC! CHHBPRNAi reached the same level as that observed in the eyestalk ablation group, suggesting that CHHBP is involved in glucose metabolism regulated by CHH. In addition, compared with the control group, injection of CHH was unable to rescue the decreased glucose levels in ITALIC! CHHBPRNAi crabs. CHH induced transport of 2-NBDG to the outside of cells, with indispensable assistance from CHHBP. Taken together, these findings suggest that CHHBP acts as one type of the primary signal processor of CHH-mediated regulation of cellular glucose metabolism. © 2016. Published by The Company of Biologists Ltd.

  17. Deficiency of female sex hormones augments PGE2 and CGRP levels within midbrain periaqueductal gray.

    PubMed

    Wang, Dan; Zhao, Jiuhan; Wang, Jian; Li, Jingqing; Yu, Shengyuan; Guo, Xinjin

    2014-11-15

    The midbrain periaqueductal gray (PAG) is a substantial component of the descending modulatory network to control on nociceptive transmission and autonomic functions. Also, accumulated evidence has suggested that the PAG plays a crucial role in regulating migraine headache, a neurovascular disorder. The purpose of this study was to employ ELISA methods to examine the levels of prostaglandin E2 (PGE2) and calcitonin-gene related peptide (CGRP) in the PAG of rats who received ovariectomy and subsequent hormone replacement with 17β-estradiol, progesterone, or the combination of 17β-estradiol and progesterone. In addition, using Western blot analysis we examined expression of subtypes of PGE2 receptor in the PAG of rats with different conditions of female sex hormones. Results of our study demonstrated that lack of female sex hormones significantly increased the levels of PGE2 and CGRP in the dorsolateral PAG (P < 0.05) as well as expression of PGE2 EP3 receptors (P < 0.05). Furthermore, a liner relationship was observed between PGE2 and CGRP in the PAG (r = 092, P < 0.01). Also, inhibiting EP3 receptors by chronic administration of L-798106 (EP3 antagonist) into the lateral ventricles significantly attenuated expression of CGRP in the PAG of ovariectomized animals (P < 0.05 vs. vehicle control). Overall, our findings for the first time show that (1) circulating 17β-estradiol and/or progesterone influences the levels of PGE2 and CGRP in the PAG; (2) a lower level of 17β-estradiol and/or progesterone augments PGE2 and its EP3 receptor; and (3) PGE2 plays a role in regulating expression of CGRP in the PAG. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Flow cytometric monitoring of hormone receptor expression in human solid tumors

    NASA Astrophysics Data System (ADS)

    Krishan, Awtar

    2002-05-01

    Hormone receptor expression in human breast and prostate tumors is of diagnostic and therapeutic importance. With the availability of anti-estrogen, androgen and progesterone antibodies, immunohistochemistry has become a standard tool for determination of receptor expression in human tumor biopsies. However, this method is dependent on examination of a small number of cells under a microscope and the data obtained in most cases is not quantitative. As most of the commercially used anti-hormone antibodies have nuclear specificity, we have developed methods for isolation and antigen unmasking of nuclei from formalin fixed/paraffin embedded archival human tumors. After immunostaining with the antibodies and propidium iodide (for DNA content and cell cycle analysis), nuclei are analyzed by multiparametric laser flow cytometry for hormone receptor expression, DNA content, aneuploidy and cell cycle determination. These multiparametric methods are especially important for retrospective studies seeking to correlate hormone receptor expression with clinical response to anti-hormonal therapy of human breast and prostate tumors.

  19. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    PubMed Central

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W.; Boyd, Steven K.

    2012-01-01

    Growth hormone (GH) deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD) mouse model undergoing GH treatment commencing at an early (prepubertal) or late (postpubertal) time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostructure and vertebral trabecular microarchitecture, and mechanical properties were determined using finite element analyses. In the GHD animals, bone macrostructure was 25 to 43% smaller as compared to the GH-sufficient (GHS) controls (P < 0.001). GHD animals had 20% and 19% reductions in bone volume ratio (BV/TV) and trabecular thickness (Tb.Th), respectively. Whole bone mechanical properties of the GHD mice were lower at the femur and vertebra (67% and 45% resp.) than the GHS controls (P < 0.001). Both early and late GH treatment partially recovered the bone macrostructure (15 to 32 % smaller than GHS controls) and the whole bone mechanical properties (24 to 43% larger than GHD animals) although there remained a sustained 27–52% net deficit compared to normal mice (P < 0.05). Importantly, early treatment with GH led to a recovery of BV/TV and Tb.Th with a concomitant improvement of trabecular mechanical properties. Therefore, the results suggest that GH treatment should start early, and that measurements of microarchitecture should be considered in the management of GHD. PMID:22505889

  20. Impact of growth hormone replacement therapy on sleep in adult patients with growth hormone deficiency of pituitary origin

    PubMed Central

    Morselli, Lisa L.; Nedeltcheva, Arlet; Leproult, Rachel; Spiegel, Karine; Martino, Enio; Legros, Jean-Jacques; Weiss, Roy E.; Mockel, Jean; Van Cauter, Eve; Copinschi, Georges

    2013-01-01

    Objectives We previously reported that adult patients with GH deficiency (GHD) due to a confirmed or likely pituitary defect, as compared to healthy controls individually matched for age, gender and BMI, have more slow-wave sleep (SWS) and higher delta activity (a marker of SWS intensity). Here we examined the impact of recombinant human GH (rhGH) therapy, compared to placebo, on objective sleep quality in a subset of patients from the same cohort. Design Single-blind randomized cross-over design study. Methods Fourteen patients with untreated GHD of confirmed or likely pituitary origin, aged 22–74 yr, participated in the study. Patients with associated hormonal deficiencies were on appropriate replacement therapy. Polygraphic sleep recordings, with bedtimes individually tailored to habitual sleep times, were performed after 4 months on rhGH or placebo. Results Valid data were obtained in 13 patients. At the end of rhGH treatment period, patients had a shorter sleep period time than at the end of the placebo period (479±11 vs 431±19 min respectively; p=0.005), primarily due to an earlier wake up time, and a decrease in the intensity of SWS (delta activity) (559±125 vs 794±219 μV2, respectively; p=0.048). Conclusions Four months of rhGH replacement therapy partly reversed sleep disturbances previously observed in untreated patients. The decrease in delta activity associated with rhGH treatment adds further evidence to the hypothesis that the excess of high intensity SWS observed in untreated pituitary GHD patients is likely to result from overactivity of the hypothalamic GHRH system due to the lack of negative feedback inhibition by GH. PMID:23447518

  1. Aspects of growth hormone deficiency and replacement in elderly hypopituitary adults.

    PubMed

    Feldt-Rasmussen, Ulla; Wilton, Patrick; Jonsson, Peter

    2004-06-01

    Normal ageing is associated with a decline in spontaneous growth hormone (GH) secretion, and although elderly hypopituitary adults demonstrate an increase in total and central fat compared with age-matched controls and are distinguishable from control subjects in terms of GH responsiveness on dynamic testing, there are few data available on the response to GH replacement in older subjects. We have studied the baseline characteristics of 295 patients (173 males and 122 females) aged >65 years of age who began GH replacement therapy at the time of entry into the KIMS program (Pfizer International Metabolic Database) and the effects of GH replacement in 125 patients who completed at least 12 months of GH replacement therapy. Data were compared with those of 2469 (1249 males and 1220 females) patients aged <65 years with adult-onset GH deficiency (GHD). The patients were selected using strict criteria in accordance with the recommendations from the Growth Hormone Research Society. There was a higher proportion of pituitary adenoma relative to craniopharyngioma in the older age group (P<0.001), but there was no difference between groups in the degree of hypopituitarism (number of additional hormone deficiencies). Blood pressure, cholesterol and low-density lipoprotein (LDL) cholesterol levels were positively correlated with age, and older patients had a predictably higher prevalence of diabetes mellitus, coronary heart disease, stroke and history of hypertension. Quality of life (Assessment of Growth Hormone Deficiency in Adults (AGHDA) score) was impaired in both groups before the start of GH therapy. GH replacement doses were lower in older patients with GHD as compared with patients <65 years old. After 12 months of GH replacement, significant improvements were evident in waist circumference, waist/hip ratio, lean body mass, diastolic blood pressure, total and LDL cholesterol levels and AGHDA scores in patients aged <65 years. Similar significant reductions were

  2. ETA receptor blockade attenuates hypertension and decreases reactive oxygen species in ETB receptor-deficient rats.

    PubMed

    Elmarakby, Ahmed A; Dabbs Loomis, E; Pollock, Jennifer S; Pollock, David M

    2004-11-01

    We hypothesize that endothelin-A receptor stimulation contributes to the elevated blood pressure and superoxide production in endothelin-B receptor-deficient rats on a high salt diet. Experiments were conducted on homozygous endothelin-B-deficient (sl/sl) and wild-type rats (wt) fed a high salt diet (8% NaCl) for 3 weeks. Separate groups were given normal drinking water or water containing the endothelin-A receptor antagonist, ABT-627 (5 mg/kg per day; n = 8-9 in all groups). On a normal salt diet, (sl/sl) rats had a significantly elevated systolic blood pressure compared with wt (138 +/- 3 vs 117 +/- 4 mmHg, respectively; P < 0.05). High salt diet caused a significant increase in systolic blood pressure in (sl/sl) rats compared with wt (158 +/- 2 vs 138 +/- 3 mmHg, respectively; P < 0.05). Endothelin-A receptor blockade decreased systolic blood pressure in (sl/sl) rats on high salt (125 +/- 5 mmHg; P < 0.05 vs without antagonist) without affecting the systolic blood pressure in wt (119 +/- 4 mmHg). Aortic superoxide production (lucigenin chemiluminescence) and plasma 8-isoprostane were elevated in sl/sl rats and were significantly reduced by endothelin-A receptor blockade in sl/sl, but not in wt rats. These findings suggest that endothelin-1, through the endothelin-A receptor, contributes to salt-induced hypertension and vascular superoxide production in endothelin-B-deficient rats.

  3. Dynamic changes in the hypothalamic-pituitary-adrenal axis during growth hormone therapy in children with growth hormone deficiency: a multicenter retrospective study.

    PubMed

    Wang, Limin; Wang, Qian; Li, Guimei; Liu, Wendong

    2015-09-01

    The objective of this study was to investigate changes in the hypothalamic-pituitary-adrenal (HPA) axis after recombinant human growth hormone (rhGH) therapy. Subjects included children with growth hormone deficiency (GHD). We conducted a multicenter, retrospective study that assessed 72 GHD patients treated with rhGH during 6 months. Patients were classified into two groups: isolated GHD (IGHD; n=20) and multiple pituitary hormone deficiencies (MPHD; n=52). The HPA axis and other hormones were evaluated at baseline and every 3 months. In the MPHD group, 32 patients had adrenocorticotrophic hormone deficiency and received hydrocortisone before rhGH therapy. In the other 20/52 MPHD patients, the cortisol (COR) level was significantly reduced after rhGH therapy. Moreover, 10 patients showed low COR levels. In the IGHD group, COR levels also decreased, but remained within the normal range. During rhGH therapy, COR levels were reduced, particularly in patients with MPHD. HPA axis should be monitored during rhGH therapy.

  4. Neonatal Thyroid-Stimulating Hormone Concentrations in Belgium: A Useful Indicator for Detecting Mild Iodine Deficiency?

    PubMed Central

    Vandevijvere, Stefanie; Coucke, Wim; Vanderpas, Jean; Trumpff, Caroline; Fauvart, Maarten; Meulemans, Ann; Marie, Sandrine; Vincent, Marie-Françoise; Schoos, Roland; Boemer, François; Vanwynsberghe, Timothy; Philips, Eddy; Eyskens, François; Wuyts, Brigitte; Selimaj, Valbona; Van Overmeire, Bart; Kirkpatrick, Christine; Van Oyen, Herman; Moreno-Reyes, Rodrigo

    2012-01-01

    It has been proposed that neonatal thyroid-stimulating hormone (TSH) concentrations are a good indicator of iodine deficiency in the population. A frequency of neonatal TSH concentrations above 5 mU/L below 3% has been proposed as the threshold indicating iodine sufficiency. The objective of the present study was to evaluate feasibility and usefulness of nation-wide neonatal TSH concentration screening results to assess iodine status in Belgium. All newborns born in Belgium during the period 2009–2011 (n = 377713) were included in the study, except those suffering from congenital hypothyroidism and premature neonates. The frequency of neonatal TSH concentrations above 5 mU/L from 2009 to 2011 in Belgium fluctuated between 2.6 and 3.3% in the centres using the same TSH assay. There was a significant inverse association between neonatal TSH level and birth weight. The longer the duration between birth and screening, the lower the TSH level. Neonatal TSH levels were significantly lower in winter than in spring or autumn and significantly lower in spring and summer than in autumn while significantly higher in spring compared to summer. In conclusion, despite that pregnant women in Belgium are mildly iodine deficient, the frequency of neonatal TSH concentrations above 5 mU/L was very low, suggesting that the neonatal TSH threshold proposed for detecting iodine deficiency needs to be re-evaluated. Although neonatal TSH is useful to detect severe iodine deficiency, it should not be recommended presently for the evaluation of iodine status in mildly iodine deficient regions. PMID:23112844

  5. Thyroid Hormone Receptor Agonists Reduce Serum Cholesterol Independent of the LDL Receptor

    PubMed Central

    Lin, Jean Z.; Martagón, Alexandro J.; Hsueh, Willa A.; Baxter, John D.; Gustafsson, Jan-Åke; Webb, Paul

    2012-01-01

    The majority of cholesterol reduction therapies, such as the statin drugs, work primarily by inducing the expression of hepatic low-density lipoprotein receptors (LDLRs), rendering these therapeutics only partially effective in animals lacking LDLRs. Although thyroid hormones and their synthetic derivatives, often referred to as thyromimetics, have been clearly shown to reduce serum cholesterol levels, this action has generally been attributed to their ability to increase expression of hepatic LDLRs. Here we show for the first time that the thyroid hormone T3 and the thyroid hormone receptor-β selective agonists GC-1 and KB2115 are capable of markedly reducing serum cholesterol in mice devoid of functional LDLRs by inducing Cyp7a1 expression and stimulating the conversion and excretion of cholesterol as bile acids. Based on this LDLR-independent mechanism, thyromimetics such as GC-1 and KB2115 may represent promising cholesterol-lowering therapeutics for the treatment of diseases such as homozygous familial hypercholesterolemia, a rare genetic disorder caused by a complete lack of functional LDLRs, for which there are limited treatment options because most therapeutics are only minimally effective. PMID:23087171

  6. [Regulatory mechanism of hormones of the pituitary-target gland axes in kidney-Yang deficiency based on a support vector machine model].

    PubMed

    Xiufeng, Wang; Lei, Zhang; Rongbo, Huang; Qinghua, Wu; Jianxin, Min; Na, Ma; Laicheng, Luo

    2015-04-01

    To study the development mechanism of kidney-Yang deficiency through the establishment of support vector machine models of relevant hormones of the pituitary-target gland axes in rats with kidney-Yang deficiency syndrome. The kidney-Yang deficiency rat model was created by intramuscular injection of hydrocortisone, and contents of the hormones of the pituitary-thyroid axis: thyroid stimulating hormone (TSH), 3,3',5-triiodothyronine (T3) and thyroxine (T4); hormones of the pituitary-adrenal gland axis: adrenocorticotropic hormone (ACTH) and cortisol (CORT); and hormones of the pituitary-gonadal axis: luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T), were determined in the early, middle, and advanced stages. Ten support vector regression (SVR) models of the hormones were established to analyze the mutual relationships among the hormones of the three axes. The feedback control action of the pituitary-adrenal axis began to lose efficacy from the middle stage of kidney-Yang deficiency. The contents all hormones of the three pituitary-target gland axes decreased in the advanced stage. Relative errors of the jackknife test of the SVR models all were less than 10%. Imbalances in mutual regulation among the hormones of the pituitary-target gland axes, especially loss of effectiveness of the pituitary-adrenal axis, is one pathogenesis of kidney-Yang deficiency. The SVR model can accurately reflect the complicated non-linear relationships among pituitary-target gland axes in rats with of kidney-Yang deficiency.

  7. The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency.

    PubMed

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Ye, Honggang; Weiss, Roy E; Dumitrescu, Alexandra M; Refetoff, Samuel

    2015-11-01

    Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials.

  8. The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency

    PubMed Central

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Ye, Honggang; Weiss, Roy E.; Dumitrescu, Alexandra M.

    2015-01-01

    Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials. PMID:26322373

  9. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation

    PubMed Central

    Martineau, Corine; Kevorkova, Olha; Brissette, Louise; Moreau, Robert

    2014-01-01

    Abstract Scavenger receptor class B type I (SR‐BI), the Scarb1 gene product, is a high‐density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1‐deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1‐null and wild‐type (WT) cells. Scarb1 genic expression was down‐regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1‐null mice. Genic expression of co‐receptors for Wnt signaling, namely LDL‐related protein (Lrp) 5 and Lrp8, was increased, respectively, by two‐ and threefold, and of transcription target‐genes axis inhibition protein 2 (Axin2) and lymphoid enhancer‐binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs‐related protein 1 (Dkk1) were found to be increased 10‐ to 20‐fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1‐deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice. PMID:25281615

  10. Educating children and families about growth hormone deficiency and its management: part 2.

    PubMed

    Collin, Jacqueline; Whitehead, Amanda; Walker, Jenny

    2016-03-01

    Growth hormone deficiency (GHD) is a long-term condition, therefore creating ongoing partnerships with families is a fundamental part of the role of a paediatric endocrine nurse specialist (PENS). Teaching children, young people and their families about GHD and exploring what it means to them and how they can manage their ongoing treatment is central to building positive relationships. Educating children about the management of their growth hormone treatment (GHT) is an ongoing process and professionals must respond to the changing needs for that information children may have as they grow and develop. Long-term relationships with families are strengthened by recognising and respecting the developing expertise of families as they gain confidence and competence to manage GHT. This article is the second of two parts. Part one was published in the February issue of Nursing Children and Young People and covered an overview of growth hormone, causes and clinical presentation of GHD, development and availability of GHT and the role of the PENS in building partnerships with parents. The focus of this article is the education role of the PENS and the importance of providing information that is appropriate to the child or young person's developmental age.

  11. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    PubMed Central

    Bucci, Ines; Giuliani, Cesidio; Napolitano, Giorgio

    2017-01-01

    Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH) receptor (TSHR) antibodies (TRAbs) are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs), blocking (TBAbs), or neutral (N-TRAbs) depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy) occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery) before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism) are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and fetal

  12. Nuclear hormone receptor signals as new therapeutic targets for urothelial carcinoma.

    PubMed

    Miyamoto, H; Zheng, Y; Izumi, K

    2012-01-01

    Unlike prostate and breast cancers, urothelial carcinoma of the urinary bladder is not yet considered as an endocrine-related neoplasm, and hormonal therapy for bladder cancer remains experimental. Nonetheless, there is increasing evidence indicating that nuclear hormone receptor signals are implicated in the development and progression of bladder cancer. Androgen-mediated androgen receptor (AR) signals have been convincingly shown to induce bladder tumorigenesis. Androgens also promote the growth of AR-positive bladder cancer cells, although it is controversial whether AR plays a dominant role in bladder cancer progression. Both stimulatory and inhibitory functions of estrogen receptor signals in bladder cancer have been reported. Various studies have also demonstrated the involvement of other nuclear receptors, including progesterone receptor, glucocorticoid receptor, vitamin D receptor, and retinoid receptors, as well as some orphan receptors, in bladder cancer. This review summarizes and discusses available data suggesting the modulation of bladder carcinogenesis and cancer progression via nuclear hormone receptor signaling pathways. These pathways have the potential to be an extremely important area of bladder cancer research, leading to the development of effective chemopreventive/therapeutic approaches, using hormonal manipulation. Considerable uncertainty remains regarding the selection of patients who are likely to benefit from hormonal therapy and optimal options for the treatment.

  13. IL-12 receptordeficiency with features of autoimmunity and photosensitivity.

    PubMed

    Ling, Galina; Ling, Eduard; Broides, Arnon; Poran Feldman, Hagit; Levy, Jacov; Garty, Ben-Zion; Nahum, Amit

    2016-01-01

    Primary immunodeficiences are often accompanied by autoimmune phenomena. IL-12 receptor deficiency is a well characterized primary immunodeficiency that leads to propensity to intracellular infections mainly with mycobacteria and Salmonella. We report on two patients with IL-12 receptor β1 deficiency that presented with autoimmune manifestations and photosensitivity dermatitis and describe possible pathogenetic mechanisms leading to development of clinically significant autoimmune phenomena.

  14. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Evaluating Serum Markers for Hormone Receptor-Negative Breast Cancer

    PubMed Central

    Schummer, Michèl; Thorpe, Jason; Giraldez, Maria; Bergan, Lindsay; Tewari, Muneesh; Urban, Nicole

    2015-01-01

    Introduction Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. Death rates have been declining, largely as a result of early detection through mammography and improved treatment, but mammographic screening is controversial because of over-diagnosis of breast disease that might not require treatment, and under-diagnosis of cancer in women with dense breasts. Breast cancer screening could be improved by pairing mammography with a tumor circulating marker, of which there are currently none. Given genomic similarities between the basal breast cancer subtype and serous ovarian cancer, and given our success in identifying circulating markers for ovarian cancer, we investigated the performance in hormone receptor-negative breast cancer detection of both previously identified ovarian serum markers and circulating markers associated with transcripts that were differentially expressed in breast cancer tissue compared to healthy breast tissue from reduction mammaplasties. Methods We evaluated a total of 15 analytes (13 proteins, 1 miRNA, 1 autoantibody) in sera drawn at or before breast cancer surgery from 43 breast cancer cases (28 triple-negative—TN—and 15 hormone receptor-negative—HRN—/ HER2-positive) and 87 matched controls. Results In the analysis of our whole cohort of breast cancer cases, autoantibodies to TP53 performed significantly better than the other selected 14 analytes showing 25.6% and 34.9% sensitivity at 95% and 90% specificity respectively with AUC: 0.7 (p<0.001). The subset of 28 TN cancers showed very similar results. We observed no correlation between anti-TP53 and the 14 other markers; however, anti-TP53 expression correlated with Body-Mass-Index. It did not correlate with tumor size, positive lymph nodes, tumor stage, the presence of metastases or recurrence. Conclusion None of the 13 serum proteins nor miRNA 135b identified women with HRN or TN breast cancer. TP53 autoantibodies

  16. Glycogen storage disease type IX and growth hormone deficiency presenting as severe ketotic hypoglycemia.

    PubMed

    Hodax, Juanita K; Uysal, Serife; Quintos, Jose Bernardo; Phornphutkul, Chanika

    2017-02-01

    Glycogen storage disease (GSD) type IX and growth hormone (GH) deficiency cause ketotic hypoglycemia via different mechanisms and are not known to be associated. We describe a patient presenting with severe ketotic hypoglycemia found to have both GSD IX and isolated GH deficiency. A 3-year-and-11-month-old boy with a history of prematurity, autism, developmental delay, seizures, and feeding difficulty was admitted for poor weight gain and symptomatic hypoglycemia. He was nondysmorphic, with a height of 93.8 cm (2%, -1.97 SDS), and has no hepatomegaly. He developed symptomatic hypoglycemia, with a serum glucose level of 37 mg/dL after 14 h of fasting challenge. Critical sample showed a GH of 0.24 ng/mL. GH provocative stimulation testing was done with a peak GH of 2.8 ng/mL. Brain magnetic resonance imaging showed a hypoplastic pituitary gland. Given the clinical symptoms, suspicion for mitochondrial disease was high. Dual Genome Panel by Massively Parallel Sequencing revealed a hemizygous variant c.721A>G (p1241V) in the X-linked PHKA2 gene, a causative gene for GSD IX. Red blood cell PhK enzyme activity testing was low, supporting the diagnosis. Given the patient's developmental delays that were not explained by GH deficiency alone, further investigation showed two unrelated conditions resulting in deranged metabolic adaptation to fasting leading to severe hypoglycemia.

  17. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones.

    PubMed

    Peeling, Peter; Dawson, Brian; Goodman, Carmel; Landers, Grant; Trinder, Debbie

    2008-07-01

    Iron is utilised by the body for oxygen transport and energy production, and is therefore essential to athletic performance. Commonly, athletes are diagnosed as iron deficient, however, contrasting evidence exists as to the severity of deficiency and the effect on performance. Iron losses can result from a host of mechanisms during exercise such as hemolysis, hematuria, sweating and gastrointestinal bleeding. Additionally, recent research investigating the anemia of inflammation during states of chronic disease has allowed us to draw some comparisons between unhealthy populations and athletes. The acute-phase response is a well-recognised reaction to both exercise and disease. Elevated cytokine levels from such a response have been shown to increase the liver production of the hormone Hepcidin. Hepcidin up-regulation has a negative impact on the iron transport and absorption channels within the body, and may explain a potential new mechanism behind iron deficiency in athletes. This review will attempt to explore the current literature that exits in this new area of iron metabolism and exercise.

  18. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion.

    PubMed

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M; Philp, Nancy J; Weiss, Roy E; Refetoff, Samuel

    2010-09-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid-precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients.

  19. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion

    PubMed Central

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M.; Philp, Nancy J.; Weiss, Roy E.; Refetoff, Samuel

    2010-01-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid–precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients. PMID:20679730

  20. Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice.

    PubMed

    Grandoch, Maria; Feldmann, Kathrin; Göthert, Joachim R; Dick, Lena S; Homann, Susanne; Klatt, Christina; Bayer, Julia K; Waldheim, Jan N; Rabausch, Berit; Nagy, Nadine; Oberhuber, Alexander; Deenen, René; Köhrer, Karl; Lehr, Stefan; Homey, Bernhard; Pfeffer, Klaus; Fischer, Jens W

    2015-04-10

    Lymphotoxin β receptor (LTbR) regulates immune cell trafficking and communication in inflammatory diseases. However, the role of LTbR in atherosclerosis is still unclear. The aim of this study was to elucidate the role of LTbR in atherosclerosis. After 15 weeks of feeding a Western-type diet, mice double-deficient in apolipoprotein E and LTbR (apoE(-/-)/LTbR(-/-)) exhibited lower aortic plaque burden than did apoE(-/-) littermates. Macrophage content at the aortic root and in the aorta was reduced, as determined by immunohistochemistry and flow cytometry. In line with a decrease in plaque inflammation, chemokine (C-C motif) ligand 5 (Ccl5) and other chemokines were transcriptionally downregulated in aortic tissue from apoE(-/-)/LTbR(-/-) mice. Moreover, bone marrow chimeras demonstrated that LTbR deficiency in hematopoietic cells mediated the atheroprotection. Furthermore, during atheroprogression, apoE(-/-) mice exhibited increased concentrations of cytokines, for example, Ccl5, whereas apoE(-/-)/LTbR(-/-) mice did not. Despite this decreased plaque macrophage content, flow cytometric analysis showed that the numbers of circulating lymphocyte antigen 6C (Ly6C)(low) monocytes were markedly elevated in apoE(-/-)/LTbR(-/-) mice. The influx of these cells into atherosclerotic lesions was significantly reduced, whereas apoptosis and macrophage proliferation in atherosclerotic lesions were unaffected. Gene array analysis pointed to chemokine (C-C motif) receptor 5 as the most regulated pathway in isolated CD115(+) cells in apoE(-/-)/LTbR(-/-) mice. Furthermore, stimulating monocytes from apoE(-/-) mice with agonistic anti-LTbR antibody or the natural ligand lymphotoxin-α1β2, increased Ccl5 mRNA expression. These findings suggest that LTbR plays a role in macrophage-driven inflammation in atherosclerotic lesions, probably by augmenting the Ccl5-mediated recruitment of monocytes. © 2015 American Heart Association, Inc.

  1. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  2. Leptin receptor deficient diabetic (db/db) mice are compromised in postnatal bone regeneration.

    PubMed

    Rőszer, Tamás; Józsa, Tamás; Kiss-Tóth, Eva D; De Clerck, Nora; Balogh, Lajos

    2014-04-01

    Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.

  3. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function

    PubMed Central

    Banerjee, Antara A.; Mahale, Smita D.

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of hormone–receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  4. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    PubMed

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  5. Adjuvant hormonal therapy for breast cancer and risk of hormone receptor-specific subtypes of contralateral breast cancer.

    PubMed

    Li, Christopher I; Daling, Janet R; Porter, Peggy L; Tang, Mei-Tzu C; Malone, Kathleen E

    2009-09-01

    Compared with the breast cancer risk women in the general population have, breast cancer survivors have a substantially higher risk of developing a second primary contralateral breast cancer. Adjuvant hormonal therapy reduces this risk, but preliminary data indicate that it may also increase risk of hormone receptor-negative contralateral tumors. We conducted a population-based nested case-control study including 367 women diagnosed with both first primary estrogen receptor (ER)-positive invasive breast cancer and second primary contralateral breast cancer and 728 matched control women diagnosed only with a first breast cancer. Data on adjuvant hormonal therapy, other treatments, and breast cancer risk factors were ascertained through telephone interviews and medical record abstractions. Two-sided statistical tests using conditional logistic regression were conducted to quantify associations between adjuvant hormonal therapy and risk of hormone receptor-specific subtypes of contralateral breast cancer (n = 303 ER+ and n = 52 ER- cases). Compared with women not treated with hormonal therapy, users of adjuvant tamoxifen for >or=5 years had a reduced risk of ER+ contralateral breast cancer [odds ratio, 0.4; 95% confidence interval (CI), 0.3-0.7], but a 4.4-fold (95% CI, 1.03-19.0) increased risk of ER- contralateral breast cancer. Tamoxifen use for <5 years was not associated with ER- contralateral breast cancer risk. Although adjuvant hormonal therapy has clear benefits, risk of the relatively uncommon outcome of ER- contralateral breast cancer may now need to be tallied among its risks. This is of clinical concern given the poorer prognosis of ER- compared with ER+ tumors.

  6. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  7. Optimizing subcutaneous injection of the gonadotropin-releasing hormone receptor antagonist degarelix.

    PubMed

    Barkin, Jack; Burton, Shelley; Lambert, Carole

    2016-02-01

    The gonadotropin-releasing hormone (GnRH) receptor antagonist degarelix has several unique characteristics compared to luteinizing hormone-releasing hormone (LHRH) analogs used in the management of prostate cancer. Notable differences of GnRH receptor antagonists include no flare reaction, and a more rapid suppression of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prostate-specific antigen (PSA) compared to LHRH analogs. Despite emerging evidence supporting the use of GnRH receptor antagonists over the more widely used LHRH analogs in the management of prostate cancer, physicians may be reluctant to prescribe degarelix. They may be concerned about patient complaints about injection-site reactions (ISRs). The subcutaneous injection of degarelix has been associated with a higher rate of ISRs compared with the intramuscular injections of LHRH analogs. This "How I Do It" article describes techniques and strategies that have been developed by physicians and nurses to reduce the discomfort associated with the subcutaneous delivery of degarelix.

  8. Vitamin D across growth hormone (GH) disorders: From GH deficiency to GH excess.

    PubMed

    Ciresi, A; Giordano, C

    2017-04-01

    The interplay between vitamin D and the growth hormone (GH)/insulin-like growth factor (IGF)-I system is very complex and to date it is not fully understood. GH directly regulates renal 1 alpha-hydroxylase activity, although the action of GH in modulating vitamin D metabolism may also be IGF-I mediated. On the other hand, vitamin D increases circulating IGF-I and the vitamin D deficiency should be normalized before measurement of IGF-I concentrations to obtain reliable and unbiased IGF-I values. Indeed, linear growth after treatment of nutritional vitamin D deficiency seems to be mediated through activation of the GH/IGF-I axis and it suggests an important role of vitamin D as a link between the proliferating cartilage cells of the growth plate and GH/IGF-I secretion. Vitamin D levels are commonly lower in patients with GH deficiency (GHD) than in controls, with a variable prevalence of insufficiency or deficiency, and this condition may worsen the already known cardiovascular and metabolic risk of GHD, although this finding is not common to all studies. In addition, data on the impact of GH treatment on vitamin D levels in GHD patients are quite conflicting. Conversely, in active acromegaly, a condition characterized by a chronic GH excess, both increased and decreased vitamin D levels have been highlighted, and the interplay between vitamin D and the GH/IGF-I axis becomes even more complicated when we consider the acromegaly treatment, both medical and surgical. The current review summarizes the available data on vitamin D in the main disorders of the GH/IGF-I axis, providing an overview of the current state of the art.

  9. Low parathyroid hormone levels in bedridden geriatric patients with vitamin D deficiency.

    PubMed

    Björkman, Mikko P; Sorva, Antti J; Risteli, Juha; Tilvis, Reijo S

    2009-06-01

    To identify the clinical conditions associated with low parathyroid hormone (PTH) in patients with vitamin D deficiency and to evaluate the stability of the blunted PTH response to vitamin D deficiency over 6 months. Secondary analysis of a randomized double-blind controlled vitamin D supplementation trial. Four long-term care hospitals in Helsinki, Finland. Two hundred eighteen chronically bedridden patients. Plasma 25-hydroxyvitamin D (25-OHD), intact PTH, amino-terminal propeptide of type I procollagen (PINP), carboxy-terminal telopeptide of type I collagen (ICTP), activities of daily living (ADLs), and body mass index (BMI) were measured at baseline and at 6 months. Patient records were reviewed for demographic data. PTH was within reference values (8-73 ng/L) despite low 25-OHD level (<50 nmol/L) in 74.8% (n=163) of patients (mean age 84.5+/-7.5). Patients in the lowest PTH quartile (<38 ng/L) were characterized by a history of hip fractures (OR=2.9, P=0.01), low BMI (OR=0.9, P=.02), and high ICTP (OR=1.1, P=.03). PTH remained within reference values even after 6 months in 76.2% of the patients with persistent vitamin D deficiency in the placebo group. The absence of secondary hyperparathyroidism seems to be common and persistent in frail chronically bedridden patients with vitamin D deficiency. Attenuated parathyroid function appears to be associated with immobilization that causes accelerated bone resorption. Further studies addressing the possible adverse effects of low PTH are warranted.

  10. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    PubMed

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  11. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women.

  12. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8.

    PubMed

    Horn, Sigrun; Kersseboom, Simone; Mayerl, Steffen; Müller, Julia; Groba, Claudia; Trajkovic-Arsic, Marija; Ackermann, Tobias; Visser, Theo J; Heuer, Heike

    2013-02-01

    The monocarboxylate transporter 8 (MCT8) plays a critical role in mediating the uptake of thyroid hormones (THs) into the brain. In patients, inactivating mutations in the MCT8 gene are associated with a severe form of psychomotor retardation and abnormal serum TH levels. Here, we evaluate the therapeutic potential of the TH analog 3,5,3',5'-tetraiodothyroacetic acid (tetrac) as a replacement for T(4) in brain development. Using COS1 cells transfected with TH transporter and deiodinase constructs, we could show that tetrac, albeit not being transported by MCT8, can be metabolized to the TH receptor active compound 3,3',5-triiodothyroacetic acid (triac) by type 2 deiodinase and inactivated by type 3 deiodinase. Triac in turn is capable of replacing T(3) in primary murine cerebellar cultures where it potently stimulates Purkinje cell development. In vivo effects of tetrac were assessed in congenital hypothyroid Pax8-knockout (KO) and Mct8/Pax8 double-KO mice as well as in Mct8-KO and wild-type animals after daily injection of tetrac (400 ng/g body weight) during the first postnatal weeks. This treatment was sufficient to promote TH-dependent neuronal differentiation in the cerebellum, cerebral cortex, and striatum but was ineffective in suppressing hypothalamic TRH expression. In contrast, TSH transcript levels in the pituitary were strongly down-regulated in response to tetrac. Based on our findings we propose that tetrac administration offers the opportunity to provide neurons during the postnatal stage with a potent TH receptor agonist, thereby eventually reducing the neurological damage in patients with MCT8 mutations without deteriorating the thyrotoxic situation in peripheral tissues.

  13. The Testicular Hormones AMH, InhB, INSL3, and Testosterone Can Be Independently Deficient in Older Men.

    PubMed

    Chong, Yih Harng; Pankhurst, Michael W; McLennan, Ian S

    2017-04-01

    Late-onset hypogonadism is symptomatically diverse and not fully explained by circulating testosterone level. The adult testes secrete four distinct hormones (testosterone, AMH, INSL3, and InhB) into the circulation. Testosterone and InhB have proven dynamic regulation, with limited information available for AMH and INSL3. During aging, there is cellular senescence, which may underlie the diversity of hypogonadism. This leads to the postulate that the relative levels (profile) of the four testicular hormones in older men are variable and cannot be evaluated by the measurement of one hormone. 111 men aged 19-50 years and 98 men aged 70-90 years were examined. The circulating levels of the testicular hormones were measured using ELISAs, and the variation in the levels of hormones was analyzed by various correlative analyses. All four hormones were largely or totally independent. Some men were deficient in multiple hormones, but no man had multiple elevated hormones. The average hormonal levels were lower in older men, with diverse profiles of the four testicular hormones. Hence, some men had one or more hormones below the reference range, with testosterone the most conserved. Consequently, testosterone levels were not indicative of the complete state of the endocrine testes. The four hormones vary independently of each other, in younger and older men. This indicates that they are regulated dynamically rather than influenced by endocrine cell number. Older men exhibited diverse profiles of low levels of testicular hormones, suggesting that the testes age differently between men. Testosterone alone inadequately describes gonadal states.

  14. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  15. Reappraisal of bovril as a source of arginine in the arginine stimulation test for growth hormone deficiency.

    PubMed

    Loh, H H; Norlela, S; Nor Azmi, K

    2015-06-01

    The purpose of this case study is to report the use of oral Bovril (a food supplement which contains arginine) as an alternative test for growth hormone stimulation test. We performed oral Bovril test in 3 patients -- one with suspected growth hormone deficiency in whom insulin tolerance test could not be performed (subject A), one sex-matched control (subject B), and one with confirmed growth hormone deficiency (subject C). 14g/m(2) of oral Bovril was mixed with 150ml of warm water and was given to all three subjects. Blood for growth hormone was taken at baseline, and every 30 minutes till 150 minutes after ingestion of oral Bovril. The ingestion of oral Bovril showed a positive response in subjects A and B, with highest growth hormone levels of 28.4mIU/L and 42.0mIU/L respectively at 150 minutes. Subject C had suppressed growth hormone throughout the test. Oral Bovril is readily available and is a safe alternative for standard growth hormone stimulation test.

  16. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    USDA-ARS?s Scientific Manuscript database

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  17. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans.

    PubMed

    Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen

    2013-01-01

    Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.

  18. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  19. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  20. Familial X-linked mental retardation and isolated growth hormone deficiency: Clinical and molecular findings

    SciTech Connect

    Hamel, B.C.J.; Smits, A.P.T.; Helm, B. van den

    1996-07-12

    We report on several members of a family with varying degrees of X-linked mental retardation (XLMR), isolated growth hormone deficiency (IGHD), and infantile behavior but without other consistent phenotypic abnormalities. Male patients continued to grow until well into their twenties and reached a height ranging from 135 to 159 cm. Except one, all female carriers were mentally normal; their adult height ranged from 159 to 168 cm. By linkage studies we have assigned the underlying genetic defect to the Xq24-q27.3 region, with a maximum lod score of Z = 3.26 at {theta} = 0.0 for the DXS294 locus. The XLMR-IGHD phenotype in these patients may be due to pleiotropic effects of a single gene or it may represent a contiguous gene syndrome. 18 refs., 6 figs., 3 tabs.

  1. Nutrition, evolution and thyroid hormone levels - a link to iodine deficiency disorders?

    PubMed

    Kopp, Wolfgang

    2004-01-01

    An increased iodine requirement as a result of significant changes in human nutrition rather than a decreased environmental iodine supply is suggested to represent the main cause of the iodine deficiency disorders (IDD). The pathomechanism proposed is based on the fact that serum concentrations of thyroid hormones, especially of trijodothyronine (T3), are dependent on the amount of dietary carbohydrate. High-carbohydrate diets are associated with significantly higher serum T3 concentrations, compared with very low-carbohydrate diets. While our Paleolithic ancestors subsisted on a very low carbohydrate/high protein diet, the agricultural revolution about 10,000 years ago brought about a significant increase in dietary carbohydrate. These nutritional changes have increased T3 levels significantly. Higher T3 levels are associated with an enhanced T3 production and an increased iodine requirement. The higher iodine requirement exceeds the availability of iodine from environmental sources in many regions of the world, resulting in the development of IDD.

  2. Receptor dysfunction and hormone resistance in human diseases--a review.

    PubMed

    Macaron, C; Famuyiwa, O

    1978-01-01

    Studies of the hormone-receptor interaction have introduced a new chapter in endocrine and metabolic disorders. Receptor (R) dysfunction in human diseases, due either to an alteration in the number or affinity of the R, or to antibodies against the R, is reviewed and classified in the first part of this paper. Disorders where hormone resistance has been implicated, but where R studies are still unavailable are also presented.

  3. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues.

    PubMed

    Matsubara, S; Sato, M; Mizobuchi, M; Niimi, M; Takahara, J

    1995-09-01

    Growth hormone (GH)-releasing hormone (GRH) acts on specific receptors in the anterior pituitary to stimulate the synthesis and release of GH. Recent reports suggest that GRH is also synthesized in extrahypothalamic tissues. To evaluate the potential roles of extrahypothalamic GRH, we studied the gene expression of GRH and GRH receptors in various rat tissues by reverse transcribed (RT)-polymerase chain reaction (PCR). Total RNA was extracted from twenty-three rat organs and RT-PCR was performed with GRH and GRH receptor primers. Highly-sensitive RT-PCR-Southern blotting showed that GRH and GRH receptor mRNA coexist in the widespread tissues (14 of 25 tissues). GRH mRNA was relatively abundant in the cerebral cortex, brain stem, testis, and placenta, while GRH receptor mRNA was abundant in renal medulla and renal pelvis. Northern blot hybridization using poly A+ RNA indicated that the transcript of GRH receptor gene found in the renal medulla was similar to the longer transcript (about 4 Kb) of pituitary GRH receptor in the size. These results suggest that GRH plays a potential role not only in the neuroendocrine axis, but also in the autocrine and paracrine systems in extrahypothalamic tissues.

  4. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.

    PubMed

    Lin, Hua V; Frassetto, Andrea; Kowalik, Edward J; Nawrocki, Andrea R; Lu, Mofei M; Kosinski, Jennifer R; Hubert, James A; Szeto, Daphne; Yao, Xiaorui; Forrest, Gail; Marsh, Donald J

    2012-01-01

    Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.

  5. Association between Decreased Klotho Blood Levels and Organic Growth Hormone Deficiency in Children with Growth Impairment

    PubMed Central

    Ben Ami, Michal; Levy-Shraga, Yael; Mazor-Aronovitch, Kineret; Pinhas-Hamiel, Orit; Yeshayahu, Yonatan; Hemi, Rina; Kanety, Hannah; Rubinek, Tami; Modan-Moses, Dalit

    2014-01-01

    Objective Klotho is an aging-modulating protein expressed mainly in the kidneys and choroid plexus, which can also be shed, released into the circulation and act as a hormone. Klotho deficient mice are smaller compared to their wild-type counterparts and their somatotropes show marked atrophy and reduced number of secretory granules. Recent data also indicated an association between klotho levels and growth hormone (GH) levels in acromegaly. We aimed to study the association between klotho levels and GH deficiency (GHD) in children with growth impairment. Design Prospective study comprising 99 children and adolescents (aged 9.0±3.7 years, 49 male) undergoing GH stimulation tests for short stature (height-SDS = −2.1±0.6). Klotho serum levels were measured using an α-klotho ELISA kit. Results Klotho levels were significantly lower (p<0.001) among children with organic GHD (n = 11, 727±273 pg/ml) compared to both GH sufficient participants (n = 59, 1497±754 pg/ml) and those with idiopathic GHD (n = 29, 1645±778 pg/ml). The difference between GHS children and children with idiopathic GHD was not significant. Klotho levels positively correlated with IGF-1- standard deviation scores (SDS) (R = 0.45, p<0.001), but were not associated with gender, pubertal status, age or anthropometric measurements. Conclusions We have shown, for the first time, an association between low serum klotho levels and organic GHD. If validated by additional studies, serum klotho may serve as novel biomarker of organic GHD. PMID:25198618

  6. Isolation, Expression Analysis, and Functional Characterization of the First Antidiuretic Hormone Receptor in Insects

    DTIC Science & Technology

    2010-06-01

    Isolation, expression analysis, and functional characterization of the first antidiuretic hormone receptor in insects Jean-Paul Paluzzia,1, Yoonseong...have cloned the cDNA of the first receptor known to be involved in an antidiuretic strategy in insects , a strategy that prevents diuresis. This...receptor belongs to the insect CAPA receptor family known in other insects to be activated by peptides encoded within the ca- pability gene. We characterize

  7. Substance P stimulates Growth Hormone (GH) and GH-Releasing Hormone (GHRH) secretions through tachykinin NK2 receptors in sheep.

    PubMed

    Lemamy, Guy-Joseph; Guillaume, Viviane; Ndéboko, Bénédicte; Mouecoucou, Justine; Oliver, Charles

    2012-05-01

    Substance P is ubiquitous undecapeptide belonging to the tachykinins family. It has been found in the hypothalamus and is involved in the hypothalamo-hypophysial axis in several mammals, including human. Previous studies have shown that substance P increases GH secretions in rats and human. In this study, we have shown that intravenously infused substance P in sheep caused an increased level of Growth Hormone (GH) and GH-Releasing Hormone (GHRH), and decreased Somatotropin Release Inhibiting Hormone (SRIH) secretions. GH was obtained from peripheral blood. GHRH and SRIH were directly collected from hypophysial portal blood, using a trans-nasal surgery technique in a vigil sheep that allowed accessing to hypothalamo-hypophysial portal vessels. Hormones assays were performed by radioimmunoassay (RIA). Moreover, we showed that substance P-induced GH and GHRH secretion appears to be mediated by NK2 tachykinin receptors, since it is specifically blocked by a non peptidic tachykinin NK2 receptor antagonist (SR48968, Sanofi, Montpellier, France) whereas a non peptidic tachykinin NK1 antagonist (SR140333, Sanofi, Montpellier, France) failed to modify GH and GHRH hormones secretions. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development

    PubMed Central

    Sachs, Laurent M.; Jones, Peter L.; Havis, Emmanuelle; Rouse, Nicole; Demeneix, Barbara A.; Shi, Yun-Bo

    2002-01-01

    Thyroid hormone receptors (TR) act as activators of transcription in the presence of the thyroid hormone (T3) and as repressors in its absence. While many in vitro approaches have been used to study the molecular mechanisms of TR action, their physiological relevance has not been addressed. Here we investigate how TR regulates gene expression during vertebrate postembryonic development by using T3-dependent amphibian metamorphosis as a model. Earlier studies suggest that TR acts as a repressor during premetamorphosis when T3 is absent. We hypothesize that corepressor complexes containing the nuclear receptor corepressor (N-CoR) are key factors in this TR-dependent gene repression, which is important for premetamorphic tadpole growth. To test this hypothesis, we isolated Xenopus laevis N-CoR (xN-CoR) and showed that it was present in pre- and metamorphic tadpoles. Using a chromatin immunoprecipitation assay, we demonstrated that xN-CoR was recruited to the promoters of T3 response genes during premetamorphosis and released upon T3 treatment, accompanied by a local increase in histone acetylation. Furthermore, overexpression of a dominant-negative N-CoR in tadpole tail muscle led to increased transcription from a T3-dependent promoter. Our data indicate that N-CoR is recruited by unliganded TR to repress target gene expression during premetamorphic animal growth, an important process that prepares the tadpole for metamorphosis. PMID:12446772

  9. Challenges in the Diagnosis and Management of Growth Hormone Deficiency in India

    PubMed Central

    John, Mathew; Koledova, Ekaterina; Kumar, Kanakatte Mylariah Prasanna

    2016-01-01

    In clinical practice, every year approximately 150,000 children are referred with short stature (SS) based on a cut-off of fifth percentile. The most important endocrine and treatable cause of SS is growth hormone deficiency (GHD). The lack of reliable data on the prevalence of GHD in India limits estimation of the magnitude of this problem. The diagnosis and treatment of GHD are hurdled with various challenges, restricting the availability of growth hormone (GH) therapy to only a very limited segment of the children in India. This review will firstly summarize the gaps and challenges in diagnosis and treatment of GHD based on literature analysis. Subsequently, it presents suggestions from the members at advisory board meetings to overcome these challenges. The advisory board suggested that early initiation of the therapy could better the chances of achieving final adult height within the normal range for the population. Education and awareness about growth disorders among parents, regular training for physicians, and more emphasis on using the Indian growth charts for growth monitoring would help improve the diagnosis and treatment of children with GHD. Availability of an easy-to-use therapy delivery system could also be beneficial in improving adherence and achieving satisfactory outcomes. PMID:27867396

  10. Hormonal treatment of congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

    PubMed

    Bachelot, A; Chakhtoura, Z; Rouxel, A; Dulon, J; Touraine, P

    2007-09-01

    During childhood, the main aims of the medical treatment of congenital adrenal hyperplasia (CAH) secondary to 21-hydroxylase deficiency, are to prevent salt loss and virilization and to achieve normal stature and normal puberty. As such, there is a narrow therapeutic window through which the intended results can be achieved. In adulthood, the clinical management has received little attention, but recent studies have shown the relevance of long-term follow-up of these patients. Indeed, long-term evaluation of adult CAH patients enables the identification of multiple clinical, hormonal and metabolic abnormalities as bone mineral density alteration, overweight and disturbed reproductive functions. In women with classic CAH, low fertility rate is reported, and is probably the consequence of multiple factors, including neuroendocrine and hormonal factors, feminizing surgery, and psychological factors. Men with CAH may present hypogonadism either through the effect of adrenal rests or from suppression of gonadotropins resulting in infertility. These patients should therefore be carefully followed-up, from childhood through to adulthood, to avoid these complications and to ensure treatment compliance and tight control of the adrenal androgens, by multidisciplinary teams who have knowledge of CAH.

  11. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    SciTech Connect

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  12. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    PubMed

    Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro

    2012-01-01

    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  13. Impact of adult growth hormone deficiency on daily functioning and well-being.

    PubMed

    Brod, Meryl; Pohlman, Betsy; Højbjerre, Lise; Adalsteinsson, Johan Erpur; Rasmussen, Michael Højby

    2014-11-18

    Adult Growth Hormone Deficiency (AGHD) is a debilitating condition resulting from tumors, pituitary surgery, radiation of the head, head injury, or hypothalamic-pituitary disease. This qualitative study was conducted to better understand the multi-faceted impacts and treatment effects of GHD on adult patients' daily lives.Seven focus groups and four telephone interviews were conducted in three countries. Eligible AGHD patients were age 22 or older who had started and stopped growth hormone treatment at least once as an adult. Transcripts were analyzed thematically. Thirty-nine patients were interviewed; majority etiology was pituitary disease or tumor (62%). Thirty-four patients (87%) were currently on growth hormone replacement therapy; therapy initiation mean age was 43 years. Analysis identified five domains of disease impact: 1) Psychological Health--changed body or self-image and negative emotional impacts; 2) Physical Health--problems with sleep/fatigue, sex drive, weight gain, hair, skin, muscle/bone loss; 3) Cognition--concentration or memory trouble; 4) Energy Loss and its negative impacts (productivity, exercise, chores, socialization, or motivation); and 5) Treatment Effect--treatment enhances quality of life, enabling patients to increase effort (exercise, chores, or work improvements). Energy and sleep are improved. Saturation of themes was reached after the sixth focus group. A conceptual model of GHD disease impacts was developed. Untreated AGHD has significant negative impacts for patients, which treatment often improves. It is important for clinicians and researchers to understand these multiple impacts so that they can address them in individualized treatment plans and incorporate them when assessing treatment outcomes.

  14. Tissue expression of steroid hormone receptors is associated with differential immune responsiveness

    PubMed Central

    Butts, Cherié L.; Jones, Yava L.; Lim, Jean K.; Salter, Caroline E.; Belyavskaya, Elena; Sternberg, Esther M.

    2010-01-01

    Glucocorticoids and other steroid hormones have been used as treatments against a number of diseases, especially inflammatory conditions in which the immune system is overactive. These treatments have varying degrees of responsiveness among individuals and in different tissues (including brain); therefore, it is important to determine what could account for these differences. In this study, we evaluated expression of steroid hormone receptors in immune cells from lymphoid and non-lymphoid tissues as a possible explanation for tissue-specific differences. We analyzed leukocytes (CD45+) in kidney, liver, spleen, and thymus tissues from healthy mice for expression of the receptor for stress hormone (glucocorticoid - GR) as well as other steroid hormones (androgen - AR, progesterone - PR) and found that all tissues expressed these steroid hormone receptors but with varying expression patterns. To determine whether tissue-specific differences were related to immune cell composition, we examined steroid hormone receptor expression in T lymphocytes from each of these tissues and found similar patterns of expression in these cells regardless of tissue source. Because glucocorticoids can also impact brain function, we further examined expression of the stress hormone receptor in brain tissue and found GR expressed in immune cells at this site. In order to investigate the potential impact in an area of neuropathology, we utilized a mouse model of West Nile Virus (WNV). We observed pathological changes in brains of WNV-infected animals and T lymphocytes in the areas of inflammation; however, these cells did not express GR. These data indicate that tissue-specific differences in steroid hormone receptor expression by immune cells could determine responsiveness with steroid hormone treatment. PMID:21074604

  15. Racial/ethnic differences in initiation of adjuvant hormonal therapy among women with hormone receptor-positive breast cancer.

    PubMed

    Livaudais, Jennifer C; Hershman, Dawn L; Habel, Laurel; Kushi, Lawrence; Gomez, Scarlett Lin; Li, Christopher I; Neugut, Alfred I; Fehrenbacher, Louis; Thompson, Beti; Coronado, Gloria D

    2012-01-01

    Mortality after breast cancer diagnosis is known to vary by race/ethnicity even after adjustment for differences in tumor characteristics. As adjuvant hormonal therapy decreases risk of recurrence and increases overall survival among women with hormone receptor-positive tumors, treatment disparities may play a role. We explored racial/ethnic differences in initiation of adjuvant hormonal therapy, defined as two or more prescriptions for tamoxifen or aromatase inhibitor filled within the first year after diagnosis of hormone receptor-positive localized or regional-stage breast cancer. The sample included women diagnosed with breast cancer enrolled in Kaiser Permanente Northern California (KPNC). Odds ratios [OR] and 95% confidence intervals [CI] compared initiation by race/ethnicity (Hispanic, African American, Chinese, Japanese, Filipino, and South Asian vs. non-Hispanic White [NHW]) using logistic regression. Covariates included age and year of diagnosis, area-level socioeconomic status, co-morbidities, tumor stage, histology, grade, breast cancer surgery, radiation and chemotherapy use. Our sample included 13,753 women aged 20-79 years, diagnosed between 1996 and 2007, and 70% initiated adjuvant hormonal therapy. In multivariable analysis, Hispanic and Chinese women were less likely than NHW women to initiate adjuvant hormonal therapy ([OR] = 0.82; [CI] 0.71-0.96 and [OR] = 0.78; [CI] 0.63-0.98, respectively). Within an equal access, insured population, lower levels of initiation of adjuvant hormonal therapy were found for Hispanic and Chinese women. Findings need to be confirmed in other insured populations and the reasons for under-initiation among these groups need to be explored.

  16. Severe hyponatremia due to ACTH insufficiency in a 14 year-old girl with growth hormone deficiency.

    PubMed

    Tseng, Lo-Lin; Lue, Hung-Chi; Huang, Cheng-Hung; Niu, Dau-Ming

    2010-01-01

    SIADH-like hyponatremia as the presenting manifestation of ACTH deficiency is rare in childhood. Here we report a 14 year-old girl who, after 8 years of GH replacement and subsequent treatment for subclinical secondary hypothyroidism, presented with confusion and disorientation due to severe hyponatremia. When her pituitary axis was re-assessed, she was diagnosed as having ACTH deficiency associated with multiple pituitary hormone deficiencies (MPHD) (including GH, FSH, LH, and subclinical TSH deficiencies). She responded poorly to treatment with only hypertonic fluid, but improved after addition of hydrocortisone replacement. The purpose of this paper is to emphasize the importance of suspecting ACTH insufficiency in children with GH deficiency if hyponatremia develops.

  17. Polymorphism of growth hormone receptor (GHR) gene in Nilagiri sheep.

    PubMed

    Sahu, Amiya Ranjan; Jeichitra, V; Rajendran, R; Raja, A

    2017-02-01

    The allelic variation in the regulatory sequence of growth hormone receptor (GHR) gene influences the growth traits of sheep. A study was carried out to find out the polymorphisms associated with exon 10 of GHR gene and its association with growth traits of Nilagiri sheep. The blood samples were collected from Nilagiri sheep (n = 103) reared at Sheep Breeding Research Station, Sandynallah, Tamil Nadu, India. DNA was isolated using the phenol-chloroform extraction procedure and eight samples having amplified product of part of exon 10 (895 bp) sequenced. The results indicated transitions of nucleotide G>A at loci G177624A and G177878A. The genotyping frequencies estimated using the tetra-primer amplification refractory mutation system-PCR for GG, GA and AA were 0.262, 0.544 and 0.194, and 0.349, 0.505 and 0.146, respectively. The estimated allele frequencies of G and A nucleotides were 0.5340 and 0.4660, and 0.6015 and 0.3985, respectively, at loci G177624A and G177878A. The effects of both the mutations on growth-related traits viz., birth, weaning (3 months) 6, 9 and 12 months weight in Nilagiri sheep were found to be non-significant. This can be a novel approach to assess growth of sheep using the mutation in GHR gene. Thus, this approach can be useful for further investigation as a molecular marker associated with genetic improvement.

  18. Localization of luteinizing hormone receptor protein in the human ovary.

    PubMed

    Yung, Y; Aviel-Ronen, S; Maman, E; Rubinstein, N; Avivi, C; Orvieto, R; Hourvitz, A

    2014-09-01

    The luteinizing hormone receptor (LHR) plays a pivotal role during follicular development. Consequently, its expression pattern is of major importance for research and has clinical implications. Despite the accumulated information regarding LHR expression patterns, our understanding of its expression in the human ovary, specifically at the protein level, is incomplete. Therefore, our aim was to determine the LHR protein localization and expression pattern in the human ovary. We examined the presence of LHR by immunohistochemical staining of human ovaries and western blots of mural granulosa and cumulus cells aspirated during IVF treatments. We were not able to detect LHR protein staining in primordial or primary follicles. We observed equivocal positive staining in granulosa cells and theca cells of secondary follicles. The first appearance of a clear signal of LHR protein was observed in granulosa cells and theca cells of small antral follicles, and there was evidence of increasing LHR production as the follicles mature to the pre-ovulatory stage. After ovulation, LHR protein was ubiquitously produced in the corpus luteum. To confirm the expression pattern in granulosa cells and cumulus cells, we performed western blots and found that LHR expression was stronger in granulosa cells than in cumulus cells, with the later demonstrating low, but still significant, amounts of LHR protein. In summary, we conclude that LHR protein starts to appear on granulosa cells and theca cells of early antral follicles, and low but significant expression of LHR exists also in the cumulus cells. These results may have implications for the future design of clinical protocols and culture mediums for in vitro fertilization and especially in vitro maturation of oocytes.

  19. Turnover of growth hormone receptors in rat adipocytes

    SciTech Connect

    Gorin, E.; Goodman, H.M.

    1985-05-01

    Adipocytes isolated from the epididymal fat pads of normal rats specifically bound (/sup 125/I)human GH (( /sup 125/I)hGH). Preincubation of cells with 20 micrograms/ml cycloheximide, an inhibitor of protein synthesis, produced a progressive loss of ability to bind (/sup 125/I)hGH specifically. Loss of binding sites with time followed first order kinetics and had a half-time of about 45 min regardless of whether GH was present or absent during treatment with cycloheximide. Nonspecific binding of labeled hormone was unchanged by cycloheximide. Similar results were obtained when adipocytes were incubated with 200 micrograms/ml puromycin, another inhibitor of translation, but incubation with 5 micrograms/ml actinomycin D, an inhibitor of transcription, for 2.5 h had no effect on the binding of (/sup 125/I)hGH by adipocytes. The findings are not attributable to cell death, since oxidation of (U-/sup 14/C) glucose to /sup 14/CO/sub 2/ and binding of (/sup 125/I)insulin were unaffected in replicate cell populations exposed to the same treatments. Diminished binding could not be attributed to an effect of cycloheximide to hasten the degradation of receptor-bound hGH. Treatment of adipocytes with 0.1 mg/ml trypsin for 10 min virtually abolished their ability to bind (/sup 125/I)hGH specifically, but binding capability gradually returned after removal of trypsin and was nearly restored to pretrypsin levels by 2 h. Addition of cycloheximide to the incubation medium after removal of trypsin completely prevented recovery of binding capability.

  20. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  1. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.

    PubMed Central

    Forrest, D; Hanebuth, E; Smeyne, R J; Everds, N; Stewart, C L; Wehner, J M; Curran, T

    1996-01-01

    The diverse functions of thyroid hormone (T3) are presumed to be mediated by two genes encoding the related receptors, TRalpha and TRbeta. However, the in vivo functions of TRalpha and TRbeta are undefined. Here, we report that targeted inactivation of the mouse TRbeta gene results in goitre and elevated levels of thyroid hormone. Also, thyroid-stimulating hormone (TSH), which is released by pituitary thyrotropes and which is normally suppressed by increased levels of thyroid hormone, was present at elevated levels in homozygous mutant (Thrb-/-) mice. These findings suggest a unique role for TRbeta that cannot be substituted by TRalpha in the T3-dependent feedback regulation of TSH transcription. Thrb-/- mice provide a recessive model for the human syndrome of resistance to thyroid hormone (RTH) that exhibits a similar endocrine disorder but which is typically caused by dominant TRbeta mutants that are transcriptional inhibitors. It is unknown whether TRalpha, TRbeta or other receptors are targets for inhibition in dominant RTH; however, the analysis of Thrb-/- mice suggests that antagonism of TRbeta-mediated pathways underlies the disorder of the pituitary-thyroid axis. Interestingly, in the brain, the absence of TRbeta may not mimic the defects often associated with dominant RTH, since no overt behavioural or neuroanatomical abnormalities were detected in Thrb-/- mice. These data define in vivo functions for TRbeta and indicate that specificity in T3 signalling is conferred by distinct receptor genes. Images PMID:8670802

  2. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency.

    PubMed

    Müller, Julia; Mayerl, Steffen; Visser, Theo J; Darras, Veerle M; Boelen, Anita; Frappart, Lucien; Mariotta, Luca; Verrey, Francois; Heuer, Heike

    2014-01-01

    The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific alterations in TH transport and metabolism, we speculated that Mct10 inactivation may compromise the tissue-specific TH homeostasis as well. However, analysis of Mct10 knockout (ko) mice revealed normal serum TH levels and tissue TH content in contrast to Mct8 ko mice that are characterized by high serum T3, low serum T4, decreased brain TH content, and increased tissue TH concentrations in the liver, kidneys, and thyroid gland. Surprisingly, mice deficient in both TH transporters (Mct10/Mct8 double knockout [dko] mice) showed normal serum T4 levels in the presence of elevated serum T3, indicating that the additional inactivation of Mct10 partially rescues the phenotype of Mct8 ko mice. As a consequence of the normal serum T4, brain T4 content and hypothalamic TRH expression were found to be normalized in the Mct10/Mct8 dko mice. In contrast, the hyperthyroid situation in liver, kidneys, and thyroid gland of Mct8 ko mice was even more severe in Mct10/Mct8 dko animals, suggesting that in these organs, both transporters contribute to the TH efflux. In summary, our data indicate that Mct10 indeed participates in tissue-specific TH transport and also contributes to the generation of the unusual serum TH profile characteristic for Mct8 deficiency.

  3. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice.

    PubMed

    Dumitrescu, Alexandra M; Liao, Xiao-Hui; Weiss, Roy E; Millen, Kathleen; Refetoff, Samuel

    2006-09-01

    Mutations of the X-linked thyroid hormone (TH) transporter (monocarboxylate transporter, MCT8) produce in humans unusual abnormalities of thyroid function characterized by high serum T3 and low T4 and rT3. The mechanism of these changes remains obscure and raises questions regarding the regulation of intracellular availability and metabolism of TH. To study the pathophysiology of MCT8 deficiency, we generated Mct8 knockout mice. Male mice deficient in Mct8 (Mct8(-/y)) replicate the thyroid abnormalities observed in affected men. TH deprivation and replacement with L-T3 showed that suppression of TSH required higher serum levels T3 in Mct8(-/y) than wild-type (WT) littermates, indicating hypothalamus and/or thyrotroph resistance to T3. Furthermore, T4 is required to maintain the high serum T3 level because the latter was not different between the two genotypes during administration of T3. Mct8(-/y) mice have 2.3-fold higher T3 content in liver associated with 6.1- and 3.1-fold increase in deiodinase 1 mRNA and enzymatic activity, respectively. The relative T3 excess in liver of Mct8(-/y) mice produced a decrease in serum cholesterol (79 +/- 18 vs. 137 +/- 38 mg/dl in WT) and an increase in alkaline phosphatase (107 +/- 23 vs. 58 +/- 3 U/liter in WT) levels. In contrast, T3 content in cerebrum was 1.8-fold lower in Mct8(-/y) mice, associated with a 1.6- and 10.6-fold increase in D2 mRNA and enzymatic activity, respectively, as previously observed in TH-deprived WT mice. We conclude that cell-specific differences in intracellular TH content due to differences in contribution of the various TH transporters are responsible for the unusual clinical presentation of this defect, in contrast to TH deficiency.

  4. Parathyroid Hormone (PTH)–Induced Bone Gain Is Blunted in SOST Overexpressing and Deficient Mice

    PubMed Central

    Kramer, Ina; Loots, Gabriela G; Studer, Anne; Keller, Hansjoerg; Kneissel, Michaela

    2010-01-01

    Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100 µg/kg PTH(1–34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80 µg/kg PTH(1–34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, µCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. © 2010 American Society for Bone and Mineral Research PMID:19594304

  5. Plasma total homocysteine concentrations in adults with growth hormone (GH) deficiency: effects of GH replacement.

    PubMed

    Lewandowski, Krzysztof C; Murray, Robert D; Drzewoski, J; O'Callaghan, Chris J; Czupryniak, L; Hillhouse, Edward W; Shalet, Stephen M; Randeva, Harpal S

    2003-11-01

    Growth hormone (GH) deficiency is associated with increased cardiovascular morbidity and mortality. GH treatment improves the profile of many cardiovascular risk markers in individuals with GH deficiency (GHD). The aim of the present was to assess whether GH replacement may decrease plasma total homocysteine, an independent cardiovascular risk factor, thus potentially contributing to benefits of GH replacement in adult subjects with GHD. Twenty-five patients (17 female, 8 male), mean age 39-years, with GHD were studied. GH status had been determined by an insulin tolerance test and/or arginine stimulation test. After an overnight fast, plasma insulin, IGF-1, total homocysteine (Hcy), free thyroxine (FT4), creatinine, vitamin B12, and folate were measured at baseline (V1), 3 months (V2) and then at 6 months (V3) on GH treatment. The data were analysed by hierarchical statistical models, univariate and multivariate correlation. GH treatment resulted in an increase in IGF-1 (p<0.001, p<0.001), and insulin (p=0.068, p<0.001), at each visit, respectively. Hcy levels increased from V1 to V2 (7.7+/-0.53 to 9.15+/-0.45 micromol/L; p=0.051), but this was followed by a decline at V3 (to 8.8+/-0.59), so that the overall change of Hcy levels from V1 to V3, once individuals had achieved 'adequate' GH replacement, was no longer significantly different (p=0.090). When separated by gender, at 6 months (V3) there was a small, but significant increase in Hcy in men (p=0.028), but not in women (p=0.58). There was no significant change in B12, folate, free T4 or creatinine levels. Univariate analysis revealed that only B12 and folate showed significant negative relationships with Hcy (B12: parameter= -0.013, p<0.001; folate: parameter=-1.31, p<0.001), but not between Hcy and IGF-1 (p=0.18). In a multiple variable model, both B12 and folate remained significantly negatively associated with plasma total homocysteine (p=0.018; p<0.001, respectively). In this observational study

  6. Homologous down-regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid levels.

    PubMed

    Aleppo, G; Moskal, S F; De Grandis, P A; Kineman, R D; Frohman, L A

    1997-03-01

    Repeated stimulation of pituitary cell cultures with GH-releasing hormone (GHRH) results in diminished responsiveness, a phenomenon referred to as homologous desensitization. One component of GHRH-induced desensitization is a reduction in GHRH-binding sites, which is reflected by the decreased ability of GHRH to stimulate a rise in intracellular cAMP. In the present study, we sought to determine if homologous down-regulation of GHRH receptor number is due to a decrease in GHRH receptor synthesis. To this end, we developed and validated a quantitative RT-PCR assay system that was capable of assessing differences in GHRH-R messenger RNA (mRNA) levels in total RNA samples obtained from rat pituitary cell cultures. Treatment of pituitary cells with GHRH, for as little as 4 h, resulted in a dose-dependent decrease in GHRH-R mRNA levels. The maximum effect was observed with 0.1 and 1 nM GHRH, which reduced GHRH-R mRNA levels to 49 +/- 4% (mean +/- SEM) and 54 +/- 11% of control values, respectively (n = three separate experiments; P < 0.05). Accompanying the decline in GHRH-R mRNA levels was a rise in GH release; reaching 320 +/- 31% of control values (P < 0.01). Because of the possibility that the rise in medium GH level is the primary regulator of GHRH-R mRNA, we pretreated pituitary cultures for 4 h with GH to achieve a concentration comparable with that induced by a maximal stimulation with GHRH (8 micrograms GH/ml medium). Following pretreatment, cultures were stimulated for 15 min with GHRH and intracellular cAMP accumulation was measured by RIA. GH pretreatment did not impair the ability of GHRH to induce a rise in cAMP concentrations. However, as anticipated, GHRH pretreatment (10 nM) significantly reduced subsequent GHRH-stimulated cAMP to 46% of untreated controls. These data suggest that GHRH, but not GH, directly reduces GHRH-R mRNA levels. To determine whether this effect was mediated through cAMP, cultures were treated with forskolin, a direct stimulator of

  7. MODULATION OF GROWTH HORMONE RECEPTOR ABUNDANCE AND FUNCTION: ROLES FOR THE UBIQUITIN-PROTEASOME SYSTEM

    PubMed Central

    Frank, Stuart J.; Fuchs, Serge Y.

    2008-01-01

    Summary Growth hormone plays an important role in regulating numerous functions in vertebrates. Several pathways that negatively regulate the magnitude and duration of its signaling (including expression of tyrosine phosphatases, SOCS and PIAS proteins) are shared between signaling induced by growth hormone itself and by other cytokines. Here we overview downregulation of the growth hormone receptor as the most specific and potent mechanism of restricting cellular responses to growth hormone and analyze the role of several proteolytic systems and, specifically, ubiquitin-dependent pathways in this regulation. PMID:18586085

  8. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  9. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*

    PubMed Central

    Mavinakere, Manohara S.; Powers, Jeremy M.; Subramanian, Kelly S.; Roggero, Vincent R.; Allison, Lizabeth A.

    2012-01-01

    Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we identified a novel nuclear localization signal in the A/B domain of thyroid hormone receptor α1 that is absent in thyroid hormone receptor β1 and inactive in the oncoprotein v-ErbA. Our prior studies showed that thyroid hormone receptor α1 exits the nucleus through two pathways, one dependent on the export factor CRM1 and the other CRM1-independent. Here, we identified three novel CRM1-independent nuclear export signal (NES) motifs in the ligand-binding domain as follows: a highly conserved NES in helix 12 (NES-H12) and two additional NES sequences spanning helix 3 and helix 6, respectively. Mutations predicted to disrupt the α-helical structure resulted in a significant decrease in NES-H12 activity. The high degree of conservation of helix 12 suggests that this region may function as a key NES in other nuclear receptors. Furthermore, our mutagenesis studies on NES-H12 suggest that altered shuttling of thyroid hormone receptor β1 may be a contributing factor in resistance to thyroid hormone syndrome. Taken together, our findings provide a detailed mechanistic understanding of the multiple signals that work together to regulate TR shuttling and transcriptional activity, and they provide important insights into nuclear receptor function in general. PMID:22815488

  10. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities.

    PubMed

    Furuya, Fumihiko; Ishii, Toshihisa; Tamura, Shogo; Takahashi, Kazuya; Kobayashi, Hidetoshi; Ichijo, Masashi; Takizawa, Soichi; Kaneshige, Masahiro; Suzuki-Inoue, Katsue; Kitamura, Kenichiro

    2017-03-08

    In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD.

  11. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities

    PubMed Central

    Furuya, Fumihiko; Ishii, Toshihisa; Tamura, Shogo; Takahashi, Kazuya; Kobayashi, Hidetoshi; Ichijo, Masashi; Takizawa, Soichi; Kaneshige, Masahiro; Suzuki-Inoue, Katsue; Kitamura, Kenichiro

    2017-01-01

    In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD. PMID:28272516

  12. ABNORMAL RESPONSE OF MELANIN-CONCENTRATING HORMONE DEFICIENT MICE TO FASTING: HYPERACTIVITY AND REM SLEEP SUPPRESSION

    PubMed Central

    Willie, Jon T; Sinton, Christopher M; Maratos-Flier, Eleftheria; Yanagisawa, Masashi

    2008-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that has been implicated in energy homeostasis. Pharmacological studies with MCH and its receptor antagonists have suggested additional behavioral roles for the neuropeptide in the control of mood and vigilance states. These suggestions have been supported by a report of modified sleep in the MCH-1 receptor knockout mouse. Here we found that MCH knockout (MCH−/−) mice slept less during both the light and dark phases under baseline conditions. In response to fasting, MCH−/− mice exhibited marked hyperactivity, accelerated weight loss and an exaggerated decrease in rapid eye movement (REM) sleep. Following a 6-h period of sleep deprivation, however, the sleep rebound in MCH−/− mice was normal. Thus MCH−/− mice adapt poorly to fasting, and their loss of bodyweight under this condition is associated with behavioral hyperactivity and abnormal expression of REM sleep. These results support a role for MCH in vigilance state regulation in response to changes in energy homeostasis and may relate to a recent report of initial clinical trials with a novel MCH-1 receptor antagonist. When combined with caloric restriction, the treatment of healthy, obese subjects with this compound resulted in some subjects experiencing vivid dreams and sleep disturbances. PMID:18809470

  13. Hormone resistance caused by mutations in G proteins and G protein-coupled receptors.

    PubMed

    Spiegel, A M

    1999-04-01

    G proteins couple receptors for many hormones to effectors that regulate second messenger metabolism. Several endocrine disorders have been shown to be caused by either loss or gain of function mutations in G proteins or G protein-coupled receptors. Pseudohypoparathyroidism (PHP), the first described example of a hormone resistance disorder, is characterized by renal resistance to parathyroid hormone (PTH) proximal to generation of the second messenger, cAMP. In PHP Ia there is more generalized hormone resistance (PTH, TSH, gonadotropins) and associated abnormal physical features, Albright hereditary osteodystrophy (AHO). Subjects with PHP Ib are normal in appearance and resistant exclusively to PTH. Germline loss of function mutations have been identified in the Gs-alpha gene in PHP Ia, and recent evidence suggests that the Gs-alpha gene is paternally imprinted in a tissue-specific manner. In PHP Ib, several studies have excluded PTH receptor gene mutations, and the molecular basis has not yet been defined.

  14. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  15. [Hypothyroidism Associated to TSH Hormone-Receptor Autoantibodies with Blocking Activity Assessed In Vitro].

    PubMed

    Marques, Pedro; Chikh, Karim; Charrié, Anne; Pina, Rosa; Bugalho, Maria João; Lopes, Lurdes

    2015-01-01

    Thyroid-stimulating hormone-receptor autoantibodies normally causes hyperthyroidism. However, they might have blocking activity causing hypothyroidism. A 11-year-old girl followed due to type 1 diabetes mellitus, celiac disease and euthyroid lymphocytic thyroiditis at diagnosis. Two years after the initial evaluation, thyroid-stimulating hormone was suppressed with normal free T4; nine months later, a biochemical evolution to hypothyroidism with thyroid-stimulating hormone-receptor autoantibodies elevation was seen; the patient remained always asymptomatic. Chinese hamster ovary cells were transfected with the recombinant human thyroid-stimulating hormone -receptor, and then exposed to the patient's serum; it was estimated a 'moderate' blocking activity of these thyroid-stimulating hormone-receptor autoantibodies, and concomitantly excluded stimulating action. In this case, the acknowledgment of the blocking activity of the serum thyroid-stimulating hormone-receptor autoantibodies, supported the hypothesis of a multifactorial aetiology of the hypothyroidism, which in the absence of the in vitro tests, we would consider only as a consequence of the destructive process associated to lymphocytic thyroiditis.

  16. Porcine mononuclear leukocyte nuclear thyroid hormone receptors: Effects of cold exposure on receptor kinetics

    SciTech Connect

    D'Alesandro, M.; Reed, L.; Malik, M.; Quesada, M.; Hesslink, R.; Castro, S.; Homer, L.; Young, B. Univ. of Alberta, Edmonton )

    1991-03-11

    Changes in kinetic characteristics of the triiodothyronine (T{sub 3}) receptor may be a mechanism involved in the thermoregulatory action of T{sub 3} at the nuclear level. To study this, the authors analyzed changes in T{sub 3} nuclear receptor kinetics in cold exposed swine and compared them with similar animals housed at thermoneutral temperature. Receptors were from isolated nuclear extracts of circulating mononuclear leukocytes (MNL). Scatchard analysis indicates the presence of a single class of binding sites. The authors were unable to detect differences in the equilibrium dissociation constant (Kd) or the maximum binding capacity (MBC, fmol/up DNA) between the two groups. The Kd for T{sub 3} in the control group was 1.17 {plus minus} 0.11 nmol/L and 1.25 {plus minus} 0.19 nmol/L in the cold exposed group. The MBC was 0.43 {plus minus} 0.04 fmol/ug DNA in the control group and 0.40 {plus minus} 0.06 fmol/L in the cold exposed group. In competition studies using thyroid hormone analogues, 10{sup {minus}7} M reverse T{sub 3} and 3,5-diiodothyronine resulted in approximately 50% displacement from the porcine receptor. TRIAC and L-T{sub 4} had no effect at 10{sup {minus}7} M. The porcine values for both Kd and MBC are similar to those previously reported for human MNL. Although T{sub 3} production and serum T{sub 3} values in the cold exposed group are nearly double the control group (Reed et al., FASEB 1991), continuous short-term cold exposure had no significant effect on MNL nuclear T{sub 3} receptor kinetics.

  17. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system.

  18. The hormonal receptor status of uterine carcinosarcomas (mixed müllerian tumours): an immunohistochemical study.

    PubMed Central

    Ansink, A C; Cross, P A; Scorer, P; de Barros Lopes, A; Monaghan, J M

    1997-01-01

    AIM: To investigate the role of oestrogen and progesterone receptor status in uterine carcinosarcomas (mixed Müllerian tumours) to see whether the receptors were identifiable, and if so whether they were of significance clinically. METHODS: 11 cases of uterine carcinosarcoma were identified from clinical and pathology records. An immunohistochemical method was used to demonstrate oestrogen and progesterone hormone receptors on paraffin embedded material, with suitable tissue controls, staining being recorded. RESULTS: 10 of 11 cases showed staining for one or both hormone receptors in normal tissue adjacent to tumour. In four carcinosarcoma cases, staining for one or both receptors was shown within the epithelial component (appearing to correlate with the degree of epithelial differentiation); two of these cases had staining within sarcomatous areas. Two of the three patients still alive had epithelial hormone receptor positivity. CONCLUSIONS: Receptors for oestrogen and progesterone were found in four of 11 cases of uterine carcinosarcoma, using paraffin embedded material. There may be an association between hormone receptor positivity and clinical outcome. Images PMID:9215151

  19. Soluble transferrin receptor and transferrin receptor-ferritin index in iron deficiency anemia and anemia in rheumatoid arthritis.

    PubMed

    Margetic, Sandra; Topic, Elizabeta; Ruzic, Dragica Ferenec; Kvaternik, Marina

    2005-01-01

    The aim of the study was to evaluate the clinical efficiency of soluble transferrin receptor and transferrin receptor-ferritin index (sTfR/logF) in the diagnosis of iron deficiency anemia, as well as the differential diagnosis of iron deficiency anemia and anemia in rheumatoid arthritis. The study included 96 patients with anemia and 61 healthy volunteers as a control group. In healthy subjects there were no significant sex and age differences in the parameters tested. The study results showed these parameters to be reliable in the diagnosis of iron deficiency anemia, as well as in the differential diagnosis of iron deficiency anemia and anemia of chronic disease. The results indicate that sTfR/logF could be used to help differentiate coexisting iron deficiency in patients with anemia of chronic disease. Receiver operating characteristic analysis showed a higher discriminating power of transferrin receptor-ferritin index vs. soluble transferrin receptor in the diagnosis of iron deficiency anemia, as well as in the differential diagnosis between iron deficiency anemia and anemia of chronic disease. In patients with anemia in rheumatoid arthritis, the parameters tested showed no significant differences with respect to C-reactive protein concentration. These results suggested that the parameters tested are not affected by acute or chronic inflammatory disease.

  20. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  1. Circulating thyroid stimulating hormone receptor messenger RNA and differentiated thyroid cancer: A diagnostic meta-analysis

    PubMed Central

    Kong, Chao-Yue; Li, Zhan-Ming; Wang, Li-Shun

    2017-01-01

    Thyroid stimulating hormone receptor messenger RNA (TSHR-mRNA) is over-expressed in thyroid cancer patients, which indicates that TSHR-mRNA is a potential biomarker of thyroid cancer. However, system evaluation for TSHR-mRNA as a diagnostic biomarker of thyroid cancer is deficient. The performance of TSHR-mRNA for thyroid cancer diagnosis was evaluated in this study. Three common international databases as well as a Chinese database were applied for literature researching. Quality assessment of the included literatures was conducted by the QUADAS-2 tool. Totally, 1027 patients from nine studies eligible for the meta-analysis were included in this study. Global sensitivity and specificity for the positivity of TSHR-mRNA in the thyroid cancer diagnosis is 72% and 82%. The value of AUC for this test performance was 0.84. Our meta-analysis suggests that TSHR-mRNA might be a potential biomarker to complete present diagnostic methods for early and precision diagnosis of thyroid cancer. Notably, this findings need validation thorough large-scale clinical studies. PMID:28036261

  2. Farnesyl pyrophosphate is a novel transcriptional activator for a subset of nuclear hormone receptors.

    PubMed

    Das, Sharmistha; Schapira, Matthieu; Tomic-Canic, Marjana; Goyanka, Ritu; Cardozo, Timothy; Samuels, Herbert H

    2007-11-01

    In silico docking of a chemical library with the ligand-binding domain of thyroid hormone nuclear receptor-beta (TRbeta) suggested that farnesyl pyrophosphate (FPP), a key intermediate in cholesterol synthesis and protein farnesylation, might function as an agonist. Surprisingly, addition of FPP to cells activated TR as well as the classical steroid hormone receptors but not peroxisome proliferative-activating receptors, farnesoid X receptor, liver X receptor, or several orphan nuclear receptors the ligands of which are unknown. FPP enhanced receptor-coactivator binding in vitro and in vivo, and elevation of FPP levels in cells by squalene synthetase or farnesyl transferase inhibitors leads to activation. The FPP effect was blocked by selective receptor antagonists, and in silico docking with 143 nuclear receptor ligand-binding domain structures revealed that FPP only docked with the agonist conformation of those receptors activated by FPP. Our results suggest that certain nuclear receptors maintain a common structural feature that may reflect an action of FPP on an ancient nuclear receptor or that FPP could function as a ligand for one of the many orphan nuclear receptors the ligands of which have not yet been identified. This finding also has potential interesting implications that may, in part, explain the pleotropic effects of statins as well as certain actions of farnesylation inhibitors in cells.

  3. Genetic ablation of luteinizing hormone receptor improves the amyloid pathology in a mouse model of Alzheimer disease.

    PubMed

    Lin, Jing; Li, Xian; Yuan, Fangping; Lin, Ling; Cook, Christine L; Rao, Ch V; Lei, Zhenmin

    2010-03-01

    Amyloid-beta peptide (Abeta) plays an essential pathophysiologic role in Alzheimer disease, and elevation of luteinizing hormone (LH) levels during aging has been implicated in its pathogenesis. To assess the effect of LH receptor deficiency on Abeta accumulation, we generated a bigenic mouse model, APPsw(+)/Lhr(-/-), which expresses human amyloid precursor protein (APPsw) in the background of LH receptor (Lhr) knockout. Genetic ablation of Lhr resulted in a significant decrease in the number of Abeta plaques and protein content in the hippocampus and cerebral cortex in both male and female mice. Accordingly, several Abeta deposition-related neuropathologic features and functionally relevant molecules were markedly improved, including decreased astrogliosis, reductions of elevated phosphorylated tau, c-fos, alpha7-nicotinic acetylcholine receptor, and restoration of the altered neuropeptide Y receptors Y1 and Y2. Diminution of Abeta accumulation in the absence of LH receptor supports the contention that dysregulation of LH may impact the pathogenesis of Alzheimer disease. The APPsw(+)/Lhr(-/-) mouse may be a useful tool for advancing understanding of the role of LH-mediated events in Alzheimer disease and a model in which to test therapeutic interventions.

  4. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors.

  5. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice.

    PubMed

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque.

  6. JNK pathway decreases thyroid hormones via TRH receptor: a novel mechanism for disturbance of thyroid hormone homeostasis by PCB153.

    PubMed

    Liu, Changjiang; Ha, Mei; Cui, Yushan; Wang, Chengmin; Yan, Maosheng; Fu, Wenjuan; Quan, Chao; Zhou, Jun; Yang, Kedi

    2012-12-08

    PCBs, widespread and well-characterized endocrine disruptors, cause the disruption of thyroid hormone (TH) homeostasis in humans and animals. In order to verify the hypotheses that MAPK pathways would play roles in disturbance of TH levels caused by PCBs, and that TH-associated receptors could function in certain MAPK pathway, Sprague-Dawley rats were dosed with PCB153 intraperitoneally (i.p.) at 0, 4, 16 and 32mg/kg for 5 consecutive days, and Nthy-ori 3-1 cells were treated with PCB153 (0, 1, 5, 10μM) for 30min. Results showed that after the treatment with PCB153, serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3) and thyrotropin releasing hormone (TRH) were decreased, whereas free triiodothyronine (FT3) and serum thyroid stimulating hormone (TSH) were not altered. In vivo and in vitro studies indicated that JNK pathway was activated after PCB153 exposure. Moreover, TRH receptor (TRHr) level was suppressed after the activation of JNK pathway and was elevated after the inhibition of JNK pathway, but TSH receptor (TSHr) level was not affected by the status of JNK pathway though it was reduced after PCB153 treatment. The activated signs of ERK and P38 pathways were not observed in this study. Taken together, observed effects suggested that JNK pathway could decrease TH levels via TRHr, and that would be one novel mechanism of PCB153-mediated disruption of THs.

  7. Increased vascular sympathetic modulation in mice with Mas receptor deficiency.

    PubMed

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200-250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg(2)), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg(2)). The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1-7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1-7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. © The Author(s) 2016.

  8. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    USDA-ARS?s Scientific Manuscript database

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  9. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian

    PubMed Central

    Tharp, Marla E.; Collins, James J.; Newmark, Phillip A.

    2014-01-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  10. Expression of steroid hormone receptors in benign hepatic tumors. An immunocytochemical study.

    PubMed

    Masood, S; West, A B; Barwick, K W

    1992-12-01

    Many hepatic adenomas have been demonstrated to have a clear relationship with oral contraceptive use, and it is presumed that there may be hormone receptors within the cytoplasm or nucleus of adenoma cells that mediate tumor growth in response to hormonal stimulation. Only a small number of examples of benign hepatic tumors have been analyzed for the presence of estrogen and progesterone receptors, and there has been a lack of consensus with regard to the findings. All previous studies have determined receptor levels by biochemical methods. In a retrospective study, we employed specific monoclonal antibodies against estrogen and progesterone receptors in 10 benign paraffin-embedded hepatic lesions: five examples of hepatic adenoma and five examples of focal nodular hyperplasia. All patients were female, except for one male with adenoma and one male with focal nodular hyperplasia. No patient had received tamoxifen citrate or any other form of hormonal therapy for their hepatic lesion. Positive controls included benign and malignant breast tissue. No positive staining was seen in hepatic adenoma, focal nodular hyperplasia, or normal adjacent liver parenchyma. Intense positive staining was seen in all positive control tissues. This negative result with the use of specific monoclonal antibodies in an established immunohistochemical method for analysis of estrogen and progesterone receptors does not exclude the presence of these receptors in benign hepatic lesions, but does suggest that, if present, they occur in much smaller amounts than in benign and malignant breast tissue. The presence of hormone receptors in benign hepatic tumors deserves further study.

  11. Fluorescence detection of MSH-receptors in melanoma as a target of hormone-directed photosensitation in PDT

    NASA Astrophysics Data System (ADS)

    Roehrs, Susanne; Moser, Joerg G.; Salomon, Yoram

    1995-01-01

    MSH receptors are one of the possible targets to specifically attack melanoma cells by photodynamically active agents bound to melanotropic hormones. To attack effectively metastatic melanoma the presence of the hormone receptor has to be proven in metastases. Radioactive labeling of melanotropic hormones allows us to check for the presence of intact receptors. We tried to develop a non-radioactive immunological method as a first step to work out therapeutic strategies to attach photodynamically active porphyrins to the surface of melanoma cells.

  12. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  13. Iodothyronine deiodinases and thyroid hormone receptors regulation during flatfish (Solea senegalensis) metamorphosis.

    PubMed

    Isorna, Esther; Obregon, Maria Jesus; Calvo, Rosa Maria; Vázquez, Rosa; Pendón, Carlos; Falcón, Jack; Muñoz-Cueto, José Antonio

    2009-05-15

    Thyroid hormone-induced metamorphosis seems to represent an ancestral feature of chrordates (urochordates, cephalochordates and vertebrates), but also of nonchordate animals. Although thyroid hormones and thyroid hormone receptor profiles during metamorphosis have been analyzed in different vertebrate taxa, including fish, developmental expression and activity of type 2 (dio2, D2) and type 3 (dio3, D3) iodothyronine deiodinases, two key enzymes in anuran metamorphosis, remain unknown in any fish species. The aim of this work was to investigate the development of thyroid hormone system during the metamorphosis of a flatfish species, the Senegalese sole, focusing on the deiodinases developmental profile. We have cloned sole D2 and D3 and analyzed several parameters of thyroid hormones system in pre-, early-, middle-, and late-metamorphic larvae. Both deiodinases contain in their catalytic centers an UGA triplet encoding for a selenocystein (Sec) residue as expected. Left eye migration and rotation in body position were associated with a significant increase in both thyroid hormones and thyroid hormone receptors at the middle-late metamorphic stages. Although dio2 expression slightly increased during metamorphosis, D2 activity augmentation was much more significant. Sole dio3 expression declined only slightly, whereas the D3 activity clearly decreased at mid-late metamorphic period. This developmental profile of deiodinases sustained the rise of thyroid hormones levels observed during sole metamorphosis. No clear cut daily rhythms were observed in the parameters analyzed although it seemed that thyroid hormone system was more active during daytime, in particular at late metamorphic stages. These developmental changes point out the importance not only of thyroid hormones and their receptors but also of dio2 and dio3 in mediating flatfish metamorphosis, as it has been described in amphibians.

  14. The reciprocal regulation of stress hormones and GABA(A) receptors.

    PubMed

    Mody, Istvan; Maguire, Jamie

    2011-01-01

    Stress-derived steroid hormones regulate the expression and function of GABA(A) receptors (GABA(A)Rs). Changes in GABA(A)R subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABA(A)R subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABA(A)Rs. Neurosteroids allosterically modulate GABA(A)Rs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABA(A)Rs, GABA(A)Rs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA) axis, the activity of which is governed by corticotropin releasing hormone (CRH) neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABA(A)R δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABA(A)R δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABA(A)Rs as well as the importance of GABA(A)Rs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABA(A)Rs following stress and the role in HPA axis regulation.

  15. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study

    PubMed Central

    2012-01-01

    Introduction Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. Methods Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. Results For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. Conclusions An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women

  16. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  17. Neonatal Thyroid-Stimulating Hormone Screening as a Monitoring Tool for Iodine Deficiency in Turkey.

    PubMed

    Çaylan, Nilgün; Tezel, Başak; Özbaş, Sema; Şahin, Nuran; Aydın, Şirin; Acıcan, Deniz; Keskinkılıç, Bekir

    2016-06-05

    Thyroid-stimulating hormone (TSH) level in neonates is recommended as an indicator for presence of iodine deficiency (ID) at a population level and as a monitoring tool in programs of iodine supplementation. The purpose of this study, based on data from the National Newborn Screening Program (NNSP) for congenital hypothyroidism (CH) in 2014, was to analyze neonatal TSH levels to predict the current status of iodine nutrition in Turkey. According to screening methodology, heel-prick blood samples of newborns were collected on filter paper cards usually on day 3-5 after birth (or shortly before discharge). Results of samples collected >48 h after birth were analyzed. The degree of severity of ID was assessed by using the epidemiologic criteria of the World Health Organization (WHO). Elevated TSH levels (>5 mIU/L) were processed and classified according to province, region, birth season, and sampling time. A total of 1,298531 newborns were registered in the NNSP for the CH database. Of those, 1,270311 newborns had screening results collected >48 h after birth and were included in the statistical analyses. The national prevalence of elevated TSH was 7.2%. While the Gaziantep sub-region had the highest TSH elevation rate (15.9%), the Tekirdağ sub-region had the lowest rate (4.0%; p<0.001). Seasonal variations were also significant, and the elevated TSH prevalence rate was highest in winter (7.4%; p<0.001). National CH screening results suggest that Turkey may still be mildly iodine deficient. Nationwide studies should be performed for direct assessment and monitoring of iodine status in vulnerable populations to confirm accuracy of our results.

  18. Growth hormone deficiency due to traumatic brain injury in a patient with X-linked congenital adrenal hypoplasia.

    PubMed

    Engiz, Ozlem; Ozön, Alev; Riepe, Felix; Alikaşifoğlu, Ayfer; Gönç, Nazli; Kandemir, Nurgün

    2010-01-01

    X-linked adrenal hypoplasia congenita (AHC) is characterized by primary adrenal insufficiency and is frequently associated with hypogonadotropic hypogonadism (HH). The production of other pituitary hormones (adrenocorticotropic hormone [ACTH], growth hormone [GH], thyroid-stimulating hormone [TSH], and prolactin [PRL]) is usually normal. Mutations of the DAX-1 gene have been reported in patients with AHC and HH. We present a 13-year-old male patient with AHC caused by a nonsense mutation in the DAX-1 gene who developed GH deficiency following head trauma. He showed signs of adrenal insufficiency at the age of 23 months, and glucocorticoid and mineralocorticoid treatment was started. His parents reported head trauma due to a traffic accident at the age of 21 months. Adrenal computed tomography revealed hypoplasia of the left and agenesis of the right adrenal gland. Decreased growth rate was noted at the age of 12.5 years while receiving hydrocortisone 15 mg/m2/day. His height was 139.9 cm (-1.46 SD), body weight was 54.9 kg, pubic hair was Tanner stage 1, and testis size was 3 ml. His bone age was 7 years. His gonadotropin (follicle-stimulating hormone [FSH], luteinizing hormone [LH]) and testosterone levels were prepubertal. The evaluation of GH/insulin-like growth factor-1 (IGF-1) secretion at the age of 13 years revealed GH deficiency. Pituitary magnetic resonance imaging demonstrated a hypoplastic hypophysis (< 2.5 mm) and a normal infundibulum. GH treatment (0.73 IU/kg/week) was started. This paper reports a patient with genetically confirmed AHC demonstrating GH deficiency possibly due to a previous head trauma. Complete pituitary evaluation should be performed in any child who has survived severe traumatic brain injury.

  19. Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons

    PubMed Central

    Wu, Wendy W.; Adelman, John P.; Maylie, James

    2011-01-01

    Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E2)-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently the cellular bases underlying these clinical findings are unknown. At the cellular level, intrinsic membrane properties regulate the efficiency of synaptic inputs to initiate output action potentials (APs), thereby affecting neuronal communication hence cognitive processing. This study tested the hypothesis that in CA1 pyramidal neurons, intrinsic membrane properties and their acute regulation by E2 require ovarian hormones for maintenance. Whole-cell current clamp recordings were performed on neurons from ~7 months old OVX rats that experienced either short-term (10 days, control OVX) or long-term (5 months, OVXLT) ovarian hormone deficiency. The results reveal that long-term hormone deficiency reduced intrinsic membrane excitability (IE) as measured by the number of evoked action potentials (APs) and firing duration for a given current injection. This was accompanied by AP broadening, an increased slow afterhyperpolarization (sAHP), and faster accumulation of NaV channel inactivation during repetitive firing. In the control OVX neurons, E2 acutely increased IE and reduced the sAHP. In contrast, acute regulation of IE by E2 was absent in the OVXLT neurons. Since the degree of IE of hippocampal pyramidal neurons is positively related with hippocampus-dependent learning ability, and modulation of IE is observed following successful learning, these findings provide a framework for understanding hormone deficiency-related cognitive impairment and the critical window for therapy initiation. PMID:21325532

  20. Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH

    PubMed Central

    Maeda, Akira; Okazaki, Makoto; Baron, David M.; Dean, Thomas; Khatri, Ashok; Mahon, Mathew; Segawa, Hiroko; Abou-Samra, Abdul B.; Jüppner, Harald; Bloch, Kenneth D.; Potts, John T.; Gardella, Thomas J.

    2013-01-01

    Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting “knock-in” mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1–34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it. PMID:23533279

  1. Evolution of the thyroid hormone, retinoic acid, ecdysone and liver X receptors.

    PubMed

    Ollikainen, Noah; Chandsawangbhuwana, Charlie; Baker, Michael E

    2006-12-01

    Ecdysone and thyroid hormone are 2 ligands that have important roles in regulating metamorphosis in animals. Ecdysone is a steroid that regulates molting in insects. Thyroid hormone regulates differentiation and development in fish and amphibia. Although ecdysone and thyroid hormone have different chemical structures, both hormones act by binding to transcription factors that belong to the nuclear receptor family. We investigated the evolution of structure and function in the ecdysone receptor (EcR) and thyroid hormone receptor (TR), and liver X receptor (LXR) and retinoic acid receptor (RAR), which cluster with EcR and TR, respectively (Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M. 2004. Mol Biol Evol 21:1923-37), by constructing a multiple alignment of their sequences and calculating ancestral sequences for TR, RAR, EcR, and LXR. These alignments were mapped onto the 3D structures of TR, RAR, EcR, and LXR in the Protein Data Bank to examine the evolution of amino acids involved in the binding of ligands to TR, RAR, EcR, and LXR.

  2. The expression of growth hormone-releasing hormone (GHRH) and splice variants of its receptor in human gastroenteropancreatic carcinomas

    PubMed Central

    Busto, Rebeca; Schally, Andrew V.; Varga, Jozsef L.; Garcia-Fernandez, M. Olga; Groot, Kate; Armatis, Patricia; Szepeshazi, Karoly

    2002-01-01

    Splice variants (SVs) of receptors for growth hormone-releasing hormone (GHRH) have been found in primary human prostate cancers and diverse human cancer cell lines. GHRH antagonists inhibit growth of various experimental human cancers, including pancreatic and colorectal, xenografted into nude mice or cultured in vitro, and their antiproliferative action could be mediated in part through SVs of GHRH receptors. In this study we examined the expression of mRNA for GHRH and for SVs of its receptors in tumors of human pancreatic, colorectal, and gastric cancer cell lines grown in nude mice. mRNA for both GHRH and SV1 isoform of GHRH receptors was expressed in tumors of pancreatic (SW1990, PANC-1, MIA PaCa-2, Capan-1, Capan-2, and CFPAC1), colonic (COLO 320DM and HT-29), and gastric (NCI-N87, HS746T, and AGS) cancer cell lines; mRNA for SV2 was also present in Capan-1, Capan-2, CFPAC1, HT-29, and NCI-N87 tumors. In proliferation studies in vitro, the growth of pancreatic, colonic, and gastric cancer cells was stimulated by GHRH(1–29)NH2 and inhibited by GHRH antagonist JV-1–38. The stimulation of some gastroenteropancreatic cancer cells by GHRH was followed by an increase in cAMP production, and GHRH antagonist JV-1–38 competitively inhibited this effect. Our study indicates the presence of an autocrine/paracrine stimulatory loop based on GHRH and SV1 of GHRH receptors in human pancreatic, colorectal, and gastric cancers. The finding of SV1 receptor in human cancers provides an approach to an antitumor therapy based on the blockade of this receptor by specific GHRH antagonists. PMID:12186980

  3. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid.

    PubMed

    Liu, Xigang; Yue, Yanling; Li, Bin; Nie, Yanli; Li, Wei; Wu, Wei-Hua; Ma, Ligeng

    2007-03-23

    The plant hormone abscisic acid (ABA) regulates many physiological and developmental processes in plants. The mechanism of ABA perception at the cell surface is not understood. Here, we report that a G protein-coupled receptor genetically and physically interacts with the G protein alpha subunit GPA1 to mediate all known ABA responses in Arabidopsis. Overexpressing this receptor results in an ABA-hypersensitive phenotype. This receptor binds ABA with high affinity at physiological concentration with expected kinetics and stereospecificity. The binding of ABA to the receptor leads to the dissociation of the receptor-GPA1 complex in yeast. Our results demonstrate that this G protein-coupled receptor is a plasma membrane ABA receptor.

  4. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  5. Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors.

    PubMed

    Spoerri, Michèle; Guscetti, Franco; Hartnack, Sonja; Boos, Alois; Oei, Christine; Balogh, Orsolya; Nowaczyk, Renata M; Michel, Erika; Reichler, Iris M; Kowalewski, Mariusz P

    2015-09-15

    Neoplasms of the mammary gland are among the most common diseases in female domestic dogs (Canis familiaris). It is assumed that reproductive hormones influence tumorigenesis in this species, although the precise role of the endocrine milieu and reproductive state is subject to continuing discussion. In line with this, a recent systematic review of available data on the development of mammary neoplasms revealed weak evidence for risk reduction after neutering and an effect of age at neutering. Investigation of several hormone receptors has revealed decreased expression of estrogen receptor-alpha (ERα, ESR1), progesterone (P4) receptor (PGR), prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) associated with neoplastic differentiation of mammary tissues. In other studies, increased levels of estrogens, progesterone and prolactin were found in serum and/or tissue homogenates of dogs with malignant neoplasms. However, the association between these entities within one animal population was never previously examined. Therefore, this study investigated the association between circulating serum concentrations of estradiol-17β, progesterone and prolactin, and gene expression of ERα (ESR1), ERβ (ESR2), PGR, PRLR, PRL and GHR, with respect to reproductive state (spayed vs. intact) and cycle stage (anestrus vs. diestrus). Additionally, the expression of E-cadherin (CDH-1) was evaluated as a possible indicator of metastatic potential. For all receptors, the lowest gene expression was found in malignant tumors compared to normal tissues of affected dogs. Steroid levels were not influenced by their corresponding receptor expression in mammary neoplasms, but increased PRL levels were negatively associated with low PRLR gene expression in malignant tumors. The expression of CDH-1 was influenced by tumor malignancy and cycle stage, i.e., the highest gene expression was found in benign mammary tumors in diestrous dogs compared to normal and malignant mammary

  6. Identification of thyroid hormone response elements in vivo using mice expressing a tagged thyroid hormone receptor α1.

    PubMed

    Dudazy-Gralla, Susi; Nordström, Kristina; Hofmann, Peter Josef; Meseh, Dina Abdul; Schomburg, Lutz; Vennström, Björn; Mittag, Jens

    2013-03-13

    TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1-GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA-TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor-DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1-GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo.

  7. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    PubMed

    Tam, Janice K V; Chow, Billy K C; Lee, Leo T O

    2013-01-01

    The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2) in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2) in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2) was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2) had the highest expression in brain, and interestingly, X. laevis(GHRHR2) also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2), which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  8. Structural and Functional Divergence of Growth Hormone-Releasing Hormone Receptors in Early Sarcopterygians: Lungfish and Xenopus

    PubMed Central

    Tam, Janice K. V.; Chow, Billy K. C.; Lee, Leo T. O.

    2013-01-01

    The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR2 had the highest expression in brain, and interestingly, X. laevis GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP. PMID:23308232

  9. Toll-like Receptor 4 Deficiency Decreases Atherosclerosis but Does Not Protect against Inflammation in Obese LDL Receptor-Deficient Mice

    PubMed Central

    Ding, Yilei; Subramanian, Savitha; Montes, Vince N.; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O’Brien, Kevin D.; Chait, Alan

    2013-01-01

    Objective Obesity is associated with insulin resistance, chronic low-grade inflammation and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross-talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. This study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insulin resistance and atherosclerosis induced by a diabetogenic diet. Methods and Results TLR4 and LDL receptor double knockout (Tlr4−/−Ldlr−/−) mice and Ldlr−/− mice were fed either a normal chow or a diabetogenic diet for 24 weeks. Tlr4−/−Ldlr−/− mice fed a diabetogenic diet showed improved plasma cholesterol and triglyceride levels but developed obesity, hyperinsulinemia and glucose intolerance equivalent to obese Ldlr−/− mice. Adipocyte hypertrophy, macrophage accumulation and local inflammation were not attenuated in intra-abdominal adipose tissue in Tlr4−/−Ldlr−/− mice. However, TLR4 deficiency led to markedly decreased atherosclerosis in obese Tlr4−/−Ldlr−/− mice. Compensatory up-regulation of TLR2 expression was observed both in obese TLR4 deficient mice and in palmitate-treated TLR4-silenced 3T3-L1 adipocytes. Conclusions TLR4 deficiency decreases atherosclerosis without affecting obesity-induced inflammation and insulin resistance in LDL receptor deficient mice. Alternative pathways may be responsible for adipose tissue macrophage infiltration and insulin resistance that occurs in obesity. PMID:22580897

  10. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    PubMed

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  11. Treatment of short stature and growth hormone deficiency in children with somatotropin (rDNA origin).

    PubMed

    Hardin, Dana S

    2008-12-01

    Somatotropin (growth hormone, GH) of recombinant DNA origin has provided a readily available and safe drug that has greatly improved management of children and adolescents with GH deficiency (GHD) and other disorders of growth. In the US and Europe, regulatory agencies have given approval for the use of GH in children and adults who meet specific criteria. However, clinical and ethical controversies remain regarding the diagnosis of GHD, dosing of GH, duration of therapy and expected outcomes. Areas which also require consensus include management of pubertal patients, transitioning pediatric patients to adulthood, management of children with idiopathic short stature and the role of recombinant IGF-1 in treatment. Additionally, studies have demonstrated anabolic benefits of GH in children who have inflammatory-based underlying disease and efficacy of GH in overcoming growth delays in people treated chronically with corticosteroids. These areas are open for possible new uses of this drug. This review summarizes current indications for GH use in children and discusses areas of clinical debate and potential anabolic uses in chronic illness.

  12. Baseline Body Composition in Prepubertal Short Stature Children with Severe and Moderate Growth Hormone Deficiency

    PubMed Central

    Klesiewicz, Marta

    2016-01-01

    Objective. To compare body composition parameters in short children with severe versus moderate and no growth hormone deficiency (GHD). Design and Method. 61 children (40 boys) were studied. Height SDS, BMI Z-score, waist/height ratio (W/HtR), and body composition parameters (BIA) as fat tissue (FAT%), fat-free mass (FFM%), predicted muscle mass (PMM%), and total body water (TBW%) were evaluated. GH secretion in the overnight profile and two stimulation tests and insulin-like growth factor 1 (IGF-1) level were measured. Results. Overall, in 16 (26%) moderate (7.0 > peak GH < 10 ng/mL) and in 11 (18%) severe (GH ≤ 7.0 ng/mL) GHD was diagnosed. In children with sGHD BMI Z-score, W/HtR and FAT% were significantly higher, while FFM%, PMM%, and TBW% were significantly lower versus mGHD and versus noGHD subgroups. No significant differences between mGHD and noGHD were found. There were no differences in height SDS and IGF-1 SDS between evaluated subgroups. Night GH peak level correlated significantly with FAT%, FFM%, PMM%, and TBW%, (p < 0.05) in the entire group. Conclusions. Only sGHD is associated with significant impairment of body composition. Body composition analysis may be a useful tool in distinguishing between its severe and moderate form of GHD. PMID:27656208

  13. Transcription Factor SOX3 Is Involved in X-Linked Mental Retardation with Growth Hormone Deficiency

    PubMed Central

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C. J.; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]–box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  14. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    PubMed

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C J; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; Van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-12-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development.

  15. Impaired thyroid hormone status and thermoregulation during cold exposure of zinc-deficient rats.

    PubMed

    Lukaski, H C; Hall, C B; Marchello, M J

    1992-08-01

    Forty-five male, weanling Sprague-Dawley rats were matched by weight into three groups (n = 15). One group was fed ad libitum a semipurified diet containing all essential nutrients and 30 ppm of zinc (control). A second group was fed ad libitum a similar diet but with a deficient zinc intake of less than 1 ppm (ZnD). A third group was pair-fed (PF) the control diet in amounts equal to that consumed by the matched ZnD animals. After 42 days, the animals were fasted for 12 hr then five animals from each group were sacrificed and the remainder was exposed to 3 degrees C for 6 hr. Rectal temperatures were lower (p less than 0.05) in ZnD at 23 degrees C and during cold exposure. Plasma thyroxine (T4) and triiodothyronine (T3) concentrations were reduced (p less than 0.05) at room temperature in ZnD rats. During cold exposure, the ZnD animals had depressed (p less than 0.05) plasma thyrotropin, T4 and T3 concentrations. Thus, ZnD adversely affects thermoregulatory performance of rats acutely exposed to cold by influencing thyroid hormone metabolism.

  16. Growth hormone releasing hexapeptide-6 (GHRP-6) test in the diagnosis of GH-deficiency.

    PubMed

    Pombo, M; Leal-Cerro, A; Barreiro, J; Peñalva, A; Peino, R; Mallo, F; Dieguez, C; Casanueva, F F

    1996-06-01

    Pituitary GH reserve can be assessed by substances that act directly at the somatotroph, such as GHRH, or by a variety of metabolic and neuropharmacological tests acting at the hypothalamic level, such as hypoglycemia, clonidine or L-Dopa. In order to evaluate GHRP-6 as a test of pituitary GH reserve, we studied GH responses of i.v. administered GHRP-6 in a group of short-statured children, as well as in a group of adults diagnosed with growth hormone deficiency (GHD) by conventional GH testing. Although we found that the GH response to GHRP-6 was lower in patients with GHD than in normal children, on an individual basis a considerable degree of overlap was observed between the two groups. In contrast, we found an almost complete blockade of GH response to either GHRP-6 or GHRH plus GHRP-6 in patients with pituitary stalk transection, suggesting that this could be a cost-effective test for the diagnosis of this condition. A similar finding was also obtained in GH response to the combined administration of GHRH plus GHRP-6 in patients with GHD of adult onset; this test may well prove valuable in the diagnosis of this clinical entity.

  17. [Relation between parathyroid hormone and cardiovascular risk in patients with vitamin D deficiency].

    PubMed

    Casado Cerrada, Jesús; Parra Caballero, Pedro; Vega Piris, Lorena; Suárez Fernández, Carmen

    2013-10-05

    Vitamin D deficiency and parathyroid hormone (PTH) are associated with an increased cardiovascular risk and arterial stiffness. The aim of our study is to compare the cardiovascular risk in subjects with low vitamin D, attending to the PTH concentration, as well as evaluating the response after administration of vitamin D. Prospective study of patients with a concentration of 25(OH)-vitamin D below 30nmol/l. We evaluated vascular risk parameters as blood pressure, arterial stiffness, lipid profile and glucose metabolism. Patients received vitamin D supplements for 3 months, after which the previous parameters were reassessed. A total of 32 patients were included. Those with PTH over 65pg/ml were older, had worse renal function, higher systolic blood pressure, pulse pressure and arterial stiffness. Treatment with vitamin D showed a statistically significant trend to lower blood pressure and pulse wave velocity. The increase in PTH in patients with low vitamin D involves poor control of blood pressure and increased vascular stiffness. Vitamin D replacement shows a tendency to reduce these parameters. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  18. Dose dependency of time of onset of radiation-induced growth hormone deficiency

    SciTech Connect

    Clayton, P.E.; Shalet, S.M. )

    1991-02-01

    Growth hormone (GH) secretion during insulin-induced hypoglycemia was assessed on 133 occasions in 82 survivors of childhood malignant disease. All had received cranial irradiation with a dose range to the hypothalamic-pituitary axis of 27 to 47.5 Gy (estimated by a schedule of 16 fractions over 3 weeks) and had been tested on one or more occasions between 0.2 and 18.9 years after treatment. Results of one third of the GH tests were defined as normal (GH peak response, greater than 15 mU/L) within the first 5 years, in comparison with 16% after 5 years. Stepwise multiple linear regression analysis showed that dose (p = 0.007) and time from irradiation (p = 0.03), but not age at therapy, had a significant influence on peak GH responses. The late incidence of GH deficiency was similar over the whole dose range (4 of 26 GH test results normal for less than 30 Gy and 4 of 25 normal for greater than or equal to 30 Gy after 5 years), but the speed of onset over the first years was dependent on dose. We conclude that the requirement for GH replacement therapy and the timing of its introduction will be influenced by the dose of irradiation received by the hypothalamic-pituitary axis.

  19. Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.).

    PubMed

    Wang, Zhengrui; Rahman, A B M Moshiur; Wang, Guoying; Ludewig, Uwe; Shen, Jianbo; Neumann, Günter

    2015-04-01

    This study addresses hormonal interactions involved in cluster-root (CR) development of phosphate (Pi)-deficient white lupin (Lupinus albus), which represents the most efficient plant strategy for root-induced mobilisation of sparingly soluble soil phosphorus (P) sources. Shoot-to-root translocation of auxin was unaffected by P-limitation, while strong stimulatory effects of external sucrose on CR formation, even in P-sufficient plants, suggest sucrose, rather than auxins, acts as a shoot-borne signal, triggering the induction of CR primordia. Ethylene may act as mediator of the sucrose signal, as indicated by moderately increased expression of genes involved in ethylene biosynthesis in pre-emergent clusters and by strong inhibitory effects of the ethylene antagonist CoCl2 on CR formation induced by sucrose amendments or P-limitation. As reported in other plants, moderately increased production of brassinosteroids (BRs) and cytokinin, in pre-emergent clusters, may be required for the formation of auxin gradients necessary for induction of CR primordia via interference with auxin biosynthesis and transport. The well-documented inhibition of root elongation by high doses of ethylene may be involved in the growth inhibition of lateral rootlets during CR maturation, indicated by a massive increased expression of gene involved in ethylene production, associated with a declined expression of transcripts with stimulatory effects (BR and auxin-related genes). Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Growth retardation and growth hormone deficiency in patients with Ataxia telangiectasia.

    PubMed

    Voss, Sandra; Pietzner, Julia; Hoche, Franziska; Taylor, Alexander Malcolm R; Last, James I; Schubert, Ralf; Zielen, Stefan

    2014-06-01

    Ataxia telangiectasia (A-T) is a devastating human recessive disorder characterised by progressive cerebellar ataxia, immunodeficiency, genetic instability, and cancer susceptibility. In addition, many patients suffer from growth failure. We analyzed growth and IGF-1/BP3 levels of 24 A-T-patients compared with an age-matched group of healthy controls (n = 36). Ten (41.7%) A-T patients and none of healthy controls had an IGF-1 level below the 3rd percentile for age. The growth hormone (GH) stimulation tests revealed a severe GH deficiency with no increase of >5 ng/ml in six of the ten A-T patients. The IGF-1 generation tests revealed normal increases in IGF-1 values in all patients. Our results show that a disturbance in the GH/IGF-1 axis was present in 58.3% of A-T patients. Low levels of GH were the result of reduced central GH secretion. GH treatment may be a therapeutic option for A-T patients with severe growth failure.

  1. Epigenetic Upregulation of Corticotrophin-Releasing Hormone Mediates Postnatal Maternal Separation-Induced Memory Deficiency

    PubMed Central

    Wang, Aiyun; Nie, Wenying; Li, Haixia; Hou, Yuhua; Yu, Zhen; Fan, Qing; Sun, Ruopeng

    2014-01-01

    Accumulating evidences demonstrated that early postnatal maternal separation induced remarkable social and memory defects in the adult rodents. Early-life stress induced long-lasting functional adaptation of neuroendocrine hypothalamic-pituitary-adrenal axis, including neuropeptide corticotrophin-releasing hormone (CRH) in the brain. In the present study, a significantly increased hippocampal CRH was observed in the adult rats with postnatal maternal separation, and blockade of CRHR1 signaling significantly attenuated the hippocampal synaptic dysfunction and memory defects in the modeled rats. Postnatal maternal separation enduringly increased histone H3 acetylation and decreased cytosine methylation in Crh promoter region, resulting from the functional adaptation of several transcriptional factors, in the hippocampal CA1 of the modeled rats. Enriched environment reversed the epigenetic upregulation of CRH, and ameliorated the hippocampal synaptic dysfunction and memory defects in the adult rats with postnatal maternal separation. This study provided novel insights into the epigenetic mechanism underlying postnatal maternal separation-induced memory deficiency, and suggested environment enrichment as a potential approach for the treatment of this disorder. PMID:24718660

  2. Long-term monitoring of insulin sensitivity in growth hormone-deficient adults on substitutive recombinant human growth hormone therapy.

    PubMed

    Giavoli, Claudia; Porretti, Silvia; Ronchi, Cristina L; Cappiello, Vincenzo; Ferrante, Emanuele; Orsi, Emanuela; Arosio, Maura; Beck-Peccoz, Paolo

    2004-06-01

    Since the effects of recombinant human growth hormone (rhGH) replacement therapy on glucose metabolism are still a matter of debate, the aim of the present study was to evaluate the impact of long-term rhGH treatment on insulin sensitivity. Simple indices of insulin resistance (IR) and insulin sensitivity (IS), based on fasting glucose and insulin, such as the homeostasis model assessment of insulin resistance (HOMA-IR) and the quantitative insulin check index (QUICKI), were used to estimate the degree of IR and IS in 20 normoglycemic patients (11 men and 9 women; mean age, 44 +/- 14 years) with severe adult-onset GH deficiency (GHD). Measurements were determined at baseline and after 1 and 5 years of continuous rhGH therapy. Basal values were compared to those obtained in 20 healthy sex- and age-matched controls. Starting rhGH dose ranged from 3 to 8 microg/kg/d in keeping with sex and age, then doses were titrated according to insulin-like growth factor-I (IGF-I) levels. At baseline all patients had low IGF-I levels (10 +/- 5.4 nmol/L), high body mas index (BMI; 27.5 +/- 4 kg/m(2)), and elevated body fat percentage (BF%; 31.8 +/- 9.6). Fasting glucose and insulin levels, as well as HOMA-IR and QUICKI, did not differ significantly from those recorded in the control group. After 1 year of rhGH replacement therapy, normalization in IGF-I levels and a significant reduction in BF% were observed (P <.001), and these effects were maintained after 5 years of treatment. Fasting glucose increased from 79 +/- 10 to 87 +/- 13, and 87 +/- 12 mg/dL (P <.05) after 1 and 5 years of therapy, respectively. Fasting insulin significantly increased after 1 year, without further modifications in the long-term follow-up. HOMA-IR significantly increased from 2.1 +/- 1.7 to 2.5 +/- 1.7 (P <.05) after 1 year, then decreased to 2.3 +/- 1.5 (P = not significant [NS] v basal) after 5 years. A specular decrease in QUICKI from 0.37 +/- 0.05 to 0.34 +/- 0.03 (P <.01) occurred after 1 year, with

  3. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  4. Disruption of Zebrafish Follicle-Stimulating Hormone Receptor (fshr) But Not Luteinizing Hormone Receptor (lhcgr) Gene by TALEN Leads to Failed Follicle Activation in Females Followed by Sexual Reversal to Males.

    PubMed

    Zhang, Zhiwei; Lau, Shuk-Wa; Zhang, Lingling; Ge, Wei

    2015-10-01

    Gonadotropins are primary hormones that control vertebrate reproduction. In a recent study, we analyzed the impacts of FSH and LH on zebrafish reproduction by disrupting FSH and LH-β genes (fshb and lhb) using transcription activator-like effector nuclease (TALEN) technology. Using the same approach, we successfully deleted FSH and LH receptor genes (fshr and lhcgr) in the present study. In contrast to the deficiency of its cognate ligand FSH, the fshr-deficient females showed a complete failure of follicle activation with all ovarian follicles arrested at the primary growth-previtellogenic transition, which is the marker for puberty onset in females. Interestingly, after blockade at the primary growth stage for varying times, all females reversed to males, and all these males were fertile. In fshr-deficient males, spermatogenesis was normal in adults, but the initiation of spermatogenesis in juveniles was retarded. In contrast to fshr, the deletion of the lhcgr gene alone caused no obvious phenotypes in both males and females; however, double mutation of fshr and lhcgr resulted in infertile males. In summary, our results in the present study showed that Fshr was indispensable to folliculogenesis and the disruption of the fshr gene resulted in a complete failure of follicle activation followed by masculinization into males. In contrast, lhcgr does not seem to be essential to zebrafish reproduction in both males and females. Neither Fshr nor Lhcgr deficiency could phenocopy the deficiency of their cognate ligands FSH and LH, which is likely due to the fact that Fshr can be activated by both FSH and LH in the zebrafish.

  5. Covalent coupling of bovine growth hormone to its receptor in bovine liver membranes.

    PubMed

    Badinga, L; Collier, R J; Thatcher, W W; Quintana, S J; Bazer, F W

    1987-07-01

    The structure of bovine somatotropin receptor was examined following covalent coupling of iodinated recombinant bovine growth hormone ([125I]rbGH) to bovine liver membrane receptors using ethylene glycol bis(succinimidyl succinate). Iodinated rbGH was incorporated into a complex of estimated Mr of 140,000 under reducing conditions. Excess unlabeled rbGH, but not bovine prolactin (bPRL), inhibited completely the incorporation of [125I]rbGH into the Mr = 140,000 species. In dairy bulls, the Mr = 140,000 complex was undetectable soon after birth but became predominant at 6 months of age. No evidence was found to support presence of bPRL receptors in steer liver membranes. Assuming a 1:1 stoichiometry of hormone binding to receptor, it appears that bGH binds to a major receptor subunit of Mr = 119,000 which does not recognize bPRL.

  6. Evidence that the growth hormone receptor mediates differentiation and development of the mammary gland.

    PubMed

    Feldman, M; Ruan, W; Cunningham, B C; Wells, J A; Kleinberg, D L

    1993-10-01

    We have shown that nonlactogenic rat (r) GH is far more potent than rPRL in inducing rat mammary development. To determine the relative roles of GH and PRL in mammary development and their mechanisms of action, we have compared the abilities of a group of native and mutant GHs, PRLs, and placental lactogens (PLs) to induce mammary development, bind to GH receptors, and activate lactogenic receptors. Mammary development was assessed histologically by counting terminal end buds and alveolar structures in glands from sexually immature, hypophysectomized, castrated, estradiol-treated rats. Hormones were implanted, in Elvax pellets, into the lumbar mammary gland. Significant increases in terminal end buds (P < 0.03) over internal control values were obtained with rGH, recombinant human GH (rhGH), rbGH, and one of two mutant rhGHs. These four hormones were also found to bind to GH receptors with high affinity. In contrast, little development occurred with hPRL, rPRL, rhPL, ovine PRL, mutant forms of rhPRL and rhPL, and a mutant of rhGH altered to reduce binding to GH and PRL receptors. All of these substances are more than 50-fold reduced in binding to the GH receptor, yet can bind and activate lactogenic receptors. Thus, only those natural or mutant pituitary or placental hormones with high binding affinity to GH receptors induce mammary development, suggesting that GH receptors play a central role in this process.

  7. Synthesis and evaluation of methylsulfonylnitrobenzamides (MSNBAs) as inhibitors of the thyroid hormone receptor-coactivator interaction

    PubMed Central

    Hwang, Jong Yeon; Attia, Ramy R.; Carrillo, Angela K.; Connelly, Michele C.; Guy, R. Kiplin

    2013-01-01

    We previously identified the methylsulfonylnitrobenzoates (MSNBs) that block the interaction of the thyroid hormone receptor with its obligate transcriptional coactivators and prevent thyroid hormone signaling. As part of our lead optimization work we demonstrated that sulfonylnitrophenylthiazoles (SNPTs), which replace the ester linkage of MSNBs with a thiazole, also inhibited coactivator binding to TR. Here we report that replacement of the ester with an amide (methylsulfonylnitrobenzamides, MSNBA) also provides active TR antagonists. PMID:23414840

  8. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance

    PubMed Central

    Manso, Luis; Mourón, Silvana; Tress, Michael; Gómez-López, Gonzalo; Morente, Manuel; Ciruelos, Eva; Rubio-Camarillo, Miriam; Rodriguez-Peralto, Jose Luis; Pujana, Miguel A.; Pisano, David G.; Quintela-Fandino, Miguel

    2016-01-01

    We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC). We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11) of tumors (primary and metastases) at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001). Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001), and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC. PMID:27195705

  9. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation

    PubMed Central

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L.; Potts, John T.; Gardella, Thomas J.

    2008-01-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1–34), but not PTH-related protein, PTHrP(1–36), or M-PTH(1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14,Arg19), binds to the PTHR in a largely GTPγS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R0), distinct from the GTPγS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1–34), M-PTH(1–28) and M-PTH(1–34) bound to R0 with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1–34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1–34). Thus, the putative R0 PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R0, versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands. PMID:18946036

  10. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.

  11. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  12. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3 × 10(-5)mol/L and GW0742 IC50 4.9 × 10(-6) mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5) mol/L), beraprost (10(-5) mol/L) and GW0742 (10(-5) mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Synthesis and evaluation of sulfonylnitrophenylthiazoles (SNPT's) as thyroid hormone receptor-coactivator interaction inhibitors

    PubMed Central

    Hwang, Jong Yeon; Attia, Ramy R.; Zhu, Fangyi; Yang, Lei; Lemoff, Andrew; Jeffries, Cynthia; Connelly, Michele C.; Guy, R. Kiplin

    2012-01-01

    We previously identified a series of methylsulfonylnitrobenzoates (MSNB's) that block the interaction of the thyroid hormone receptor with its coactivators. MSNB's inhibits coactivator binding through irreversibly modifying cysteine 298 of thyroid hormone receptor (TR). Although MSNB's have better pharmacological features than our first generation inhibitors (β-aminoketones) they contain a potentially unstable ester linkage. Here we report the bioisosteric replacement of the ester linkage with a thiazole moiety, yielding sulfonylnitrophenylthiazoles (SNPT's). An array of SNPT's representing optimal side chains from the MSNB series was constructed using parallel chemistry and evaluated to test their antagonism of the TR-coactivator interaction. Selected active compounds were evaluated in secondary confirmatory assays including regulation of thyroid response element driven transcription in reporter constructs and native genes. In addition the selected SNPT's shown to be selective for TR relative to other nuclear hormone receptor (NR). PMID:22324546

  14. Discovery of substituted benzamides as follicle stimulating hormone receptor allosteric modulators.

    PubMed

    Yu, Henry N; Richardson, Thomas E; Nataraja, Selva; Fischer, David J; Sriraman, Venkataraman; Jiang, Xuliang; Bharathi, Pandi; Foglesong, Robert J; Haxell, Thomas F N; Heasley, Brian H; Jenks, Mathew; Li, Jane; Dugas, Melanie S; Collis, Regina; Tian, Hui; Palmer, Stephen; Goutopoulos, Andreas

    2014-05-01

    Follicle-stimulating hormone (FSH), acting on its receptor (FSHR), plays a pivotal role in the stimulation of follicular development and maturation. Multiple injections of protein formulations are used during clinical protocols for ovulation induction and for in vitro fertilization that are followed by a selection of assisted reproductive technologies. In order to increase patient convenience and compliance several research groups have searched for orally bioavailable FSH mimetics for innovative fertility medicines. We report here the discovery of a series of substituted benzamides as positive allosteric modulators (PAM) targeting FSHR. Optimization of this series has led to enhanced activity in primary rat granulosa cells, as well as remarkable selectivity against the closely related luteinizing hormone receptor (LHR) and thyroid stimulating hormone receptor (TSHR). Two modulators, 9j and 9k, showed promising in vitro and pharmacokinetic profiles.

  15. Alien, a Highly Conserved Protein with Characteristics of a Corepressor for Members of the Nuclear Hormone Receptor Superfamily

    PubMed Central

    Dressel, Uwe; Thormeyer, Dorit; Altincicek, Boran; Paululat, Achim; Eggert, Martin; Schneider, Sandra; Tenbaum, Stephan P.; Renkawitz, Rainer; Baniahmad, Aria

    1999-01-01

    Some members of nuclear hormone receptors, such as the thyroid hormone receptor (TR), silence gene expression in the absence of the hormone. Corepressors, which bind to the receptor’s silencing domain, are involved in this repression. Hormone binding leads to dissociation of corepressors and binding of coactivators, which in turn mediate gene activation. Here, we describe the characteristics of Alien, a novel corepressor. Alien interacts with TR only in the absence of hormone. Addition of thyroid hormone leads to dissociation of Alien from the receptor, as shown by the yeast two-hybrid system, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Reporter assays indicate that Alien increases receptor-mediated silencing and that it harbors an autonomous silencing function. Immune staining shows that Alien is localized in the cell nucleus. Alien is a highly conserved protein showing 90% identity between human and Drosophila. Drosophila Alien shows similar activities in that it interacts in a hormone-sensitive manner with TR and harbors an autonomous silencing function. Specific interaction of Alien is seen with Drosophila nuclear hormone receptors, such as the ecdysone receptor and Seven-up, the Drosophila homologue of COUP-TF1, but not with retinoic acid receptor, RXR/USP, DHR 3, DHR 38, DHR 78, or DHR 96. These properties, taken together, show that Alien has the characteristics of a corepressor. Thus, Alien represents a member of a novel class of corepressors specific for selected members of the nuclear hormone receptor superfamily. PMID:10207062

  16. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor

    SciTech Connect

    Atassi, M.Z.; Manshouri, T. ); Sakata, Shigeki )

    1991-05-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind {sup 125}I-labeled human TSH (hTSH), its isolated {alpha} and {beta} subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the {beta} chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the {alpha} chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site.

  17. Growth hormone receptors in ovary and liver during gametogenesis in female rainbow trout (Oncorhynchus mykiss).

    PubMed

    Gomez, J M; Mourot, B; Fostier, A; Le Gac, F

    1999-03-01

    Changes of growth hormone receptivity in the ovary during the reproductive cycle were studied in rainbow trout (Oncorhynchus mykiss). A method for characterizing growth hormone receptors in crude ovary homogenate was required for this. Binding of radiolabelled recombinant rainbow trout growth hormone (125I-labelled rtGH) to crude ovary preparation was dependent on ovarian tissue concentration. The sites were specific to growth hormone, with no affinity for prolactins and gonadotrophins. Similar high affinities for 125I-labelled rtGH were obtained with crude ovary (4.2 x 10(9) +/- 0.3 mol l-1) and crude liver preparations (4.9 x 10(9) +/- 0.1 mol l-1) at all stages of ovogenesis, and with ovarian membrane preparations (8.2 x 10(9) mol l-1) tested at the beginning of vitellogenesis. Ovarian growth hormone receptor concentration was highest during the early phases of follicular development (endogenous vitellogenesis: 315-310 fmol g-1 ovary) and decreased regularly during oocyte and follicular growth (exogenous vitellogenesis) to reach a minimal value at oocyte maturation (42 fmol g-1 ovary). In postovulated fish, binding was at a similar level (297 fmol g-1 ovary) to that found in endogenous vitellogenesis. Conversely, the absolute binding capacity of the whole ovary was low from immaturity to early exogenous vitellogenesis (0.1-0.6 pmol per pair of gonads), increased slowly during vitellogenesis and more markedly during rapid oocyte growth and at the time of final maturation (10.8 pmol per pair of gonads). In postovulated fish, the absolute binding capacity decreased partially (4.4 pmol per pair of gonads). Mean hepatic growth hormone receptor concentration did not vary with the reproductive stage for most of the cycle (3.0-4.5 pmol g-1 liver) except in endogenous vitellogenesis where significantly higher concentrations were observed (6.7 pmol g-1 liver). Individual ovarian growth hormone receptor concentrations were correlated with hepatic growth hormone receptor

  18. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    SciTech Connect

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F. )

    1988-04-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of {sup 125}I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase.

  19. Is the growth outcome of children with idiopathic short stature and isolated growth hormone deficiency following treatment with growth hormone and a luteinizing hormone-releasing hormone agonist superior to that obtained by GH alone?

    PubMed

    Colmenares, Ana; González, Laura; Gunczler, Peter; Lanes, Roberto

    2012-01-01

    The aim of this study was to evaluate the effect of combined therapy with growth hormone (GH) and luteinizing hormone-releasing hormone agonist (LHRHa) on the near-final height (NFH) of children with idiopathic short stature (ISS) and growth hormone deficiency (GHD) in early puberty. A retrospective analysis of 20 patients with ISS and 9 patients with GHD treated with combined therapy was undertaken. Twelve children with ISS and ten with GHD, treated with GH alone, served as controls. Patients were matched at baseline for chronological age, bone age, height standard deviation score (SDS), and pubertal development. Patients with ISS or GHD treated with combined therapy improved both their predicted adult height (PAH) at 2 years of therapy (ISS, p < 0.001; GHD, p = 0.03) and their NFH (ISS, p < 0.05; GHD, p = 0.05). Treatment with combined therapy did not generate additional benefits on the PAH after 2 years of therapy (ISS children, an increase of 7.9 +/- 4.9 cm with combined therapy vs. 7.3 +/- 6.0 cm with GH; GHD children, an increase of 6.8 +/- 7.8 cm with combined therapy vs. 5 +/- 5.9 cm with GH). The total height gain SDS was higher in patients treated with GH alone compared with those with combined therapy, but the difference was not significant (ISS children, a gain of 2.4 SDS with GH vs. 0.8 SDS with combined therapy; GHD children, a gain of 1.8 SDS with GH vs. 0.6 SDS with combined therapy). Although 2 years of combined treatment with GH and LHRHa improved the PAH and the NFH of ISS and GHD patients in early puberty, this improvement was not significant compared with that observed in similar subjects treated with GH alone.

  20. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells

    PubMed Central

    Ziegler, CG; Ullrich, M; Schally, AV; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, SR

    2013-01-01

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPC) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  2. Adding hormonal therapy to chemotherapy and trastuzumab improves prognosis in patients with hormone receptor-positive and human epidermal growth factor receptor 2-positive primary breast cancer.

    PubMed

    Hayashi, Naoki; Niikura, Naoki; Yamauchi, Hideko; Nakamura, Seigo; Ueno, Naoto T

    2013-01-01

    Adjuvant hormonal therapy for hormone receptor (HR)-positive primary breast cancer patients and a human epidermal growth factor receptor 2 (HER2)-targeted agent for HER2-positive primary breast cancer patients are standard treatment. However, it is not well known whether adding hormonal therapy to the combination of preoperative or postoperative chemotherapy and HER2-targeted agent contributes any additional clinical benefit in patients with HR-positive/HER2-positive primary breast cancer regardless of cross-talk between HR and HER2. We retrospectively reviewed records from 897 patients with HR-positive/HER2-positive primary breast cancer with clinical stage I-III disease who underwent surgery between 1988 and 2009. We determined the overall survival (OS) and disease-free survival (DFS) rates according to whether they received hormonal therapy or not and according to the type of hormonal therapy, tamoxifen and aromatase inhibitor, they received. The median followup time was 52.8 months (range 1-294.6 months). Patients who received hormonal therapy with chemotherapy and trastuzumab (n = 128) had significantly higher OS and DFS rates than did those who received only chemotherapy and trastuzumab (n = 46) in log-rank analysis (OS 96.1 vs. 87.0 %, p = 0.023, DFS 86.7 vs. 78.3 %, p = 0.029). There was no statistical difference in OS or DFS between those given an aromatase inhibitor and those given tamoxifen. In multivariate analysis, receiving hormonal therapy in addition to the combination of chemotherapy and trastuzumab was the sole independent prognostic factor for DFS (hazard ratio 0.446; 95 % CI 0.200-0.992; p = 0.048), and there was a similar trend in OS. Our study supported that hormonal therapy, whether in the form of an aromatase inhibitor or tamoxifen, confers a survival benefit when added to chemotherapy and trastuzumab in patients with HR-positive/HER2-positive primary breast cancer. Adjuvant treatment without hormonal therapy is inferior for this patient

  3. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia.

    PubMed

    Ferguson, B J; Skikne, B S; Simpson, K M; Baynes, R D; Cook, J D

    1992-04-01

    Recent studies have shown that the serum transferrin receptor is a sensitive, quantitative measure of tissue iron deficiency. This study was undertaken to determine the serum transferrin receptor's ability to distinguish iron-deficiency anemia from the anemia of chronic inflammation and to identify iron deficiency in patients with liver disease. The mean transferrin receptor level in 17 normal controls was 5.36 +/- 0.82 mg/L compared with 13.91 +/- 4.63 mg/L in 17 patients with iron-deficiency anemia (p less than 0.001). The mean serum receptor level was normal in all 20 patients with acute infection, including five with acute hepatitis, and was also normal in 8 of 10 anemic patients with chronic liver disease. Receptor levels were in the normal range in all but 4 of 41 patients with anemia of chronic disease. We conclude that unlike serum ferritin levels, which are disproportionately elevated in relation to iron stores in patients with inflammation or liver disease, the serum transferrin receptor level is not affected by these disorders and is therefore a reliable laboratory index of iron deficiency anemia.

  4. The rat growth hormone-releasing hormone receptor gene: structure, regulation, and generation of receptor isoforms with different signaling properties.

    PubMed

    Miller, T L; Godfrey, P A; Dealmeida, V I; Mayo, K E

    1999-09-01

    The interaction of GHRH with membrane-bound receptors on somatotroph cells of the anterior pituitary is an important step in the regulation of GH synthesis and secretion. The identification of a G protein-coupled receptor for GHRH has made it possible to investigate the pathway by which GHRH regulates pituitary somatotroph cell function. To initiate an analysis of the mechanisms regulating expression and function of the GHRH receptor, the structure of the gene and its promoter region were analyzed. The coding sequence of the rat GHRH receptor gene is contained within 14 exons spanning approximately 15 kb of genomic DNA. Four transcription start sites are located within 286 bp upstream of the initiation codon. The 5' flanking region of the GHRH receptor gene acts as a functional promoter in rat pituitary tumor GH3 cells, and basal promoter activity is enhanced in GH3 and COS7 cells by cotransfection of an expression construct encoding the pituitary-specific transcription factor Pit-1. The rat GHRH receptor gene is subject to at least 1 alternative RNA processing event that generates 2 receptor isoforms differing by 41 amino acids within the third intracellular loop (IL) of the protein. The short isoform of the GHRH receptor is predominant in pituitary cells. The MtT/S pituitary tumor cell line was found to express the GHRH receptor, and different populations of these cells produce predominantly the long or short isoforms of the receptor messenger RNA, suggesting that the alternative splicing can be regulated. Functional analysis of the two GHRH receptor isoforms demonstrates that both bind GHRH, but only the short isoform signals through a cAMP-mediated pathway. Neither receptor isoform is able to stimulate calcium mobilization from internal stores after GHRH treatment. Our findings indicate that the pituitary-specific transcription factor Pit-1 is involved in the somatotroph-specific expression of the GHRH receptor gene and that functionally distinct receptor

  5. Growth hormone deficiency in a dopa-responsive dystonia patient with a novel mutation of guanosine triphosphate cyclohydrolase 1 gene.

    PubMed

    Lin, Yu; Wang, Dan-Ni; Chen, Wan-Jin; Lin, Xiang; Lin, Min-Ting; Wang, Ning

    2015-05-01

    Dopa-responsive dystonia is a rare hereditary movement disorder caused by mutations in the guanosine triphosphate cyclohydrolase 1 (GCH1) gene. This disease typically manifests in dystonia, with marked diurnal fluctuation and a dramatic response to levodopa. However, growth retardation in dopa-responsive dystonia has rarely been reported, and the etiology of short stature is not clarified. Here, we report a 14-year-old patient with extremities dystonia and short stature. Treatment with levodopa relieved his symptoms and resulted in a height increase. We also investigated the mutation in GCH1 and the etiology of short stature in this case. Sequence analysis of GCH1 revealed a novel mutation (c.695G>T). Laboratory examinations and imaging confirmed the diagnosis of growth hormone deficiency. We conclude that our case reveals a rare feature for dopa-responsive dystonia and suggests a possible pathogenic link between growth hormone deficiency and dopa-responsive dystonia. We recommend levodopa as the first choice for treating dopa-responsive dystonia in children with growth hormone deficiency.

  6. Azapeptide analogues of the growth hormone releasing peptide 6 as cluster of differentiation 36 receptor ligands with reduced affinity for the growth hormone secretagogue receptor 1a.

    PubMed

    Proulx, Caroline; Picard, Émilie; Boeglin, Damien; Pohankova, Petra; Chemtob, Sylvain; Ong, Huy; Lubell, William D

    2012-07-26

    The synthetic hexapeptide growth hormone releasing peptide-6 (GHRP-6) exhibits dual affinity for the growth hormone secretagogue receptor 1a (GHS-R1a) and the cluster of differentiation 36 (CD36) receptor. Azapeptide GHRP-6 analogues have been synthesized, exhibiting micromolar affinity to the CD36 receptor with reduced affinity toward the GHS-R1a. A combinatorial split-and-mix approach furnished aza-GHRP-6 leads, which were further examined by alanine scanning. Incorporation of an aza-amino acid residue respectively at the D-Trp(2), Ala(3), or Trp(4) position gave aza-GHRP-6 analogues with reduced affinity toward the GHS-R1a by at least a factor of 100 and in certain cases retained affinity for the CD36 receptor. In the latter cases, the D-Trp(2) residue proved important for CD36 receptor affinity; however, His(1) could be replaced by Ala(1) without considerable loss of binding. In a microvascular sprouting assay using a choroid explant, [azaTyr(4)]-GHRP-6 (15), [Ala(1), azaPhe(2)]-GHRP-6 (16), and [azaLeu(3), Ala(6)]-GHRP-6 (33) all exhibited antiangiogenic activity.

  7. Serum transferrin receptor levels in the evaluation of iron deficiency in the neonate.

    PubMed

    Rusia, U; Flowers, C; Madan, N; Agarwal, N; Sood, S K; Sikka, M

    1996-10-01

    Iron deficiency anemia (IDA) is a major global problem. Early onset of iron deficiency in developing countries makes it imperative to identify iron deficiency in neonates. Most conventional laboratory parameters of iron status fail to distinguish neonates with iron deficient erythropoiesis. Serum transferrin receptor (STFR) levels are a recent sensitive measure of iron deficiency and the present study was carried out to evaluate the usefulness of cord serum transferrin receptors in identifying iron deficient erythropoiesis in neonates. A complete hemogram, red cell indices, iron profile: serum iron (SI), percent transferrin saturation (TS%) and serum ferritin (SF) was carried out in 100 full-term neonates and their mothers at parturition. Cord and maternal STFR levels were estimated using a sensitive enzyme-linked immunosorbent assay (ELISA) technique. Anemic women had a significantly lower SI, their TS% and high STFR levels suggesting that iron deficiency was responsible for the anemia. In the neonates of iron deficient mothers, cord SI, TS% and cord ferritin were not significantly different from those of neonates born to non-anemic mothers. Cord STFR level correlated well with hemoglobin (Hb) and laboratory parameters of iron status, and its level was significantly higher in neonates born to anemic mothers than in those born to non-anemic mothers. It was the only laboratory parameter to differentiate between neonates born to anemic and non-anemic mothers. Therefore, STFR is a sensitive index of iron status in neonates and identifies neonates with iron deficient erythropoiesis.

  8. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  9. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones.

    PubMed

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-03-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as 'S limitation' and 'early S deficiency'. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5'-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at 'early S deficiency', expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at 'early S deficiency' only. Thus, S depletion affects S and plant hormone metabolism of poplar during 'S limitation' and 'early S deficiency' in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp.

  11. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  12. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 ls similar to that of the luteinizing hormone receptor gene

    SciTech Connect

    Rousseau-Merck, M.F.; Berger, R.; Atger, M.; Loosfelt, H.; Milgrom, E. )

    1993-01-01

    Two cDNA probes (5[prime]and 3[prime]region) corresponding to the human follicle-stimulating hormone receptor gene (FSHR) were used for chromosomal localization by in situ hybridization. The localization obtained on chromosome 2p21-p16 is similar to that of the luteinizing hormone/choriogonadotropin (LH/CG) receptor gene. 24 refs. 1 fig., 1 tab.

  13. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain.

  14. Adiponectin regulate growth hormone secretion via adiponectin receptor mediated Ca(2+) signalling in rat somatotrophs in vitro.

    PubMed

    Steyn, F J; Boehme, F; Vargas, E; Wang, K; Parkington, H C; Rao, J R; Chen, C

    2009-08-01

    Obesity is associated with reduced levels of growth hormone (GH) and the disruption of pulsatile GH secretion. This results in relative GH deficiency. It is likely that a regulatory relationship between GH secretion and adipose tissue exists as the secretion of GH recovers to normal levels after a reduction in body weight. This report characterise the expression and interaction of adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) and adiponectin, respectively, in regulating the activity of GH secreting cells. Polymerase chain reaction analysis of the GH3 cell line, rat anterior pituitary gland and isolated somatotroph cells from transgenic GFP expressing mice confirmed the expression of both AdipoR1 and AdipoR2 in GH secretory cells. Because GH cells expressed both receptors, it is likely that the measured increase in GH secretion, observed in primary cultured rat pituitary cells after 30 min of incubation with full-length murine adiponectin, was mediated by a direct receptor regulated process. Adiponectin induced an increase in intracellular Ca(2+) through both the influx of extracellular Ca(2+) and the release of intracellular Ca(2+) stores resulting in the secretion of GH. Furthermore, results confirm that this increase in GH secretion depended mainly on an increase in Ca(2+) influx through L-type Ca(2+) channels. It is concluded that adiponectin directly regulates GH secretion from somatotrophs by binding to either adiponectin receptor, and that this is mediated via a similar process observed after the stimulation of GH secretion by GH-releasing hormone.

  15. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    SciTech Connect

    Schvartz, I.; Hazum, E.

    1987-12-15

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, (azidobenzoyl-D-Lys6)GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.

  16. Identification of thyroid hormone response elements in vivo using mice expressing a tagged thyroid hormone receptor α1

    PubMed Central

    Dudazy-Gralla, Susi; Nordström, Kristina; Hofmann, Peter Josef; Meseh, Dina Abdul; Schomburg, Lutz; Vennström, Björn; Mittag, Jens

    2013-01-01

    TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1–GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA–TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor–DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1–GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo. PMID:23398480

  17. Short-term therapy with recombinant growth hormone in polytransfused thalassaemia major patients with growth deficiency.

    PubMed

    Cavallo, L; Gurrado, R; Zecchino, C; Manolo, F; De Sanctis, V; Cisternino, M; Caruso-Nicoletti, M; Galati, M

    1998-01-01

    Growth failure is commonly described in polytransfused thalassaemia major patients (Th) with or without growth hormone (GH) releasing hormone-GH axis impairment. We have investigated the efficacy of short-term recombinant GH (rhGH) therapy (Saizen [Serono] 0.1 IU/kg/day 6 evenings/week administered s.c. for 12 months) on growth and predicted final height in 28 (19M, 9F) regularly transfused Th with growth deficiency (aged 14.8 +/- 2.0 yr) on long term desferrioxamine s.c. therapy. All Th had no evidence of congestive heart failure, hypothyroidism or impaired glucose tolerance; in all patients the GH peak (evaluated during both insulin and clonidine test) was < or = 20 mIU/l; hypergonadotropic hypogonadism was excluded in Th with delayed puberty. At the start of therapy height age (HA)/bone age (BA) ratio was 0.92 +/- 0.12. Bone age delay was positively correlated to chronological age (CA), serum ferritin levels (mean of the last three years), the age at the start of chelation therapy, growth velocity calculated for CA during the last year; a positive correlation was also found between circulating IGF-I levels and age at the start of chelation therapy. After 1 year on rhGH therapy there was a significant increase of height calculated for CA (not for BA), of growth velocity calculated for both CA and BA and of circulating IGF-I levels; the HA variation/BA variation ratio was 1.85 +/- 1.71, without any significant difference between predicted final height at the start (-1.08 +/- 1.28 SDS) and at the end of rhGH therapy (-0.88 +/- 1.13). The variation of height calculated for CA was positively correlated to both CA and growth velocity during the last year before rhGH therapy (calculated for CA) and negatively to the height at the start (calculated for CA). There were no side effects and haematological parameters did not show significant changes. In conclusion, our data, obtained in a relatively large group of Th, confirm the emerging results of short-term (12 months

  18. Evaluation of steroid hormones and their receptors in development and progression of renal cell carcinoma

    PubMed Central

    Bennett, Nigel C; Rajandram, Retnagowri; Ng, Keng Lim

    2014-01-01

    Steroid hormones and their receptors have important roles in normal kidney biology, and alterations in their expression and function help explain the differences in development of kidney diseases, such as nephrotic syndrome and chronic kidney disease. The distinct gender difference in incidence of renal cell carcinoma (RCC), with males having almost twice the incidence as females globally, also suggests a role for sex hormones or their receptors in RCC development and progression. There was a peak in interest in evaluating the roles of androgen and estrogen receptors in RCC pathogenesis in the late 20th century, with some positive outcomes for RCC therapy that targeted estrogen receptors, especially for metastatic disease. Since that time, however, there have been few studies that look at use of steroid hormone modulators for RCC, especially in the light of new therapies such as the tyrosine kinase inhibitors and new immune therapies, which are having some success for treatment of metastatic RCC. This review summarises past and current literature and attempts to stimulate renewed interest in research into the steroid hormones and their receptors, which might be used to effect, for example, in combination with the other newer targeted therapies for RCC. PMID:28326246

  19. Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans

    PubMed Central

    Lindemans, Marleen; Liu, Feng; Janssen, Tom; Husson, Steven J.; Mertens, Inge; Gäde, Gerd; Schoofs, Liliane

    2009-01-01

    In mammals, hypothalamic gonadotropin-releasing hormone (GnRH) is a neuropeptide that stimulates the release of gonadotropins from the anterior pituitary. The existence of a putative functional equivalent of this reproduction axis in protostomian invertebrates has been a matter of debate. In this study, the ligand for the GnRH receptor in the nematode Caenorhabditis elegans (Ce-GnRHR) was found using a bioinformatics approach. The peptide and its precursor are reminiscent of both insect adipokinetic hormones and GnRH-preprohormone precursors from tunicates and higher vertebrates. We cloned the AKH-GnRH-like preprohormone and the Ce-GnRHR and expressed the GPCR in HEK293T cells. The GnRHR was activated by the C. elegans AKH-GnRH-like peptide (EC50 = 150 nM) and by Drosophila AKH and other nematode AKH-GnRHs that we found in EST databases. Analogous to both insect AKH receptor and vertebrate GnRH receptor signaling, Ce-AKH-GnRH activated its receptor through a Gαq protein with Ca2+ as a second messenger. Gene silencing of Ce-GnRHR, Ce-AKH-GnRH, or both resulted in a delay in the egg-laying process, comparable to a delay in puberty in mammals lacking a normal dose of GnRH peptide or with a mutated GnRH precursor or receptor gene. The present data support the view that the AKH-GnRH signaling system probably arose very early in metazoan evolution and that its role in reproduction might have been developed before the divergence of protostomians and deuterostomians. PMID:19164555

  20. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  1. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    PubMed

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  2. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    PubMed Central

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols. PMID:22984285

  3. Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective.

    PubMed

    Dores, Robert M

    2009-04-01

    In 1977 Dr. Robert Schwyzer wrote the review ACTH: A Short Introductory Review, which provided a reference point for current structure/function studies on the interactions between adrenocorticotropic hormone and alpha-melanocyte-stimulating hormone and the melanocortin receptors. This mini review will evaluate how the predictions made in the 1977 review have held up and also propose a mechanism to explain the ligand selectivity properties of the melanocortin receptors.

  4. Effect of long-term GH replacement therapy on cardiovascular outcomes in isolated GH deficiency compared with multiple pituitary hormone deficiencies: a sub-analysis from the Dutch National Registry of Growth Hormone Treatment in Adults.

    PubMed

    van Bunderen, Christa C; van den Dries, Carline J; Heymans, Martijn W; Franken, Anton A M; Koppeschaar, Hans P F; van der Lely, Aart J; Drent, Madeleine L

    2014-08-01

    Isolated GH deficiency (IGHD) could provide a model to investigate the influence of GH deficiency per se and the effect of GH replacement therapy without the influence from other pituitary hormone deficiencies or their treatment. The aim of this study is to address the questions about differences between IGHD and multiple pituitary hormone deficiencies (MPHDs) in clinical presentation and in responsiveness to GH treatment. A nationwide surveillance study was carried out to describe the difference in the clinical presentation and responsiveness to GH treatment of patients with IGHD and MPHDs. The Dutch National Registry of GH Treatment in Adults was founded in 1998 to gain more insight into long-term efficacy and safety of GH therapy. Out of 2891 enrolled patients, 266 patients with IGHD at the start of GH treatment were identified and compared with 310 patients with MPHDs. Cardiovascular indices will be investigated at baseline and during long-term follow-up, including body composition, lipid profile, glucose metabolism, blood pressure, and morbidity. Patients with IGHD and MPHDs were demonstrated to be different entities at clinical presentation. Metabolically, patients with MPHDs had a larger waist circumference, lower HDL cholesterol level, and higher triglyceride level. The effect of GH treatment was comparable between patient groups. GH seems to protect against rising lipid levels and blood pressure, even after excluding patients using corresponding concomitant medication. The risk for cardiovascular disease or diabetes mellitus during follow-up was not different between patients with IGHD and MPHDs. Patients with IGHD had a less impaired metabolic profile than patients with MPHDs at baseline. Influence of other pituitary hormone replacement therapies on the effect of GH treatment is not demonstrated. © 2014 European Society of Endocrinology.

  5. Diagnosis of growth hormone deficiency is affected by calibrators used in GH immunoassays.

    PubMed

    Meazza, C; Albertini, R; Pagani, S; Sessa, N; Laarej, K; Falcone, R; Bozzola, E; Calcaterra, V; Bozzola, M

    2012-11-01

    Growth hormone (GH) values vary among immunoassays depending on different factors, such as the assay method used, specificity of antibodies, matrix difference between standards and samples, and interference with endogenous GH binding proteins (GHBPs). We evaluated whether the use of different calibrators for GH measurement may affect GH values and, consequently, the formulation of GH deficiency (GHD) diagnosis in children. Twenty-three short children (5 F, 18 M; age 11.4±3.1 years), with the clinical characteristics of GHD (height:  -2.3±0.5 SDS; height velocity  -2.3±1.5 SDS; IGF-I  -1.2±0.9 SDS), underwent GH stimulation tests to confirm the clinical diagnosis of GHD. Serum GH values were measured with Immulite 2000, using 2 different calibrators, IS 98/574, a recombinant 22 kDa molecule of more than 95% purity, and IS 80/505, of pituitary origin and resembling a variety of GH isoforms. We found blunted GH secretion in 20 subjects with the Immulite assay using the IS 98/574 GH as a calibrator, confirming the diagnosis of GHD. Subsequently, using IS 80/505 GH as a calibrator, in the same samples only 14 children showed reduced GH levels. The total cost for the first year of GH therapy of patients diagnosed with IS 98/574 as a calibrator was higher than that for patients diagnosed with IS 80/505 as a calibrator. These data confirm that GH values may depend on different calibrators used in the GH assay, affecting the formulation of GHD diagnosis and the consequent decision to start GH treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Vitamin D deficiency in Korean children: prevalence, risk factors, and the relationship with parathyroid hormone levels

    PubMed Central

    Chung, In Hyuk; Kim, Hae Jung; Chung, Sochung

    2014-01-01

    Purpose This study was performed to investigate the relationship between serum vitamin D and parathyroid hormone (PTH) levels as well as to describe the prevalence and the risk factors of vitamin D deficiency (VDD) in Korean children. Methods Participants were 1,212 children aged 4 to 15 years, who visited Bundang CHA Medical Center (located at 37°N) between March 2012 and February 2013. Overweight was defined as body mass index≥85th percentile. Participants were divided into 4 age groups and 2 seasonal groups. VDD was defined by serum 25-hydroxyvitamin D (25OHD) <20 ng/mL. Results The level of 25OHD was significantly lower in overweight group than in normal weight group (17.1±5.1 ng/mL vs. 19.1±6.1 ng/mL, P<0.001). Winter-spring season (odds ratio [OR], 4.46; 95% confidence interval [CI], 3.45-5.77), older age group (OR, 1.60; 95% CI, 1.36-1.88), and overweight (OR, 2.21; 95% CI, 1.62-3.01) were independently related with VDD. The PTH levels were significantly higher in VDD group compared to vitamin D insufficiency and sufficiency group (P<0.001). In normal weight children, 25OHD (β=-0.007, P<0.001) and ionized calcium (β=-0.594, P=0.007) were independently related with PTH, however, these associations were not significant in overweight children. Conclusion VDD is very common in Korean children and its prevalence increases in winter-spring season, in overweight children and in older age groups. Further investigation on the vitamin D and PTH metabolism according to adiposity is required. PMID:25077091

  7. Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig.

    PubMed

    Wallock-Montelius, Lynn M; Villanueva, Jesus A; Chapin, Robert E; Conley, A J; Nguyen, Hung P; Ames, Bruce N; Halsted, Charles H

    2007-03-01

    Although alcoholism causes changes in hepatic folate metabolism that are aggravated by folate deficiency, male reproductive effects have never been studied. We evaluated changes in folate metabolism in the male reproductive system following chronic ethanol consumption and folate deficiency. Twenty-four juvenile micropigs received folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE or FDE) for 14 wk, and the differences between the groups were determined by ANOVA. Chronic ethanol consumption (FSE and FDE compared with FS and FD groups) reduced testis and epididymis weights, testis sperm concentrations, and total sperm counts and circulating FSH levels. Folate deficiency (FD and FDE compared with FS and FSE groups) reduced circulating testosterone, estradiol and LH levels, and also testicular 17,20-lyase and aromatase activities. There was histological evidence of testicular lesions and incomplete progression of spermatogenesis in all treated groups relative to the FS control, with the FDE group being the most affected. Chronic ethanol consumption increased testis folate concentrations and decreased testis methionine synthase activity, whereas folate deficiency reduced total testis folate levels and increased methionine synthase activity. In all pigs combined, testicular methionine synthase activity was negatively associated with circulating estradiol, LH and FSH, and 17,20-lyase activity after controlling for ethanol, folate deficiency, and their interaction. Thus, while chronic ethanol consumption primarily impairs spermatogenesis, folate deficiency reduces sex hormones, and the two treatments have opposite effects on testicular folate metabolism. Furthermore, methionine synthase may influence the hormonal regulation of spermatogenesis.

  8. Long-Term Follow-up of a Case with Proprotein Convertase 1/3 Deficiency: Transient Diabetes Mellitus with Intervening Diabetic Ketoacidosis During Growth Hormone Therapy.

    PubMed

    Tuli, Gerdi; Tessaris, Daniele; Einaudi, Silvia; De Sanctis, Luisa; Matarazzo, Patrizia

    2017-09-01

    Proprotein convertase 1/3 (PC1/3) deficiency is a very rare disease characterized by severe intractable diarrhea in the first years of life, followed by obesity and several hormonal deficiencies later. Diabetes mellitus requiring insulin treatment and diabetic ketoacidosis have not been reported in this disorder. We herein present a girl with PC1/3 deficiency who has been followed from birth to 17 years of age. She developed deficiencies of all pituitary hormones over time as well as diabetes mellitus while receiving growth hormone (GH) therapy. She was complicated with diabetic ketoacidosis during dietary management of diabetes mellitus, thus insulin treatment was initiated. Insulin requirement to regulate hyperglycemia was short-lived. Repeat oral glucose tolerance test five years later was normal. The findings of this patient show that diabetes mellitus can develop at any time during follow-up of cases with proportein convertase 1/3 deficiency especially under GH therapy.

  9. Association of Hormone Receptor Expression with Survival in Ovarian Endometrioid Carcinoma: Biological Validation and Clinical Implications

    PubMed Central

    Rambau, Peter; Kelemen, Linda E.; Steed, Helen; Quan, May Lynn; Ghatage, Prafull; Köbel, Martin

    2017-01-01

    This paper aims to validate whether hormone receptor expression is associated with longer survival among women diagnosed with ovarian endometrioid carcinoma (EC), and whether it identifies patients with stage IC/II tumors with excellent outcome that could be spared from toxic chemotherapy. Expression of estrogen receptor (ER) and progesterone receptor (PR) was assessed on 182 EC samples represented on tissue microarrays using the Alberta Ovarian Tumor Type (AOVT) cohort. Statistical analyses were performed to test for associations with ovarian cancer specific survival. ER or PR expression was present in 87.3% and 86.7% of cases, respectively, with co-expression present in 83.0%. Expression of each of the hormonal receptors was significantly higher in low-grade tumors and tumors with squamous differentiation. Expression of ER (Hazard Ratio (HR) = 0.18, 95% confidence interval 0.08–0.42, p = 0.0002) and of PR (HR = 0.22, 95% confidence interval 0.10–0.53, p = 0.0011) were significantly associated with longer ovarian cancer specific survival adjusted for age, grade, treatment center, stage, and residual disease. However, the five-year ovarian cancer specific survival among women with ER positive stage IC/II EC was 89.0% (standard error 3.3%) and for PR positive tumors 89.9% (standard error 3.2%), robustly below the 95% threshold where adjuvant therapy could be avoided. We validated the association of hormone receptor expression with ovarian cancer specific survival independent of standard predictors in an independent sample set of EC. The high ER/PR co-expression frequency and the survival difference support further testing of the efficacy of hormonal therapy in hormone receptor-positive ovarian EC. The clinical utility to identify a group of women diagnosed with EC at stage IC/II that could be spared from adjuvant therapy is limited. PMID:28264438