Science.gov

Sample records for hormones growth factors

  1. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  2. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  3. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors

    PubMed Central

    Bortvedt, Sarah F.; Lund, P. Kay

    2013-01-01

    Purpose of review To summarize recent evidence that IGF1 mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent findings Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogues in short bowel syndrome and Crohn’s disease. This review highlights evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn’s disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that SOCS protein induction by GH or GLP2 in normal or inflamed intestine, may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. Summary IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed. PMID:22241077

  4. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone.

    PubMed

    Alon, Uri S

    2011-05-01

    Until a decade ago, two main hormones were recognized as directly affecting phosphate homeostasis and, with that, bone metabolism: parathyroid hormone and 1,25(OH)(2) vitamin D (calcitriol). It was only a decade ago that the third major player hormone was found, linking gut, bone, and kidney. The physiologic role of fibrinogen growth factor (FGF)23 is to maintain serum phosphate concentration within a narrow range. Secreted from osteocytes, it modulates kidney handling of phosphate reabsorption and calcitriol production. Genetic and acquired abnormalities in FGF23 structure and metabolism cause conditions of either hyper-FGF23-manifested by hypophosphatemia, low serum calcitriol, and rickets/osteomalacia-or hypo-FGF23, expressed by hyperphosphatemia, high serum calcitriol, and extra-skeletal calcifications. In patients with chronic renal failure, FGF23 levels increase as kidney functions deteriorate and are under investigation to learn if the hormone actually participates in the pathophysiology of the deranged bone and mineral metabolism typical for these patients and, if so, whether it might serve as a therapeutic target. This review addresses the physiology and pathophysiology of FGF23 and its clinical applications.

  5. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  6. Cancer vaccines for hormone/growth factor immune deprivation: a feasible approach for cancer treatment.

    PubMed

    González, G; Lage, A

    2007-05-01

    One of the older and most validated cancer treatments is endocrine therapy. Some tumors are dependent on hormone stimulation for growth, and therefore therapeutic interventions aiming to deprive the cells of the hormone are feasible and have been successful. Tumor growth also depends in some cases on growth factors, so that the concept of hormone-dependence can be extended to growth factors deprivation. Hormone deprivation has been therapeutically achieved up to now by surgical, radiation and chemical means. However, the immune system usually can be manipulated to recognize hormones and growth factors, and in fact some autoimmune diseases exists involving autoantibodies against hormones. The idea of inducing a deprivation of hormones and growth factors by active immunizations is appealing, and initial evidence about the feasibility of this approach is starting to appear in the literature. Clinical trials have been initiated using immunization with human chorionic gonadotrophin (hCG), gastrin, luteinizing hormone releasing hormone (LHRH) / gonadotropin releasing hormone (GnRH) and epidermal growth factor (EGF). Preliminary data already show that antibody titers can be elicited, which results in a decrease in the concentration of a given hormone or growth factor. Both the antibody titers and the decrease in the hormone level are related to survival. This immunological approach for hormone and growth factor deprivation creates the possibility of chronic management of advanced cancer patients.

  7. Growth Hormone

    MedlinePlus

    ... to help diagnose and monitor the treatment of acromegaly and gigantism . Growth hormone is essential for normal ... signs and symptoms of GH excess ( gigantism and acromegaly ). Suppression testing may be done when a pituitary ...

  8. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  9. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin.

  10. Hormones, vitamins, and growth factors in cancer treatment and prevention. A critical appraisal.

    PubMed

    Lupulescu, A P

    1996-12-01

    Hormones, hormone agonists, hormone antagonists, vitamins and their synthetic analogues, and growth factors are currently the most widely used anticancer drugs. Although in many cases they provide dramatic results, in other cases their effects are conflicting. A critical appraisal of the effects of these drugs is needed. To evaluate the potential therapeutic and preventive roles of these drugs as well as their areas of controversy, data published in the literature in the last two decades are reviewed in this article, and the author's personal findings are also reviewed. Hormones, hormone agonists, hormone antagonists, vitamins and their synthetic analogues, growth factors, and cytokines are replacing conventional cancer therapies (chemotherapy, surgical therapy, and radiation therapy) for many purposes, and recently became the "fourth arm" of cancer treatment. However, their mechanisms of action have not yet been elucidated. This article critically reviews the mechanisms of their action on cancer cells (specifically, DNA, RNA, oncogenes, and antioncogenes); their role in cancer cell division, cell cycle, apoptosis, and angiogenesis; and their relation to human cancers. Since hormones, vitamins, growth factors (GFs), and GF receptors play a cardinal role in multistage carcinogenesis, using monoclonal antibodies to develop novel hormone antagonists, vitamin synthetic analogues, and GF inhibitors will be of paramount significance for neoadjuvant systemic therapy and cancer prevention. It is hoped that the data presented in this review regarding the role of hormones, hormone agonists, hormone antagonists, vitamins, growth factors, and growth factor inhibitors will provide a rationale for designing effective new cancer chemoprevention strategies and clinical trials.

  11. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  12. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  13. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  14. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    PubMed

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (p<0.05). Growth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (p<0.05) by osteocalcin-induced MA-10 cells. Osteocalcin injection also promoted hepatic expression of growth hormone receptor and insulin-like growth factor-1 (p<0.05), as demonstrated by real-time polymerase chain reaction and Western blotting. Similarly, osteocalcin-induced MA-10 cells promoted growth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities.

  15. The Role of Growth Hormone and Insulin-Like Growth Factor 1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1998-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1(IGF-1) in the development of an...progression of tumor growth in the animal model. In addition, growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  16. The Role of Growth Hormone and Insulin-Like Growth Factor-1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1999-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1 (IGF- 1) in the development of...the progression of tumor growth in the animal model. In addition growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  17. Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies.

    PubMed

    Sonntag, William E; Csiszar, Anna; deCabo, Raphael; Ferrucci, Luigi; Ungvari, Zoltan

    2012-06-01

    Because the initial reports demonstrating that circulating growth hormone and insulin-like growth factor-1 decrease with age in laboratory animals and humans, there have been numerous studies related to the importance of these hormones for healthy aging. Nevertheless, the role of these potent anabolic hormones in the genesis of the aging phenotype remains controversial. In this chapter, we review the studies demonstrating the beneficial and deleterious effects of growth hormone and insulin-like growth factor-1 deficiency and explore their effects on specific tissues and pathology as well as their potentially unique effects early during development. Based on this review, we conclude that the perceived contradictory roles of growth hormone and insulin-like growth factor-1 in the genesis of the aging phenotype should not be interpreted as a controversy on whether growth hormone or insulin-like growth factor-1 increases or decreases life span but rather as an opportunity to explore the complex roles of these hormones during specific stages of the life span.

  18. Diverse Roles of Growth Hormone and Insulin-Like Growth Factor-1 in Mammalian Aging: Progress and Controversies

    PubMed Central

    Csiszar, Anna; de Cabo, Raphael; Ferrucci, Luigi; Ungvari, Zoltan

    2012-01-01

    Because the initial reports demonstrating that circulating growth hormone and insulin-like growth factor-1 decrease with age in laboratory animals and humans, there have been numerous studies related to the importance of these hormones for healthy aging. Nevertheless, the role of these potent anabolic hormones in the genesis of the aging phenotype remains controversial. In this chapter, we review the studies demonstrating the beneficial and deleterious effects of growth hormone and insulin-like growth factor-1 deficiency and explore their effects on specific tissues and pathology as well as their potentially unique effects early during development. Based on this review, we conclude that the perceived contradictory roles of growth hormone and insulin-like growth factor-1 in the genesis of the aging phenotype should not be interpreted as a controversy on whether growth hormone or insulin-like growth factor-1 increases or decreases life span but rather as an opportunity to explore the complex roles of these hormones during specific stages of the life span. PMID:22522510

  19. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  20. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk.

    PubMed

    Clayton, Peter E; Banerjee, Indraneel; Murray, Philip G; Renehan, Andrew G

    2011-01-01

    Growth hormone (GH), insulin-like growth factor (IGF)-I and insulin have potent growth-promoting and anabolic actions. Their potential involvement in tumor promotion and progression has been of concern for several decades. The evidence that GH, IGF-I and insulin can promote and contribute to cancer progression comes from various sources, including transgenic and knockout mouse models and animal and human cell lines derived from cancers. Assessments of the GH-IGF axis in healthy individuals followed up to assess cancer incidence provide direct evidence of this risk; raised IGF-I levels in blood are associated with a slightly increased risk of some cancers. Studies of human diseases characterized by excess growth factor secretion or treated with growth factors have produced reassuring data, with no notable increases in de novo cancers in children treated with GH. Although follow-up for the vast majority of these children does not yet extend beyond young adulthood, a slight increase in cancers in those with long-standing excess GH secretion (as seen in patients with acromegaly) and no overall increase in cancer with insulin treatment, have been observed. Nevertheless, long-term surveillance for cancer incidence in all populations exposed to increased levels of GH is vitally important.

  1. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies.

  2. Growth hormone deficiency - children

    MedlinePlus

    Growth hormone deficiency means the pituitary gland does not make enough growth hormone. ... The pituitary gland is located at the base of the brain. This gland controls the body's balance of hormones. It ...

  3. Basic fibroblast growth factor priming increases the responsiveness of immortalized hypothalamic luteinizing hormone releasing hormone neurones to neurotrophic factors.

    PubMed

    Gallo, F; Morale, M C; Tirolo, C; Testa, N; Farinella, Z; Avola, R; Beaudet, A; Marchetti, B

    2000-10-01

    The participation of growth factors (GFs) in the regulation of luteinizing hormone releasing hormone (LHRH) neuronal function has recently been proposed, but little is known about the role played by GFs during early LHRH neurone differentiation. In the present study, we have used combined biochemical and morphological approaches to study the ability of a number of GFs normally expressed during brain development, including basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) to induce survival, differentiation, proliferation, and phenotypic expression of immortalized (GT1-1) LHRH neurones in vitro, at early (3-days in vitro, 3-DIV) and late (8-DIV) stages of neuronal differentiation. Comparison of GF-treated vs untreated neurones grown in serum-deprived (SD) medium demonstrated bFGF to be the most potent, and insulin the least active in promoting neuronal differentiation. Thus, at both 3-DIV and 8-DIV, but especially at 8-DIV, bFGF induced the greatest increase in the total length and number of LHRH processes/cell and in growth cone surface area. bFGF was also the most active at 3-DIV, and IGF-I at 8-DIV, in counteracting SD-induced cell death, whereas EGF was the most potent in increasing [3H]thymidine incorporation. All GFs studied decreased the spontaneous release of LHRH from GT1-1 cells when applied at 3-DIV or 8-DIV, except for insulin which was inactive at both time-points and bFGF which was inactive at 8-DIV. Pre-treatment of GT1-1 cells with a suboptimal ('priming') dose of bFGF for 12 h followed by application of the different GFs induced a sharp potentiation of the neurotrophic and proliferative effects of the latter and particularly of those of IGF-I. Moreover, bFGF priming counteracted EGF-induced decrease in LHRH release and significantly stimulated LHRH secretion following IGF-I or insulin application, suggesting that bFGF may sensitize LHRH neurones to differentiating effects of

  4. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  5. Growth hormone, insulin-like growth factor-1 and the aging brain.

    PubMed

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan.

  6. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity

    PubMed Central

    Lewitt, Moira S

    2017-01-01

    There is substantial evidence that the growth hormone (GH)/insulin-like growth factor (IGF) system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research. PMID:28469442

  7. William H. Daughaday and the foundations of modern research into growth hormone and the insulin-like growth factors.

    PubMed

    Rotwein, Peter

    2013-01-01

    This vignette summarizes some of the scientific accomplishments of Dr. William H. Daughaday, a founder of modern research into the biological effects of growth hormone and the insulin-like growth factors, and formulator of the somatomedin hypothesis of GH actions on growth.

  8. Epidermal growth factor receptor (EGFR) involvement in successful growth hormone (GH) signaling in GH transduction defect.

    PubMed

    Kostopoulou, Eirini; Rojas-Gil, Andrea Paola; Karvela, Alexia; Spiliotis, Bessie E

    2017-02-01

    Growth hormone (GH) transduction defect (GHTD) is a growth disorder with impaired signal transducer and activator of transcription 3 (STAT3) phosphorylation mediated by overexpression of cytokine-inducible SH2-containing protein (CIS), which causes increased growth hormone receptor (GHR) degradation. This study investigated the role of epidermal growth factor (EGF) in the restoration of normal GH signaling in GHTD. Protein expression, cellular localization and physical contact of proteins of the GH and EGF signaling pathways were studied by Western immunoblotting, immunofluorescence and co-immunoprecipitation, respectively. These were performed in fibroblasts of one GHTD patient (P) and one control child (C) at the basal state and after induction with human GH (hGH) 200 μg/L (GH200), either with or without silencing of CIS mRNA, and after induction with hGH 1000 μg/L (GH1000) or 50 ng/mL EGF. The membrane availability of the EGF receptor (EGFR) and the activated EGFR (pEGFR) was increased in P only after simultaneous GH200 and silencing of CIS mRNA or with GH1000, whereas this occurred in C after GH200 alone. After EGF induction, the membrane localization of GHR, STAT3 and that of EGFR were increased in P more than in C. In conclusion, in GHTD, the EGFR seems to participate in successful GH signaling, but induction of GHTD fibroblasts with a higher dose of hGH is needed. The EGF/EGFR pathway, in contrast to the GH/GHR pathway, seems to function normally in P and is more primed compared to C. The involvement of the EGFR in successful GH signaling may explain the catch-up growth seen in the Ps when exogenous hGH is administered.

  9. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia.

    PubMed

    Wang, Zongwei; Olumi, Aria F

    2011-01-01

    Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH.

  10. Thyroid hormone modulation of the hypothalamic growth hormone (GH)-releasing factor-pituitary GH axis in the rat.

    PubMed Central

    Miki, N; Ono, M; Hizuka, N; Aoki, T; Demura, H

    1992-01-01

    Both thyroid hormone and hypothalamic growth hormone (GH)-releasing factor (GRF) facilitate pituitary somatotroph function. However, the pathophysiological role of thyroid hormone in GRF secretion is less well understood. Thyrotoxicosis, induced by administration of thyroxine (T4) in rats, inhibited both pituitary GH levels and immunoreactive GRF secretion from incubated hypothalamus. At the highest dose of T4 given for 12 d, GRF secretion and pituitary GH decreased by 50 and 39%, respectively. Hypothyroidism induced by thyroidectomy (Tx) enhanced GRF secretion approximately twofold while depleting pituitary GH by greater than 99%. Both of these hypothalamic and pituitary effects were reversed by replacement of T4 but not human GH for 7 or 14 d. Human GH was as potent as T4 in restoring decreased body weight gains or serum insulin-like growth factor-1 levels in Tx rats. These results indicate that at both physiological and pathological concentrations in serum, thyroid hormone acts as an inhibitory modulator of GRF secretion, probably not involving a feedback mechanism through GH. A biphasic effect of thyroid hormone on pituitary GH levels appears to derive from the difference in primary target tissues of hyper- and hypothyroidism, the hypothalamus and the pituitary, respectively. PMID:1634603

  11. Growth hormone secretion from chicken adenohypophyseal cells in primary culture: effects of human pancreatic growth hormone-releasing factor, thyrotropin-releasing hormone, and somatostatin on growth hormone release.

    PubMed

    Perez, F M; Malamed, S; Scanes, C G

    1987-03-01

    A primary culture of chicken adenohypophyseal cells has been developed to study the regulation of growth hormone (GH) secretion. Following collagenase dispersion, cells were exposed for 2 hr to vehicle (control) or test agents. Human pancreatic (tumor) growth hormone-releasing factor (hpGRF) and rat hypothalamic growth hormone-releasing factor stimulated GH release to similar levels. GH release was increased by the presence of dibutyryl cyclic AMP. Thyrotropin-releasing hormone (TRH) alone did not influence GH release; however, TRH plus hpGRF together exerted a synergistic (greater than additive) effect, increasing GH release by 100 to 300% over the sum of the values for each secretagogue acting alone. These relationships between TRH and hpGRF were further examined in cultured cells exposed to secretagogues for two consecutive 2-hr incubations. TRH pretreatment enhanced subsequent hpGRF-stimulated GH release by about 80% over that obtained if no secretagogue was present during the first incubation. In other experiments, somatostatin (SRIF) alone did not alter GH secretion. However, SRIF reduced hpGRF-stimulated GH release to levels found in controls. Furthermore, GH release stimulated by the presence of both TRH and hpGRF was lowered to control values by SRIF. The results of these studies demonstrate that a primary culture of chicken adenohypophyseal cells is a useful model for the study of GH secretion. Indeed, these results suggest that TRH and hpGRF regulate GH secretion by mechanisms which are not identical.

  12. Galactopoiesis/Effects of hormones and growth factors

    USDA-ARS?s Scientific Manuscript database

    The term galactopoiesis was originally coined to describe the enhancement of an established lactation. In this sense, only exogenous somatotropin and thyroid hormones are clearly demonstrated galactopoietic agents in dairy animals. However, in a more inclusive sense, galactopoiesis has been used t...

  13. Growth hormone and insulin-like growth factor 1 affect the severity of Graves' disease.

    PubMed

    Di Cerbo, Alfredo; Pezzuto, Federica; Di Cerbo, Alessandro

    2017-01-01

    Graves' disease, the most common form of hyperthyroidism in iodine-replete countries, is associated with the presence of immunoglobulins G (IgGs) that are responsible for thyroid growth and hyperfunction. In this article, we report the unusual case of a patient with acromegaly and a severe form of Graves' disease. Here, we address the issue concerning the role of growth hormone (GH) and insulin-like growth factor 1 (IGF1) in influencing thyroid function. Severity of Graves' disease is exacerbated by coexistent acromegaly and both activity indexes and symptoms and signs of Graves' disease improve after the surgical remission of acromegaly. We also discuss by which signaling pathways GH and IGF1 may play an integrating role in regulating the function of the immune system in Graves' disease and synergize the stimulatory activity of Graves' IgGs. Clinical observations have demonstrated an increased prevalence of euthyroid and hyperthyroid goiters in patients with acromegaly.The coexistence of acromegaly and Graves' disease is a very unusual event, the prevalence being <1%.Previous in vitro studies have showed that IGF1 synergizes the TSH-induced thyroid cell growth-activating pathways independent of TSH/cAMP/PKA cascade.We report the first case of a severe form of Graves' disease associated with acromegaly and show that surgical remission of acromegaly leads to a better control of symptoms of Graves' disease.

  14. Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance.

    PubMed

    Hetzl, A C; Montico, F; Lorencini, R M; Kido, L A; Cândido, E M; Cagnon, V H A

    2014-05-01

    The aim was to characterize and correlate steroid hormone receptors with the FGF2, FGF7 and FGF8 reactivities in the prostatic epithelium and stroma in senile rats. Fifty male senile rats and 10 young male rats were divided into the young (YNG), the senile groups (SE), the castrated group (CAS), the estrogen-deficient group (ED), the castrated + estrogen group (CASE), and the estrogen-deficient + androgen group (EDTEST). The ventral prostate was submitted to immunohistochemical and Western blotting analyses. The results showed decreased AR and ERβ levels and increased ERα in the senile animals in relation to YNG group. Increased ERα and ERβ reactivities presenting differential localization were characterized in the CASE group compared to the CAS group. Increased FGF2 level was observed in the stroma of the CAS and ED groups in relation to the SE group and in the epithelium of the ED group in relation to the other groups. Increased and differential immunolocalization of FGF7 levels were observed in the CAS, ED and CASE groups. The FGF8 levels showed differential localization in the CAS and ED groups compared to the senile group. The intense hormone ablation was favorable to the autocrine signaling of FGF2 and FGF8. FGF7 could be activated in the androgen-independent via considering the increased FGF7 in the castrated rats. We concluded that hormone ablation in senescence was favorable to activation or/and to fibroblast signaling in the prostatic microenvironment.

  15. Measurements of growth hormone and insulin-like growth factor 1 in cats with diabetes mellitus.

    PubMed

    Reusch, C E; Kley, S; Casella, M; Nelson, R W; Mol, J; Zapf, J

    2006-02-11

    Serum concentrations of insulin-like growth factor 1 (IGF-1) and growth hormone were measured in 25 cats with untreated diabetes mellitus (11 of which were used for follow-up measurements, one to three, four to eight, nine to 12 and 13 to 16 weeks after their treatment with insulin began), 14 diabetic cats that had previously been treated with insulin, and seven diabetic cats that also had hypersomatotropism, two of which had not previously been treated with insulin; 18 healthy cats were used as controls. In the untreated diabetic cats the concentration of IGF-1 ranged from 13.0 to 433.0 ng/ml (median 170.5 ng/ml), which was significantly lower than the concentrations in the control cats (196.0 to 791.0 ng/ml, median 452.0 ng/ml). Their IGF-1 concentrations increased significantly when they were treated with insulin and after four to eight weeks were not different from those in the control cats. In the diabetic cats that had previously been treated with insulin the IGF-1 concentrations were 33.0 to 476.0 ng/ml (median 316.0 ng/ml), which was significantly lower than the concentrations in the control cats, but significantly higher than in the untreated diabetic cats. The IGF-1 concentrations in the two previously untreated diabetic cats with hypersomatotropism were low and low-normal but increased markedly after treatment with insulin. In the five previously treated cats with hypersomatotropism the concentration of IGF-1 was above the normal range. The concentrations of growth hormone in the treated and untreated diabetic cats without hypersomatotropisms were not significantly different and there was an overlap in its concentrations in the diabetic cats with and without hypersomatotropism.

  16. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  17. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  18. The use of hormonal growth factors in the treatment of patients with short-bowel syndrome.

    PubMed

    Jeppesen, Palle B

    2006-01-01

    To date, the hormonal factors used in the treatment of patients with short-bowel syndrome have been growth hormone and glucagon-like peptide (GLP)-2. In high-dose growth hormone studies, the effects on wet-weight absorption of approximately 0.7 kg/day have mainly been described in short-bowel syndrome patients with a preserved colon who also received oral rehydration solutions. Treatment with high doses of growth hormone is associated with severe adverse effects in the majority of patients. Low-dose growth hormone increased energy absorption by approximately 1.8 MJ/day in a group of 12 short-bowel syndrome patients (9 with a preserved colon), but it did not affect wet-weight absorption. Growth hormone does not seem to affect either wet-weight or energy absorption in patients with a jejunostomy. GLP-2 and the analogue teduglutide mainly affect wet-weight absorption, resulting in a mean increase in wet-weight absorption of 0.4-0.7 kg/day. The effects on energy absorption are minor at 0.4-0.8 MJ/day. However, these effects are seen in all short-bowel syndrome patients, regardless of anatomy, and the adverse effects are minor. In all studies employing growth hormone or GLP-2, the effects are transient, disappearing when treatments are discontinued. With the need for long-term treatment, adverse effects and safety issues become important. Therefore, it is recommended that treatment is initiated in research settings only and that close monitoring of the long-term effects is a part of the protocol.

  19. The haematopoietic effects of growth hormone and insulin-like growth factor-I.

    PubMed

    Merchav, S

    1998-01-01

    The process of haemopoiesis, occurring primarily within the bone marrow, involves the proliferation and differentiation of pluripotent haemopoietic stem cells into committed, or pathway-restricted progenitors /1/. The latter further proliferate and undergo a process of maturation into circulating blood cells of myeloid and erythroid lineages /2/. Haemopoietic cell growth and differentiation is primarily regulated by the local production of various cytokines within the bone marrow micro-environment /3/, as well as by the circulating hormone, erythropoietin (EPO). The formation as well as functional activation of mature blood cells, are also modulated by a variety of hormones and growth peptides, including growth hormone (GH) and insulin-like growth factor-I (IGF-I) /4,5/. Early evidence for the role of GH in modulating haemopoiesis was provided in classical studies in rodents, which showed that removal of the pituitary gland affects blood cell formation and function /6/ and that impairment of the latter can be restored by GH administration /7/. GH exerts its effects on target cells by binding to its own receptor, which belongs to the class I cytokine receptor superfamily /8/. In humans, GH can also bind to and activate the prolactin receptor /9/. Based on the somatomedin hypothesis of Salmon and Daughaday /10/, it is now generally accepted that, in addition to the above, GH exerts many of its effects via autocrine or paracrine IGF-I, as well as via endocrine IGF-I produced in the liver. IGF-I, a small single-chain polypeptide, is one of two highly homologous peptides (IGF-I and IGF-II), that stimulate the proliferation and differentiation of a wide variety of cell types, including bone marrow cells /5,11/. Both IGF-I and IGF-II play an important role in prenatal growth and IGF-I is also essential for postnatal growth and development /12/. Two types of IGF receptors have been described. The type I IGF receptor, a tyrosine kinase receptor highly homologous to the

  20. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  1. Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice.

    PubMed

    Yu, Ze-Peng; Le, Guo-Wei; Shi, Yong-Hui

    2005-04-01

    1. The current experiment was conducted to investigate the effect of zinc sulphate (ZnSO4) and zinc methionine (Zn-Met) on growth and their effect on plasma growth hormone (GH) concentration, growth hormone receptor (GHR) and insulin-like growth factor I (IGF-I) mRNA expression in mice. 2. Ninety male KunMing (KM) mice were randomly divided into three treatments. The control group was fed on a basal diet containing 11.67 mg/kg of zinc. The ZnSO4 group and Zn-Met group were fed on the diets supplemented with ZnSO4 or Zn-Met at 30 mg/kg (containing zinc of 40.05 and 40.75 mg/kg, respectively). The mice were offered the test diets for 10 days. Weight gains and food intake were measured at the end of the experiment, zinc contents in liver and serum were determined using atomic absorption spectrophotometry; GH was determined by radioimmunoassay, the levels of GHR and IGF-I mRNA were determined with reverse transcript polymerase chain reaction. 3. Both ZnSO4 and Zn-Met enhanced weight gain and food intake in the mice, Zn-Met improved the growth and food intake more effectively than ZnSO4 did (P < 0.05). The both forms of zinc had no effect on GH and the level of GHR mRNA expression (P > 0.05) and they up-regulated the expression of IGF-I mRNA (P < 0.05). As compared to ZnSO4, Zn-Met enhanced the level of IGF-I mRNA significantly (P < 0.05). 4. Both ZnSO4 and Zn-Met had no effect on plasma GH and the expression of GHR mRNA, but they enhanced the expression of IGF-I mRNA. Zinc methionine enhanced the weight gain and up-regulated IGF-I mRNA expression more effectively than ZnSO4.

  2. Epidermal growth factor and growth hormone-releasing peptide-6: combined therapeutic approach in experimental stroke.

    PubMed

    García Del Barco-Herrera, Diana; Martínez, Nelvys Subirós; Coro-Antich, Rosa María; Machado, Jorge Martín; Alba, José Suárez; Salgueiro, Sandra Rodríguez; Acosta, Jorge Berlanga

    2013-01-01

    Stroke is the second cause of mortality worldwide, with a high incidence of disability in survivors. Promising candidate drugs have failed in stroke trials. Combined therapies are attractive strategies that simultaneously target different points of stroke pathophysiology. The aim of this work is to determine whether the combined effects of epidermal growth factor (EGF) and growth hormone-releasing peptide-6 (GHRP6) can attenuate clinical signs and pathology in an experimental stroke model. Brain global ischemia was generated in Mongolian gerbils by 15 minutes of carotid occlusion. After reperfusion, EGF, GHRP6 or EGF+GHRP6 were intraperitoneally administered. Clinical manifestations were monitored daily. Three days after reperfusion, animals were anesthetized and perfused with an ink solution. The anatomy of the Circle of Willis was characterized. Infarct volume and neuronal density were analyzed. EGF+GHRP6 co-administration reduced clinical manifestations and infarct volume and preserved neuronal density. No correlation was observed between the grade of anastomosis of the Circle of Willis and clinical manifestations in the animals receiving EGF+GHRP6, as opposed to the vehicle-treated gerbils. Co-treatment with EGF and GHRP6 affects both the clinical and pathological outcomes in a global brain ischemia model, suggesting a suitable therapeutic approach for the acute management of stroke.

  3. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  4. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  5. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  6. The response of the hepatic insulin-like growth factor system to growth hormone and dexamethasone in calves.

    PubMed

    Hammon, H M; Zbinden, Y; Sauerwein, H; Breier, B H; Blum, J W; Donkin, S S

    2003-12-01

    Glucocorticoids inhibit postnatal growth and yet can stimulate the somatotropic axis around birth. The aim of the present study was to investigate the effects of dexamethasone on the somatotropic axis and on the responses of the insulin-like growth factor (IGF) system to growth hormone treatment in calves. Calves (n=24) were randomly divided into four groups. Group DX was injected with dexamethasone (30 micro g/kg body weight per day), group GH was injected with 500 mg slow-release bovine growth hormone at 14-day intervals, group GHDX was injected with dexamethasone and bovine growth hormone, and group CNTRL (serving as control) was injected with saline from day 3 to day 42 of life. Blood samples were taken on day 3 and blood and liver samples were obtained on days 7, 14, 28 and 42. Body weight increased in the CNTRL and GH groups up to the end of the study and in the DX and GHDX groups up to the fourth week. Dexamethasone treatment decreased (P<0.05) plasma IGF binding protein (IGFBP)-1 on days 7 and 14, but increased (P<0.05) plasma IGFBP-1, decreased (P<0.05) plasma IGF-I and IGFBP-3, and decreased hepatic mRNA for growth hormone receptor (GHR) and IGF-I on day 42. Growth hormone treatment increased (P<0.05) plasma growth hormone concentrations on days 7 and 14, tended to increase (P<0.1) plasma IGF-I concentrations on day 42, and increased (P<0.05) hepatic mRNA levels of GHR on day 14 and IGF-I mRNA levels on days 7 and 14. The combined dexamethasone and growth hormone treatment increased plasma growth hormone concentrations on day 7 and resulted in the highest plasma concentrations of IGF-I and IGFBP-3 (day 7 to day 28) as well as the greatest abundance of hepatic GHR (day 14) and IGF-I (days 7 and 14) mRNA. Plasma IGFBP-1 concentrations in the GHDX group behaved in a similar manner as in the DX group. In conclusion, the response of the somatotropic axis to growth hormone treatment could be greatly enhanced by dexamethasone treatment during the neonatal and

  7. Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions.

    PubMed

    Melcangi, Roberto C; Martini, Luciano; Galbiati, Mariarita

    2002-08-01

    The mechanisms through which LHRH-secreting neurons are controlled still represent a crucial and debated field of research in the neuroendocrine control of reproduction. In the present review, we have specifically considered two potential signals reaching these hypothalamic neurons: steroid hormones and growth factors. Examples of the relevant physiological role of the interactions between these two families of biologically acting molecules have been provided. In many cases, these interactions occur at the level of hypothalamic astrocytes, which are presently accepted as functional partners of the LHRH-secreting neurons. On the basis of the observations here summarized, we have formulated the hypothesis that a functional co-operation of steroid hormones and growth factors occurring in the hypothalamic astrocytic compartment represents a key factor in the neuroendocrine control of reproductive functions.

  8. Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH).

    PubMed

    González, Lorena; Miquet, Johanna G; Irene, Pablo E; Díaz, M Eugenia; Rossi, Soledad P; Sotelo, Ana I; Frungieri, Mónica B; Hill, Cristal M; Bartke, Andrzej; Turyn, Daniel

    2017-05-01

    Transgenic mice overexpressing growth hormone (GH) show increased hepatic protein content of the epidermal growth factor receptor (EGFR), which is broadly associated with cell proliferation and oncogenesis. However, chronically elevated levels of GH result in desensitization of STAT-mediated EGF signal and similar response of ERK1/2 and AKT signaling to EGF compared to normal mice. To ascertain the mechanisms involved in GH attenuation of EGF signaling and the consequences on cell cycle promotion, phosphorylation of signaling mediators was studied at different time points after EGF stimulation, and induction of proteins involved in cell cycle progression was assessed in normal and GH-overexpressing transgenic mice. Results from kinetic studies confirmed the absence of STAT3 and 5 activation and comparable levels of ERK1/2 phosphorylation upon EGF stimulation, which was associated with diminished or similar induction of c-MYC, c-FOS, c-JUN, CYCLIN D1 and CYCLIN E in transgenic compared to normal mice. Accordingly, kinetics of EGF-induced c-SRC and EGFR phosphorylation at activating residues demonstrated that activation of these proteins was lower in the transgenic mice with respect to normal animals. In turn, EGFR phosphorylation at serine 1046/1047, which is implicated in the negative regulation of the receptor, was increased in the liver of GH-overexpressing transgenic mice both in basal conditions and upon EGF stimulus. Increased basal phosphorylation and activation of the p38-mitogen-activated protein kinase might account for increased Ser 1046/1047 EGFR. Hyperphosphorylation of EGFR at serine residues would represent a compensatory mechanism triggered by chronically elevated levels of GH to mitigate the proliferative response induced by EGF.

  9. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system.

    PubMed

    Fuentes, Eduardo N; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-10-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Extrapituitary growth hormone and growth?

    PubMed

    Harvey, Steve; Baudet, Marie-Laure

    2014-09-01

    While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.

  11. Hormones and growth factors in the pathogenesis of spinal ligament ossification

    PubMed Central

    Li, Hai; Jiang, Lei-Sheng

    2007-01-01

    Ossification of the spinal ligaments (OSL) is a pathologic condition that causes ectopic bone formation and subsequently results in various degrees of neurological deficit, but the etiology of OSL remains almost unknown. Some systemic hormones, such as 1,25-dihydroxyvitamin D, parathyroid hormone (PTH), insulin and leptin, and local growth factors, such as transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP), have been studied and are thought to be involved in the initiation and development of OSL. This review article summarizes these studies, delineates the possible mechanisms, and puts forward doubts and new questions. The related findings from studies of genes and target cells in the ligament of OSL are also discussed. Although these findings may be helpful in understanding the pathogenesis of OSL, much more research needs to be conducted in order to investigate the nature of OSL. PMID:17426989

  12. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  13. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    PubMed

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Muscle force and endurance in untreated and human growth hormone or insulin-like growth factor-I-treated patients with growth hormone deficiency or Laron syndrome.

    PubMed

    Brat, O; Ziv, I; Klinger, B; Avraham, M; Laron, Z

    1997-01-01

    Muscle force and endurance of four muscle groups (biceps, triceps, hamstrings and quadriceps) were measured by a computerized device in three groups: (A) 4 boys with isolated growth hormone deficiencies (IGHD) examined before at 10 and 24 months of hGH treatment; (B) 5 children (2 F, 3 M) with Laron syndrome were examined 3.5-4 years after initiation of insulin-like growth factor-I (IGF-I) treatment, and (C) comprised 8 untreated adults (5 F, 3 M) with Laron syndrome. For each patient, 2 matched controls, by age, sex, physical activity and height below the 50th percentile, were examined. GH- or IGF-I-deficient patients before treatment revealed reduced muscle force and endurance. GH treatment (0.6 U/kg/week) restored muscle force and endurance, progressively, mainly in the boys with puberty. Three to 4 years of IGF-I treatment (150 micrograms/kg/day) in patients with Laron syndrome proved to have a weaker effect than GH in restoring muscle force. The difference in effectiveness between hGH and IGF-I in restoring muscle force may be due to either the more marked muscle underdevelopment in Laron syndrome patients than in patients with IGHD or a difference in action potential between the two hormones.

  15. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs.

    PubMed

    Xu, Qingfu; Zhao, Zhihui; Ni, Yingdong; Zhao, Ruqian; Chen, Jie

    2003-04-01

    Sixteen Large White x Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d(-1)) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  16. Growth hormone/insulin-like growth factor system in children with chronic renal failure.

    PubMed

    Tönshoff, Burkhard; Kiepe, Daniela; Ciarmatori, Sonia

    2005-03-01

    Disturbances of the somatotropic hormone axis play an important pathogenic role in growth retardation and catabolism in children with chronic renal failure (CRF). The apparent discrepancy between normal or elevated growth hormone (GH) levels and diminished longitudinal growth in CRF has led to the concept of GH insensitivity, which is caused by multiple alterations in the distal components of the somatotropic hormone axis. Serum levels of IGF-I and IGF-II are normal in preterminal CRF, while in end-stage renal disease (ESRD) IGF-I levels are slightly decreased and IGF-II levels slightly increased. In view of the prevailing elevated GH levels in ESRD, these serum IGF-I levels appear inadequately low. Indeed, there is both clinical and experimental evidence for decreased hepatic production of IGF-I in CRF. This hepatic insensitivity to the action of GH may be partly the consequence of reduced GH receptor expression in liver tissue and partly a consequence of disturbed GH receptor signaling. The actions and metabolism of IGFs are modulated by specific high-affinity IGFBPs. CRF serum has an IGF-binding capacity that is increased by seven- to tenfold, leading to decreased IGF bioactivity of CRF serum despite normal total IGF levels. Serum levels of intact IGFBP-1, -2, -4, -6 and low molecular weight fragments of IGFBP-3 are elevated in CRF serum in relation to the degree of renal dysfunction, whereas serum levels of intact IGFBP-3 are normal. Levels of immunoreactive IGFBP-5 are not altered in CRF serum, but the majority of IGFBP-5 is fragmented. Decreased renal filtration and increased hepatic production of IGFBP-1 and -2 both contribute to high levels of serum IGFBP. Experimental and clinical evidence suggests that these excessive high-affinity IGFBPs in CRF serum inhibit IGF action in growth plate chondrocytes by competition with the type 1 IGF receptor for IGF binding. These data indicate that growth failure in CRF is mainly due to functional IGF deficiency

  17. Leptin alters the response of the growth hormone releasing factor- growth hormone--insulin-like growth factor-I axis to fasting.

    PubMed

    LaPaglia, N; Steiner, J; Kirsteins, L; Emanuele, M; Emanuele, N

    1998-10-01

    Proper nutritional status is critical for maintaining growth and metabolic function, playing an intimate role in neuroendocrine regulation. Leptin, the recently identified product of the obese gene, may very well be an integral signal which regulates neuroendocrine responses in times of food deprivation. The present study examines leptin's ability to regulate hormonal synthesis and secretion within the GRF-GH-IGF axis in the adult male rat during almost 3 days of fasting. Serum levels of GH and IGF-I were drastically suppressed by fasting. Daily leptin administration was able to fully prevent the fasting-induced fall in serum GH. Leptin failed to restore IGF-I to control levels, however, suggesting possible GH resistance. Fasting caused an insignificant increase in GH mRNA, while leptin injections significantly increased steady-state levels of this message. The GRF receptor (GRFr) message was not altered with fasting or leptin treatment. Leptin also exhibited effects at the hypothalamic level. Fasting induced a sharp fall in GRF mRNA expression and leptin injections partially prevented this fall. However, there were no observed changes in the hypothalamic GRF content. These results provide evidence that leptin may function as a neuromodulator of the GRF-GH-IGF axis communicating to this hormonal system the nutritional status of the animal.

  18. Growth hormone test

    MedlinePlus

    ... is called acromegaly . In children it is called gigantism . Too little growth hormone can cause a slow ... growth due to excess GH during childhood, called gigantism. (A special test is done to confirm this ...

  19. Integrating insulin-like growth factor 1 and sex hormones into neuroprotection: Implications for diabetes

    PubMed Central

    Huffman, Jacob; Hoffmann, Christina; Taylor, George T

    2017-01-01

    Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1 (IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sex-hormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinase signaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through

  20. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    PubMed

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  1. Growth factors and hormones pro-peptides: the unexpected adventures of the BDNF prodomain.

    PubMed

    Zanin, Juan Pablo; Unsain, Nicolás; Anastasia, Agustin

    2017-05-01

    Most growth factors and hormones are synthesized as pre-pro-proteins which are processed to the biologically active mature protein. The pre- and prodomains are cleaved from the precursor protein in the secretory pathway or, in some cases, extracellularly. The canonical functions of these prodomains are to assist in folding and stabilization of the mature domain, to direct intra and extracellular localization, to facilitate storage, and to regulate bioavailability of their mature counterpart. Recently, exciting evidence has revealed that prodomains of certain growth factors, after cleaved from the precursor pro-protein, can act as independent active signaling molecules. In this review, we discuss the various classical functions of prodomains, and the biological consequences of these pro-peptides acting as ligands. We will focus our attention on the brain-derived neurotrophic factor prodomain (pBDNF), which has been recently described as a novel secreted ligand influencing neuronal morphology and physiology. © 2017 International Society for Neurochemistry.

  2. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  3. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Asselin, Eric

    2011-07-01

    The prerequisite of successful implantation depends on achieving the appropriate embryo development to the blastocyst stage and at the same time the development of an endometrium that is receptive to the embryo. Implantation is a very intricate process, which is controlled by a number of complex molecules like hormones, cytokines, and growth factors and their cross talk. A network of these molecules plays a crucial role in preparing receptive endometrium and blastocyst. Furthermore, timely regulation of the expression of embryonic and maternal endometrial growth factors and cytokines plays a major role in determining the fate of embryo. Most of the existing data comes from animal studies due to ethical issues. In this study, we comprehend the data from both animal models and humans for better understanding of implantation and positive outcomes of pregnancy. The purpose of this review is to describe the potential roles of embryonic and uterine factors in implantation process such as prostaglandins, cyclooxygenases, leukemia inhibitory factor, interleukin (IL) 6, IL11, transforming growth factor-β, IGF, activins, NODAL, epidermal growth factor (EGF), and heparin binding-EGF. Understanding the function of these players will help us to address the reasons of implantation failure and infertility.

  4. Growth hormone and growth?

    PubMed

    Harvey, Steve

    2013-09-01

    Pituitary GH is obligatory for normal growth in mammals, but the importance of pituitary GH in avian growth is less certain. In birds, pituitary GH is biologically active and has growth promoting actions in the tibia-test bioassay. Its importance in normal growth is indicated by the growth suppression following the surgical removal of the pituitary gland or after the immunoneutralization of endogenous pituitary GH. The partial restoration of growth in some studies with GH-treated hypophysectomized birds also suggests GH dependency in avian growth, as does the dwarfism that occurs in some strains with GHR dysfunctions. Circulating GH concentrations are also correlated with body weight gain, being high in young, rapidly growing birds and low in slower growing older birds. Nevertheless, despite these observations, there is an extensive literature that concludes pituitary GH is not important in avian growth. This is based on numerous studies with hypophysectomized and intact birds that show only slight, transitory or absent growth responses to exogenous GH-treatment. Moreover, while circulating GH levels correlate with weight gain in young birds, this may merely reflect changes in the control of pituitary GH secretion during aging, as numerous studies involving experimental alterations in growth rate fail to show positive correlations between plasma GH concentrations and the alterations in growth rate. Furthermore, growth is known to occur in the absence of pituitary GH, as most embryonic development occurs prior to the ontogenetic appearance of pituitary somatotrophs and the appearance of GH in embryonic circulation. Early embryonic growth is also independent of the endocrine actions of pituitary GH, since removal of the presumptive pituitary gland does not impair early growth. Embryonic growth does, however, occur in the presence of extrapituitary GH, which is produced by most tissues and has autocrine or paracrine roles that locally promote growth and development

  5. Acromegalic gigantism with low serum level of growth hormone and elevated serum insulin-like growth factor-I.

    PubMed

    Miyazaki, R; Yoshida, T; Sakane, N; Yasuda, T; Umekawa, T; Kondo, M; Shimatsu, A; Hizuka, N; Sano, T

    1995-03-01

    In a case of acromegalic gigantism with hyperprolactinemia is reported, the basal serum growth hormone (GH) levels ranged from 1.2 to 1.9 ng/ml. Serum GH response to either insulin-induced hypoglycemia or GH-releasing hormone was blunted. Frequent blood sampling showed non-pulsatile GH secretion. Serum prolactin and insulin-like growth factor-I (IGF-I) levels were elevated. After unsuccessful surgery, bromocriptine treatment normalized serum prolactin without affecting serum GH and IGF-I levels. Combined administration of octreotide with bromocriptine reduced serum GH and IGF-I levels. In this case, non-pulsatile GH secretion and enhanced tissue sensitivity to GH may induce hypersecretion of IGF-I and cause clinical acromegalic gigantism.

  6. Activin inhibits binding of transcription factor Pit-1 to the growth hormone promoter.

    PubMed Central

    Struthers, R S; Gaddy-Kurten, D; Vale, W W

    1992-01-01

    Activin A is a potent growth and differentiation factor related to transforming growth factor beta. In somatotrophs, activin suppresses the biosynthesis and secretion of growth hormone (GH) and cellular proliferation. We report here that, in MtTW15 somatotrophic tumor cells, activin decreased GH mRNA levels and inhibited expression of transfected GH promoter--chloramphenicol acetyltransferase fusion genes. Deletion mapping of nucleotide sequences mediating this inhibition led to the identification of a region that has previously been characterized as binding the pituitary-specific transcription factor Pit-1/GHF-1. Characterization of nuclear factor binding to this region demonstrated that binding of Pit-1 to the GH promoter is lost on activin treatment. These results indicate that activin-induced repression of GH biosynthesis is mediated by the loss of tissue-specific transcription factor binding to the GH promoter and suggest a possible general mechanism for other activin responses, whereby activin regulates the function of other POU- or homeodomain-containing transcription factors. Images PMID:1454833

  7. Purification of a high-molecular-weight somatoliberin (growth-hormone-releasing factor) from pig hypothalami.

    PubMed Central

    Sykes, J E; Lowry, P J

    1983-01-01

    Preliminary observations [Sykes & Lowry (1980) J. Endocrinol. 85, 42P-43P] had suggested that the major hypothalamic somatoliberin (growth-hormone-releasing factor) was a larger peptide than the other characterized hypothalamic factors, with an elution position on Sephadex G-50 between those of neurophysin and corticotropin. The present paper reports the isolation and preliminary characterization of pig hypothalamic somatoliberin. Acid extracts of pig stalk median eminence were purified by gel filtration and preparative and analytical high-pressure liquid chromatography to yield a preparation that was specific in the release of somatotropin (growth hormone) in vitro, giving a steep dose--response curve at doses in the range 0.20-3.0 ng. Amino acid analysis revealed a non-cysteine-containing peptide with a high number of glutamate (or glutamine) and aspartate (or asparagine) residues. The peptide had about 56-57 amino acid residues and an apparent molecular weight of 6400, in keeping with its elution position on a column of Sephadex G-50. PMID:6409074

  8. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight (P < 0.001) and length (P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH (P < 0.01) and IGF-1 (P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain.

  9. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications.

    PubMed

    Kamenický, Peter; Mazziotti, Gherardo; Lombès, Marc; Giustina, Andrea; Chanson, Philippe

    2014-04-01

    Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.

  10. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes

    PubMed Central

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ≥16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  11. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes.

    PubMed

    Chen, Wei; Hoo, Ruby Lai-chong; Konishi, Morichika; Itoh, Nobuyuki; Lee, Pui-Chi; Ye, Hong-ying; Lam, Karen Siu-ling; Xu, Aimin

    2011-10-07

    Fibroblast growth factor (FGF) 21 and growth hormone (GH) are metabolic hormones that play important roles in regulating glucose and lipid metabolism. Both hormones are induced in response to fasting and exert their actions on adipocytes to regulate lipolysis. However, the molecular interaction between these two hormones remains unclear. Here we demonstrate the existence of a feedback loop between GH and FGF21 on the regulation of lipolysis in adipocytes. A single bolus injection of GH into C57 mice acutely increases both mRNA and protein expression of FGF21 in the liver, thereby leading to a marked elevation of serum FGF21 concentrations. Such a stimulatory effect of GH on hepatic FGF21 production is abrogated by pretreatment of mice with the lipolysis inhibitor niacin. Direct incubation of either liver explants or human HepG2 hepatocytes with GH has no effect on FGF21 expression. On the other hand, FGF21 production in HepG2 cells is significantly induced by incubation with the conditioned medium harvested from GH-treated adipose tissue explants, which contains high concentrations of free fatty acids (FFA). Further analysis shows that FFA released by GH-induced lipolysis stimulates hepatic FGF21 expression by activation of the transcription factor PPARα. In FGF21-null mice, both the magnitude and duration of GH-induced lipolysis are significantly higher than those in their wild type littermates. Taken together, these findings suggest that GH-induced hepatic FGF21 production is mediated by FFA released from adipose tissues, and elevated FGF21 in turn acts as a negative feedback signal to terminate GH-stimulated lipolysis in adipocytes.

  12. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  13. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections.

  14. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems.

    PubMed

    Edmondson, Stephanie R; Thumiger, Susan P; Werther, George A; Wraight, Christopher J

    2003-12-01

    GH and IGF-I and -II were first identified by their endocrine activity. Specifically, IGF-I was found to mediate the linear growth-promoting actions of GH. It is now evident that these two growth factor systems also exert widespread activity throughout the body and that their actions are not always interconnected. The literature highlights the importance of the GH and IGF systems in normal skin homeostasis, including dermal/epidermal cross-talk. GH activity, sometimes mediated via IGF-I, is primarily evident in the dermis, particularly affecting collagen synthesis. In contrast, IGF action is an important feature of the dermal and epidermal compartments, predominantly enhancing cell proliferation, survival, and migration. The locally expressed IGF binding proteins play significant and complex roles, primarily via modulation of IGF actions. Disturbances in GH and IGF signaling pathways are implicated in the pathophysiology of several skin perturbations, particularly those exhibiting epidermal hyperplasia (e.g., psoriasis, carcinomas). Additionally, many studies emphasize the potential use of both growth factors in the treatment of skin wounds; for example, burn patients. This overview concerns the role and mechanisms of action of the GH and IGF systems in skin and maintenance of epidermal integrity in both health and disease.

  15. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance.

    PubMed

    Tarantino, Giovanni; Savastano, Silvia; Colao, Annamaria

    2010-10-14

    Non-alcoholic fatty liver disease (NAFLD), a further expression of metabolic syndrome, strictly linked to obesity and diabetes mellitus, is characterized by insulin resistance (IR), elevated serum levels of free fatty acids and fatty infiltration of the liver, which is known as hepatic steatosis. Hepatocyte apoptosis is a key feature of this disease and correlates with its severity. Free-fatty-acid-induced toxicity represents one of mechanisms for the pathogenesis of NAFLD and hormones, growth factors and adipokines influence also play a key role. This review highlights the various pathways that contribute to the development of hepatic steatosis. Circulating concentrations of inflammatory cytokines are reckoned to be the most important factor in causing and maintaining IR. Low-grade chronic inflammation is fundamental in the progression of NAFLD toward higher risk cirrhotic states.

  16. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance

    PubMed Central

    Tarantino, Giovanni; Savastano, Silvia; Colao, Annamaria

    2010-01-01

    Non-alcoholic fatty liver disease (NAFLD), a further expression of metabolic syndrome, strictly linked to obesity and diabetes mellitus, is characterized by insulin resistance (IR), elevated serum levels of free fatty acids and fatty infiltration of the liver, which is known as hepatic steatosis. Hepatocyte apoptosis is a key feature of this disease and correlates with its severity. Free-fatty-acid-induced toxicity represents one of mechanisms for the pathogenesis of NAFLD and hormones, growth factors and adipokines influence also play a key role. This review highlights the various pathways that contribute to the development of hepatic steatosis. Circulating concentrations of inflammatory cytokines are reckoned to be the most important factor in causing and maintaining IR. Low-grade chronic inflammation is fundamental in the progression of NAFLD toward higher risk cirrhotic states. PMID:20939105

  17. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate

    PubMed Central

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-01-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin–testosterone–oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin–testosterone–oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes. PMID:21039986

  18. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate.

    PubMed

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-12-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin-testosterone-oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin-testosterone-oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes.

  19. Effects of growth factors on hormonal stimulation of amino acid transport in primary cultures of rat hepatocytes.

    PubMed Central

    Auberger, P; Samson, M; Le Cam, A

    1983-01-01

    In primary cultures of rat hepatocytes, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and foetal-calf serum (FCS) prevented the stimulation of amino acid transport by glucagon (cyclic AMP-dependent) and by catecholamines (cyclic AMP-independent), but not by insulin. The insulin effect, as well as the effect of other hormones, were totally inhibited by thrombin through a mechanism independent of its proteolytic activity. The inhibitory effect of growth factors, not found in freshly isolated hepatocytes, was expressed very early in culture (4h). Induction of tyrosine aminotransferase by glucagon or dexamethasone, which, like stimulation of transport, represents a late hormonal effect, was not affected by EGF, PDGF or FCS, but was inhibited by thrombin. In contrast, none of the rapid changes in protein phosphorylation caused by hormones was altered by growth factors. Thus the inhibition by growth factors of hormonal stimulation of transport presumably involves late step(s) in the cascade of events implicated in this hormonal effect. Images Fig. 6. PMID:6134522

  20. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  1. Thyroid Hormone Regulates Hepatic Expression of Fibroblast Growth Factor 21 in a PPARα-dependent Manner*

    PubMed Central

    Adams, Andrew C.; Astapova, Inna; Fisher, ffolliott M.; Badman, Michael K.; Kurgansky, Katherine E.; Flier, Jeffrey S.; Hollenberg, Anthony N.; Maratos-Flier, Eleftheria

    2010-01-01

    Thyroid hormone has profound and diverse effects on liver metabolism. Here we show that tri-iodothyronine (T3) treatment in mice acutely and specifically induces hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21). Mice treated with T3 showed a dose-dependent increase in hepatic FGF21 expression with significant induction at doses as low as 100 μg/kg. Time course studies determined that induction is seen as early as 4 h after treatment with a further increase in expression at 6 h after injection. As FGF21 expression is downstream of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα), we treated PPARα knock-out mice with T3 and found no increase in expression, indicating that hepatic regulation of FGF21 by T3 in liver is via a PPARα-dependent mechanism. In contrast, in white adipose tissue, FGF21 expression was suppressed by T3 treatment, with other T3 targets unaffected. In cell culture studies with an FGF21 reporter construct, we determined that three transcription factors are required for induction of FGF21 expression: thyroid hormone receptor β (TRβ), retinoid X receptor (RXR), and PPARα. These findings indicate a novel regulatory pathway whereby T3 positively regulates hepatic FGF21 expression, presenting a novel therapeutic target for diseases such as non-alcoholic fatty liver disease. PMID:20236931

  2. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  3. Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein.

    PubMed

    Eisenhauer, K M; Chun, S Y; Billig, H; Hsueh, A J

    1995-07-01

    A growing body of evidence suggests that growth hormone (GH) plays a role in regulating ovarian function by augmenting gonadotropin stimulation of granulosa cell differentiation and folliculogenesis. The majority of follicles in the mammalian ovary do not ovulate, but instead undergo a degenerative process (atresia) involving apoptotic cell death. The objective of the present study was to investigate the role of GH in regulating follicle apoptosis and to determine whether or not insulin-like growth factor-I (IGF-I) mediates GH action in this process. Preovulatory follicles obtained from eCG-primed rats were cultured for 24 h in serum-free conditions with or without hormone treatments. After culture, follicular apoptotic DNA fragmentation was analyzed by autoradiography of size-fractionated DNA labeled at 3' ends with [32P]dideoxy-ATP. Culture of preovulatory follicles resulted in a spontaneous onset of apoptotic DNA fragmentation that was suppressed by ovine GH (oGH) in a dose-dependent manner, reaching a maximum of 65% suppression. To rule out the effect of residual gonadotropin in the oGH preparation, follicles were also cultured with recombinant bovine growth hormone (rbGH). Like oGH, rbGH suppressed apoptotic DNA fragmentation. Our earlier study indicated that hCG and FSH treatment also suppress apoptosis in the present model system, but no additive effect of GH and either hCG or FSH on the suppression of apoptosis was observed. To determine whether the observed effect of GH action on follicle apoptosis is mediated by IGF-I, three types of studies were carried out.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  5. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men

    PubMed Central

    Allen, N E; Appleby, P N; Davey, G K; Key, T J

    2000-01-01

    Mean serum insulin-like growth factor-I was 9% lower in 233 vegan men than in 226 meat-eaters and 237 vegetarians (P = 0.002). Vegans had higher testosterone levels than vegetarians and meat-eaters, but this was offset by higher sex hormone binding globulin, and there were no differences between diet groups in free testosterone, androstanediol glucuronide or luteinizing hormone. © 2000 Cancer Research Campaign PMID:10883675

  6. Effect of chronic renal failure and prednisolone on the growth hormone-insulin-like growth factor axis.

    PubMed

    Kapila, P; Jones, J; Rees, L

    2001-12-01

    Abnormalities of the growth hormone (GH)/ insulin-like growth factor (IGF) axis have been reported in children with chronic renal failure (CRF) and post-transplant, and are thought to contribute to poor growth. This study examined the effect of CRF and steroid therapy (given post-transplant and to children with normal renal function) on the GH-IGF axis in children with normal and abnormal growth. Thirty-one children with CRF, ten on dialysis, 26 with renal transplants and ten taking steroid therapy but with normal renal function, were studied. IGF-I, measured by radioimmunoassay, was normal but IGF bioactivity was low in groups with a decreased glomerular filtration rate (P<0.05). Transplanted children growing at a subnormal growth rate had lower IGF bioactivity than those growing at a normal rate (P=0.03), but there was no such difference in bioactivity in children with CRF. There was no correlation between IGF bioactivity and prednisolone treatment. There was no correlation between IGF binding proteins 1, 2 or 3 and growth.

  7. The influence of bovine growth hormone and growth hormone releasing factor on acetyl-CoA carboxylase and fatty acid synthase in primiparous Holstein cows.

    PubMed

    Beswick, N S; Kennelly, J J

    1998-08-01

    Primiparous Holstein cows received recombinant bovine growth hormone (bGH), bovine growth hormone-releasing factor (bGRF), or no treatment from 118 to 181 +/- 1 d. Milk yield was significantly increased with no change in milk fat percentage or composition. The mRNA and protein abundance of the key lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were measured in the mammary gland and adipose tissue. We hypothesized that bGH and bGRF treatment would increase the mRNA and protein abundance of ACC and FAS in the mammary gland, with an associated decrease in adipose tissue. Analysis of ACC mRNA and protein abundance in the mammary gland revealed that there was no significant influence of either bGH or bGRF treatment. Analysis of FAS mRNA in mammary gland revealed that both bGH and bGRF significantly increased the abundance. However, quantitation of FAS protein in the mammary gland revealed that neither treatment resulted in increased abundance. In adipose tissue, the mRNA and protein abundance of both ACC and FAS were significantly reduced. The increased substrate required for increased milk fatty acid yield may be provided through redirection of nutrients to the mammary gland away from adipose tissue and through overall increased metabolism of the mammary gland.

  8. Expression of growth hormone and its transcription factor, Pit-1, in early bovine development.

    PubMed

    Joudrey, E M; Lechniak, D; Petrik, J; King, W A

    2003-03-01

    During bovine embryogenesis, bovine growth hormone (bGH) contributes to proliferation, differentiation, and modulation of embryo metabolism. Pituitary-specific transcription factor-1 (Pit-1) is a transcription factor that binds to promoters of GH, prolactin (PRL), and thyroid-stimulating hormone-beta (TSHbeta) encoding genes. A polymorphism in the fifth exon of the bGH gene resulting in a leucine (Leu) to valine (Val) substitution provides an Alu I restriction site when the Leu allele is present. To determine the onset of embryonic expression of the bGH gene, oocytes derived from ovaries homozygous for Leu alleles were fertilized in vitro with spermatozoa obtained from a Val homozygote. For each developmental stage examined, three separate pools of embryos composed of approximately 100 cell samples underwent RNA isolation, reverse transcription to cDNA, and amplification by nested PCR (nPCR). Bovine GH gene transcripts were identified at 2- to 4-cell (n = 162), 8- to 16-cell (n = 73), morulae (n = 51), and blastocyst (n = 15) stages. Likewise, transcripts for Pit-1 were detected at 2-cell (n = 125), 4-cell (n = 114), 8-cell (n = 56), 12-to-32-cell (n = 32), morulae (n = 68), and blastocyst (n = 14) stages. After digestion with Alu1, bGH cDNA was genotyped by restriction fragment length polymorphism (RFLP) analysis. Bovine GH mRNA was present in all pools of stages examined. Both Leu and Val alleles (maternal and paternal) were only detected in pools of embryos that had reached 8- to 16-cell stage. Results suggest that transcription of the bGH gene begins at the 8- to 16-cell stage in bovine embryos, possibly under control of the transcription factor, Pit-1, and that RFLP analysis of the bGH gene can be used to determine parental origin of transcripts in early embryonic development.

  9. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  10. Pharmacodynamic modeling of the effects of lanreotide Autogel on growth hormone and insulin-like growth factor 1.

    PubMed

    Garrido, María J; Cendrós, Josep-María; Ramis, Joaquim; Peraire, Concepción; Obach, Rosendo; Trocóniz, Iñaki F

    2012-04-01

    Acromegaly arises from excessive levels of growth hormone (GH), many of whose effects are mediated by stimulation of secretion of insulin-like growth factor 1 (IGF-1). Synthetic somatostatin analogues inhibit GH secretion. The objective of the study was to develop a population pharmacodynamic model describing the relationship between serum concentrations of lanreotide (C(P)) and its GH and IGF-1 effects in patients with acromegaly receiving lanreotide Autogel (LA) at doses of 60, 90, or 120 mg by deep subcutaneous route every 28 days. Data were analyzed from 104 patients. The GH and IGF-1 profiles were fit simultaneously using the population approach with NONMEM. The GH vs C(P) and the IGF-1 vs GH relationships were described using inhibitory I(max) and E(max) models, respectively. Results indicated that lanreotide cannot abolish GH completely. C(P) levels of 3.4 ng/mL are required to achieve percentages of hormonal control (GH and IGF-1) of 21% and 36% in not treated and previously treated patients. If the focus is only GH, a C(P) of 3.4 ng/mL corresponds to 33% and 56% controlling rates. Simulations showed that there is a possible clinical benefit if the highest dose of 120 mg LA is administered to patients who are not well controlled by lower doses of LA.

  11. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  12. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Insulin and insulin-like growth factor-1 modulate the lipolytic action of growth hormone by altering signal pathway linkages.

    PubMed

    Bergan-Roller, Heather E; Ickstadt, Alicia T; Kittilson, Jeffrey D; Sheridan, Mark A

    2017-07-01

    Growth hormone (GH) has many actions in vertebrates, including the regulation of two disparate metabolic processes: growth promotion (anabolic) and the mobilization of stored lipids (catabolic). Our previous studies showed that GH stimulated IGF-1 production in hepatocytes from fed rainbow trout, but in cells from fasted fish GH stimulated lipolysis. In this study, we used rainbow trout (Oncorhynchus mykiss) to elucidate regulation of the mechanisms that enable cells to alter their lipolytic responsiveness to GH. In the first experiment, cells were removed from either fed or fasted fish, conditioned in medium containing serum (10%) from either fed or fasted fish, then challenged with GH. GH stimulated the expression of hormone sensitive lipase (HSL), the primary lipolytic enzyme, in cells from fasted fish conditioned with "fasted serum" but not in cells from fasted fish conditioned in "fed serum." Pretreatment of cells from fed fish with "fasted serum" resulted in GH-stimulated HSL expression, whereas GH-stimulated HSL expression in cells from fasted fish was blocked by conditioning in "fed serum." The nature of the conditioning serum governed the signaling pathways activated by GH irrespective of the nutritional state of the animals from which the cells were removed. When hepatocytes were pretreated with "fed serum," GH activated JAK2, STAT5, Akt, and ERK pathways; when cells were pretreated with "fasted serum," GH activated PKC and ERK. In the second study, we examined the direct effects of insulin (INS) and insulin-like growth factor (IGF-1), two nutritionally-regulated hormones, on GH-stimulated lipolysis and signal transduction in isolated hepatocytes. GH only stimulated HSL mRNA expression in cells from fasted fish. Pretreatment with INS and/or IGF-1 abolished this lipolytic response to GH. INS and/or IGF-1 augmented GH activation of JAK2 and STAT5 in cells from fed and fasted fish. However, INS and/or IGF-1 eliminated the ability of GH to activate PKC and

  14. Hormonal regulation of fetal growth.

    PubMed

    Gicquel, C; Le Bouc, Y

    2006-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.

  15. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  16. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  17. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  18. Increased serum levels of growth hormone and insulin-like growth factor-I associated with simultaneous decrease of circulating insulin in postmenopausal women receiving hormone replacement therapy.

    PubMed

    Fonseca, E; Ochoa, R; Galván, R; Hernández, M; Mercado, M; Zárate, A

    1999-01-01

    Decreases in circulating growth hormone (GH) and its main biological messenger insulin-like growth factor-I (IGF-I) have been interpreted as part of the aging process. Because estrogens participate in modulating GH synthesis and secretion, hypoestrogenism in menopausal women may lead to GH deficiency. The aim of the present study was to determine the effect of hormone replacement therapy (HRT) on both GH and IGF-I levels as well as insulin concentrations in 50 menopausal women. Patients were assigned randomly into two treatment groups of 25 each; one group received three cycles of conjugated equine estrogen (CEE) 0.625 mg/day for 21 days, and the other, 1.25 mg/day during 21 days. Each also received chlormadinone acetate for 5 days. There was a control group consisting of regularly menstruating women. In the menopausal women, HRT increased significantly (p < 0.001) the low levels of GH and IGF-I; on the contrary the baseline insulin levels declined (p < 0.001) with HRT. A significant linear correlation (r = 0.90) was found between GH and IGF-I as well as with estradiol levels (r = 0.74) in the group of menopausal women receiving CEE 0.625 mg/day. This group of patients had a significant correlation (r = -0.63) between insulin and estradiol levels. No correlation was observed in the group receiving CEE 1.25 mg/day. HRT restored GH, IGF-I, and insulin levels to normal values in all women. Further research needs to be done to establish the beneficial effect of HRT regarding the prevention of the metabolic effects presumably caused by derangement in the somatotropic axis associated with aging.

  19. Microcystin-LR retards gonadal maturation through disrupting the growth hormone/insulin-like growth factors system in zebrafish.

    PubMed

    Hou, Jie; Su, Yujing; Lin, Wang; Guo, Honghui; Xie, Ping; Chen, Jun; Gu, Zemao; Li, Li

    2017-05-01

    Recent studies have documented that microcystins (MCs) have potential toxic effects on growth and reproduction in fish. However, no systematic data exist on whether MCs cause gonadal development retardation through disrupting the growth hormone/insulin-like growth factors (GH/IGFs) system. To this end, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30µg/L microcystin-LR (MC-LR) for 90 d until they reached sexual maturity. Life-cycle exposure to MC-LR caused delayed ovarian maturation and sperm development along with ultrapathological lesions in the brain and liver. Moreover, the retarded gonadal development was accompanied by an inhibition of the GH/IGFs system, which was characterized by significant decreases in the transcriptional levels of brain gh (males only), hepatic igf2a and igf2b as well as gonadal igf1 (males only), igf3 and igf2r. These findings for the first time point to the influence of MC-LR on fish gonadal development via the GH/IGFs system. Also, sex-differential impairments suggested that gonadal development of males is more vulnerable than that of female to MC-LR. Our results provide evidence that MC-LR at environmentally relevant concentrations is able to induce impairments on fish gonadal development.

  20. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN.

  1. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  2. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  3. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.

    PubMed

    Emilov-Velev, K; Clemente-de-Arriba, C; Alobera-García, M Á; Moreno-Sansalvador, E M; Campo-Loarte, J

    2015-01-01

    Many substances (growth factors and hormones) have osteoinduction properties and when added to some osteoconduction biomaterial they accelerate bone neoformation properties. The materials included 15 New Zealand rabbits, calcium phosphate cement (Calcibon(®)), human growth hormone (GH), and plasma rich in platelets (PRP). Each animal was operated on in both proximal tibias and a critical size bone defect of 6mm of diameter was made. The animals were separated into the following study groups: Control (regeneration only by Calcibon®), PRP (regeneration by Calcibon® and PRP), GH (regeneration by Calcibon® and GH). All the animals were sacrificed at 28 days. An evaluation was made of the appearance of the proximal extreme of rabbit tibiae in all the animals, and to check the filling of the critical size defect. A histological assessment was made of the tissue response, the presence of new bone formation, and the appearance of the biomaterial. Morphometry was performed using the MIP 45 image analyser. ANOVA statistical analysis was performed using the Statgraphics software application. The macroscopic appearance of the critical defect was better in the PRP and the GH group than in the control group. Histologically greater new bone formation was found in the PRP and GH groups. No statistically significant differences were detected in the morphometric study between bone formation observed in the PRP group and the control group. Significant differences in increased bone formation were found in the GH group (p=0.03) compared to the other two groups. GH facilitates bone regeneration in critical defects filled with calcium phosphate cement in the time period studied in New Zealand rabbits. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  4. Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle.

    PubMed

    Becú-Villalobos, Damasia; García-Tornadú, Isabel; Shroeder, Guillermo; Salado, Eloy E; Gagliostro, Gerardo; Delavaud, Carole; Chilliard, Yves; Lacau-Mengido, Isabel M

    2007-07-01

    We investigated the effect of fat supplementation on plasma levels of hormones related to metabolism, with special attention to leptin, in cows in early lactation and in feedlot steers. In experiment 1, 34 lactating cows received no fat or else 0.5 or 1.0 kg of partially hydrogenated oil per day in addition to their basal diet from day 20 before the expected calving date to day 70 postpartum. In experiment 2, part of the corn in the basal concentrate was replaced with 0.7 kg of the same oil such that the diets were isocaloric; 18 cows received the fat-substituted diet and 18 a control diet from day 20 before the expected calving date to day 75 postpartum. In experiment 3, calcium salts of fatty acids were added to the basal diet of 14 feedlot steers for 80 d; another 14 steers received a control diet. The basal plasma levels of leptin were higher in the cows than in the steers. Dietary fat supplementation did not affect the leptin levels in the lactating cows but lowered the levels in the feedlot steers despite greater energy intake and body fatness (body weight) in the steers receiving the supplement than in those receiving the control diet. The levels of insulin-like growth factor I and insulin were decreased with dietary fat supplementation in the lactating cows but were unaffected in the steers, suggesting that responses to fat ingestion depend on the physiological state of the animal, including age and sex. Finally, no effects of supplementary fat on the level of growth hormone were demonstrated in any of the models.

  5. Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle

    PubMed Central

    Becú-Villalobos, Damasia; García-Tornadú, Isabel; Shroeder, Guillermo; Salado, Eloy E.; Gagliostro, Gerardo; Delavaud, Carole; Chilliard, Yves; Lacau-Mengido, Isabel M.

    2007-01-01

    We investigated the effect of fat supplementation on plasma levels of hormones related to metabolism, with special attention to leptin, in cows in early lactation and in feedlot steers. In experiment 1, 34 lactating cows received no fat or else 0.5 or 1.0 kg of partially hydrogenated oil per day in addition to their basal diet from day 20 before the expected calving date to day 70 postpartum. In experiment 2, part of the corn in the basal concentrate was replaced with 0.7 kg of the same oil such that the diets were isocaloric; 18 cows received the fat-substituted diet and 18 a control diet from day 20 before the expected calving date to day 75 postpartum. In experiment 3, calcium salts of fatty acids were added to the basal diet of 14 feedlot steers for 80 d; another 14 steers received a control diet. The basal plasma levels of leptin were higher in the cows than in the steers. Dietary fat supplementation did not affect the leptin levels in the lactating cows but lowered the levels in the feedlot steers despite greater energy intake and body fatness (body weight) in the steers receiving the supplement than in those receiving the control diet. The levels of insulin-like growth factor I and insulin were decreased with dietary fat supplementation in the lactating cows but were unaffected in the steers, suggesting that responses to fat ingestion depend on the physiological state of the animal, including age and sex. Finally, no effects of supplementary fat on the level of growth hormone were demonstrated in any of the models. PMID:17695598

  6. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  7. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  8. Structural study of human growth hormone-releasing factor fragment (1?29) by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Lasagabaster, A.

    1995-05-01

    The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed

  9. Spectroscopic studies on the conformational transitions of a bovine growth hormone releasing factor analog

    NASA Astrophysics Data System (ADS)

    Sarver, Ronald W.; Friedman, Alan R.; Thamann, Thomas J.

    1997-10-01

    The secondary structure of the bovine growth hormone releasing factor analog, [Ile 2, Ser 8,28, Ala 15, Leu 27, Hse 30] bGRF(1-30)-NH-Ethyl, acetate salt (U-90699F) was studied in solution by Fourier transform infrared and Raman spectroscopies. Spectroscopic studies revealed that concentrated aqueous solutions of U-90699F (100 mg ml -1) undergo a secondary structure transition from disordered coil/α-helix to intermolecular β-sheet. Disordered coil and α-helical structure were grouped together in the infrared and Raman studies since the amide I vibrations are close in frequency and overlap in assignments was possible. Before the conformational transition, the facile exchange of the peptide's amide hydrogens for deuterium indicated that the majority of amide hydrogens were readily accessible to solvent. The kinetics of the conformational transition coincided with an increase in solution viscosity and turbidity. An initiation phase preceded the conformational transition during which only minor spectral changes were observed by infrared spectroscopy. The initiation phase and reaction kinetics were consistent with a highly cooperative nucleation ultimately leading to a network of intermolecular β-sheet structure and gel formation. Increased temperature accelerated the conformational transition. The conformational transition was thermally irreversible but the β-sheet structure of aggregated or gelled peptide could be disrupted by dilution and agitation.

  10. Growth hormone and insulin-like growth factor 1 levels and their relation to survival in children with bacterial sepsis and septic shock.

    PubMed

    Onenli-Mungan, N; Yildizdas, D; Yapicioglu, H; Topaloglu, A K; Yüksel, B; Ozer, G

    2004-04-01

    Despite improved supportive care, the mortality of sepsis and septic shock is still high. Multiple changes in the neuroendocrine systems, at least in part, are responsible for the high morbidity and mortality. A reduced circulating level of insulin-like growth factor and an elevated level of growth hormone are the reported characteristic findings early in the course of sepsis and septic shock in adults. The aim of this study was to evaluate the changes of growth hormone/insulin-like growth factor 1 axis in sepsis and septic shock and investigate the relationship between these hormones and survival. Fifty-one children with sepsis (S), 21 children with septic shock (SS) and 30 healthy, age- and sex-matched children (C) were enrolled in this study. Growth hormone, insulin-like growth factor 1 and cortisol levels of the sepsis and septic shock groups were obtained before administration of any inotropic agent. Growth hormone levels were 32.3 +/- 1.5 microIU/mL (range 4-56), 15.9 +/- 0.6 microIU/mL (range 11-28) and 55.7 +/- 2.7 microIU/mL (range 20-70) in S, C and SS groups, respectively. The difference between the growth hormone levels of the S and C groups, S and SS groups, and C and SS groups were significant (P < 0.001). Non-survivors (54.7 +/- 1.6 microIU/mL) had significantly higher growth hormone levels than survivors (29.4 +/- 1.5 microIU/mL) (P < 0.001). Insulin-like growth factor 1 levels were 38.1 +/- 2.1 ng/mL (range 19-100), 122.9 +/- 9.6 ng/mL (range 48-250) and 22.2 +/- 1.9 ng/mL (range 10-46) in the S, C and SS groups, respectively, and the difference between the insulin-like growth factor 1 levels of the S and C, S and SS, and C and SS groups were significant (P < 0.001). Non-survivors (8.8 +/- 1.1 micro g/dL) had significantly lower cortisol levels than survivors (40.9 +/- 2.1 microg/dL) (P < 0.001). We detected a significant difference between the levels of cortisol in non-survivors (19.7 +/- 1.8 microg/dL) and survivors (33.9 +/- 0.9 microg/dL) (P

  11. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent.

    PubMed

    Shynlova, Oksana; Tsui, Prudence; Dorogin, Anna; Langille, B Lowell; Lye, Stephen J

    2007-09-01

    From a quiescent state in early pregnancy to a highly contractile state in labor, the myometrium displays tremendous growth and remodeling. We hypothesize that the transforming growth factor beta (TGFbeta) system is involved in the differentiation of pregnant myometrium throughout gestation and labor. Furthermore, we propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial TGFbetas. The expression of TGFbeta1-3 mRNAs and proteins was examined by real-time PCR, Western immunoblot, and localized with immunohistochemistry in the rat uterus throughout pregnancy and labor. Tgfbeta1-3 genes were expressed differentially in pregnant myometrium. Tgfbeta2 gene was not affected by pregnancy, whereas the Tgfbeta1 gene showed a threefold increase during the second half of gestation. In contrast, we observed a dramatic bimodal change in Tgfbeta3 gene expression throughout pregnancy. Tgfbeta3 mRNA levels first transiently increased at mid-gestation (11-fold on day 14) and later at term (45-fold at labor, day 23). Protein expression levels paralleled the changes in mRNA. Treatment of pregnant rats with the progesterone (P4) receptor antagonist RU486 induced premature labor on day 19 and increased Tgfbeta3 mRNA, whereas artificial maintenance of elevated P4 levels at late gestation (days 20-23) caused a significant decrease in the expression of Tgfbeta3 gene. In addition, Tgfbeta3 was up-regulated specifically in the gravid horn of unilaterally pregnant rats subjected to a passive biological stretch imposed by the growing fetuses, but not in the empty horn. Collectively, these data indicate that the TGFbeta family contributes in the regulation of myometrial activation at term integrating mechanical and endocrine signals for successful labor contraction.

  12. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia.

    PubMed

    Trobec, Katja; von Haehling, Stephan; Anker, Stefan D; Lainscak, Mitja

    2011-12-01

    Cachexia is an irreversible process that can develop in the course of chronic disease. It is characterized by the remodeling of the metabolic, inflammatory, and endocrine pathways. Insulin, growth hormone (GH), and insulin-like growth factor 1 (IGF-1) are involved in glucose, protein, and fat metabolism, which regulates body composition. In body wasting and cachexia, their signaling is impaired and causes anabolic/catabolic imbalance. Important mechanisms include inflammatory cytokines and neurohormonal activation. Remodeled post-receptor insulin, GH, and IGF-1 pathways constitute a potential target for pharmacological treatment in the setting of body wasting and cachexia. Peroxisome proliferator-activated receptor gamma agonists, drugs inhibiting angiotensin II action (angiotensin II antagonists and inhibitors of angiotensin-converting enzyme), and testosterone, which interfere with post-receptor pathways of insulin, GH, and IGF-1, were investigated as pharmacological intervention targets and various clinically important implications were reported. There are several other potential targets, but their treatment feasibility and applicability is yet to be established.

  13. Growth hormone or insulin-like growth factor-I extends longevity of equine spermatozoa in vitro.

    PubMed

    Champion, Zahra J; Vickers, Mark H; Gravance, Curtis G; Breier, Bernard H; Casey, Patrick J

    2002-04-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are both present in blood plasma and IGF-I has been measured in epididymal fluid and seminal plasma. This study was designed to investigate the direct effects of GH or IGF-I on the motility of mature equine spermatozoa in vitro. We compared the effects of one concentration (100 ng/ml) of recombinant bovine GH (rbGH) and recombinant human IGF-I (rhIGF-I) on motility and motion characteristics of equine spermatozoa over a 24 h period. Motility was maintained longer in spermatozoa treated with either rbGH or rhIGF-I during a 24 h period at room temperature (P < 0.05). Spermatozoa motion characteristics at time 0, 1, 2, 4, 6, 12 and 24 h for both rbGH and rhlGF-I were not significantly different from the respective controls. This study has shown that GH and IGF-I are effective in promoting the in vitro longevity of spermatozoa.

  14. Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment.

    PubMed

    Gil-Peña, Helena; Garcia-Lopez, Enrique; Alvarez-Garcia, Oscar; Loredo, Vanessa; Carbajo-Perez, Eduardo; Ordoñez, Flor A; Rodriguez-Suarez, Julian; Santos, Fernando

    2009-09-01

    Hypokalemic tubular disorders may lead to growth retardation which is resistant to growth hormone (GH) treatment. The mechanism of these alterations is unknown. Weaning female rats were grouped (n = 10) in control, potassium-depleted (KD), KD treated with intraperitoneal GH at 3.3 mg x kg(-1) x day(-1) during the last week (KDGH), and control pair-fed with KD (CPF). After 2 wk, KD rats were growth retarded compared with CPF rats, the osseous front advance (+/-SD) being 67.07 +/- 10.44 and 81.56 +/- 12.70 microm/day, respectively. GH treatment did not accelerate growth rate. The tibial growth plate of KD rats had marked morphological alterations: lower heights of growth cartilage (228.26 +/- 23.58 microm), hypertrophic zone (123.68 +/- 13.49 microm), and terminal chondrocytes (20.8 +/- 2.39 microm) than normokalemic CPF (264.21 +/- 21.77, 153.18 +/- 15.80, and 24.21 +/- 5.86 microm). GH administration normalized these changes except for the distal chondrocyte height. Quantitative PCR of insulin-like growth factor I (IGF-I), IGF-I receptor, and GH receptor genes in KD growth plates showed downregulation of IGF-I and upregulation of IGF-I receptor mRNAs, without changes in their distribution as analyzed by immunohistochemistry and in situ hybridization. GH did not further modify IGF-I mRNA expression. KD rats had normal hepatic IGF-I mRNA levels and low serum IGF-I values. GH increased liver IGF-I mRNA, but circulating IGF-I levels remained reduced. This study discloses the structural and molecular alterations induced by potassium depletion on the growth plate and shows that the lack of response to GH administration is associated with persistence of the disturbed process of chondrocyte hypertrophy and depressed mRNA expression of local IGF-I in the growth plate.

  15. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows.

    PubMed

    Akers, R M

    2006-04-01

    In recent years, the number of researchers interested in mammary development and mammary function in dairy animals has declined. More importantly this cadre of workers has come to rely more than ever on scientists focused on and funded by breast cancer interests to provide fundamental mechanistic and basic cellular insights. Philosophically and practically this is a risky path to better understand, manipulate, and control a national resource as important as the dairy cow. The efficiency, resourcefulness, and dedication of dairy scientists have mirrored the actions of many dairy producers but there are limits. Many of the applications of research, use of bovine somatotropin, management of transition cows, estrus synchronization techniques, and so on, are based on decades-old scientific principles. Specific to dairy, do rodents or breast cancer cell lines adequately represent the dairy cow? Will these results inspire the next series of lactation-related dairy improvements? These are key unanswered questions. Study of the classic mammogenic and lactogenic hormones has served dairy scientists well. But there is an exciting, and bewildering universe of growth factors, transcription factors, receptors, intracellular signaling intermediates, and extracellular molecules that must ultimately interact to determine the size of the mature udder and the functional capacity of mammary gland in the lactating cow. We can only hope that enough scientific, fiscal, and resource scraps fall from the biomedical research banquet table to allow dairy-focused mammary gland research to continue.

  16. Thyroid hormone and androgen regulation of nerve growth factor gene expression in the mouse submandibular gland.

    PubMed

    Black, M A; Lefebvre, F A; Pope, L; Lefebvre, Y A; Walker, P

    1992-03-01

    The nerve growth factor (NGF) content of the mouse submandibular gland (SMG) is under hormonal control and is modulated by both thyroid hormones (TH) and androgens. The sexual dimorphism of the gland is well documented. In the adult male mouse, the SMG contains 10 times more NGF compared to the female. Conversely, castration of male mice reduces the SMG NGF levels to those found in control females. In order to determine the locus at which androgens and TH exert their effect on NGF gene expression in the SMG, steady-state NGF mRNA levels were determined. Daily treatment of adult female mice with TH for 1 week increased NGF mRNA levels 6-fold. Androgen treatment produced a 20-fold increase in SMG NGF mRNA, which was comparable to levels detected in the control adult male SMG. The effect of TH on NGF mRNA levels was time-dependent and coincided with the increase in NGF protein concentrations. At 48 h after a single TH injection, NGF mRNA levels (measured in SMG total RNA) increased 2-4-fold, while heteronuclear (hn) RNA levels were increased 1.5-2-fold. The NGF gene transcription rate was determined by run-on assay following TH treatment. A small but significant 2-fold induction by TH of NGF gene transcription was found at 24-48 h. Cytoplasmic RNA prepared from the same SMGs used in the run-on experiments was tested by S1 nuclease protection; NGF cytoplasmic RNA was increased 7-fold in the SMGs of females treated with TH 48 h previously. These results demonstrate that the effect of TH on NGF gene expression is due in part to an induction of NGF gene transcription. The discrepancies observed between transcription rate and mRNA levels suggest that the major effect of TH is at the post-transcriptional level, possibly mRNA stabilization. The time required to observe an induction of TH on NGF gene transcription is suggestive of an indirect effect, possibly through the induction by TH of another protein which in turn activates the NGF gene.

  17. Effects of exercise during normoxia and hypoxia on the growth hormone-insulin-like growth factor I axis.

    PubMed

    Schmidt, W; Doré, S; Hilgendorf, A; Strauch, S; Gareau, R; Brisson, G R

    1995-01-01

    The response of plasma insulin-like growth factor I (IGF I) to exercise-induced increase of total human growth hormone concentration [hGHtot] and of its molecular species [hGH20kD] was investigated up to 48 h after an 1-h ergometer exercise at 60% of maximal capacity during normoxia (N) and hypoxia (H) (inspiratory partial pressure of oxygen = 92 mmHg (12.7 kPa); n = 8). Lactate and glucose concentrations were differently affected during both conditions showing higher levels under H. Despite similar maximal concentrations, the increase of human growth hormone (hGH) was faster during exercise during H than during N[hGHtot after 30 min: 8.6 (SD 11.4) ng.ml-1 (N); 16.2 (SD 11.6) ng.ml-1 (H); P < 0.05]. The variations in plasma [hGH20kD] were closely correlated to those of [hGHtot], but its absolute concentration did not exceed 3% of the [hGHtot]. Plasma IGF I concentration was significantly decreased 24 h after both experimental conditions [N from 319 (SD 71) ng.ml-1 to 228 (SD 72) ng.ml-1, P < 0.05; H from 253 (SD 47) to 200 (SD 47) ng.ml-1, P < 0.01], and was still lower than basal levels 48 h after exercise during H [204 (SD 44) ng.ml-1, P < 0.01]. Linear regression analysis yielded no significant correlation between increase in plasma [hGHtot] or [hGH20kD] during exercise and the plasma IGF I concentration after exercise. It was concluded that the exercise-associated elevated plasma [hGH] did not increase the hepatic IGF I production. From our study it would seem that the high energy demand during and after the long-lasting intensive exercise may have overridden an existing hGH stimulus on plasma IGH I, which was most obvious during hypoxia.

  18. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells.

    PubMed

    Lee, G J; Jun, J W; Hyun, S

    2015-06-01

    Metabolic organs such as the liver and adipose tissue produce several peptide hormones that influence metabolic homeostasis. Fat bodies, the Drosophila counterpart of liver and adipose tissues, have been thought to analogously secrete several hormones that affect organismal physiology, but their identity and regulation remain poorly understood. Previous studies have indicated that microRNA miR-8, functions in the fat body to non-autonomously regulate organismal growth, suggesting that fat body-derived humoral factors are regulated by miR-8. Here, we found that several putative peptide hormones known to have mitogenic effects are regulated by miR-8 in the fat body. Most members of the imaginal disc growth factors and two members of the adenosine deaminase-related growth factors are up-regulated in the absence of miR-8. Drosophila insulin-like peptide 6 (Dilp6) and imaginal morphogenesis protein-late 2 (Imp-L2), a binding partner of Dilp, are also up-regulated in the fat body of miR-8 null mutant larvae. The fat body-specific reintroduction of miR-8 into the miR-8 null mutants revealed six peptides that showed fat-body organ-autonomous regulation by miR-8. Amongst them, only Imp-L2 was found to be regulated by U-shaped, the miR-8 target for body growth. However, a rescue experiment by knockdown of Imp-L2 indicated that Imp-L2 alone does not account for miR-8's control over the insect's growth. Our findings suggest that multiple peptide hormones regulated by miR-8 in the fat body may collectively contribute to Drosophila growth.

  19. Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development.

    PubMed

    Kobayashi, Noriko; Orisaka, Makoto; Cao, Mingju; Kotsuji, Fumikazu; Leader, Arthur; Sakuragi, Noriaki; Tsang, Benjamin K

    2009-12-01

    FSH regulates follicular growth in a stage-development fashion. Although preantral follicle stage is gonadotropin responsive, FSH is not required for preantral follicular growth. With the antrum, the follicles continue growing under the influence of FSH and become gonadotropin dependent. Although thyroid hormone is important for normal female reproductive function, its role and interaction with FSH in the regulation of preantral ovarian follicular growth is yet to be defined. In the present study, we have examined the action and interaction of FSH and T(3) in the regulation of the growth of preantral follicles, especially in their transition from preantral to early antral stage, using an established follicle culture system and evaluated the involvement of growth differentiation factor-9 (GDF-9) in this process in vitro. We have demonstrated that although T(3) alone had no effect on follicular development, it markedly enhanced FSH-induced preantral follicular growth. Although FSH alone significantly down-regulated FSH receptor (FSHR) mRNA abundance in the preantral follicles and T(3) alone was ineffective, expression of the message was significantly increased in the presence of both hormones. In addition, intra-oocyte injection of GDF-9 antisense oligonucleotides (GDF-9 morpholino) induced follicular cell apoptosis and suppressed follicular growth induced by FSH and T(3). These responses were attenuated by exogenous GDF-9. Our findings support the concept that thyroid hormone regulates ovarian follicular development through its direct action on the ovary and that promotes FSH-induced preantral follicular growth through up-regulation of FSHR, a mechanism dependent on the expression and action of oocyte-derived GDF-9.

  20. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia

    PubMed Central

    Breves, Jason P.; Tipsmark, Christian K.; Stough, Beth A.; Seale, Andre P.; Flack, Brenda R.; Moorman, Benjamin P.; Lerner, Darren T.; Grau, E. Gordon

    2014-01-01

    Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28 days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh. PMID:24818968

  1. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia.

    PubMed

    Breves, Jason P; Tipsmark, Christian K; Stough, Beth A; Seale, Andre P; Flack, Brenda R; Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon

    2014-10-01

    Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh.

  2. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    PubMed Central

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  3. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti.

    PubMed

    Szarama, Katherine B; Gavara, Núria; Petralia, Ronald S; Chadwick, Richard S; Kelley, Matthew W

    2013-02-09

    Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.

  4. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease

    PubMed Central

    Brito Galvao, Joao F; Nagode, Larry A; Schenck, Patricia A; Chew, Dennis J

    2013-01-01

    Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors. PMID:23566108

  5. Conformational origin of a difficult coupling in a human growth hormone releasing factor analog.

    PubMed

    Deber, C M; Lutek, M K; Heimer, E P; Felix, A M

    1989-01-01

    During the solid-phase synthesis of the human growth hormone releasing factor (GRF) analog [Ala15, Leu27, Asn28] -GRF(1-32)-OH, incorporation of Boc-Gln16 was determined to be incomplete. While aggregation of growing resin-bound peptide chains with concomitant beta-sheet formation and "precipitation" has been proposed to account in general for such "difficult coupling," no feature of sequence in the Gln16 region of this GRF analog provided an immediate rationale for this result. We now report 500 MHz 1H NMR spectra of a series of resin-bound GRF segments surrounding the Gln16 position (19-32 through 14-32), swelled in dimethylsulfoxide-d6 solutions [GRF(14-32) = Leu14-Ala-Gln-Leu-Ser(Bzl)-Ala-Arg(Tos)-Lys(CIZ)-Leu- Leu-Gln-Asp(OcHex)-Ile-Leu-Asn-Arg(Tos)-Gln-Gln-Gly32-PAM resin]. While relatively sharp spectra are observed for GRF(19-32), components with resonances broadened by an order-of-magnitude appear in spectra of the 18-32 and 17-32 peptide-resin, and the entire spectrum of 16-32 is ill-resolved and highly broadened. Subsequent spectra sharpen again (15-32, 14-32). These combined synthesis/spectroscopic experimental results, in conjunction with predictive analyses using standard Chou-Fasman 2 degrees structure parameters, suggest that the completeness of the Gln16 coupling is hindered by formation of a specific, folded beta-sheet/beta-turn structure in GRF(16-32) (with the turn located at 18-21, "upstream" of the difficult coupling site), and accompanying aggregation of peptide chains. This analysis suggests that awareness of such potential beta-sheet/beta-turn sequences can guide analog choices, and/or facilitate pre-programming of synthesis steps in anticipation of problem couplings.

  6. Adding hormonal therapy to chemotherapy and trastuzumab improves prognosis in patients with hormone receptor-positive and human epidermal growth factor receptor 2-positive primary breast cancer.

    PubMed

    Hayashi, Naoki; Niikura, Naoki; Yamauchi, Hideko; Nakamura, Seigo; Ueno, Naoto T

    2013-01-01

    Adjuvant hormonal therapy for hormone receptor (HR)-positive primary breast cancer patients and a human epidermal growth factor receptor 2 (HER2)-targeted agent for HER2-positive primary breast cancer patients are standard treatment. However, it is not well known whether adding hormonal therapy to the combination of preoperative or postoperative chemotherapy and HER2-targeted agent contributes any additional clinical benefit in patients with HR-positive/HER2-positive primary breast cancer regardless of cross-talk between HR and HER2. We retrospectively reviewed records from 897 patients with HR-positive/HER2-positive primary breast cancer with clinical stage I-III disease who underwent surgery between 1988 and 2009. We determined the overall survival (OS) and disease-free survival (DFS) rates according to whether they received hormonal therapy or not and according to the type of hormonal therapy, tamoxifen and aromatase inhibitor, they received. The median followup time was 52.8 months (range 1-294.6 months). Patients who received hormonal therapy with chemotherapy and trastuzumab (n = 128) had significantly higher OS and DFS rates than did those who received only chemotherapy and trastuzumab (n = 46) in log-rank analysis (OS 96.1 vs. 87.0 %, p = 0.023, DFS 86.7 vs. 78.3 %, p = 0.029). There was no statistical difference in OS or DFS between those given an aromatase inhibitor and those given tamoxifen. In multivariate analysis, receiving hormonal therapy in addition to the combination of chemotherapy and trastuzumab was the sole independent prognostic factor for DFS (hazard ratio 0.446; 95 % CI 0.200-0.992; p = 0.048), and there was a similar trend in OS. Our study supported that hormonal therapy, whether in the form of an aromatase inhibitor or tamoxifen, confers a survival benefit when added to chemotherapy and trastuzumab in patients with HR-positive/HER2-positive primary breast cancer. Adjuvant treatment without hormonal therapy is inferior for this patient

  7. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, growth hormone, and mammographic density in the Nurses' Health Studies.

    PubMed

    Rice, Megan S; Tworoger, Shelley S; Rosner, Bernard A; Pollak, Michael N; Hankinson, Susan E; Tamimi, Rulla M

    2012-12-01

    Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or in 1996-1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m(2), but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.

  8. Free and total insulin-like growth factors and insulin-like growth factor binding proteins during 14 days of growth hormone administration in healthy adults.

    PubMed

    Skjaerbaek, C; Frystyk, J; Møller, J; Christiansen, J S; Orskov, H

    1996-12-01

    The objective was to investigate the effect of growth hormone (GH) administration on circulating levels of free insulin-like growth factors (IGFs) in healthy adults. Eight healthy male subjects were given placebo and two doses of GH (3 and 6 IU/m2 per day) for 14 days in a double-blind crossover study. Fasting blood samples were obtained every second day. Free IGF-I and IGF-II were determined by ultrafiltration of serum. Total IGF-I and IGF-II were measured after acid-ethanol extraction. In addition, GH, insulin, IGF binding protein 1 (IGFBP-1) and IGFBP-3 were measured. Serum-free and total IGF-I increased in a dose-dependent manner during the 14 days of GH administration. After 14 days, serum-free IGF-I values were 610 +/- 100 ng/l (mean +/- SEM) (placebo), 2760 +/- 190 ng/l (3 IU/ m2) and 3720 +/- 240 ng/l (6 IU/m2) (p = 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.004 for 3 IU/m2 vs 6 IU/m2). Total IGF-I values were 190 +/- 10 micrograms/l (placebo), 525 +/- 10 (3 IU/m2), and 655 +/- 40 micrograms/l (6 IU/m2) (p < 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.04 for 3 IU/m2). There were no differences in the levels of free or total IGF-II during the three study periods. Insulin-like growth factor binding protein 1 was decreased during GH administration (p = 0.04 for placebo vs 3 IU/m2; p = 0.006 for placebo vs 6 IU/m2). In conclusion, fasting serum free IGF-I increased dose dependently during GH administration and free IGF-I increased relatively more than total IGF-I. This may partly be due to the decrease in IGFBP-1.

  9. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  10. Effects of thermal and mechanical stress on the physical stability of human growth hormone and epidermal growth factor.

    PubMed

    Lim, Jun Yeul; Kim, Nam Ah; Lim, Dae Gon; Kim, Ki Hyun; Jeong, Seong Hoon

    2015-08-01

    Thermal and mechanical stress conditions were applied to two model proteins, human growth hormone (hGH) and epidermal growth factor (EGF), to evaluate protein stability during the manufacturing process, focusing on protein secondary structure and aggregation. The samples were analyzed with differential scanning calorimetry (DSC), circular dichroism (CD), and size-exclusion chromatography (SEC). The monomer and aggregation contents were obtained by SEC and the proteins' secondary structure on exposure to thermal stress was evaluated by CD. DSC showed that the transition temperature (T m) of hGH and EGF was 74.43 and 79.11 °C, respectively. The accelerated thermal stress temperature was set at 70 °C. The monomer content of hGH decreased from 97.8 to 82.3 % in response to thermal stress. However, the monomer content of EGF decreased significantly from 33.73 to 5.61 %. The hGH and EGF showed an increase in α-helix content and a decrease in β-sheet (antiparallel and parallel β-sheet). Moreover, the contents changed significantly during the first 1 h and then changed slightly for the remaining time. On the other hand, shaking stress showed that hGH was highly affected compared to EGF. The hGH monomer steadily decreased and only the half the monomer content remained at 3 h. It is suspected that the shaking stress induced hGH adsorption to the gas-liquid interface, which may facilitate protein denaturation. The results indicate that protective excipients might be necessary for inevitable stress conditions during the developmental process. The stability of each protein differed with respect to specific stress conditions. Therefore, an array of complementary analytical methods might be required to evaluate the protein stability.

  11. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  12. Commercial assays available for insulin-like growth factor I and their use in diagnosing growth hormone deficiency.

    PubMed

    Clemmons, D R

    2001-01-01

    Radioimmunoassays of insulin-like growth factor I (IGF-I) are commonly used for screening adults and children for growth hormone (GH) deficiency or excess. There are, however, many problems with such assays. Attempts to resolve these problems have focused on methods of separating IGF-I from its binding proteins, and on reducing inter- and intra-assay variability. In particular, the collection of sufficient high-quality normative data is a major difficulty in many laboratories. Clinical evaluation of assays is also problematic. IGF-I levels vary with age after puberty, and this is complicated by the maintenance of IGF-binding protein 3 levels by IGF-II. Generally, studies have shown that IGF-I is sensitive and specific for the diagnosis of acromegaly, but screening for GH deficiency (GHD) is less precise. The most commonly used commercial assays are immunoradiometric (IRMA) sandwich assays, using antibodies specific to IGF-I. IRMA assays are quick and accurate, and the two-site antibody reactivity produces a high degree of specificity. Additional techniques such as acid-ethanol extraction or saturation with IGF-II can improve reliability. More recently, the introduction of chemiluminescence has provided enhanced speed and sensitivity. The clinical use of these assays has provided a wealth of information regarding the diagnosis of GHD, and it may be possible to reduce the number of patients who require provocative GH testing. IGF-I assays are also of great use in monitoring GH replacement therapy. Despite the problems, IGF-I measurement is currently the best indirect method available for screening and monitoring patients with GHD.

  13. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke.

    PubMed

    Subirós, N; Pérez-Saad, H; Aldana, L; Gibson, C L; Borgnakke, W S; Garcia-Del-Barco, D

    2016-11-01

    Combined therapy with epidermal growth factor (EGF) and growth hormone-releasing peptide 6 (GHRP-6) in stroke models has accumulated evidence of neuroprotective effects from several studies, but needs further support before clinical translation. Comparing EGF + GHRP-6 to hypothermia, a gold neuroprotection standard, may contribute to this purpose. The aims of this study were to compare the neuroprotective effects of a combined therapy based on EGF + GHRP-6 with hypothermia in animal models of (a) global ischemia representing myocardial infarction and (b) focal brain ischemia representing ischemic stroke. (a) Global ischemia was induced in Mongolian gerbils by a 15-min occlusion of both carotid arteries, followed by reperfusion. (b) Focal brain ischemia was achieved by intracerebral injection of endothelin 1 in Wistar rats. In each experiment, three ischemic treatment groups - vehicle, EGF + GHRP-6, and hypothermia - were compared to each other and to a sham-operated control group. End points were survival, neurological scores, and infarct volume. (a) In global ischemia, neurological score at 48-72 h, infarct volume, and neuronal density of hippocampal CA1 zone in gerbils treated with EGF + GHRP-6 were similar to the hypothermia-treated group. (b) In focal ischemia, the neurologic score and infarct volume of rats receiving EGF + GHRP-6 were also similar to animals in the hypothermia group. With hypothermia being a good standard neuroprotectant reference, these results provide additional proof of principle for EGF and GHRP-6 co-administration as a potentially neuroprotective stroke therapy.

  14. Insulin-like growth factor-I and growth hormone administration in intestinal ischemia shock in the rat.

    PubMed

    Haglind, E; Malmlof, K; Fan, J; Lang, C H

    1998-07-01

    The effect of exogenous insulin-like growth factor (IGF)-I and growth hormone (GH) was examined in a rat model of intestinal ischemia-reperfusion (I/R). Animals were anesthetized, vascular catheters were placed, and intestinal ischemia was induced for 60 min. Thereafter, the intestine was reperfused, and rats received a primed, constant infusion of either IGF-I or GH (500 microg/rat + 500 microg/day) for the remainder of the study; control rats received an equal volume of vehicle. The plasma IGF-I concentration gradually declined after I/R in the vehicle-shock group and was reduced 30% at 48 h. GH infusion completely prevented this reduction, whereas the effect of IGF-I was intermediate. The IGF-I content in liver was increased by IGF-I (78%) and further enhanced in the GH-treated group (140%). Comparable increases were seen for the abundance of IGF-I mRNA in liver in these two treatment groups, compared to the vehicle control. In contrast, while both IGF-I and GH elevated the IGF-I content in skeletal muscle similarly (80%), no increase in IGF-I mRNA expression was observed in this tissue. Neither treatment altered the IGF-I content in small intestine. At the time tissues were sampled (48 h), the plasma concentration of glucose and corticosterone was not different among the three groups. However, plasma insulin was reduced 50% in the IGF-I-infused animals, compared to values in either the shock-GH or shock-vehicle group. These data demonstrate that chronic administration of GH and, to a lesser extent, IGF-I, after intestinal I/R maintains levels of IGF-I in the blood, liver, and muscle. Thus, adjunct treatment with these anabolic agents may help blunt the increased catabolism observed in individuals following intestinal I/R.

  15. Serum free insulin-like growth factor-I in growth hormone-deficient adults before and after growth hormone replacement.

    PubMed

    Skjaerbaek, C; Vahl, N; Frystyk, J; Hansen, T B; Jørgensen, J O; Hagen, C; Christiansen, J S; Orskov, H

    1997-08-01

    The objective of the present study was to compare fasting levels of free IGF-I in serum from patients with adult onset growth hormone deficiency (GHD) and from healthy volunteers, and to examine the effect of GH replacement therapy in GHD on serum free IGF-I. Free IGF-I was measured using separation of free IGF-I by ultrafiltration in serum samples from 42 healthy volunteers and 27 patients with GHD, in the latter before and after 1 year of treatment with GH (2 IU/m2) (n = 13) or placebo (n = 14). Free IGF-I was significantly decreased in patients with GHD (700 +/- 100 ng/l (mean +/- S.E.M.), range 55-2618 ng/l) compared with controls (1010 +/- 70 ng/l, range 231-2431 ng/l; P = 0.0016). Total IGF-I was 85 +/- 10 micrograms/l (GHD) and 160 +/- 10 micrograms/l (controls) (P < 0.0001). The ratio of free over total IGF-I was increased in GHD to 0.85 +/- 0.08% compared with 0.66 +/- 0.05% in controls (P = 0.04). In both GHD and controls, free IGF-I correlated significantly (P < 0.05) with total IGF-I (GHD r = 0.78; controls r = 0.42), IGFBP-1 (GHD r = -0.67; controls r = -0.46) and the molar ratio of total IGF-I over IGFBP-3 (GHD r = 0.58; controls r = 0.62). After 1 year of GH treatment, free IGF-I was increased to 2780 +/- 320 ng/l (P = 0.003) and total IGF-I was increased to 270 +/- 30 micrograms/l (P = 0.006) both of which values were greater than those in healthy volunteers. There were no changes in free or total IGF-I in the placebo-treated group. In conclusion, levels of free IGF-I are decreased in GHD, but measurements of free IGF-I in a single, fasting serum sample do not offer a better separation of patients with GHD from individuals with normal GH status than can be achieved by measurement of total IGF-I. One year of treatment with 2IU/m2 GH caused an increase of serum free IGF-I to supraphysiological levels.

  16. Influence of modified transdermal hormone replacement therapy on the concentrations of hormones, growth factors, and bone mineral density in women with osteopenia.

    PubMed

    Stanosz, Staniaław; Zochowska, Ewa; Safranow, Krzysztof; Sieja, Krzysztof; Stanosz, Małgorzta

    2009-01-01

    The metabolic and therapeutic action of estrogens depends on their type, dosage, form, route of administration, and treatment-free interval during the therapeutic cycle. Hormone therapy is generally subclassified into 2 forms that differ in the type of hormones. In hormonal replacement therapy (HRT), estrogens and progesterone components do not differ in chemical structure and molecular mass from those naturally produced by the female organism. In hormonal supplementary therapy (HST), the estrogen and progestagen components do differ from the natural hormones in structure and mass. The aim of the study was to compare 2 kinds of hormonal therapy in early postmenopausal women with osteopenia. These forms of therapy are modified transdermal HRT and orally given HST. The objective of this study was the estimation of sex hormone, insulin-like growth factor I (IGF-I), prolactin (PRL), osteocalcin, and procollagen concentration in serum as well as the degree of mineralization of the lumbar spine in women in the early postmenopausal period with osteopenia under different kinds of hormonal therapy. The study was conducted in 75 women with an average age of 52.4 +/- 3.5 years and with primary osteopenia, in the early postmenopausal period, who were randomly assigned to 3 groups depending on the form and route of administration of therapy: Group I (n = 25, control) was receiving placebo in the form of patches. Group II (n = 25) was treated with modified transdermal HRT. This group obtained micronized 17beta-estradiol at increasing-decreasing doses and progesterone in the second phase of the therapeutic cycle. Group III (n = 25) was receiving orally given HST and obtained Cyclo-Menorette (Wyeth, Munster, Germany). The therapeutic cycle in each group lasted 21 days, followed by a 7-day medication-free interval. Estradiol concentration in serum was increased 5-fold and estrone (E(1)) was increased about 11-fold in the group of women receiving orally given HST (P < .0001

  17. A nonpeptidyl growth hormone secretagogue.

    PubMed

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  18. Does growth hormone releasing factor desensitize the somatotroph? Interpretation of responses of growth hormone during and after 10-hour infusion of GRF 1-29 amide in man.

    PubMed

    Davis, J R; Sheppard, M C; Shakespear, R A; Lynch, S S; Clayton, R N

    1986-02-01

    It is unclear whether growth hormone releasing factor (GRF) administration in vivo may desensitize the somatotroph. To investigate this possibility we have examined the effects of 10-h infusion of the equipotent 1-29 amide analogue of hpGRF on serum GH levels and on the subsequent GH response to a bolus dose of GRF (1-29). Four normal adult males received an intravenous infusion of 1-29 GRF (1 microgram/kg/h) from 0800 to 1800 h, with blood samples taken at 10 min intervals. A 100 micrograms intravenous bolus dose of GRF was given at 1800 h, and sampling continued for a further 90 min. GH levels were near or below the limit of detection (0.5 mU/l) throughout the control 10 h period. During GRF infusion there was increased GH release with pulses of irregular frequency and amplitude (up to 80 mU/l) continuing throughout the entire infusion period. There was no apparent reduction in total GH released towards the latter part of the infusion. On the control day, 100 micrograms GRF bolus increased mean (+/- SEM) GH from 0.82 +/- 0.21 mU/l to a peak of 59.0 +/- 44.8 mU/l (P less than 0.002). Following 10-GRF infusion, responses to bolus injection of GRF were reduced, but variable. In two subjects a small rise in GH levels occurred (basal 6.4 and 7.2 rising to peak values of 11.2 and 23.0 mU/l respectively). In the other two subjects, GH levels fell but in these the GRF bolus had coincided with a GH peak. The loss of GRF responsiveness after GRF infusion may be due to 'desensitization'.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Hormonal and nutritional drivers of intrauterine growth.

    PubMed

    Sferruzzi-Perri, Amanda N; Vaughan, Owen R; Forhead, Alison J; Fowden, Abigail L

    2013-05-01

    Size at birth is critical in determining life expectancy with both small and large neonates at risk of shortened life spans. This review examines the hormonal and nutritional drivers of intrauterine growth with emphasis on the role of foetal hormones as nutritional signals in utero. Nutrients drive intrauterine growth by providing substrate for tissue accretion, whereas hormones regulate nutrient distribution between foetal oxidative metabolism and mass accumulation. The main hormonal drivers of intrauterine growth are insulin, insulin-like growth factors and thyroid hormones. Together with leptin and cortisol, these hormones control cellular nutrient uptake and the balance between accretion and differentiation in regulating tissue growth. They also act indirectly via the placenta to alter the materno-foetal supply of nutrients and oxygen. By responding to nutrient and oxygen availability, foetal hormones optimize the survival and growth of the foetus with respect to its genetic potential, particularly during adverse conditions. However, changes in the intrauterine growth of individual tissues may alter their function permanently. In both normal and compromised pregnancies, intrauterine growth is determined by multiple hormonal and nutritional drivers which interact to produce a specific pattern of intrauterine development with potential lifelong consequences for health.

  20. Growth hormone stimulation test (image)

    MedlinePlus

    ... test is usually performed to identify if hGH (human growth hormone) is deficient. The test is performed by administering the amino acid arginine in a vein to raise hGH levels. The test measures the ability of the pituitary to secrete growth hormone in ...

  1. Evidences for involvement of growth hormone and insulin-like growth factor in ovarian development of starry flounder (Platichthys stellatus).

    PubMed

    Xu, Yongjiang; Wang, Bin; Liu, Xuezhou; Shi, Bao; Zang, Kun

    2017-04-01

    Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and

  2. Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos.

    PubMed

    Moreira, F; Paula-Lopes, F F; Hansen, P J; Badinga, L; Thatcher, W W

    2002-01-15

    The objectives of this study were to determine whether the addition of growth hormone (GH) to maturation medium and GH or insulin-like growth factor-I (IGF-I) to culture medium affects development of cultured bovine embryos. We matured groups of 10 cumulus-oocyte complexes (COCs) in serum-free TCM-199 medium containing FSH and estradiol with or without 100 ng/ml GH. After fertilization, we transferred groups of 10 putative zygotes to 25 microl drops of a modified KSOM medium containing the following treatments: non-specific IgG (a control antibody, 10 microg/ml); GH (100 ng/ml) + IgG (10 microg/ml, GH/IgG); IGF-I (100 ng/ml) + IgG (10 microg/ml, IGF/IgG); antibody to IGF-I (10 microg/ml, anti-IGF); GH (100 ng/ml) + anti-IGF (10 microg/ml GH/anti-IGF); IGF-I (100 ng/ml) + anti-IGF (10 microg/ml, IGF/anti-IGF); no further additions (control). We repeated the experiment six times. Adding GH to the maturation medium increased cleavage rates at Day 3 compared to control (87.3 +/- 1.2% > 83.9 +/- 1.2%; P < 0.05) but had no effects on blastocyst development at Day 8. At Day 8, blastocyst development was greater (P < 0.01) for GH/IgG (24.8 +/- 2.5%) and IGF/IgG (33.7 +/- 2.5%) than for IgG (16.1 +/- 2.1%) and greater for IGF/IgG than for GH/IgG (P < 0.02). Blastocyst development at Day 8 did not differ between anti-IGF (20.4 +/- 1.8%) and GH/anti-IGF (24.1 +/- 1.9%) or IGF/anti-IGF (17.7 +/- 1.9%), but it was greater for GH/anti-IGF than for IGF/anti-IGF (P < 0.05). The Day 8 blastocysts of GH/IgG and IGF-I/IgG groups had a higher (P < 0.01) number of cells than the IgG group. The addition of anti-IGF-I eliminated the effects of IGF-I on cell number but did not alter GH effects. In conclusion, both GH and IGF-I stimulate embryonic development in cattle and GH effects may likely involve IGF-I-independent mechanisms.

  3. Growth hormone regulation of follicular growth.

    PubMed

    Lucy, Matthew C

    2011-01-01

    The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.

  4. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  5. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  6. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes.

    PubMed

    Zajac, Adam; Poprzecki, Stanisław; Zebrowska, Aleksandra; Chalimoniuk, Małgorzata; Langfort, Jozef

    2010-04-01

    This placebo-controlled double-blind study was designed to investigate the effect of arginine and ornithine (arg and orn) supplementation during 3-week heavy-resistance training on serum growth hormone/insulin-like growth factor-1/insulin-like growth factor-binding protein 3 (GH/IGF-1/IGFBP-3), testosterone, cortisol, and insulin levels in experienced strength-trained athletes. The subjects were randomly divided between a placebo group (n = 8) and the l-Arg/l-Orn-supplemented group (n = 9), and performed pre and posttraining standard exercise tests with the same absolute load, which consisted of the same exercise schedule as that applied in the training process. Fasting blood samples were obtained at rest, 2 minutes after the cessation of the strength exercise protocol, and after 1 hour of recovery. The resting concentrations of the investigated hormones and IGFBP-3 did not differ significantly between the study groups. In response to exercise test, all the hormones were elevated (p < 0.05) at both time points. Significant increases (p < 0.05) were observed in both GH and IGF-1 serum levels after arg and orn supplementation at both time points, whereas a significant decrease was seen in IGFBP-3 protein during the recovery period. Because there was no between-group difference in the remaining hormone levels, it appears that the GH/IGF-1/IGFBP-3 complex may be the major player in muscle tissue response to short-term resistance training after arg and orn supplementation.

  7. Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor 1 in Brahman bulls.

    PubMed

    Fortes, Marina R S; Reverter, Antonio; Hawken, Rachel J; Bolormaa, Sunduimijid; Lehnert, Sigrid A

    2012-09-01

    Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (∼800 000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.

  8. Association between the Growth Hormone Receptor Exon 3 Polymorphism and Metabolic Factors in Korean Patients with Acromegaly

    PubMed Central

    Park, Hye Yoon; Hwang, In Ryang; Seo, Jung Bum; Kim, Su Won; Seo, Hyun Ae; Lee, In Kyu

    2015-01-01

    Background This study investigated the association between the frequency of growth hormone receptor (GHR) exon 3 polymorphism (exon 3 deletion; d3-GHR) and metabolic factors in patients with acromegaly in Korea. Methods DNA was extracted from the peripheral blood of 30 unrelated patients with acromegaly. GHR genotypes were evaluated by polymerase chain reaction and correlated with demographic data and laboratory parameters. Results No patient had the d3/d3 genotype, while four (13.3%) had the d3/fl genotype, and 26 (86.7%) had the fl/fl genotype. Body mass index (BMI) in patients with the d3/fl genotype was significantly higher than in those with the fl/fl genotype (P=0.001). Age, gender, blood pressure, insulin-like growth factor-1, growth hormone, fasting plasma glucose, triglycerides, high density lipoprotein cholesterol, and low density lipoprotein cholesterol levels showed no significant differences between the two genotypes. Conclusion The d3-GHR polymorphism may be associated with high BMI but not with other demographic characteristics or laboratory parameters. PMID:25559716

  9. Transcription Factor SOX3 Is Involved in X-Linked Mental Retardation with Growth Hormone Deficiency

    PubMed Central

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C. J.; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]–box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  10. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    PubMed

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C J; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; Van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-12-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development.

  11. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  12. The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.

    PubMed

    Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W

    1999-01-01

    Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of

  13. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation.

    PubMed

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Brackenbury, William J; Fitzgerald, Elizabeth M; Campbell, Thomas M; Coombes, R Charles; Djamgoz, Mustafa B A

    2014-03-19

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer.

  14. Effect of KiFAY on Performance, Insulin-like Growth Factor-1, and Thyroid Hormones in Broilers

    PubMed Central

    Kini, Amit; Fernandes, Custan; Suryawanshi, Dayaram

    2016-01-01

    A comparative study was performed to investigate the efficacy of KiFAY as a feed additive on performance parameters, thyroid, and pancreatic hormone levels in broilers. Ninety birds (Vencobb 400) were randomly divided into three groups viz., Control (no DL-methionine supplementation), Treatment1 (containing added DL-methionine) and Treatment 2 (containing KiFAY and without DL-methionine supplementation). The performance parameters (weekly body weight, body weight gain, feed intake, and feed consumption ratio) were recorded and calculated during the whole study of 4 weeks. Analyses of insulin and insulin-like growth factor (IGF 1), triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) were performed at the end of the study. The results show that birds on supplementation of KiFAY performed significantly (p<0.001) better than other treatments. The weekly body weight, body weight gain, feed in-take and feed consumption ratio improved in KiFAY treated birds. The study found an increase in insulin and IGF1 levels (p<0.001) in KiFAY compared with the other treatments. Serum T3, T4, and TSH levels in the Treatment 2 were higher than other treatments (p<0.001). The KiFAY supplementation was able to improve performance with associated responses at a hormonal level in broilers. PMID:27221245

  15. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation

    PubMed Central

    Fraser, Scott P.; Ozerlat-Gunduz, Iley; Brackenbury, William J.; Fitzgerald, Elizabeth M.; Campbell, Thomas M.; Coombes, R. Charles; Djamgoz, Mustafa B. A.

    2014-01-01

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na+ channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  16. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    PubMed

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO (BmFOXO) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles.

    PubMed

    Lin, Jin-xing; Jia, Yu-dong; Zhang, Cai-qiao

    2011-11-01

    The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1-100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

  18. Growth Hormone Therapy in Children with Chronic Renal Failure

    PubMed Central

    Cayir, Atilla; Kosan, Celalettin

    2015-01-01

    Growth is impaired in a chronic renal failure. Anemia, acidosis, reduced intake of calories and protein, decreased synthesis of vitamin D and increased parathyroid hormone levels, hyperphosphatemia, renal osteodystrophy and changes in growth hormone-insulin-like growth factor and the gonadotropin-gonadal axis are implicated in this study. Growth is adversely affected by immunosuppressives and corticosteroids after kidney transplantation. Treating metabolic disorders using the recombinant human growth hormone is an effective option for patients with inadequate growth rates. PMID:25745347

  19. Growth hormone therapy in children with chronic renal failure.

    PubMed

    Cayir, Atilla; Kosan, Celalettin

    2015-02-01

    Growth is impaired in a chronic renal failure. Anemia, acidosis, reduced intake of calories and protein, decreased synthesis of vitamin D and increased parathyroid hormone levels, hyperphosphatemia, renal osteodystrophy and changes in growth hormone-insulin-like growth factor and the gonadotropin-gonadal axis are implicated in this study. Growth is adversely affected by immunosuppressives and corticosteroids after kidney transplantation. Treating metabolic disorders using the recombinant human growth hormone is an effective option for patients with inadequate growth rates.

  20. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin.

    PubMed

    Campbell, B; Dickey, J; Beckman, B; Young, G; Pierce, A; Fukada, H; Swanson, P

    2006-07-01

    Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star, igf1, and igf2. A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development.

  1. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  2. [Hormone replacement therapy--growth hormone, melatonin, DHEA and sex hormones].

    PubMed

    Fukai, Shiho; Akishita, Masahiro

    2009-07-01

    The ability to maintain active and independent living as long as possible is crucial for the healthy longevity. Hormones responsible for some of the manifestations associated with aging are growth hormone, insulin-like growth factor-1 (IGF-1), melatonin, dehydroepiandrosterone (DHEA), sex hormones and thyroid hormones. These hormonal changes are associated with changes in body composition, visceral obesity, muscle weakness, osteoporosis, urinary incontinence, loss of cognitive functioning, reduction in well being, depression, as well as sexual dysfunction. With the prolongation of life expectancy, both men and women today live the latter third life with endocrine deficiencies. Hormone replacement therapy may alleviate the debilitating conditions of secondary partial endocrine deficiencies by preventing or delaying some aspects of aging.

  3. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

    PubMed Central

    Anh, Nguyen Thi Lan; Kunhareang, Sajee; Duangjinda, Monchai

    2015-01-01

    Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in PS×KM chickens. For PS×KT populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers. PMID:26580435

  4. Stimulation of cartilage amino acid uptake by growth hormone-dependent factors in serum. Mediation by adenosine 3':5'-monophosphate.

    PubMed

    Drezner, M K; Eisenbarth, G S; Neelon, F A; Lebovitz, H E

    1975-02-13

    The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of alpha-amino [1-14C] isobutyrate or [1-14C] cycloleucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate amino-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r=0.977). Theophylline and prostaglandin E1, WHICH RAISE CARTILAGE CYCLIC AMP also increase amino-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyryl cyclic AMP and n6, 02'-dibutyryl cyclic AMP increase cartilage amino-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.

  5. Insulin-like growth factor I modulates hypothalamic somatostatin through a growth hormone releasing factor increased somatostatin release and messenger ribonucleic acid levels.

    PubMed

    Aguila, M C; Boggaram, V; McCann, S M

    1993-10-22

    Insulin-like growth factor I (IGF-I) has been shown to participate in feedback inhibition of growth hormone (GH) secretion at the level of both the pituitary and hypothalamus. Therefore, we tested the possible involvement of IGF-I on somatostatin (SRIF) and GH-releasing factor (GRF) release in median eminence (ME) fragments and periventricular nucleus (PeN) of male rats. The levels of SRIF messenger ribonucleic acid (mRNA) were also determined in PeN incubated in vitro with IGF-I. The ME's were incubated in Krebs-Ringer bicarbonate glucose buffer in the presence of various concentrations of IGF-I (10(-7) to 10(-11) M) for 30 min. SRIF and GRF released into the medium were quantitated by RIA. The release of SRIF and GRF from the ME's was stimulated significantly (P < 0.025 and P < 0.05, respectively) by 10(-9) M IGF-I. To determine whether the effect of IGF-I on SRIF release is mediated by GRF release in the ME, a specific GRF antibody (ab) (1:500) was used concomitantly with IGF-I (10(-9) M). The release of SRIF induced by IGF-I was blocked by the GRF ab (P < 0.001), but not by normal rabbit serum used at the same dilution. To determine the effect of IGF-I on the regulation of SRIF mRNA levels, SRIF mRNA was determined in PeN explants incubated in the presence of IGF-I (10(-8) to 10(-10) M) for 2 to 6 h. Levels of SRIF mRNA were determined by a S1 nuclease protection assay using a 32P-labelled rat SRIF riboprobe.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs.

    PubMed

    Wańkowska, Marta; Polkowska, Jolanta; Misztal, Tomasz; Romanowicz, Katarzyna

    2012-07-01

    The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development.

  7. The growth hormone-insulin-like growth factor axis in glycogen storage disease type 1: evidence of different growth patterns and insulin-like growth factor levels in patients with glycogen storage disease type 1a and 1b.

    PubMed

    Melis, Daniela; Pivonello, Rosario; Parenti, Giancarlo; Della Casa, Roberto; Salerno, Mariacarolina; Balivo, Francesca; Piccolo, Pasquale; Di Somma, Carolina; Colao, Annamaria; Andria, Generoso

    2010-04-01

    To investigate the growth hormone (GH)-insulin-like growth factor (IGF) system in patients with glycogen storage disease type 1 (GSD1). This was a prospective, case-control study. Ten patients with GSD1a and 7 patients with GSD1b who were given dietary treatment and 34 sex-, age-, body mass index-, and pubertal stage-matched control subjects entered the study. Auxological parameters were correlated with circulating GH, either at basal or after growth hormone releasing hormone plus arginine test, insulin-like growth factors (IGF-I and IGF-II), and anti-pituitary antibodies (APA). Short stature was detected in 10.0% of patients with GSD1a, 42.9% of patients with GSD1b (P = .02), and none of the control subjects. Serum IGF-I levels were lower in patients with GSD1b (P = .0001). An impaired GH secretion was found in 40% of patients with GSD1a (P = .008), 57.1% of patients with GSD1b (P = .006), and none of the control subjects. Short stature was demonstrated in 3 of 4 patients with GSD1b and GH deficiency. The prevalence of APA was significantly higher in patients with GSD1b than in patients with GSD1a (P = .02) and control subjects (P = .03). The GH response to the provocative test inversely correlated with the presence of APA (P = .003). Compared with levels in control subjects, serum IGF-II and insulin levels were higher in both groups of patients, in whom IGF-II levels directly correlated with height SD scores (P = .003). Patients with GSD1a have an impaired GH secretion associated with reference range serum IGF-I levels and normal stature, whereas in patients with GSD1b, the impaired GH secretion, probably because of the presence of APA, was associated with reduced IGF-I levels and increased prevalence of short stature. The increased IGF-II levels, probably caused by increased insulin levels, in patients with GSD1 are presumably responsible for the improved growth pattern observed in patients receiving strict dietary treatment. Copyright 2010 Mosby, Inc. All

  8. Effects of growth hormone, insulin-like growth factor I, triiodothyronine, thyroxine, and cortisol on gene expression of carbohydrate metabolic enzymes in sea bream hepatocytes.

    PubMed

    Leung, L Y; Woo, Norman Y S

    2010-11-01

    The present study investigated the regulatory effects of growth hormone (GH), human insulin-like growth factor I (hIGF-I), thyroxine (T(4)), triiodothyronine (T(3)) and cortisol, on mRNA expression of key enzymes involved in carbohydrate metabolism, including glucokinase (GK), glucose-6-phosphatase (G6Pase), glycogen synthase (GS), glycogen phosphorylase (GP) and glucose-6-phosphate dehydrogenase (G6PDH) in hepatocytes isolated from silver sea bream. Genes encoding GK, G6Pase, GS and GP were partially cloned and characterized from silver sea bream liver and real-time PCR assays were developed for the quantification of the mRNA expression profiles of these genes in order to evaluate the potential of these carbohydrate metabolic pathways. GK mRNA level was elevated by GH and hIGF-I, implying that GH-induced stimulation of GK expression may be mediated via IGF-I. GH was found to elevate GS and G6Pase expression, but reduce G6PDH mRNA expression. However, hIGF-I did not affect mRNA levels of GS, G6Pase and G6PDH, suggesting that GH-induced modulation of GS, G6Pase and G6PDH expression levels is direct, and occurs independently of the action of IGF-I. T(3) and T(4) directly upregulated transcript abundance of GK, G6Pase, GS and GP. Cortisol significantly increased transcript amounts of G6Pase and GS but markedly decreased transcript abundance of GK and G6PDH. These changes in transcript abundance indicate that (1) the potential of glycolysis is stimulated by GH and thyroid hormones, but attenuated by cortisol, (2) gluconeogenic and glycogenic potential are augmented by GH, thyroid hormones and cortisol, (3) glycogenolytic potential is upregulated by thyroid hormones but not affected by GH or cortisol, and (4) the potential of the pentose phosphate pathway is attenuated by GH and cortisol but unaffected by thyroid hormones.

  9. Insulin-like growth factor-I treatment of children with Laron syndrome (primary growth hormone insensitivity).

    PubMed

    Laron, Zvi

    2008-03-01

    Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.

  10. Growth Hormone Deficiency in Children

    MedlinePlus

    ... brain. In children, GH is essential for normal growth, muscle and bone strength, and distribution of body fat. ... Delayed puberty What are the side effects of growth hormone therapy? Mild to moderate side ... Muscle or joint pain • Mildly underactive thyroid gland • Swelling ...

  11. Growth Hormone: Use and Abuse

    MedlinePlus

    ... GH helps children grow taller (also called linear growth), increases muscle mass, and decreases body fat. In both children ... syndrome In adults, GH is used to treat • Growth hormone deficiency • Muscle wasting (loss of muscle tissue) from HIV • Short ...

  12. Paraneoplastic hormones: parathyroid hormone-related protein (PTHrP) and erythropoietin (EPO) are related to vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma.

    PubMed

    Feng, Chen-chen; Ding, Guan-xiong; Song, Ning-hong; Li, Xuan; Wu, Zhong; Jiang, Hao-wen; Ding, Qiang

    2013-12-01

    To investigate the correlation between parathyroid hormone-related protein (PTHrP), erythropoietin (EPO), and vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemical studies on PTHrP, EPO and VEGF were performed in 249 patients with ccRCC. Serum calcium level and haematocrit were analyzed. The expression of the factors and clinicopathological parameters were studied statistically for possible correlations. The incidence for hypercalcaemia and polycythaemia were 15.3% and 2.0% respectively. Expression of PTHrP, EPO, and VEGF were respectively related to advanced stage (P < 0.0001 respectively). PTHrP was not related to tumour grade. Expressions of EPO and VEGF were correlated to tumour grade significantly. All factors were expressed higher in hypercalcaemic patients. PTHrP, EPO, and VEGF were positively correlated with each other in non-hypercalcaemic patients yet not in hypercalcaemic ones. PTHrP and EPO are related to VEGF expression and to the progression of ccRCC. This finding offers us new insight on the behaviour of ccRCC and offers possible targets in RCC treatment.

  13. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tighe, Rachel L; Bonde, Robert K.; Avery, Julie P.

    2016-01-01

    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p > 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue

  14. Gonadotropin-releasing hormone overcomes follicle-stimulating hormone's inhibition of insulin-like growth factor-5 synthesis and promotion of its degradation in rat granulosa cells.

    PubMed

    Onoda, N; Li, D; Mickey, G; Erickson, G; Shimasaki, S

    1995-04-28

    The effect of a gonadotropin-releasing hormone-agonist (GnRH-a) on the synthesis of insulin-like growth factor-binding protein-5 (IGFBP-5), a physiological marker for atresia, was investigated. Granulosa cells obtained from diethylstilbestrol (DES)-treated immature female rats were cultured in serum-free medium for 72 h with GnRH-a and the conditioned media were subjected to immunoblot analysis using rat IGFBP-5 specific antibody. GnRH-a caused a dose-dependent (ED50 = 8.6 x 10(-11) M) accumulation of IGFBP-5, which migrated as 35 (non-glycosylated) and 36 kDa (glycosylated) bands under reducing conditions. A maximally effective dose of GnRH-a (10(-9) M) caused a 4-fold increase in IGFBP-5 accumulation. In contrast, increasing doses of porcine follicle-stimulating hormone (pFSH) caused a biphasic effect on IGFBP-5 accumulation. A low dose of pFSH (0.25 ng/ml) increased and higher doses of pFSH (22.5 ng/ml) decreased the 35 and 36 kDa IGFBP-5 bands. In the presence of high doses of pFSH (20.75 ng/ml), a 22 kDa band corresponding to a cleaved IGFBP-5 fragment appeared in the media. When the granulosa cells were cultured with a saturating dose of pFSH, co-addition of GnRH-a dose dependently inhibited the FSH effects (ED50 = (2.3-3.7) x 10(-10) M). The GnRH-a effects were completely blocked by co-incubation with GnRH-antagonist. IGFBP-5 mRNA accumulation levels were increased by GnRH-a in a dose dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines.

    PubMed

    Starr, Lisa M; Scott, Marilyn E; Koski, Kristine G

    2015-01-01

    Protein deficiency (PD) and intestinal nematode infections commonly co-occur during pregnancy and impair fetal growth, but the complex network of signals has not been explored. Our objective was to assess those stress hormones, growth factors, and cytokines affected by maternal PD and nematode infection and associated with fetal growth. Using a 2 × 2 factorial design, CD-1 mice, fed protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isoenergetic diets, were either uninfected or infected every 5 d with Heligmosomoides bakeri, beginning on gestational day (GD) 5. Biomarker concentrations were measured on GD 18 in maternal serum (m), fetal serum (f), and amniotic fluid (af) by using Luminex. Maternal PD lowered fetal body mass (PS/uninfected 1.25 ± 0.02 g, PS/infected 1.19 ± 0.02 g vs. PD/uninfected 1.11 ± 0.02 g, PD/infected 0.97 ± 0.02 g; P = 0.02), fetal lung (P = 0.005), and liver (P = 0.003) but not brain mass, whereas maternal infection lowered fetal length (PS/uninfected 2.28 ± 0.02 cm, PD/uninfected 2.27 ± 0.03 cm vs. PS/infected 2.21 ± 0.03 cm, PD/infected 2.11 ± 0.02 cm; P = 0.05) and kidney mass (P = 0.04). PD elevated stress hormones (m-adrenocortiotropic hormone, f-corticosterone, af-corticosterone) and reduced insulin-like growth factor 1 in all compartments (P ≤ 0.01), but these were unassociated with fetal mass or length. Fetal mass was positively associated with f-leptin (R(2) = 0.71, P = 0.0001) and negatively with fetal cytokines [tumor necrosis factor-α: R(2) = 0.62, P = 0.001; interleukin-4 (IL-4): R(2) = 0.63, P = 0.0004]. In contrast, maternal infection lowered f-prolactin (P = 0.02) that was positively associated with fetal length (R(2) = 0.43; P = 0.03); no other biomarker was affected by infection. Regression analyses showed associations between organ growth, cytokines, and growth factors: 1) thymus, spleen, heart, and brain with m-IL-10; 2) brain and kidney with f-vascular endothelial growth factor, af

  16. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  17. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation

    PubMed Central

    Fei, Yurong; Hurley, Marja M.

    2012-01-01

    Osteoporosis poses enormous health and economic burden worldwide. One of the very few anabolic agents for osteoporosis is parathyroid hormone (PTH). Although great progress has been made since the FDA approved PTH in 2002, the detailed mechanisms of the bone anabolic effects of intermittent PTH treatment is still not well understood. PTH bone anabolic effect is regulated by extracellular factors. Maximal bone anabolic effect of PTH requires fibroblast growth factor 2 (FGF2) signaling, which might be mediated by transcription factor activating transcription factor 4 (ATF4). Maximal bone anabolic effect of PTH also requires Wnt signaling. Particularly, Wnt antagonists such as sclerostin, dickkopf 1 (DKK1) and secreted frizzled related protein 1 (sFRP1) are promising targets to increase bone formation. Interestingly, FGF2 signaling modulates Wnt/β-Catenin signaling pathway in bone. Therefore, multiple signaling pathways utilized by PTH are cross talking and working together to promote bone formation. Extensive studies on the mechanisms of action of PTH will help to identify new pathways that regulate bone formation, to improve available agents to stimulate bone formation, and to identify potential new anabolic agents for osteoporosis. PMID:22378151

  18. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation.

    PubMed

    Fei, Yurong; Hurley, Marja M

    2012-11-01

    Osteoporosis poses enormous health and economic burden worldwide. One of the very few anabolic agents for osteoporosis is parathyroid hormone (PTH). Although great progress has been made since the FDA approved PTH in 2002, the detailed mechanisms of the bone anabolic effects of intermittent PTH treatment is still not well understood. PTH bone anabolic effect is regulated by extracellular factors. Maximal bone anabolic effect of PTH requires fibroblast growth factor 2 (FGF2) signaling, which might be mediated by transcription factor activating transcription factor 4 (ATF4). Maximal bone anabolic effect of PTH also requires Wnt signaling. Particularly, Wnt antagonists such as sclerostin, dickkopf 1 (DKK1) and secreted frizzled related protein 1 (sFRP1) are promising targets to increase bone formation. Interestingly, FGF2 signaling modulates Wnt/β-Catenin signaling pathway in bone. Therefore, multiple signaling pathways utilized by PTH are cross talking and working together to promote bone formation. Extensive studies on the mechanisms of action of PTH will help to identify new pathways that regulate bone formation, to improve available agents to stimulate bone formation, and to identify potential new anabolic agents for osteoporosis. Copyright © 2012 Wiley Periodicals, Inc.

  19. Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development.

    PubMed

    Ruan, W; Powell-Braxton, L; Kopchick, J J; Kleinberg, D L

    1999-05-01

    Insulin-like growth factor I (IGF-I) has been implicated as a factor that may predispose one to prostate cancer. However, no specific relationship between IGF-I and prostate development or cancer in vivo has been established. To determine whether IGF-I was important in prostate development, we examined prostate architecture in IGF-I(-/-) null mice and wild-type littermates. Glands from 44-day-old IGF-I-deficient animals were not only smaller than those from wild-type mice, but also had fewer terminal duct tips and branch points and deficits in tertiary and quaternary branching (P < 0.0001), indicating a specific impairment in gland structure. Administration of des(1-3)-IGF-I for 7 days partially reversed the deficit by increasing those parameters of prostate development (P < 0.006). That IGF-I production probably mediates an effect of GH in this process was indicated by the observations that GH antagonist transgenic mice also had significantly impaired prostate development (P < 0.0002) and that bovine GH had no independent effect on stimulating prostate development in IGF-I null animals. The data indicate that IGF-I deficiency is the proximate cause of impaired prostate development and give credence to the idea that, like testosterone, GH and IGF-I may be involved in prostate cancer growth as an extension of a normal process.

  20. Growth Hormone Deficiency in Adults

    MedlinePlus

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Learn About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ...

  1. Effect of growth factors and steroid hormones on heme oxygenase and cyclin D1 expression in primary astroglial cell cultures.

    PubMed

    Bramanti, V; Grasso, S; Tomassoni, D; Traini, E; Raciti, G; Viola, M; Li Volti, G; Campisi, A; Amenta, F; Avola, R

    2015-03-01

    Astrocyte activity may be modulated by steroid hormones and GFs. This study investigates the interaction between glucocorticoids or estrogens and GFs on the expression of heme oxygenase-1 (HO-1) and cyclin D1 in astrocyte cultures at 14 days treated for 48 or 60 hr with dexamethasone (DEX) or 48 hr with 17β-estradiol (E2) alone or with GFs added only in the last 12 or 24 hr. Twelve- or twenty-four-hour epidermal growth factor (EGF) treatment significantly enhanced HO-1 expression in astrocyte cultures pretreated for 48 hr with DEX. A highly significant increase in HO-1 expression was obtained after the last-12-hr EGF treatment in 48-hr E2-pretreated astrocyte cultures; this enhancement was particularly significant in 48-hr E2-pretreated cultures as well as in the last-12-hr insulin-treated ones pretreated for 48 hr with E2. Sixty-hour DEX-alone pretreatment as well as the last-12-hr EGF treatment in 60-hr DEX-pretreated astrocyte cultures showed a significant increase of cyclin D1 expression. A significant decrease of cyclin D1 expression in the last-12-hr insulin-like growth factor-I (IGF-1)-treated cultures pretreated for 60 hr with DEX was observed. A highly significant enhancement in cyclin D1 expression in 14 days in vitro astrocyte cultures pretreated with E2 alone for 48 hr and treated in the last 12 hr with IGF-1 in 48-hr E2-pretreated cultures was found. Finally, the data highlight an interactive dialogue between the growth factors and glucocorticoids or estrogens during the maturation of astroglial cells in culture that may control the HO-1 and cyclin D1 expression as well as proliferating astroglial cells during the cell cycle.

  2. Growth hormone abuse and bodybuilding as aetiological factors in the development of bilateral internal laryngocoeles. A case report.

    PubMed

    Moor, James W; Khan, M Iqbal J

    2005-07-01

    A 36-year-old man presented with hoarseness and stridor. He was an elite professional bodybuilder and admitted to having abusing anabolic steroids and growth hormone in the recent past. A CT scan showed bilateral laryngocoeles. The patient was initially managed with intravenous corticosteroids and broad-spectrum antibiotics, and the stridor resolved sufficiently to permit discharge from the hospital. He proceeded to undergo endoscopic marsupialisation of his laryngocoeles and to date has made a full recovery. This is the first reported case where anabolic steroid and growth hormone abuse combined with an elite bodybuilder's exercise regime has been implicated in the aetiology of bilateral laryngocoeles.

  3. Effect of insulin-like growth factor-I treatment on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance).

    PubMed

    Laron, Z; Klinger, B

    1998-02-01

    Serum gonadotrophins. androgens, insulin and insulin-like growth factor-I (IGF-I) were determined before and during long-term treatment with recombinant IGF-I of seven males with Laron syndrome, and the changes correlated with changes in testicular volume and penile size. The subjects were four boys below the age of 5, two boys aged 10 and 14 but prepubertal and one 28-year-old fully sexually developed adult. IGF-I was administered by a once daily subcutaneous injection of 150 microg/kg per day to the boys and 120 microg/kg per day to the adult patient. In the very young boys no change in serum gonadotrophins, androgens, gonads or genitals was registered. In the two older boys and the adult patient, there was a progressive rise in luteinizing hormone, follicle-stimulating hormone and testosterone. Concomitantly, there was an increase in size of the testes and penile length. The two boys started puberty. As very high serum IGF-I levels were registered in the adult patient, the daily dose was progressively decreased to 70 microg/kg per day. Stopping the IGF-I administration in this patient, according to the protocol, led to a return to pretreatment serum levels and testicular and penile size. This report shows for the first time a direct effect of IGF-I on sex hormones and sex organs in the male.

  4. Anabolic steroids and growth hormone.

    PubMed

    Haupt, H A

    1993-01-01

    Athletes are generally well educated regarding substances that they may use as ergogenic aids. This includes anabolic steroids and growth hormone. Fortunately, the abuse of growth hormone is limited by its cost and the fact that anabolic steroids are simply more enticing to the athlete. There are, however, significant potential adverse effects regarding its use that can be best understood by studying known growth hormone excess, as demonstrated in the acromegalic syndrome. Many athletes are unfamiliar with this syndrome and education of the potential consequences of growth hormone excess is important in counseling athletes considering its use. While athletes contemplating the use of anabolic steroids may correctly perceive their risks for significant physiologic effects to be small if they use the steroids for brief periods of time, many of these same athletes are unaware of the potential for habituation to the use of anabolic steroids. The result may be incessant use of steroids by an athlete who previously considered only short-term use. As we see athletes taking anabolic steroids for more prolonged periods, we are likely to see more severe medical consequences. Those who eventually do discontinue the steroids are dismayed to find that the improvements made with the steroids generally disappear and they have little to show for hours or even years of intense training beyond the psychological scars inherent with steroid use. Counseling of these athletes should focus on the potential adverse psychological consequences of anabolic steroid use and the significant risk for habituation.

  5. A Modified In vitro Invasion Assay to Determine the Potential Role of Hormones, Cytokines and/or Growth Factors in Mediating Cancer Cell Invasion.

    PubMed

    Bagati, Archis; Koch, Zethan; Bofinger, Diane; Goli, Haneesha; Weiss, Laura S; Dau, Rosie; Thomas, Megha; Zucker, Shoshanna N

    2015-04-24

    Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.

  6. Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membranes.

    PubMed Central

    Bruno, M; Brightman, A O; Lawrence, J; Werderitsh, D; Morré, D M; Morre, D J

    1992-01-01

    Plasma membranes of rat liver isolated by aqueous two-phase partition exhibited basal levels of NADH oxidase activity that were increased approx. 2-fold by addition of hormones and growth factors to which liver cells were known to respond. In contrast, hepatoma plasma membranes demonstrated an intrinsically increased level of NADH oxidase, which was not stimulated further by addition of growth factors. The results suggest that the NADH oxidase of the hepatoma plasma membrane is no longer correctly coupled to hormone and growth-factor receptors. This biochemical defect may parallel the loss of growth control that is characteristic of neoplastic transformation in hepatocarcinogenesis and other transformation systems. Images Fig. 3. PMID:1622384

  7. Growth hormone therapy in progeria.

    PubMed

    Sadeghi-Nejad, Ab; Demmer, Laurie

    2007-05-01

    Catabolic processes seen in Hutchinson-Gilford progeria resemble those of normal aging and, in the affected children, usually result in death at an early age. In addition to its growth promoting effects, growth hormone (GH) has potent anabolic properties. Administration of GH ameliorates some of the catabolic effects of normal aging. We report the results of GH treatment in a young child with progeria.

  8. Growth hormone stimulates protein synthesis in bovine skeletal muscle cells without altering insulin-like growth factor-I mRNA expression.

    PubMed

    Ge, X; Yu, J; Jiang, H

    2012-04-01

    Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.

  9. Nitrogen balance and mineral excretion in growing male pigs injected with a human growth hormone-releasing factor analog.

    PubMed Central

    Dubreuil, P; Abribat, T; Brazeau, P; Lapierre, H

    1998-01-01

    A human growth hormone-releasing factor analog ([Desamino-Tyr1,D-Ala2,Ala15] hGRF(1-29) NH2) has been reported to reduce feed intake and increase growth and feed efficiency in a dose-dependent manner in growing pigs. The aim of this study was to determine the effect of this analog on nitrogen (N) balance and mineral excretion. Fifteen castrated male Yorkshire x Landrace pigs (45.9 +/- 1.4 kg) were randomly allotted to 2 groups: control (saline, n = 7) and GRF (6.66 micrograms/kg sc, TID, n = 8). The animals were injected for 20 consecutive days: feces and urine were collected during the last 10 d of injection. The animals had free access to water and food until satiety (approximately 15 min) at 07:00, 11:00, 15:00, 19:00, 23:00 and 07:00 h. The diet consisted of a hog fattening ration (18.0% crude protein). Blood samples were collected on the last day of the study by venipuncture. This analog increased (P < 0.05) insulin-like growth factor-1 and glucose serum concentrations and decreased (P < 0.05) serum urea nitrogen concentration and feed intake. The GRF-treated animals ingested less N, excreted less N in urine and feces to retain a similar amount of N than controls. The apparent coefficient of digestibility of the N has been slightly increased (P < 0.05) by GRF. Urinary excretion of P, K, and Cl decreased (P < 0.01) with GRF treatment. In conclusion, this GRF analog increased N digestibility and retention relative to N ingestion and reduced urinary N, P, K, and Cl excretion. PMID:9442933

  10. Growth and obesity and its association with plasma level of steroid hormones and insulin-like growth factor-I (IGF-I) in Slovak female students.

    PubMed

    Zatko, T; Matejovicova, B; Boledovicova, M; Vondrakova, M; Bezakova, A; Sirotkin, A V

    2013-01-01

    The aim of the present study was to examine the possible role of steroid hormones and insulin-like growth factor 1 (IGF-I) in the control of human growth and obesity. We measured plasma level of progesterone, testosterone, estradiol and IGF-I in 301 young women at different stages of their ovarian cycle, and compared them to the standard morphometric indexes of their growth and obesity - body height, body weight, abdomen circumstance and waist to hip ratio (WHR). The ovarian cycle-dependent changes in plasma progesterone and estradiol, but not in testosterone and IGF-I level were found. Young women with higher body height had significantly higher plasma level of estradiol, testosterone and IGF-I, but not of progesterone, compared to subjects with lower body height in both follicular and luteal phases of the ovarian cycle. Subjects with a higher body weight had significantly higher plasma estradiol and progesterone, but not testosterone and IGF-I than subjects with lower body weight in both follicular and luteal phases of ovarian cycle. Women with a higher abdomen circumference had significantly lower plasma estradiol, but not the other hormones than the subjects with lower abdomen circumference. Women with higher WHR index had significantly higher plasma level of estradiol, but not other hormones than subjects with lower WHR index in both follicular and luteal phases of ovarian cycle. The present observations suggests: (1) that luteal phase of the women ovarian cycle is characterised by a dramatically increase in both progesterone and estradiol, but not in testosterone and IGF-I release, (2) that in human females growth can be up-regulated by testosterone, estradiol and IGF-I, but not by progesterone, (3) that body mass can be up-regulated by progesterone and estradiol, but not by testosterone or IGF-I, and (4) that women obesity (high WHR, but not abdomen circumference) can be promoted by estradiol, but not by other steroid hormones or IGF-I (Tab. 1, Fig. 4, Ref

  11. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.

  12. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development

    PubMed Central

    Chung, Wilson C. J.; Linscott, Megan L.; Rodriguez, Karla M.; Stewart, Courtney E.

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus–pituitary–gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success. PMID:27656162

  13. Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain

    PubMed Central

    2012-01-01

    Introduction We investigated the status of estrogen receptor alpha (ERα), progesterone receptor (PR), and epidermal growth factor receptor 2 (HER2) in primary tumor and in the corresponding brain metastases in a consecutive series of breast cancer patients. Additionally, we studied factors potentially influencing conversion and evaluated its association with survival. Methods The study group included 120 breast cancer patients. ERα, PR, and HER2 status in primary tumors and in matched brain metastases was determined centrally by immunohistochemistry and/or fluorescence in situ hybridization. Results Using the Allred score of ≥ 3 as a threshold, conversion of ERα and PR in brain metastases occurred in 29% of cases for both receptors, mostly from positive to negative. Conversion of HER2 occurred in 14% of patients and was more balanced either way. Time to brain relapse and the use of chemotherapy or trastuzumab did not influence conversion, whereas endocrine therapy induced conversion of ERα (P = 0.021) and PR (P = 0.001), mainly towards their loss. Receptor conversion had no significant impact on survival. Conclusions Receptor conversion, particularly loss of hormone receptors, is a common event in brain metastases from breast cancer, and endocrine therapy may increase its incidence. Receptor conversion does not significantly affect survival. PMID:22898337

  14. Relationship of adiponectin to endogenous GH pulse secretion parameters in response to stimulation with a growth hormone releasing factor.

    PubMed

    Makimura, H; Stanley, T L; Chen, C Y; Branch, K L; Grinspoon, S K

    2011-06-01

    Obesity is associated with both reduced growth hormone (GH) and adiponectin. However, the relationship between adiponectin and parameters of endogenous GH secretion remains unknown. The aim of this study was to determine the relationship between total and high molecular weight (HMW) adiponectin and parameters of endogenous pulsatile GH secretion and the effects of tesamorelin, a synthetic GH releasing hormone (GHRH(1-44)), on total and HMW adiponectin. A 2-week interventional study with tesamorelin was conducted at an academic medical center in 13 men with BMI 20-35 kg/m(2). Overnight frequent blood sampling and measurement of total and HMW adiponectin at baseline and after treatment were performed to assess the effects of augmenting endogenous pulsatile GH secretion. Total, but not HMW, adiponectin was positively associated with log(10)Peak GH area (r=+0.73; P=0.005), basal GH secretion (r=+0.67; P=0.01), and total GH production (r=+0.57; P=0.04), but was not associated with the number of secretion events (P=0.85). Two-week treatment with tesamorelin increased endogenous GH release and IGF-1, but neither total (change -0.16±0.64; P=0.40), nor HMW (change +0.03±0.70; P=0.87) adiponectin changed significantly with treatment. Sub-analyses in overweight and obese men yielded similar results. Our study demonstrates a strong relationship between specific parameters of endogenous GH pulsatility and adiponectin. However, short-term augmentation of GH pulsatility over 2-weeks does not change adiponectin. Therefore, the relationship between GH and adiponectin is most likely mediated by specific covariates related to adiposity or other factors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Growth hormone (GH) is a survival rather than a proliferative factor for embryonic striatal neural precursor cells.

    PubMed

    Regalado-Santiago, Citlalli; López-Meraz, María Leonor; Santiago-García, Juan; Fernández-Pomares, Cynthia; Juárez-Aguilar, Enrique

    2013-10-01

    A possible role of GH during central nervous system (CNS) development has been suggested by the presence of this hormone and its receptor in brain areas before its production by the pituitary gland. Although several effects have been reported for GH, the specific role of this hormone during CNS development remains unclear. Here, we examined the effect of GH on proliferation, survival and neurosphere formation in primary cultures of striatal tissue from 14-day-old (E14) mouse embryos. GH receptor gene expression was confirmed by RT-PCR. Primary cultures of embryonic striatal cells were treated with different doses of GH in serum free media, then the number of neurospheres was determined. To examine the GH effect on proliferation and survival of the striatal primary cultures, bromodeoxyuridine (BrdU) and TUNEL immunoreactivity was conducted. In the presence of the epidermal growth factor (EGF), GH increased the formation of neurospheres, with a maximal response at 10 ng/ml, higher doses were inhibitory. In absence of EGF, GH failed to stimulate neurosphere formation. Proliferation rate in the primary striatal cultures was inhibited by 24 or 48 h incubation with GH. However, in the absence of EGF, GH increased BrdU incorporation. GH treatment decreases the rate of apoptosis of nestin and GFAP positive cells in the primary striatal cultures, enhancing neurosphere formation. Our in vitro data demonstrate that GH plays a survival role on the original population of embryonic striatal cells, improving Neural Precursor Cells (NPCs) expansion. We suggest that this GH action could be predominant during striatal neurodevelopment. © 2013.

  16. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Genetic Testing (4 links) Genetic Testing Registry: Ateleiotic dwarfism Genetic Testing Registry: Autosomal dominant isolated somatotropin deficiency ... in my area? Other Names for This Condition dwarfism, growth hormone deficiency dwarfism, pituitary growth hormone deficiency ...

  17. Effects of oral contraceptives on diurnal profiles of insulin, insulin-like growth factor binding protein-1, growth hormone and cortisol in endurance athletes with menstrual disturbance

    PubMed Central

    Rickenlund, A.; Thorén, M.; Nybacka, Å.; Frystyk, J.; Hirschberg, A. Lindén

    2010-01-01

    BACKGROUND Menstrual disturbances in female athletes are often explained as a consequence of energy deficiency. Oral contraceptive (OC) treatment may have favorable metabolic effects. We evaluated effects of OCs on diurnal secretions of insulin, insulin-like growth factor binding protein 1 (IGFBP-1), growth hormone (GH) and cortisol in relation to changes in body composition in athletes with menstrual disturbance compared with regularly menstruating athletes and controls. METHODS Age- and BMI-matched groups of endurance athletes with menstrual disturbance (OAM, n = 9) and regularly cycling athletes (RM, n = 8) and sedentary controls (CTRL, n = 8) were examined, and hormone levels measured, before and after 8 months of treatment with a low-dose combined OC (30 µg ethinyl estradiol + 150 µg levonorgestrel). RESULTS Before OC treatment, the diurnal profile of insulin was lower (P < 0.01) and levels of IGFBP-1 (P < 0.05) and cortisol (P < 0.05) were higher in OAM athletes than in CTRL, whereas GH secretion was higher than in RM athletes (P < 0.05). After treatment, diurnal secretions of these hormones were similar between groups with an increase of IGFBP-1 in the regularly menstruating subjects only (P < 0.001). OC treatment increased body fat mass in OAM athletes (P < 0.01 versus baseline). The change in total fat mass correlated positively with pretreatment diurnal levels of GH (rs = 0.67, P < 0.01) and cortisol (rs = 0.64, P < 0.01). CONCLUSIONS OC treatment in endurance athletes with menstrual disturbance increases body fat mass and results in diurnal levels of insulin, IGFBP-1, GH and cortisol that are comparable to those in regularly menstruating subjects. These results suggest that OCs improve metabolic balance in OAM athletes. PMID:19840988

  18. Growth hormone/insulin-like growth factor-1 axis, calciotropic hormones and bone mineral density in young patients with chronic viral hepatitis.

    PubMed

    Marek, Bogdan; Kajdaniuk, Dariusz; Niedziołka, Danuta; Borgiel-Marek, Halina; Nowak, Mariusz; Siemińska, Lucyna; Ostrowska, Zofia; Głogowska-Szeląg, Joanna; Piecha, Tomasz; Otremba, Łukasz; Holona, Karol; Kazimierczak, Aleksandra; Wierzbicka-Chmiel, Joanna; Kos-Kudła, Beata

    2015-01-01

    Chronic liver disease caused by HBV and HCV infections, due to its great prevalence and serious medical consequences, is at the present time a significant clinical problem. An impaired liver function can provoke severe disturbances in calcium and phosphorus homeostasis, and consequently in the bone metabolism resulting in hepatic osteodystrophy. The aim of this study was to determine whether there are significant differences in bone mineral density (BMD) and/or circadian levels of hormones connected with bone metabolism and bone turnover markers in patients with chronic viral hepatitis. Circadian levels (AUC, area under the curve) of GH, IGF-I, IGFBP-3, osteocalcin (BGLAP), C-terminal telopeptide of type I collagen (ICTP), PTH, 25(OH)D, total calcium and total phosporus were measured in the blood of members of the study group (n = 80). BMD was assessed using the dual-energy X-ray absorptiometry method of the L2-L4 lumbar spine. Data was compared to that of healthy individuals (n = 40). BMD (1.05 g/cm3 vs. 1.20 g/cm3), total calcium concentration (2.20 mmol/L vs. 2.45 mmol/L), total phosphorus concentration (1.06 mmol/L vs. 1.33 mmol/L), IGF-I (AUC 3,982.32 ng/mL vs. 5,167.61 ng/mL), IGFBP-3 (AUC 725.09 ng/L vs. 944.35 ng/L), 25(OH)D (AUC 356.35 ng/mL vs. 767.53 ng/mL) and BGLAP (AUC 161.39 ng/L vs. 298 ng/L) were lower in the study group. GH (AUC 88.3 ng/mL vs. 48.04 ng/mL), iPTH (AUC 1,201.94 pg/mL vs. 711.73 pg/mL) and ICTP (AUC 104.30 μg/L vs. 54.49 μg/L) were higher in patients with hepatitis. Positive correlations were noted between bone mineral density and IGF-I, IGFBP-3, and BGLAP levels. Chronic viral hepatitis causes a decrease in bone mineral density. Impaired liver function disrupts homeostasis of the calcium- vitamin D-parathyroid hormone axis and provokes secondary hyperparathyroidism. Chronic viral hepatitis induces a decrease in the synthesis of IGF-I and IGFBP-3 and an increase in GH secretion. Hepatic osteodystrophy is probably caused by both

  19. Growth hormone-like factor produced by the tapeworm, Spirometra mansonoides, displaces human growth hormone (hGH) from its receptors on cultured human lymphocytes

    SciTech Connect

    Watts, D.J.; Phares, C.K.

    1986-03-01

    An analogue of hGH isolated from plerocercoids of the tapeworm Spirometra mansonoides displaces (/sup 125/I)hGH from its receptors in rabbit, rat, and hamster liver membranes. Biologically, plerocercoid growth factor (PGF) is more similar to hGH than to other mammalian GH's but has not been shown to bond human cells. Receptors specific for hGH have been described on cultured human lymphocytes (IM-9). In this study, the authors compared the binding of PGF and hGH in IM-9 cells and in rabbit hepatic membranes. IM-9 lymphocytes (12 x 10/sup 6/ cells/tube) were incubated with (/sup 125/I)hGH and increasing concentrations of hGH (ng/ml) or PGF (serial dilutions) for 90 min at 30/sup 0/ C. Specific binding (B/sub 0/ - NSB) was determined for each dose of hGH or PGF and the binding curves were analyzed by logit-log regression. The results show that PGF displaced (/sup 125/I)hGH from human cells in a dose dependent manner (r = 0.98). Based on the IM-9 assay, 1 ml of the PGF had an activity equivalent to 625 ng of the hGH standard (ngE). However, the binding activity of the PGF in the rabbit liver RRA was 1653 ngE/ml, indicating that the binding potency of PGF in IM-9 cells was only 38% of that in the rabbit liver. These results clearly demonstrate that PGF binds hGH receptors in cells of human origin, suggesting that PGF will be effective in humans.

  20. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions.

    PubMed

    Kleinberg, David L; Wood, Teresa L; Furth, Priscilla A; Lee, Adrian V

    2009-02-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  1. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions

    PubMed Central

    Kleinberg, David L.; Wood, Teresa L.; Furth, Priscilla A.; Lee, Adrian V.

    2009-01-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  2. A Simulated Growth Hormone Analysis

    NASA Astrophysics Data System (ADS)

    Harris, Mary

    1996-08-01

    Growth hormone is a drug that is sometimes abused by amateur or professional athletes for performance-enhancement. This laboratory is a semimicroscale simulation analysis of a sample of "urine" to detect proteins of two very different molecular weights. Gel filtration uses a 10 mL disposable pipette packed with Sephadex. Students analyze the fractions from the filtration by comparing colors of the Brilliant Blue Coomassie Dye as it interacts with the proteins in the sample to a standard set of known concentration of protein with the dye. The simulated analysis of growth hormone is intended to be included in a unit on organic chemistry or in the second year of high school chemistry.

  3. Parathyroid Hormone Receptor Type 1/Indian Hedgehog Expression Is Preserved in the Growth Plate of Human Fetuses Affected with Fibroblast Growth Factor Receptor Type 3 Activating Mutations

    PubMed Central

    Cormier, Sarah; Delezoide, Anne-Lise; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence; Bonaventure, Jacky; Silve, Caroline

    2002-01-01

    The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes. PMID:12368206

  4. Endogenous Hormonal and Growth Factor Responses to Heavy Resistance Exercise Protocols

    DTIC Science & Technology

    1989-03-20

    factors related to more anaerobic HREP stimulates serum hGH responses. Klimes et al. (17) had previously found little effect of changes in acid-base...periods and IORM load. All HREPs did not produce increases in serum hGH. The pattern of SM-C increases varied among HREPs and did not follow hGH changes ...rest period length). This design allowed for a more quantitative approach to examine responses to heavy resistance exercise due to specific changes in

  5. Evidence for integrity of the growth hormone/insulin-like growth factor-1 axis in patients with severe head trauma during rehabilitation.

    PubMed

    Bondanelli, Marta; Ambrosio, Maria Rosaria; Margutti, Angelo; Boldrini, Paolo; Basaglia, Nino; Franceschetti, Paola; Zatelli, Maria Chiara; Degli Uberti, Ettore C

    2002-10-01

    Severe traumatic head injury has been recognized to be associated with hypothalamo-hypophyseal impairment and subsequent abnormalities in hormone secretion, which can contribute to a prolonged clinical course and to hampered recovery in many head-injured patients. Most of the data on the growth hormone/insulin-like growth factor -1 (GH/IGF-1) axis function have been obtained early after head injury, whereas GH secretory pattern has not been fully elucidated after patients had left the intensive care unit. We examined the activity of the GH/IGF-1 axis in 16 severely closed head-injured (CHI) patients (14 males; age range, 17 to 47 years; body mass index [BMI], 21.4 +/- 0.8 kg/m(2)) during the rehabilitation period at least 1 month after leaving the intensive care unit and in 12 sex-, age-, and weight-matched healthy controls. The severity of trauma was assessed by the Glasgow Coma Scale (GCS) score (8 or less), posttraumatic amnesia (PTA, more than 24 hours), and initial computed tomography (CT) scan. The clinical picture at time of the study was evaluated by the Rancho Los Amigos Scale of Cognitive Functioning (CFS) and the Functional Independence Measure (FIM). In all subjects, we evaluated basal levels of anterior pituitary hormones, IGF-1, insulin-like growth factor-binding protein (IGFBP)-3, and IGFBP-1, as well as the GH responses to intravenous (IV) infusion of growth hormone-releasing hormone (GHRH) alone, GHRH plus arginine (ARG), and the GH release evoked by somatostatin (SRIH) infusion withdrawal, which is related to endogenous GHRH tone. In all subjects, nutritional parameters and nitrogen balance were normal. Basal plasma concentrations of GH, IGF-1, IGFBP-3, and IGFBP-1 did not significantly differ between CHI patients and controls. The GH responses to GHRH and GHRH plus ARG did not significantly differ between CHI patients (GH peak, 10.7 +/- 3.0 microg/L; area under the curve [AUC], 5.9 +/- 1.5 microg/L. min; and GH peak, 34.7 +/- 6.1 microg/L; AUC

  6. Use of osmotic pumps for subcutaneous infusion of growth hormone-releasing factors in steers and wethers.

    PubMed

    Wheaton, J E; al-Raheem, S N; Godfredson, J A; Dorn, J M; Wong, E A; Vale, W; Rivier, J; Mowles, T F; Heimer, E P; Felix, A M

    1988-11-01

    Osmotic pumps were evaluated for 7-d delivery of growth hormone-releasing factor (GRF). In Exp. 1, 12 steers weighing 253 kg received hGRF(1-29)NH2 in H2O at rates of 0, 3, 30 and 300 pmol.h-1.kg-1. Pumps were implanted s.c. on d 0 and removed at 1200 on d 7. Blood samples were drawn at 20-min intervals from 0800 to 1200 on d -1, 1, 3, 5, 7 and 9. Growth hormone levels were not altered by GRF treatment (P greater than .05). Solubility and volume limitations render hGRF(1-29)NH2 delivery via osmotic pumps problematical. Flow rate and duration of release of dimethyl sulfoxide (DMSO):H2) (1:1) from osmotic pumps incubated in vivo and in vitro were found to be consistent with manufacturer's specifications. Two hGRF(1-29) analogues, Ro23-7863 and 4SG-29, were dissolved in DMSO:H2O. In Exp. 2, six 222-kg steers had pumps implanted and blood samples were taken as in Exp. 1. Three steers received each analogue at a rate of 300 pmol.h-1.kg-1. Analogues had similar GH-releasing ability and GH levels differed (P less than 0.001) among days, being approximately fourfold higher on d 3, 5 and 7 than on d -1, 1 and 9. Residual analogue solutions retained full bioactivity after 7-d implantation, and in vitro biopotencies of Ro23-7863 and 4SG-29 were similar (Exp. 3). In Exp. 4, 15 wethers (means = 31.3 kg) received osmotic pumps delivering 0, 3, 15, 75 and 300 pmol.h-1.kg-1 Ro23-7863 in DMSO:H2O for 7 d. Lambs were bled at 0800 and 1400 from d -1 to 8. The latter two doses increased (P less than .01) mean GH levels 2.7- and 4.3-fold over those in control animals during the treatment period. Results demonstrate that increased GH secretion can be elicited in steers and wethers for 1 wk by continuous s.c. infusion of GRF analogues utilizing osmotic pumps.

  7. Oral phosphorus supplementation secondarily increases circulating fibroblast growth factor 23 levels at least partially via stimulation of parathyroid hormone secretion.

    PubMed

    Takasugi, Satoshi; Akutsu, Miho; Nagata, Masashi

    2014-01-01

    Oral phosphorus supplementation stimulates fibroblast growth factor 23 (FGF23) secretion; however, the underlying mechanism remains unclear. The aim of this study was to investigate the involvement of parathyroid hormone (PTH) in increased plasma FGF23 levels after oral phosphorus supplementation in rats. Rats received single dose of phosphate with concomitant subcutaneous injection of saline or human PTH (1-34) after treatment with cinacalcet or its vehicle. Cinacalcet is a drug that acts as an allosteric activator of the calcium-sensing receptor and reduces PTH secretion. Plasma phosphorus and PTH levels significantly increased 1 h after oral phosphorus administration and returned to basal levels within 3 h, while plasma FGF23 levels did not change up to 2 h post-treatment, but rather significantly increased at 3 h after administration and maintained higher levels for at least 6 h compared with the 0 time point. Plasma PTH and FGF23 levels were significantly lower in the cinacalcet-treated rats than in the vehicle-treated rats. Plasma phosphorus levels were significantly higher in the cinacalcet-treated rats than in the vehicle-treated rats at 2, 3, 4, and 6 h after oral phosphorus administration. Furthermore, rats treated with cinacalcet+human PTH (1-34) showed transiently but significantly higher plasma FGF23 levels at 3 h after oral phosphorus administration compared with cinacalcet-treated rats. These results suggest that oral phosphorus supplementation secondarily increases circulating FGF23 levels at least partially by stimulation of PTH secretion.

  8. Direct cellular effects of some mediators, hormones and growth factor-like agents on denervated (isolated) rat gastric mucosal cells.

    PubMed

    Bódis, B; Karádi, O; Nagy, L; Dohoczky, C; Kolega, M; Mózsik, G

    1997-01-01

    The brain-gut axis has an important role in the mechanism of gastric cytoprotection in vivo. The aim of this study was to evaluate the in vitro effect of protective agents without any central and peripheral innervation. A mixed population of rat gastric mucosal cells was isolated by the method of Nagy et al (Gastroenterology (1994) 77, 433-443). Cells were incubated for 60 min with cytoprotective drugs such as prostacyclin, histamine, pentagastrin and PL-10 substances (synthesized parts of BPC). At the end of this incubation cells were treated by 15% ethanol for 5 min. Cell viability was tested by trypan blue exclusion test and succinic dehydrogenase activity. The following results were obtained: 1) prostacyclin, histamine and pentagastrin had no direct cytoprotective effect on isolated cells; and 2) PL-10 substances significantly protected the cells against ethanol-induced cellular damage. This led to the following conclusions: 1) in the phenomenon of gastric cytoprotection only the growth factor-like agents have a direct cellular effect; and 2) the intact peripheral innervation is basically necessary for the development of mediators and hormone-induced gastric cytoprotection.

  9. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer in Europe.

    PubMed

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-10-24

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10,000 to €14,000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2- advanced breast cancer.

  10. Obesity, growth hormone and exercise.

    PubMed

    Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S

    2013-09-01

    Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.

  11. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  12. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  13. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and Insulin-like Growth Factor-1

    PubMed Central

    Słuczanowska-Głąbowska, Sylwia; Kucia, Magda; Bartke, Andrzej; Laszczyńska, Maria; Ratajczak, Mariusz Z.

    2016-01-01

    Introduction Overexpression of growth hormone (GH) leads to increase in Insulin-Like Growth Factor-I (IGF-I) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotrophic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. Material and methods The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. Results We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morphological observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpression of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. Conclusion Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone. PMID:26348370

  14. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and insulin-like growth factor-1.

    PubMed

    Piotrowska, Katarzyna; Sluczanowska-Glabowska, Sylwia; Kucia, Magda; Bartke, Andrzej; Laszczynska, Maria; Ratajczak, Mariusz Z

    2015-01-01

    Overexpression of growth hormone (GH) leads to increase in insulin-like growth factor-1 (IGF-1) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotropic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morpho-logical observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpres-sion of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone.

  15. Genetic variation in the insulin, insulin-like growth factor, growth hormone, and leptin pathways in relation to breast cancer in African-American women: the AMBER consortium

    PubMed Central

    Ruiz-Narváez, Edward A; Lunetta, Kathryn L; Hong, Chi-Chen; Haddad, Stephen; Yao, Song; Cheng, Ting-Yuan David; Bensen, Jeannette T; Bandera, Elisa V; Haiman, Christopher A; Troester, Melissa A; Ambrosone, Christine B; Rosenberg, Lynn; Palmer, Julie R

    2016-01-01

    The insulin/insulin-like growth factor (IGF) system and related pathways such as growth hormone, and leptin signaling have a key role in cancer development. It is unclear how germline variation in these pathways affects breast cancer risk. We conducted gene-based analyses of 184 genes in the insulin/IGF, growth hormone, and leptin pathways to identify genetic variation associated with risk of breast cancer overall, and for estrogen receptor (ER) subtypes. Tag single-nucleotide polymorphisms (SNPs) for each gene were selected and genotyped on a customized Illumina SNP array. Imputation was carried out using 1000 Genomes haplotypes. The analysis included 91,627 SNPs genotyped or imputed in 3,663 breast cancer cases, (1,983 ER-positive and 1,098 ER-negative) and 4,687 controls from the African American Breast Cancer Epidemiology and Risk consortium, a collaborative project of four large studies of breast cancer in African-American women (Carolina Breast Cancer Study, Black Women's Health Study, Women's Circle of Health Study, and Multiethnic Cohort). We used a multi-locus adaptive joint test to determine the association of each gene with overall breast cancer and ER subtypes. The most significant gene associations (P ≤ 0.01) were BAIAP2 and CALM2 for overall breast cancer; BAIAP2 and CSNK2A1 for ER+ breast cancer; and BRAF, BAD, and MAPK3 for ER− breast cancer. The association of BAD with ER− breast cancer was explained by a two-SNP risk model; all other associations were best explained by one-SNP risk models. In total, six genes and seven SNPs had suggestive associations with overall breast cancer or ER subtypes in African-American women. PMID:27942580

  16. Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord.

    PubMed

    Muresanu, Dafin F; Sharma, Aruna; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Nyberg, Fred; Sharma, Hari S

    2015-10-01

    Previous studies from our laboratory showed that topical application of growth hormone (GH) induced neuroprotection 5 h after spinal cord injury (SCI) in a rat model. Since nanodelivery of drugs exerts superior neuroprotective effects, a possibility exists that nanodelivery of GH will induce long-term neuroprotection after a focal SCI. SCI induces GH deficiency that is coupled with insulin-like growth factor-1 (IGF-1) reduction in the plasma. Thus, an exogenous supplement of GH in SCI may enhance the IGF-1 levels in the cord and induce neuroprotection. In the present investigation, we delivered TiO2-nanowired growth hormone (NWGH) after a longitudinal incision of the right dorsal horn at the T10-11 segments in anesthetized rats and compared the results with normal GH therapy on IGF-1 and GH contents in the plasma and in the cord in relation to blood-spinal cord barrier (BSCB) disruption, edema formation, and neuronal injuries. Our results showed a progressive decline in IGF-1 and GH contents in the plasma and the T9 and T12 segments of the cord 12 and 24 h after SCI. Marked increase in the BSCB breakdown, as revealed by extravasation of Evans blue and radioiodine, was seen at these time points after SCI in association with edema and neuronal injuries. Administration of NWGH markedly enhanced the IGF-1 levels and GH contents in plasma and cord after SCI, whereas normal GH was unable to enhance IGF-1 or GH levels 12 or 24 h after SCI. Interestingly, NWGH was also able to reduce BSCB disruption, edema formation, and neuronal injuries after trauma. On the other hand, normal GH was ineffective on these parameters at all time points examined. Taken together, our results are the first to demonstrate that NWGH is quite effective in enhancing IGF-1 and GH levels in the cord and plasma that may be crucial in reducing pathophysiology of SCI.

  17. Developmental programming: the role of growth hormone.

    PubMed

    Oberbauer, Anita M

    2015-01-01

    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

  18. Daily patterns and adaptation of the ghrelin, growth hormone and insulin-like growth factor-1 system under daytime food synchronisation in rats.

    PubMed

    Arellanes-Licea, E del C; Báez-Ruiz, A; Carranza, M E; Arámburo, C; Luna, M; Díaz-Muñoz, M

    2014-05-01

    Daytime restricted feeding promotes the re-alignment of the food entrained oscillator (FEO). Endocrine cues which secretion is regulated by the transition of fasting and feeding cycles converge in the FEO. The present study aimed to investigate the ghrelin, growth hormone (GH) and insulin-like growth factor (IGF)-1 system because their release depends on rhythmic and nutritional factors, and the output from the system influences feeding and biochemical status. In a daily sampling approach, rats that were fed ad lib. were compared with rats on a reversed (daytime) and restricted feeding schedule by 3 weeks (dRF; food access for 2 h), also assessing the effect of acute fasting and refeeding. We undertook measurements of clock protein BMAL1 and performed somatometry of peripheral organs and determined the concentration of total, acylated and unacylated ghrelin, GH and IGF-1 in both serum and in its main synthesising organs. During dRF, BMAL1 expression was synchronised to mealtime in hypophysis and liver; rats exhibited acute hyperphagia, stomach distension with a slow emptying, a phase shift in liver mass towards the dark period and decrease in mass perigonadal white adipose tissue. Total ghrelin secretion during the 24-h period increased in the dRF group as a result of elevation of the unacylated form. By contrast, GH and IGF-1 serum concentration fell, with a modification of GH daily pattern after mealtime. In the dRF group, ghrelin content in the stomach and pituitary GH content decreased, whereas hepatic IGF-1 remained equal. The daily patterns and synthesis of these hormones had a rheostatic adaptation. The endocrine adaptive response elicited suggests that it may be associated with the regulation of metabolic, behavioural and physiological processes during the paradigm of daytime restricted feeding and associated FEO activity.

  19. The effects of bovine recombinant growth hormone administration on insulin-like growth factor-I and the haemopoietic system in thoroughbred geldings.

    PubMed

    Champion, Z J; James, E A; Vickers, M H; Breier, B H; Casey, P J

    2000-09-01

    The effect of intramuscularly administered recombinant bovine growth hormone (rbGH) on insulin-like growth factor-I (IGF-I) and white and red blood cell indices was studied in Thoroughbred geldings. An insulin-like growth factor binding protein (IGFBP)-blocked radioimmunoassay was modified and validated for the measurement of IGF-I in equine blood plasma. Baseline values of IGF-I and blood indices were determined over a 48 h period and then a single dose of 5 microg/kg, 10 microg/kg or 50 microg/kg of rbGH was administered. Insulin-like growth factor-I levels increased in a dose-dependent manner, with the highest values between 12 h and 24 h. The highest dose (50 microg/kg) yielded the greatest IGF-I response with a 90.2+/-10.8% increase at 24 h. White blood cell count increased following the three doses of rbGH with the highest white blood cell count at 12 h after the 50 microg/kg dose. Haemoglobin was significantly increased at 24 h (P< 0.05), when values following doses of 10 microg/kg and 50 microg/kg were significantly greater than after the vehicle or the dose of 5 microg/kg. Red blood cell count was not affected by any of the rbGH doses. These results indicated that rbGH is biologically active in the horse and that rbGH at a dose rate of 10 microg/kg or more could be used therapeutically.

  20. Differential regulation of gonadotropins (FSH and LH) and growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the zebrafish--an in vitro approach.

    PubMed

    Lin, Sze-Wah; Ge, Wei

    2009-01-15

    Recently, zebrafish has quickly risen as a model species for functional analysis of the brain-pituitary-gonad axis. However, one of the hurdles for such work in this popular model organism is the small size of its pituitary gland, which makes it difficult to investigate the regulation of pituitary hormone expression and secretion in vitro. To provide a solution to this problem and demonstrate the value of zebrafish in reproductive endocrinology, the present study was undertaken to establish a primary pituitary cell culture followed by investigating the regulation of FSHbeta (fshb), LHbeta (lhb), and GH (gh) expression by a variety of neuroendocrine, endocrine, and paracrine factors. All the factors examined influenced the expression of fshb, lhb, and ghin vitro except epidermal growth factor (EGF) despite the expression of its receptor egfr in the pituitary. Acting in a similar manner, gonadal steroids (estradiol and testosterone) stimulated both fshb and lhb, but had no effect on gh. In contrast, all other factors tested (gonadotropin-releasing hormone, GnRH; pituitary adenylate cyclase-activating polypeptide, PACAP; activin/follistatin, and insulin-like growth factor I, IGF-I) exhibited distinct effects on the expression of the three target genes studied, suggesting roles for these factors in the differential regulation of two gonadotropins and growth hormone and therefore the gonadotrophic and somatotrophic axes.

  1. Interaction of a novel sex-dependent, growth hormone-regulated liver nuclear factor with CYP2C12 promoter.

    PubMed

    Waxman, D J; Zhao, S; Choi, H K

    1996-11-22

    CYP2C12 is a steroid hydroxylase cytochrome P450 whose female-specific expression in adult rat liver is transcriptionally activated by the continuous plasma growth hormone (GH) profile characteristic of adult female rats. DNase I footprinting and gel mobility shift analysis of the 5'-flank of the CYP2C12 gene were carried out to identify cis-acting elements and trans-acting factors that may contribute to the GH-regulated, sex-dependent transcription of this P450 gene. DNase I footprinting analysis revealed sex- and GH-regulated DNase I hypersensitivity sites at the boundaries of several protein binding sites detected along a 1560-nucleotide upstream segment of CYP2C12. Five distinct sites bound a novel continuous GH-regulated nuclear factor, GHNF, which is enriched in adult female and continuous GH-treated male liver nuclear extracts compared to untreated male liver nuclear extracts. Two other footprinted sites correspond to binding sites for the liver transcription factors C/EBP and albumin D element-binding protein and a third to an HNF1 binding site. A specific binding site for GHNF was also found in the 5'-proximal promoter of CYP2C11, an adult male-specific liver P450 gene, suggesting that GHNF may contribute to the down-regulation of that gene by continuous GH. GHNF was distinguished from the nuclear factors that bind to a GH response element upstream of the rat Spi 2.1 gene and is also distinct from the GH-activatable latent cytoplasmic transcription factors STAT 1, STAT 3, and STAT 5. These findings support the hypothesis that continuous GH-activated transcription of CYP2C12 in adult female rat liver (a) involves the activation of a novel GH-regulated nuclear factor which binds to multiple sites along the 5'-flank of this cytochrome P450 gene, and (b) proceeds via a signaling pathway distinct from the GH pulse-activated STAT5 pathway proposed to induce CYP2C11 and other male-expressed liver genes.

  2. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells.

    PubMed

    Krajisnik, Tijana; Björklund, Peyman; Marsell, Richard; Ljunggren, Osten; Akerström, Göran; Jonsson, Kenneth B; Westin, Gunnar; Larsson, Tobias E

    2007-10-01

    Fibroblast growth factor-23 (FGF23) is a circulating factor that decreases serum levels of inorganic phosphate (Pi) as well as 1,25-dihydroxyvitamin D(3). Recent studies also suggest a correlation between serum levels of FGF23 and parathyroid hormone (PTH) in patients with chronic kidney disease. It is, however, unknown whether FGF23 directly modulates PTH expression, or whether the correlation is secondary to abnormalities in Pi and vitamin D metabolism. The objective of the current study was therefore to elucidate possible direct effects of FGF23 on bovine parathyroid cells in vitro. Treatment of parathyroid cells with a stabilized form of recombinant FGF23 (FGF23(R176Q)) induced a rise in early response gene-1 mRNA transcripts, a marker of FGF23 signaling. FGF23(R176Q) potently and dose-dependently decreased the PTH mRNA level within 12 h. In agreement, FGF23(R176Q) also decreased PTH secretion into conditioned media. In contrast, FGF23(R176Q) dose-dependently increased 1alpha-hydroxylase expression within 3 h. FGF23 (R176Q) did not affect cell viability nor induce apoptosis, whereas a small but significant increase in cell proliferation was found. We conclude that FGF23 is a negative regulator of PTH mRNA expression and secretion in vitro. Our data suggest that FGF23 may be a physiologically relevant regulator of PTH. This defines a novel function of FGF23 in addition to the previously established roles in controlling vitamin D and Pi metabolism.

  3. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

    PubMed Central

    Devesa, Jesús; Almengló, Cristina; Devesa, Pablo

    2016-01-01

    In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998

  4. The effect of recombinant human growth hormone and insulin-like growth factor-1 on the mitochondrial function and viability of peripheral blood mononuclear cells in vitro.

    PubMed

    Keane, James; Tajouri, Lotti; Gray, Bon

    2015-02-01

    This study investigated whether the putative physiological benefits induced by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are countered at supra-physiological concentrations because of an augmentation in the production of mitochondrial-derived free radicals with a subsequent increase in oxidative damage, compromising mitochondrial function. To test this hypothesis, peripheral blood mononuclear cells were incubated for 4 h with either recombinant human GH (rhGH) (range = 0.25-100 μg/L) or recombinant IGF-1 (rIGF-1) (range = 100-600 μg/L) and along with control samples were subsequently analyzed by flow cytometry for the determination of cellular viability, mitochondrial membrane potential (Δψm), mitochondrial superoxide (O2(-)) generation, and mitochondrial permeability transition pore (mtPTP) activity. Results showed levels of mitochondrial O2(-) generation to be significantly reduced compared with control samples (lymphocytes: 21.5 ± 1.6 AU; monocytes: 230.2 ± 9.8 AU) following rhGH treatment at both concentrations of 5 μg/L (13.5 ± 1.3 AU, P ≤ 0.05) and 10 μg/L (12.3 ± 1.5 AU, P ≤ 0.05) in lymphocytes and at 10 μg/L (153.4 ± 11.4 AU, P ≤ 0.05) in monocytes. However, no significant effect was found at either higher rhGH concentrations or following treatment with any concentration of rIGF-1. In addition, neither of the 2 hormones had any significant effect on Δψm, mtPTP activity, or on cellular viability. In conclusion, physiological concentrations of rhGH elicited a protective cellular effect through the reduction of oxidative free radicals within mitochondria. This antioxidant effect was diminished at supra-physiological concentrations but not to a level that would elicit disruption of mitochondrial function.

  5. Differential effects of growth hormone versus insulin-like growth factor-I on the mouse plasma proteome.

    PubMed

    Ding, Juan; List, Edward O; Bower, Brian D; Kopchick, John J

    2011-10-01

    The GH/IGF-I axis has both pre- and postpubertal metabolic effects. However, the differential effects of GH and/or IGF-I on animal physiology or the plasma proteome are still being unraveled. In this report, we analyzed several physiological effects along with the plasma proteome after treatment of mice with recombinant bovine GH or recombinant human IGF-I. GH and IGF-I showed similar effects in increasing body length, body weight, lean and fluid masses, and organ weights including muscle, kidney, and spleen. However, GH significantly increased serum total cholesterol, whereas IGF-I had no effect on it. Both acute and longer-term effects on the plasma proteome were determined. Proteins found to be significantly changed by recombinant bovine GH and/or recombinant human IGF-I injections were identified by mass spectrometry (MS) and MS/MS. The identities of these proteins were further confirmed by Western blotting analysis. Isoforms of apolipoprotein A4, apolipoprotein E, serum amyloid protein A-1, clusterin, transthyretin, and several albumin fragments were found to be differentially regulated by GH vs. IGF-I in mouse plasma. Thus, we have identified several plasma protein biomarkers that respond specifically and differentially to GH or IGF-I and may represent new physiological targets of these hormones. These findings may lead to better understanding of the independent biological effects of GH vs. IGF-I. In addition, these novel biomarkers may be useful for the development of tests to detect illicit use of GH or IGF-I.

  6. Differential Effects of Growth Hormone Versus Insulin-Like Growth Factor-I on the Mouse Plasma Proteome

    PubMed Central

    Ding, Juan; List, Edward O.; Bower, Brian D.

    2011-01-01

    The GH/IGF-I axis has both pre- and postpubertal metabolic effects. However, the differential effects of GH and/or IGF-I on animal physiology or the plasma proteome are still being unraveled. In this report, we analyzed several physiological effects along with the plasma proteome after treatment of mice with recombinant bovine GH or recombinant human IGF-I. GH and IGF-I showed similar effects in increasing body length, body weight, lean and fluid masses, and organ weights including muscle, kidney, and spleen. However, GH significantly increased serum total cholesterol, whereas IGF-I had no effect on it. Both acute and longer-term effects on the plasma proteome were determined. Proteins found to be significantly changed by recombinant bovine GH and/or recombinant human IGF-I injections were identified by mass spectrometry (MS) and MS/MS. The identities of these proteins were further confirmed by Western blotting analysis. Isoforms of apolipoprotein A4, apolipoprotein E, serum amyloid protein A-1, clusterin, transthyretin, and several albumin fragments were found to be differentially regulated by GH vs. IGF-I in mouse plasma. Thus, we have identified several plasma protein biomarkers that respond specifically and differentially to GH or IGF-I and may represent new physiological targets of these hormones. These findings may lead to better understanding of the independent biological effects of GH vs. IGF-I. In addition, these novel biomarkers may be useful for the development of tests to detect illicit use of GH or IGF-I. PMID:21791560

  7. Growth and growth hormone: An overview.

    PubMed

    Teran, Enrique; Chesner, Jaclyn; Rapaport, Robert

    2016-06-01

    Growth is a good indicator of a child's health. Growth disturbances, including short stature or growth failure, could be indications of illnesses such as chronic disease, nutritional deficits, celiac disease or hormonal abnormalities. Therefore, a careful assessment of the various requirements for normal growth needs to be done by history, physical examination, and screening laboratory tests. More details will be reviewed about the GH-IGF axis, its abnormalities with special emphasis on GH deficiency, its diagnosis and treatment. GH treatment indications in the US will be reviewed and a few only will be highlighted. They will include GH deficiency, as well as the treatment of children born SGA, including the results of a US study using FDA approved dose of 0.48mg/kg/week. GH deficiency in adults will also be briefly reviewed. Treatment of patients with SHOX deficiency will also be discussed. Possible side effects of GH treatment and the importance of monitoring safety will be highlighted.

  8. [Synthesis and regulation of growth hormone secretion].

    PubMed

    Miyachi, Y; Yakushiji, F; Terazono, T

    1993-10-01

    Human growth hormone (hGH) is a single chain, 22 kd-protein with two intramolecular disulfide bonds. The hGH gene is located on chromosome 17 at band q22-q24 and has four introns separating five coding exons. The expression of hGH is restricted to the pituitary and regulated by GHF-1 which binds to the hGH promoter acting in concert with several other more ubiquitous DNA binding proteins. The secretion of hGH is regulated by GH releasing hormone (GRH) and somatostatin. GRH controls GH synthesis by stimulating transcription of GH mRNA while somatostatin determines the timing and amplitude of GH pulses. Pulsatile GH secretion is influenced by a number of neurogenic, metabolic and hormonal factors.

  9. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  10. Obesity, growth hormone and weight loss.

    PubMed

    Rasmussen, Michael Højby

    2010-03-25

    Growth hormone (GH) is the most important hormonal regulator of postnatal longitudinal growth in man. In adults GH is no longer needed for longitudinal growth. Adults with growth hormone deficiency (GHD) are characterised by perturbations in body composition, lipid metabolism, cardiovascular risk profile and bone mineral density. It is well established that adult GHD usually is accompanied by an increase in fat accumulation and GH replacement in adult patients with GHD results in reduction of fat mass and abdominal fat mass in particular. It is also recognized that obesity and abdominal obesity in particular results in a secondary reduction in GH secretion and subnormal insulin-like growth factor-I (IGF-I) levels. The recovery of the GH IGF-I axis after weight loss suggest an acquired defect, however, the pathophysiologic role of GH in obesity is yet to be fully understood. In clinical studies examining the efficacy of GH in obese subjects very little or no effect are observed with respect to weight loss, whereas GH seems to reduce total and abdominal fat mass in obese subjects. The observed reductions in abdominal fat mass are modest and similar to what can be achieved by diet or exercise interventions.

  11. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  12. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice

    PubMed Central

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities. PMID:27489502

  13. Fibroblast growth factor 23, but not parathyroid hormone, is associated with urinary phosphate regulation in patients on peritoneal dialysis.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Tokumoto, Masanori; Yoshida, Hisako; Hasegawa, Shoko; Tanaka, Shigeru; Eriguchi, Masahiro; Nakano, Toshiaki; Masutani, Kosuke; Ooboshi, Hiroaki; Kitazono, Takanari

    2015-02-01

    Fibroblast growth factor (FGF) 23 plays an important role in regulation of renal phosphate excretion in patients with chronic kidney disease. However, it remains undetermined whether FGF23 is closely linked to renal phosphate handling in patients with low glomerular filtration rate (GFR). The present cross-sectional study included 52 outpatients undergoing peritoneal dialysis with urine volume ≥ 100 mL/day. The primary outcome was level of urinary phosphate excretion, and the secondary outcomes were tubular maximal reabsorption of phosphate normalized to GFR (TmP/GFR), an index of the renal threshold for phosphate excretion, and level of peritoneal phosphate excretion. Variates of interest were serum FGF23 and parathyroid hormone (PTH) levels. The median and interquartile range of serum FGF23 level, TmP/GFR, and total urinary and peritoneal phosphate excretion were 5610 (1493-11 430) ng/mL, 1.30 (0.44-1.86) mg/dL, 117 (40-234) mg/day, and 208 (156-250) mg/day, respectively. Multivariate linear regression analysis revealed that serum FGF23 level was significantly (P < 0.05) associated with TmP/GFR negatively and significantly (P < 0.05) associated with urinary phosphate excretion positively, even after adjusting for confounders. In contrast, none of the three outcome variates was associated with serum PTH level. Neither serum FGF23 nor PTH level was associated with peritoneal phosphate excretion. The present study indicates that FGF23, but not PTH, is involved in urinary phosphate regulation, even in patients on peritoneal dialysis with residual renal function. © 2014 The Authors. Therapeutic Apheresis and Dialysis © 2014 International Society for Apheresis.

  14. Diarrhea in Crohn’s disease: investigating the role of the ileal hormone fibroblast growth factor 19.

    PubMed

    Nolan, Jonathan D; Johnston, Ian M; Pattni, Sanjeev S; Dew, Tracy; Orchard, Timothy R; Walters, Julian R F

    2015-02-01

    Bile acids [BA] are usually reabsorbed by the terminal ileum, but this process is frequently abnormal in Crohn’s disease [CD]. BA malabsorption occurs, and excess colonic BA cause secretory diarrhea. Furthermore, the hormone fibroblast growth factor 19 [FGF19] is synthesized in the ileum in response to BA absorption and regulates BA synthesis. We hypothesized that reduced serum FGF19 levels will be associated with diarrheal symptoms and disease activity in both ileal resected[IR-CD] and non-resected CD [NR-CD] patients. Fasting serum FGF19 levels were measured in 58 patients [23 IR-CD patients and 35NR-CD patients]. Disease activity was assessed using the Harvey Bradshaw Index and C-reactive protein [CRP]. Stool frequency, Bristol Stool Form Scale and length of previous ileal resection were recorded. FGF19 levels were also compared with healthy and diarrhea control patients. FGF19 levels were inversely correlated with ileal resection length in IR-CD patients[r = -0.54, p = 0.02]. In NR-CD patients, median FGF19 levels were significantly lower in patients with active disease compared with inactive disease [103 vs. 158 pg/ml, p = 0.04] and in those with symptoms of diarrhea compared with those without [86 vs. 145 pg/ml, p = 0.035]. FGF19 levels were inversely correlated with stool frequency, Bristol stool form and CRP in NR-CD patients with ileal disease. Reduced FGF19 levels are associated with ileal resection, diarrhea and disease activity. FGF19 may have utility as a biomarker for functioning ileum in CD. This study supports a potential role of FGF19 in guiding treatments for diarrhea in Crohn’s disease.

  15. Recombinant human follicle-stimulating hormone and transforming growth factor-alpha enhance in vitro maturation of porcine oocytes.

    PubMed

    Mito, Tomomi; Yoshioka, Koji; Noguchi, Michiko; Yamashita, Shoko; Hoshi, Hiroyoshi

    2013-07-01

    The biological functions of recombinant human follicle-stimulating hormone (FSH) and transforming growth factor-α (TGF-α) on in vitro maturation of porcine oocytes were investigated. Cumulus-oocyte complexes were matured in defined porcine oocyte medium containing 0-0.1 IU/ml FSH in the presence or absence of 10 ng/ml TGF-α. The percentage of oocytes reaching metaphase II was significantly higher with the addition of 0.01-0.1 IU/ml FSH compared with no addition, and was further enhanced in the presence of TGF-α. The rates of sperm penetration and blastocyst formation were significantly higher with the addition of 0.05-0.1 IU/ml FSH compared with no addition after in vitro fertilization and embryo culture. There was no beneficial effect of FSH and TGF-α on nuclear maturation of denuded oocytes. The specific EGF receptor inhibitor, AG1478, completely inhibited TGF-α-induced meiotic resumption, but did not completely prevent the stimulatory effect of FSH. Addition of both FSH and TGF-α significantly enhanced cumulus expansion compared with no addition. When cumulus expansion-related genes (HAS2, HAPLN1, and VCAN) mRNA expression in COCs was measured during in vitro maturaiton, addition of both of FSH and TGF-α upregulated the expression of HAS2 mRNA after 20 hr culture and HAPLN1 mRNA after 44 hr culture compared with no addition. Expression of VCAN mRNA was significantly higher in the presence of FSH compared with addition of TGF-α alone. These results suggest that FSH and TGF-α synergistically enhance porcine oocyte maturation via cumulus cells, and act through different signaling pathways.

  16. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice.

    PubMed

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3 (-/-) and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities.

  17. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  18. Ghrelin and obestatin modulate growth hormone-releasing hormone release and synaptic inputs onto growth hormone-releasing hormone neurons.

    PubMed

    Feng, Dan D; Yang, Seung-Kwon; Loudes, Catherine; Simon, Axelle; Al-Sarraf, Tamara; Culler, Michael; Alvear-Perez, Rodrigo; Llorens-Cortes, Catherine; Chen, Chen; Epelbaum, Jacques; Gardette, Robert

    2011-09-01

    Ghrelin, a natural ligand of the growth hormone secretagogue receptor (GHS-R), is synthesized in the stomach but may also be expressed in lesser quantity in the hypothalamus where the GHS-R is located on growth hormone-releasing hormone (GHRH) neurons. Obestatin, a peptide derived from the same precursor as ghrelin, is able to antagonize the ghrelin-induced increase of growth hormone (GH) secretion in vivo but not from pituitary explants in vitro. Thus, the blockade of ghrelin-induced GH release by obestatin could be mediated at the hypothalamic level by the neuronal network that controls pituitary GH secretion. Ghrelin increased GHRH and decreased somatostatin (somatotropin-releasing inhibitory factor) release from hypothalamic explants, whereas obestatin only reduced the ghrelin-induced increase of GHRH release, thus indicating that the effect of ghrelin and obestatin is targeted to GHRH neurons. Patch-clamp recordings on mouse GHRH-enhanced green fluorescent protein neurons indicated that ghrelin and obestatin had no significant effects on glutamatergic synaptic transmission. Ghrelin decreased GABAergic synaptic transmission in 44% of the recorded neurons, an effect blocked in the presence of the GHS-R antagonist BIM28163, and stimulated the firing rate of 78% of GHRH neurons. Obestatin blocked the effects of ghrelin by acting on a receptor different from the GHS-R. These data suggest that: (i) ghrelin increases GHRH neuron excitability by increasing their action potential firing rate and decreasing the strength of GABA inhibitory inputs, thereby leading to an enhanced GHRH release; and (ii) obestatin counteracts ghrelin actions. Such interactions on GHRH neurons probably participate in the control of GH secretion.

  19. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction.

    PubMed

    Lucy, M C

    2008-07-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) control growth and lactation in cattle and swine. Insulin participates in the endocrinology of growth and lactation because insulin and GH are antagonistic in their actions. Dairy cows experience a period of negative energy balance during the first 4-8 weeks post-partum. During this period, their somatotropic axis (comprised of GH, the GH receptor and IGF-I) becomes uncoupled and there is elevated GH and diminished IGF-I in the circulation. Blood insulin concentrations are low as well. Sows are different from dairy cows because their somatotropic axis remains coupled during lactation and both GH and IGF-I are elevated. Nonetheless, sows that become catabolic during lactation will have reduced IGF-I concentrations. Sows are inseminated after weaning so their metabolic state is different from post-partum beef and dairy cows that are inseminated when they are lactating. Dairy cows are fed ad libitum and naturally have low IGF-I during lactation. Sows have elevated IGF-I when they are well-fed. A threshold of IGF-I protein in follicular fluid may be met by local ovarian (paracrine/autocrine) and endocrine sources of IGF-I. Nutritionally induced changes in insulin and in liver IGF-I secretion that arise from perturbations of the somatotropic axis have a direct effect on the ovary through the endocrine actions of insulin and IGF-I. Sows and cows that are nutritionally compromised have low concentrations of insulin and IGF-I in their blood and this theoretically reduces ovarian responsiveness to gonadotropins. Although sows are inseminated after weaning, there appear to be carry-over effects of the previous lactation on the ovarian follicular populations that develop after the sow is weaned. Understanding the mechanisms through which metabolic hormones control ovarian function may lead to improved reproductive management of both pigs and cattle because lactation and post-partum reproduction are closely tied in

  20. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation.

    PubMed

    Troib, Ariel; Landau, Daniel; Kachko, Leonid; Rabkin, Ralph; Segev, Yael

    2013-11-01

    Linear growth retardation in children with chronic kidney disease (CKD) has been ascribed to insensitivity to growth hormone. This resistance state has been attributed to impaired growth hormone signaling through the JAK2/STAT5 pathway in liver and skeletal muscle leading to reduced insulin-like growth factor-I (IGF-I). Here we determine whether systemic and growth plate alterations in growth hormone signaling contribute to CKD-induced linear growth retardation using partially nephrectomized and pair-fed control 20-day-old rats. Serum growth hormone did not change in rats with CKD, yet serum IGF-I levels were decreased and growth retarded. The tibial growth plate hypertrophic zone was wider and vascularization at the primary ossification center was reduced in CKD. This was associated with a decrease in growth plate vascular endothelial growth factor (VEGF) mRNA and immunostainable VEGF and IGF-I levels. Growth plate growth hormone receptor and STAT5 protein levels were unchanged, while JAK2 was reduced. Despite comparable growth hormone and growth hormone receptor levels in CKD and control rats, relative STAT5 phosphorylation was significantly depressed in CKD. Of note, the mRNA of SOCS2, an inhibitor of growth hormone signaling, was increased. Thus, linear growth impairment in CKD can in part be explained by impaired long bone growth plate growth hormone receptor signaling through the JAK2/STAT5 pathway, an abnormality that may be caused by an increase in SOCS2 expression.

  1. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications.

  2. Capromorelin increases food consumption, body weight, growth hormone, and sustained insulin-like growth factor 1 concentrations when administered to healthy adult Beagle dogs.

    PubMed

    Zollers, B; Rhodes, L; Smith, R G

    2017-04-01

    This study's objective was to determine the effects in dogs of oral capromorelin, a ghrelin agonist, at different doses for 7 days on food consumption, body weight and serum concentrations of growth hormone (GH), insulin-like growth factor 1 (IGF-1), and cortisol. Adult Beagles (n = 6) were dosed with placebo BID, capromorelin at 3.0 mg/kg SID, 4.5 mg/kg SID, or 3.0 mg/kg BID. Food consumption, body weight, serum capromorelin, GH, IGF-1, and cortisol were measured at intervals on days 1, 4, 7, and 9. Capromorelin increased food consumption and body weight compared to placebo and caused increased serum GH, which returned to the baseline by 8 h postdose. The magnitude of the GH increase was less on days 4 and 7 compared to Day 1. IGF-1 concentrations increased on Day 1 in capromorelin-treated dogs and this increase was sustained through Day 7. Serum cortisol increased postdosing and returned to the baseline concentrations by 8 h. The magnitude of the increase was less on days 4 and 7 compared to Day 1. A dose of 3 mg/kg was chosen for further study in dogs based on this dose causing increased food consumption and sustained IGF-1 serum concentrations that may increase lean muscle mass when administered over extended periods.

  3. Effects of somatostatin on the growth hormone-insulin-like growth factor axis and seawater adaptation of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Poppinga, J.; Kittilson, J.; McCormick, S.D.; Sheridan, M.A.

    2007-01-01

    Growth hormone (GH) has been shown to contribute to the seawater (SW) adaptability of euryhaline fish both directly and indirectly through insulin-like growth factor-1 (IGF-1). This study examined the role of somatostatin-14 (SS-14), a potent inhibitor of GH, on the GH-IGF-1 axis and seawater adaptation. Juvenile rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with SS-14 or saline and transferred to 20??ppt seawater. A slight elevation in plasma chloride levels was accompanied by significantly reduced gill Na+, K+-ATPase activity in SS-14-treated fish compared to control fish 12??h after SW transfer. Seawater increased hepatic mRNA levels of GH receptor 1 (GHR 1; 239%), GHR 2 (48%), and IGF-1 (103%) in control fish 12??h after transfer. Levels of GHR 1 (155%), GHR 2 (121%), IGF-1 (200%), IGF-1 receptor A (IGFR1A; 62%), and IGFR1B (157%) increased in the gills of control fish 12??h after transfer. SS-14 abolished or attenuated SW-induced changes in the expression of GHR, IGF-1, and IGFR mRNAs in liver and gill. These results indicate that SS-14 reduces seawater adaptability by inhibiting the GH-IGF-1 axis. ?? 2007 Elsevier B.V. All rights reserved.

  4. Adult-onset deficiency in growth hormone and insulin-like growth factor-I alters oligodendrocyte turnover in the corpus callosum.

    PubMed

    Hua, Kun; Forbes, M Elizabeth; Lichtenwalner, Robin J; Sonntag, William E; Riddle, David R

    2009-08-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) provide trophic support during development and also appear to influence cell structure, function and replacement in the adult brain. Recent studies demonstrated effects of the GH/IGF-I axis on adult neurogenesis, but it is unclear whether the GH/IGF-I axis influences glial turnover in the normal adult brain. In the current study, we used a selective model of adult-onset GH and IGF-I deficiency to evaluate the role of GH and IGF-I in regulating glial proliferation and survival in the adult corpus callosum. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete via twice daily injections of GH starting at postnatal day 28 (P28), approximately the age at which GH pulse amplitude increases in developing rodents. GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Quantitative analyses revealed that adult-onset GH/IGF-I deficiency decreased cell proliferation in the white matter and decreased the survival of newborn oligodendrocytes. These findings are consistent with the hypothesis that aging-related changes in the GH/IGF-I axis produce deficits in ongoing turnover of oligodendrocytes, which may contribute to aging-related cognitive changes and deficits in remyelination after injury.

  5. Glomerular lesions in mice transgenic for growth hormone and insulinlike growth factor-I. I. Relationship between increased glomerular size and mesangial sclerosis.

    PubMed Central

    Doi, T.; Striker, L. J.; Gibson, C. C.; Agodoa, L. Y.; Brinster, R. L.; Striker, G. E.

    1990-01-01

    The glomeruli of mice transgenic for bovine growth hormone (GH mice) were disproportionately enlarged as a function of either kidney or body weight. Glomerular size correlated with mesangial sclerosis and the urine albumin/creatinine ratio. The glomerular lesions consisted of mesangial proliferation (4 to 5 weeks) followed by progressive mesangial sclerosis (19 weeks), resulting in complete glomerulosclerosis at 30 to 37 weeks. Albuminuria paralleled the glomerulosclerosis. In contrast, mice transgenic for insulinlike growth factor-I (IGF-I mice) did not develop glomerulosclerosis, even though glomerular size significantly increased. Glomerular hypertrophy, however, did not reach that in GH mice. These data suggest that high levels of circulating GH lead to a disproportionate increase in glomerular cellularity and volume, as well as glomerulosclerosis. This does not appear to be the result of high levels of circulating IGF-I stimulated by GH, as the serum IGF-I level in GH mice was lower than that in IGF-I mice. Images Figure 1 Figure 2 Figure 3 Figure 8 PMID:2399934

  6. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    PubMed

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  7. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

    PubMed Central

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-01-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506] PMID:25644636

  8. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    PubMed Central

    Boparai, Ravneet K.; Arum, Oge; Miquet, Johanna G.; Masternak, Michal M.; Khardori, Romesh K.

    2015-01-01

    Fibroblast growth factor 21 (FGF21) modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH) intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21. PMID:26089880

  9. Dialysis vintage and parathyroid hormone level, not fibroblast growth factor-23, determines chronic-phase phosphate wasting after renal transplantation.

    PubMed

    Tomida, Kodo; Hamano, Takayuki; Ichimaru, Naotsugu; Fujii, Naohiko; Matsui, Isao; Nonomura, Norio; Tsubakihara, Yoshiharu; Rakugi, Hiromi; Takahara, Shiro; Isaka, Yoshitaka

    2012-10-01

    Fibroblast growth factor 23 (FGF23), rather than parathyroid hormone (PTH), has been shown to be the major factor behind hypophosphatemia in the early period after renal transplantation. However, it is not clear whether phosphate wasting persists in the chronic phase. Purpose of our study is to elucidate whether FGF23 can also explain phosphate wasting, if any, in the chronic phase. In this cross-sectional observational study, we enrolled 247 recipients who had received a graft more than 1 year prior to this study. We compared the phosphate metabolism of recipients and predialysis chronic kidney disease (CKD) patients who are matched on age and estimated glomerular filtration rate (eGFR). We also investigated the determinants of tubular reabsorption of phosphate normalized for glomerular filtration rate (TmP/GFR), as an index of renal threshold for phosphate. Recipients had a median dialysis vintage of 27.0 months and eGFR 41.2 mL/min/1.73 m(2). Whereas hypophosphatemia (<2.4 mg/dL) was observed in 6.1% of the recipients, 55.2% had TmP/GFR lower than 2.4 mg/dL. Recipients showed significantly lower TmP/GFR in all CKD stages than their predialysis counterparts, indicating that phosphate wasting persists in the chronic phase. Compared to predialysis patients, the recipients in stages 2T and 3T showed lower phosphate and higher intact PTH levels, despite a higher percentage being active vitamin D users. However, in stage 4T, phosphate retention masked relative hypophosphatemia. FGF23 was higher in the recipients across all CKD stages, but adjustment for vitamin D prescription revealed that transplantation had no effect on FGF23. Multiple regression analysis in the recipients showed significant negative associations of intact PTH and dialysis vintage with TmP/GFR. Renal phosphate wasting persists in the chronic-phase renal transplantation recipients even with normophosphatemia. Persistent hyperparathyroidism and longer dialysis vintage, not FGF23, was associated with

  10. Effect of growth hormone administration to mature miniature Brahman cattle treated with or without insulin on circulating concentrations of insulin-like growth factor-I and other metabolic hormones and metabolites

    USDA-ARS?s Scientific Manuscript database

    Previously, we determined that a primary cause of proportional stunted growth in a line of Brahman cattle was related to an apparent refractoriness in metabolic response to growth hormone (GH) in young animals. The objective of this study was to determine the effect of administration of GH, insulin...

  11. Acute and long-term genotoxicity of deltamethrin to insulin-like growth factors and growth hormone in rainbow trout.

    PubMed

    Aksakal, Ercüment; Ceyhun, Saltuk Buğrahan; Erdoğan, Orhan; Ekinci, Deniz

    2010-11-01

    We report here the acute and long-term influences of deltamethrin on the expression of IGF-I, IGF-II and GH-I in rainbow trout muscles. We treated rainbow trouts with different concentrations of deltamethrin (0.25 microg/L, 1 microg/L and 2.5 microg/L) and observed the alterations in mRNA expression levels of IGF-I, IGF-II and GH-I at different time intervals (at 6th, 12th, 24th, 48th, 72nd hours and 30th day). The mRNA levels significantly decreased with increasing deltamethrin concentrations for acute administration. Interestingly, a significant recovery in GH-I expression was seen after the 72nd hour up to 30th day while no significant differences were observed for IGF-I and IGF-II between the same time intervals. Here we demonstrate that deltamethrin exposure decreases the expression of IGF-I, IGF-II and GH-I in rainbow trout which might cause undesirable outcomes not only in growth, but also in development and reproduction. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Growth hormone – insulin-like growth factor-I axis and bone mineral density in adults with thalassemia major

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Yassin, Mohamed; Abdelrahman, Mohamed O.

    2014-01-01

    Introduction: Bone disease and short stature are frequent clinical features of patients with beta-thalassaemia major. Dysfunction of the GH-IGF-1 axis has been described in many thalassemics children and adolescents with short stature and reduced growth velocity. Assessment of the GH-IGF-1 axis in short adults with TM after attainment of final height may be required to select those who are candidates for replacement therapy and to prevent the development of bone disease. The aim of our study was to investigate GH secretion in adult thalassemic patients in relation to their bone mineral density (BMD) and serum ferritin concentrations. Materials and Methods: We performed clonidine stimulation test in 30 thalassemic patients (18 males, 12 females) with a mean age of 31.5± 7.2 years. The cut-off level for GH response was set at 7ug/l, according to the literature. Serum ferritin, IGF-I, liver enzymes, alkaline phosphatase (ALP) and type 1 Collagen Carboxy Telopeptide (CCT1) were also determined. Results: We diagnosed GH deficiency (GHD) in 12 patients (40%) and IGF-I deficiency (IGF-I SDS <-2) was diagnosed in 20 patients (67%). Adult patients with TM had significantly decreased IGF-I concentrations and bone mineral density (BMD) at the femur neck and lumbar spine compared to normal controls. Thalassemic patients with GHD and IGF-I deficiency had significantly lower BMD T score at the lumbar spine compared to patients with normal GH and IGF-I levels. Thalassemic patients had higher serum CCT1 concentrations compared to normal controls. Peak GH levels were correlated significantly with IGF- I concentrations and IGF-I levels were correlated significantly with the height SDS (HtSDS) of thalassemic patients. Neither GH peak nor IGF-I concentrations were correlated to serum ferritin concentrations. Conclusions: We conclude that GH status should be tested in adult thalassemic patients especially those with short stature and/or decreased BMD. Clonidine test appears to be

  13. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  14. The influence of growth hormone on bone and adipose programming.

    PubMed

    Oberbauer, Anita M

    2014-01-01

    In utero growth hormone exposure is associated with distinct immediate growth responses and long term impacts on adult physiological parameters that include obesity, insulin resistance, and bone function. Growth hormone accelerates cellular proliferation in many tissues but is exemplified by increases in the number of cells within the cartilaginous growth plate of bone. In some cases growth hormone also potentiates differentiation as seen in the differentiation of adipocytes that rapidly fill upon withdrawal of growth hormone. Growth hormone provokes these changes either by direct action or through intermediaries such as insulin-like growth factor-I and other downstream effector molecules. The specific mechanism used by growth hormone in programming tissues is not yet fully characterized and likely represents a multipronged approach involving DNA modification, altered adult hormonal milieu, and the development of an augmented stem cell pool capable of future engagement as is seen in adipose accrual. This review summarizes findings of growth hormone's influence on in utero and neonatal cellular and metabolic profiles related to bone and adipose tissue.

  15. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows.

    PubMed

    Rhoads, M L; Meyer, J P; Kolath, S J; Lamberson, W R; Lucy, M C

    2008-05-01

    The growth hormone/insulin-like growth factor (IGF) system plays a critical endocrine role controlling nutrient metabolism in dairy cattle. In liver, growth hormone receptor (GHR) and IGF-1 are dynamically regulated by lactation and energy balance. Less is known about the regulation of GHR, IGF-1, and IGF-binding protein mRNA in reproductive tissues (uterus, ovarian follicle, and corpus luteum). The objective was to determine expression patterns for GHR, IGF-1, and IGF-binding protein (IGFBP)-2 mRNA in the liver, uterus, dominant follicle, and corpus luteum in Holstein cows (n = 21) sampled at 3 times during early lactation. The first postpartum ovulation was induced with an injection of GnRH within 15 d of calving. Nine days after ovulation [23 +/- 1 d postpartum; 20 d in milk (DIM)], the liver, uterus, dominant follicle, and corpus luteum were biopsied. Prostaglandin F(2alpha) and GnRH were injected 7 and 9 d after each biopsy to synchronize the second (41 +/- 1 d postpartum; 40 DIM) and third (60 +/- 1 d postpartum; 60 DIM) tissue collections. Total RNA was isolated and used for mRNA analysis by real-time quantitative reverse transcription PCR. Liver had more GHR, IGF-1, and IGFBP-2 mRNA than the reproductive tissues that were tested. Gene expression for GHR, IGF-1, and IGFPB-2 within tissues did not change across the sampling interval (20 to 60 DIM). The only detected change in gene expression across days was for cyclophilin in uterus (increased after 20 DIM). Parity had an effect on gene expression for GHR in corpus luteum. Neither level of milk production nor body condition score affected the amount of GHR, IGF-1, or IGFBP-2 mRNA in the respective tissues. The repeatability of gene expression within a tissue was 0.25 to 0.5 for most genes. In most instances, expression of a single gene within a tissue was correlated with other genes in the same tissue but was not correlated with the same gene in a different tissue. We did not find evidence for major changes

  16. Growth hormone in chronic renal disease.

    PubMed

    Gupta, Vishal; Lee, Marilyn

    2012-03-01

    Severe growth retardation (below the third percentile for height) is seen in up to one-third children with chronic kidney disease. It is thought to be multifactorial and despite optimal medical therapy most children are unable to reach their normal height. Under-nutrition, anemia, vitamin D deficiency with secondary hyperparathyroidism, metabolic acidosis, hyperphosphatemia, renal osteodystrophy; abnormalities in the growth hormone/insulin like growth factor system and sex steroids, all have been implicated in the pathogenesis of growth failure. Therapy includes optimization of nutritional and metabolic abnormalities. Failure to achieve adequate height despite 3-6 months of optimal medical measures mandates the use of recombinant GH (rGH) therapy, which has shown to result in catch-up growth, anywhere from 2 cm to 10 cm with satisfactory liner, somatic and psychological development.

  17. Growth hormone in chronic renal disease

    PubMed Central

    Gupta, Vishal; Lee, Marilyn

    2012-01-01

    Severe growth retardation (below the third percentile for height) is seen in up to one-third children with chronic kidney disease. It is thought to be multifactorial and despite optimal medical therapy most children are unable to reach their normal height. Under-nutrition, anemia, vitamin D deficiency with secondary hyperparathyroidism, metabolic acidosis, hyperphosphatemia, renal osteodystrophy; abnormalities in the growth hormone/insulin like growth factor system and sex steroids, all have been implicated in the pathogenesis of growth failure. Therapy includes optimization of nutritional and metabolic abnormalities. Failure to achieve adequate height despite 3–6 months of optimal medical measures mandates the use of recombinant GH (rGH) therapy, which has shown to result in catch-up growth, anywhere from 2 cm to 10 cm with satisfactory liner, somatic and psychological development. PMID:22470855

  18. Animal protein intakes during early life and adolescence differ in their relation to the growth hormone-insulin-like-growth-factor axis in young adulthood.

    PubMed

    Joslowski, Gesa; Remer, Thomas; Assmann, Karen E; Krupp, Danika; Cheng, Guo; Garnett, Sarah P; Kroke, Anja; Wudy, Stefan A; Günther, Anke L B; Buyken, Anette E

    2013-07-01

    Recent studies provide evidence that insulin-like-growth-factor I (IGF-I) and its binding proteins (IGFBP) IGFBP-2 and IGFBP-3 are related to the risk of several common cancers. It remains to be clarified whether their concentrations can be programmed by protein intake from different sources during growth. This study addressed the hypothesis that animal protein intakes during infancy, mid-childhood, and adolescence differ in their relevance for the growth-hormone (GH)-IGF-I axis in young adulthood. Data from the Dortmund Nutritional and Anthropometric Longitudinally Designed Study participants with at least 2 plausible 3-d weighed dietary records during adolescence (age: girls, 9-14 y; boys, 10-15 y; n = 213), around the adiposity rebound (age 4-6 y; n = 179) or early life (age 0.5-2 y; n = 130), and one blood sample in young adulthood were included in the study. Mean serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 were compared between tertiles of habitual animal protein intake using multivariable regression analysis. Habitually higher animal protein intakes in females during puberty were related to higher IGF-I (P-trend = 0.005) and IGFBP-3 (P-trend = 0.01) and lower IGFBP-2 (P-trend = 0.04), but not to IGFBP-1 in young adulthood. In turn, IGF-I concentrations in young adulthood were inversely related to animal protein intakes in early life among males only (P-trend = 0.03), but not to animal protein intake around adiposity rebound (P-trend > 0.5). Our data suggest that, among females, a habitually higher animal protein intake during puberty may precipitate an upregulation of the GH-IGF-I axis, which is still discernible in young adulthood. By contrast, among males, higher animal protein intakes in early life may exert a long-term programming of the GH-IGF-I axis.

  19. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  20. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    PubMed

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  1. Endocrine and metabolic changes in neonatal calves in response to growth hormone and long-R3-insulin-like growth factor-I administration.

    PubMed

    Hammon, H; Blum, J W

    1998-01-01

    Postnatal growth is primarily controlled by growth hormone (GH) and insulin-like growth factor-I (IGF-I). We have studied effects of recombinant bovine GH (rbGH) and Long-R3-insulin-like growth factor-I (Long-R3-IGF-I) on metabolic and endocrine characteristics of neonatal calves. Group GrC (control) was fed colostrum as first meal and then milk replacer up to day 7. Groups GrIGFf, GrIGFi and GrGH were fed as GrC. In group GrIGFf, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was fed together with colostrum or milk replacer and in group GrIGFi, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was injected subcutaneously at times of feeding. Calves of group GrGH were injected rbGH (1 mg/[kg x day, s.c.], twice daily for 7 days) at times of feeding. While orally administered Long-R3-IGF-I had no effects, subcutaneously administered Long-R3-IGF-I lowered plasma glucose and insulin concentrations (p < 0.05). In group GrGH, day-2 postprandial plasma insulin concentrations were increased more than in Long-R3-IGF-I-treated groups (p < 0.05) and day-2 postprandial prolactin responses were greater in group GrGH than in controls (p < 0.05). Other traits (lactic acid, nonesterified fatty acids, glucagon, cortisol, thyroxine and 3.5.3'-triiodothyronine) exhibited age-dependent changes, but were not significantly affected by rbGH or Long-R3-IGF-I. The study shows, that parenteral, but not oral, Long-R3-IGF-I affects plasma glucose and insulin concentrations, and that rbGH transiently influences plasma prolactin concentrations in neonatal calves.

  2. Messenger RNA stability of parathyroid hormone-related protein regulated by transforming growth factor-beta1.

    PubMed

    Sellers, R S; Capen, C C; Rosol, Thomas J

    2002-02-25

    Humoral hypercalcemia of malignancy (HHM), a paraneoplastic syndrome associated with epithelial cancers, including squamous cell carcinoma (SCC), is due to expression and secretion of parathyroid hormone-related protein (PTHrP). Transforming growth factor-beta1 (TGFbeta1), expressed by many tumors, has been demonstrated in vitro to increase the half-life of PTHrP mRNA. In this study, oral squamous carcinoma cells (SCC2/88) had a two-fold increase in PTHrP mRNA stability (from 45 to 90 min) in response to treatment with TGFbeta1. In order to examine the mechanism of TGFbeta1-mediated PTHrP mRNA stability, a cell-free assay of mRNA degradation was utilized in which the degradation of in vitro-transcribed mRNA incubated with cytoplasmic protein extracts from SCC2/88 treated with vehicle or TGFbeta1 was measured. In this assay, full-length PTHrP mRNA was not significantly stabilized in TGFbeta1-treated samples when compared to vehicle treated samples. However, there was a striking (>5-fold) increase in PTHrP mRNA half-life in TGFbeta1-treated samples when PTHrP mRNA lacked the 3'-untranslated region (3'-UTR). In contrast, the degradation of 3'-UTR-truncated PTHrP mRNA using the cell-free assay was not altered in vehicle-treated samples. UV cross-linking of PTHrP mRNA and cytoplasmic proteins from cells treated with either vehicle or TGFbeta1 revealed numerous mRNA-binding proteins. TGFbeta1 treatment resulting in decreased binding of 33, 31, 27, 20 and 18 kDa binding proteins to the terminal coding region. These studies revealed that TGFbeta1-induced PTHrP mRNA stability might be, in part, the result of cis-acting sequences within the coding region of the PTHrP mRNA.

  3. Growth hormone doping: a review

    PubMed Central

    Erotokritou-Mulligan, Ioulietta; Holt, Richard IG; Sönksen, Peter H

    2011-01-01

    The use of growth hormone (GH) as a performance enhancing substance was first promoted in lay publications, long before scientists fully acknowledged its benefits. It is thought athletes currently use GH to enhance their athletic performance and to accelerate the healing of sporting injuries. Over recent years, a number of high profile athletes have admitted to using GH. To date, there is only limited and weak evidence for its beneficial effects on performance. Nevertheless the “hype” around its effectiveness and the lack of a foolproof detection methodology that will detect its abuse longer than 24 hours after the last injection has encouraged its widespread use. This article reviews the current evidence of the ergogenic effects of GH along with the risks associated with its use. The review also examines methodologies, both currently available and in development for detecting its abuse. PMID:24198576

  4. Growth hormone and physical performance.

    PubMed

    Birzniece, Vita; Nelson, Anne E; Ho, Ken K Y

    2011-05-01

    There has been limited research and evidence that GH enhances physical performance in healthy adults or in trained athletes. Even so, human growth hormone (GH) is widely abused by athletes. In healthy adults, GH increases lean body mass, although it is possible that fluid retention contributes to this effect. The most recent data indicate that GH does not enhance muscle strength, power, or aerobic exercise capacity, but improves anaerobic exercise capacity. In fact, there are adverse effects of long-term GH excess such that sustained abuse of GH can lead to a state mimicking acromegaly, a condition with increased morbidity and mortality. This review will examine GH effects on body composition and physical performance in health and disease.

  5. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  6. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2006-12-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.

  7. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis

    PubMed Central

    Savarese, Todd M; Strohsnitter, William C; Low, Hoi Pang; Liu, Qin; Baik, Inkyung; Okulicz, William; Chelmow, David P; Lagiou, Pagona; Quesenberry, Peter J; Noller, Kenneth L; Hsieh, Chung-Cheng

    2007-01-01

    Introduction Prenatal levels of mitogens may influence the lifetime breast cancer risk by driving stem cell proliferation and increasing the number of target cells, and thereby increasing the chance of mutation events that initiate oncogenesis. We examined in umbilical cord blood the correlation of potential breast epithelial mitogens, including hormones and growth factors, with hematopoietic stem cell concentrations serving as surrogates of overall stem cell potential. Methods We analyzed cord blood samples from 289 deliveries. Levels of hormones and growth factors were correlated with concentrations of stem cell and progenitor populations (CD34+ cells, CD34+CD38- cells, CD34+c-kit+ cells, and granulocyte–macrophage colony-forming units). Changes in stem cell concentration associated with each standard deviation change in mitogens and the associated 95% confidence intervals were calculated from multiple regression analysis. Results Cord blood plasma levels of insulin-like growth factor-1 (IGF-1) were strongly correlated with all the hematopoietic stem and progenitor concentrations examined (one standard-deviation increase in IGF-1 being associated with a 15–19% increase in stem/progenitor concentrations, all P < 0.02). Estriol and insulin-like growth factor binding protein-3 levels were positively and significantly correlated with some of these cell populations. Sex hormone-binding globulin levels were negatively correlated with these stem/progenitor pools. These relationships were stronger in Caucasians and Hispanics and were weaker or not present in Asian-Americans and African-Americans. Conclusion Our data support the concept that in utero mitogens may drive the expansion of stem cell populations. The correlations with IGF-1 and estrogen are noteworthy, as both are crucial for mammary gland development. PMID:17501995

  8. The Effect of Recombinant Growth Hormone Treatment in Children with Idiopathic Short Stature and Low Insulin-Like Growth Factor-1 Levels

    PubMed Central

    Şıklar, Zeynep; Kocaay, Pınar; Çamtosun, Emine; İsakoca, Mehmet; Hacıhamdioğlu, Bülent; Savaş Erdeve, Şenay; Berberoğlu, Merih

    2015-01-01

    Objective: Idiopathic short stature (ISS) constitutes a heterogeneous group of short stature which is not associated with an endocrine or other identifiable cause. Some ISS patients may have varying degrees of insulin-like growth factor-1 (IGF-1) deficiency. Recombinant growth hormone (rGH) treatment has been used by some authors with variable results. Reports on long-term rGH treatment are limited. Methods: In this study, 21 slowly growing, non-GH-deficient ISS children who received rGH treatment for 3.62±0.92 years were evaluated at the end of a 5.42±1.67-year follow-up period. The study group included patients with low IGF-1 levels who also responded well to an IGF generation test. The patients were divided into two groups as good responders [height increment >1 standard deviation (SD)] and poor responders (height increment <1 SD) at the end of the follow-up period. Results: The height of the patients improved from -3.16±0.46 SD score (SDS) to -1.9±0.66 SDS. At the end of the follow-up period, mean height SDS was -1.72. Eleven of the patients showed a good response to treatment. Clinical parameters were essentially similar in the good responders and the poor responders groups. A female preponderance was noted in the good responders group. Conclusion: rGH treatment can safely be used in ISS children. Long-term GH treatment will ameliorate the height deficit and almost 40% of patients may reach their target height. PMID:26777041

  9. Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus).

    PubMed

    Blumenthal, Stanley; Morgan-Boyd, Rebecca; Nelson, Ralph; Garshelis, David L; Turyk, Mary E; Unterman, Terry

    2011-10-01

    The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den.

  10. Cardiac and metabolic effects of chronic growth hormone and insulin-like growth factor I excess in young adults with pituitary gigantism.

    PubMed

    Bondanelli, Marta; Bonadonna, Stefania; Ambrosio, Maria Rosaria; Doga, Mauro; Gola, Monica; Onofri, Alessandro; Zatelli, Maria Chiara; Giustina, Andrea; degli Uberti, Ettore C

    2005-09-01

    Chronic growth hormone (GH)/insulin-like growth factor I (IGF-I) excess is associated with considerable mortality in acromegaly, but no data are available in pituitary gigantism. The aim of the study was to evaluate the long-term effects of early exposure to GH and IGF-I excess on cardiovascular and metabolic parameters in adult patients with pituitary gigantism. Six adult male patients with newly diagnosed gigantism due to GH secreting pituitary adenoma were studied and compared with 6 age- and sex-matched patients with acromegaly and 10 healthy subjects. Morphologic and functional cardiac parameters were evaluated by Doppler echocardiography. Glucose metabolism was assessed by evaluating glucose tolerance and homeostasis model assessment index. Disease duration was significantly longer (P<.05) in patients with gigantism than in patients with acromegaly, whereas GH and IGF-I concentrations were comparable. Left ventricular mass was increased both in patients with gigantism and in patients with acromegaly, as compared with controls. Left ventricular hypertrophy was detected in 2 of 6 of both patients with gigantism and patients with acromegaly, and isolated intraventricular septum thickening in 1 patient with gigantism. Inadequate diastolic filling (ratio between early and late transmitral flow velocity<1) was detected in 2 of 6 patients with gigantism and 1 of 6 patients with acromegaly. Impaired glucose metabolism occurrence was higher in patients with acromegaly (66%) compared with patients with gigantism (16%). Concentrations of IGF-I were significantly (P<.05) higher in patients with gigantism who have cardiac abnormalities than in those without cardiac abnormalities. In conclusion, our data suggest that GH/IGF-I excess in young adult patients is associated with morphologic and functional cardiac abnormalities that are similar in patients with gigantism and in patients with acromegaly, whereas occurrence of impaired glucose metabolism appears to be higher in

  11. Growth hormone concentration and disappearance rate, insulin-like growth factors I and II and insulin levels in iron-deficient veal calves.

    PubMed

    Ceppi, A; Mullis, P E; Eggenberger, E; Blum, J W

    1994-01-01

    In calves with severe iron (Fe) deficiency, insulin-like growth factor (IGF)-I levels and IGF-I responses to exogenous growth hormone (GH) are reduced, while insulin-dependent glucose utilization is enhanced. Blood plasma concentrations of immunoreactive insulin (IRI), IGF-I, IGF-II and GH, and the half-life of blood plasma GH [after an i.v. injection of recombinant bovine GH (rbGH; 100 micrograms rbGH/kg body weight)] were measured in 20 calves at body weights between 160 and 190 kg. Calves were fed milk replacers containing 50 or 10 mg Fe/kg (groups Fe50 and Fe10, respectively). Daily weight gain and feed utilization were similar in both groups. Group Fe10 developed mild Fe deficiency anemia and blood plasma urea-nitrogen concentrations were higher (p < 0.05) than in group Fe50. IGF-I and IGF-II concentrations did not vary consistently over a 10-hour period and were not significantly influenced by different Fe intakes. The IRI concentration increased transiently (p < 0.05) after feed intake, but the total response was (not significantly) smaller in Fe-deficient calves. Plasma GH concentration changed episodically and was similar in both groups. Loss of GH from the circulation after i.v. rbGH injection, estimated by biexponential analysis, during the distribution or alpha phase (first 16 min) was similar in both groups, but during the beta phase was shorter (p < 0.05) in group Fe10 than in group Fe50 (29.9 and 34.2 min, respectively). The increased disappearance rate of GH, seen even in mild Fe deficiency, may contribute to reduced GH levels and IGF-I responses to GH in severe Fe deficiency.

  12. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  13. Growth hormone and HIV infection: contribution to disease manifestations and clinical implications.

    PubMed

    Falutz, Julian

    2011-06-01

    In untreated HIV patients growth hormone deficiency contributes to loss of lean and fat mass. Pharmacologic doses of growth hormone successfully reverse this wasting process. In patients responding to antiretroviral therapies several non AIDS-related complications usually common among older, uninfected persons now occur more frequently in younger HIV patients. Among these conditions are cardiovascular disease and metabolic disorders. Although their etiology is multifactorial, changes in growth hormone biology reflecting relative growth hormone deficiency occur and may be involved. In these patients truncal obesity, and associated dyslipidemia and glucose homeostasis changes contribute to impaired quality of life and increased cardiovascular risk. Treatment with growth hormone and growth hormone releasing factor leads to short-term improvement of some of these abnormalities. This paper will review abnormalities of growth hormone biology and the use of growth hormone and growth hormone releasing factor as therapeutic agents in HIV patients. Copyright © 2010. Published by Elsevier Ltd.

  14. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming.

    PubMed

    Reynolds, Clare M; Perry, Jo K; Vickers, Mark H

    2017-08-08

    Evidence from human clinical, epidemiological, and experimental animal models has clearly highlighted a link between the early life environment and an increased risk for a range of cardiometabolic disorders in later life. In particular, altered maternal nutrition, including both undernutrition and overnutrition, spanning exposure windows that cover the period from preconception through to early infancy, clearly highlight an increased risk for a range of disorders in offspring in later life. This process, preferentially termed "developmental programming" as part of the developmental origins of health and disease (DOHaD) framework, leads to phenotypic outcomes in offspring that closely resemble those of individuals with untreated growth hormone (GH) deficiency, including increased adiposity and cardiovascular disorders. As such, the use of GH as a potential intervention strategy to mitigate the effects of developmental malprogramming has received some attention in the DOHaD field. In particular, experimental animal models have shown that early GH treatment in the setting of poor maternal nutrition can partially rescue the programmed phenotype, albeit in a sex-specific manner. Although the mechanisms remain poorly defined, they include changes to endothelial function, an altered inflammasome, changes in adipogenesis and cardiovascular function, neuroendocrine effects, and changes in the epigenetic regulation of gene expression. Similarly, GH treatment to adult offspring, where an adverse metabolic phenotype is already manifest, has shown efficacy in reversing some of the metabolic disorders arising from a poor early life environment. Components of the GH-insulin-like growth factor (IGF)-IGF binding protein (GH-IGF-IGFBP) system, including insulin-like growth factor 1 (IGF-1), have also shown promise in ameliorating programmed metabolic disorders, potentially acting via epigenetic processes including changes in miRNA profiles and altered DNA methylation. However, as

  15. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming

    PubMed Central

    Reynolds, Clare M.

    2017-01-01

    Evidence from human clinical, epidemiological, and experimental animal models has clearly highlighted a link between the early life environment and an increased risk for a range of cardiometabolic disorders in later life. In particular, altered maternal nutrition, including both undernutrition and overnutrition, spanning exposure windows that cover the period from preconception through to early infancy, clearly highlight an increased risk for a range of disorders in offspring in later life. This process, preferentially termed “developmental programming” as part of the developmental origins of health and disease (DOHaD) framework, leads to phenotypic outcomes in offspring that closely resemble those of individuals with untreated growth hormone (GH) deficiency, including increased adiposity and cardiovascular disorders. As such, the use of GH as a potential intervention strategy to mitigate the effects of developmental malprogramming has received some attention in the DOHaD field. In particular, experimental animal models have shown that early GH treatment in the setting of poor maternal nutrition can partially rescue the programmed phenotype, albeit in a sex-specific manner. Although the mechanisms remain poorly defined, they include changes to endothelial function, an altered inflammasome, changes in adipogenesis and cardiovascular function, neuroendocrine effects, and changes in the epigenetic regulation of gene expression. Similarly, GH treatment to adult offspring, where an adverse metabolic phenotype is already manifest, has shown efficacy in reversing some of the metabolic disorders arising from a poor early life environment. Components of the GH-insulin-like growth factor (IGF)-IGF binding protein (GH-IGF-IGFBP) system, including insulin-like growth factor 1 (IGF-1), have also shown promise in ameliorating programmed metabolic disorders, potentially acting via epigenetic processes including changes in miRNA profiles and altered DNA methylation. However

  16. [Hormones and hair growth in man].

    PubMed

    Moretti, G; Rampini, E; Rebora, A

    1977-12-01

    A literature review tries to diminish the ambiguity between hormones and hairs. Therefore the hormonal action in general (regulation of the protein synthesis indirectly by enzymatical regulation of the AMP-system or directly by hormones as active metabolites) and the methods to explore hormones-hair-interaction are discussed. Hormones pertaining to the pituitary-adrenal-gonadal axis are regarded as the paramount hormones; therefore the results of research in testosterone, 5-alpha-dihydrotestosterone, estrogens, progesterone, glucocorticoids, the hypophysis and its tropins are recapitulated. The main disorders of hair-growth, pattern baldness and "idiopathic" hirsutism, which would be dependent on a similar disturbance of androgen metabolism, are discussed. Pathology in hair-growth may arise in any point of the cascade of hormone action.

  17. Thyroid hormone and the growth plate.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2006-12-01

    Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.

  18. Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene–Disrupted Mice

    PubMed Central

    2013-01-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity—decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions—calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span. PMID:23197187

  19. Growth hormone therapy for people with thalassaemia.

    PubMed

    Ngim, Chin Fang; Lai, Nai Ming; Hong, Janet Yh; Tan, Shir Ley; Ramadas, Amutha; Muthukumarasamy, Premala; Thong, Meow-Keong

    2017-09-18

    Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. To assess the benefits and safety of growth hormone therapy in people with thalassaemia. We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively. Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity. Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria. One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes

  20. [Algal oligosaccharides ameliorate osteoporosis via up-regulation of parathyroid hormone 1-84 and vascular endothelial growth factor].

    PubMed

    Wang, Li; Wang, Haiya; Fang, Ningyuan

    2016-06-01

    To determine whether algal oligosac- charide~ affects the levels of parathyroid hormone 1-84 (PTH1-84) and vascular endothelial growth fac- tor (VEGF). An osteoporosis rat model was estab- lished via bilateral ovariectomy. The model rats were fed algal oligosaccharides (molecular weights: 600-1, 200 Da) for 4 months. Bone mineral density (BMD) was then measured. MG-63 human osteo- blastic cells were treated with algal oligosaccha- rides. The expression of PTH1-84 and VEGF was then examined. Oligosaccharide-treated cells were transfected with PTH1-84 short hairpin RNA (shR- NA), VEGF shRNA, and PTH1-84-VEGF small interfer- ing RNA (siRNA). The growth rates were then com- pared between transfected and non-transfected Algal oligosaccharides increased the BMD of the osteoporosis rat model compared with untreated controls (P < 0.05). When MG-63 cells were treated with algal oligosaccharides, the growth rate increased by 25% compared with the control group at day 3 (P < 0.05). In addition, the ex- pression of P.TH84 and VEGF was. enhanced. Con- versey w hen tecells were tranfected with PTH84 shRNA, VEGF shRNA, or PTH1-84-VEGF siR- NA, the growth rate was decreased by 17%, 35% and 70%, respectively, compared with controls at day 3 (P < 0.05). Algal oligosaccharides ameliorate osteoporosis via up-regulation of PTH1-84 and VEGF. Algal oligosaccharides should be developed as a potential drug for osteoporosis treatment.

  1. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  2. Effects of long-term administration of recombinant bovine tumor necrosis factor-alpha on glucose metabolism and growth hormone secretion in steers.

    PubMed

    Kushibiki, S; Hodate, K; Shingu, H; Ueda, Y; Mori, Y; Itoh, T; Yokomizo, Y

    2001-05-01

    To investigate the effects of long-term administration of recombinant bovine tumor necrosis factor-alpha (rbTNF) on plasma glucose and growth hormone concentrations, and to determine whether treatment with rbTNF causes insulin resistance in steers. 5 steers treated with rbTNF and 5 steers treated with saline (0.9% NaCl) solution (control). In experiment 1, rbTNF (5.0 microg/kg of body weight) or saline solution (5 ml) was administered SC daily for 12 days. Blood samples were obtained before treatment, and plasma was harvested for determination of glucose, insulin, and growth hormone (GH) concentrations. In experiment 2, insulin, glucose, or growth hormone-releasing hormone (GHRH) was administered IV on days 7, 9, and 11, respectively, after initiation of rbTNF or saline treatment in experiment 1. Plasma glucose and insulin concentrations were measured before and at various times for 4 hours after insulin or glucose administration. Plasma GH concentrations were measured at various times for 3 hours after GHRH administration. In experiment 1, administration of rbTNF resulted in hyperinsulinemia without hypoglycemia and decreased plasma GH concentrations. In experiment 2, plasma glucose concentrations were higher in steers treated with rbTNF and insulin than in controls. Plasma GH concentrations were lower in steers treated with rbTNF and GHRH than in controls. Prolonged treatment with rbTNF induced insulin resistance and inhibited GHRH-stimulated release of GH in steers. Results indicate that rbTNF is a proximal mediator of insulin resistance and inhibits release of GH during periods of endotoxemia or infection.

  3. Effect of glucocorticoid-, parathyroid- and thyroid hormones excess on human iliac crest bone matrix insulin-like growth factor (IGF)-I in patients with osteoporosis.

    PubMed

    Pepene, C E; Seck, T; Diel, I; Minne, H W; Ziegler, R; Pfeilschifter, J

    2010-05-01

    Insulin-like growth factor-I (IGF-I) is a well documented bone-active growth factor. Clinical studies reported that circulating hormones may affect serum IGF-I levels, with potential consequences on bone remodeling. However, no data on bone matrix concentrations of IGF-I in subjects with endocrine dysfunction is available in humans. Bone mineral density and cancellous bone matrix IGF-I levels were assessed in iliac crest biopsies from 38 patients with low bone mass related to glucocorticoid- (n=10), parathyroid- (n=14) or thyroid (n=14) hormones excess. Results were compared to those of sex- and age-matched patients with primary osteoporosis. Bone matrix extraction was performed based on a guanidine-chlorhidric acid/ethylendiamine-tetraacetic acid method. Long-term glucocorticoid therapy (> or =24 months) led to significantly lower cancellous bone matrix IGF-I levels in comparison to age-matched controls (p=0.03). Although higher trabecular bone IGF-I levels were seen in hyperparathyroid subjects, the difference was not significant in comparison to controls (p=0.24). Likewise, no difference was noticed in cancellous bone matrix IGF-I concentrations between subjects with low bone mass and sub-clinical or overt thyrotoxicosis and euthyroid controls. Neither parathyroid hormone (PTH) nor thyroxin (T (4)) concentrations were associated with bone matrix IGF-I levels. To conclude, our study documented that in vivo long-term corticotherapy is associated with low trabecular human bone matrix IGF-I. In contrast, no influence of increased circulating parathyroid- or thyroid hormones levels on human iliac crest skeletal IGF-I concentrations was observed.

  4. Regulation of bone mass by growth hormone.

    PubMed

    Olney, Robert C

    2003-09-01

    Growth hormone (GH) is a peptide hormone secreted from the pituitary gland under the control of the hypothalamus. It has a many actions in the body, including regulating a number of metabolic pathways. Some, but not all, of its effects are mediated through insulin-like growth factor-I (IGF-I). Both GH and IGF-I play significant roles in the regulation of growth and bone metabolism and hence are regulators of bone mass. Bone mass increases steadily through childhood, peaking in the mid 20s. Subsequently, there is a slow decline that accelerates in late life. During childhood, the accumulation in bone mass is a combination of bone growth and bone remodeling. Bone remodeling is the process of new bone formation by osteoblasts and bone resorption by osteoclasts. GH directly and through IGF-I stimulates osteoblast proliferation and activity, promoting bone formation. It also stimulates osteoclast differentiation and activity, promoting bone resorption. The result is an increase in the overall rate of bone remodeling, with a net effect of bone accumulation. The absence of GH results in a reduced rate of bone remodeling and a gradual loss of bone mineral density. Bone growth primarily occurs at the epiphyseal growth plates and is the result of the proliferation and differentiation of chondrocytes. GH has direct effects on these chondrocytes, but primarily regulates this function through IGF-I, which stimulates the proliferation of and matrix production by these cells. GH deficiency severely limits bone growth and hence the accumulation of bone mass. GH deficiency is not an uncommon complication in oncology and has long-term effects on bone health.

  5. Two thyroid hormone regulated genes, the beta-subunits of nerve growth factor (NGFB) and thyroid stimulating hormone (TSHB), are located less than 310 kb apart in both human and mouse genomes.

    PubMed

    Dracopoli, N C; Rose, E; Whitfield, G K; Guidon, P T; Bale, S J; Chance, P A; Kourides, I A; Housman, D E

    1988-08-01

    Two thyroid hormone regulated genes, the beta-subunits of nerve growth factor (NGFB) and thyroid stimulating hormone (TSHB), have been assigned to mouse chromosome 3 and human chromosome 1p22. We have used the techniques of linkage analysis and pulsed field gel electrophoresis to determine the proximity of these two antithetically regulated genes in this conserved linkage group. Four novel restriction fragment length polymorphisms were identified at the human TSHB gene. Two-point linkage analysis between TSHB and NGFB in 46 families, including the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel, demonstrated no recombination (theta = 0.00, Z = 42.8). Analysis of this region by pulsed field gel electrophoresis showed that the genes for TSHB and NGFB are located less than 310 kb apart in man and 220 kb in the mouse.

  6. Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin-releasing hormone neurons.

    PubMed

    Chung, Wilson C J; Moyle, Sarah S; Tsai, Pei-San

    2008-10-01

    GnRH neurons are essential for the onset and maintenance of reproduction. Mutations in both fibroblast growth factor receptor (Fgfr1) and Fgf8 have been shown to cause Kallmann syndrome, a disease characterized by hypogonadotropic hypogonadism and anosmia, indicating that FGF signaling is indispensable for the formation of a functional GnRH system. Presently it is unclear which stage of GnRH neuronal development is most impacted by FGF signaling deficiency. GnRH neurons express both FGFR1 and -3; thus, it is also unclear whether FGFR1 or FGFR3 contributes directly to GnRH system development. In this study, we examined the developing GnRH system in mice deficient in FGF8, FGFR1, or FGFR3 to elucidate the individual contribution of these FGF signaling components. Our results show that the early emergence of GnRH neurons from the embryonic olfactory placode requires FGF8 signaling, which is mediated through FGFR1, not FGFR3. These data provide compelling evidence that the developing GnRH system is exquisitely sensitive to reduced levels of FGF signaling. Furthermore, Kallmann syndrome stemming from FGF signaling deficiency may be due primarily to defects in early GnRH neuronal development prior to their migration into the forebrain.

  7. Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived, small-bodied mammals.

    PubMed

    Davies, Kalina T J; Tsagkogeorga, Georgia; Bennett, Nigel C; Dávalos, Liliana M; Faulkes, Christopher G; Rossiter, Stephen J

    2014-10-10

    Mammals typically display a robust positive relationship between lifespan and body size. Two groups that deviate markedly from this pattern are bats and African mole-rats, with members of both groups being extremely long-lived given their body size, with the maximum documented lifespan for many species exceeding 20 years. A recent genomics study of the exceptionally long-lived Brandt's bat, Myotis brandtii (41 years), suggested that its longevity and small body size may be at least partly attributed to key amino acid substitutions in the transmembrane domains of the receptors of growth hormone (GH) and insulin-like growth factor 1 (IGF1). However, whereas elevated longevity is likely to be common across all 19 bat families, the reported amino acid substitutions were only observed in two closely related bat families. To test the hypothesis that an altered GH/IGF1 axis relates to the longevity of African mole-rats and bats, we compared and analysed the homologous coding gene sequences in genomic and transcriptomic data from 26 bat species, five mole-rats and 38 outgroup species. Phylogenetic analyses of both genes recovered the majority of nodes in the currently accepted species tree with high support. Compared to other clades, such as primates and carnivores, the bats and rodents had longer branch lengths. The single 24 amino acid transmembrane domain of IGF1R was found to be more conserved across mammals compared to that of GHR. Within bats, considerable variation in the transmembrane domain of GHR was found, including a previously unreported deletion in Emballonuridae. The transmembrane domains of rodents were found to be more conserved, with mole-rats lacking uniquely conserved amino acid substitutions. Molecular evolutionary analyses showed that both genes were under purifying selection in bats and mole-rats. Our findings suggest that while the previously documented mutations may confer some additional lifespan to Myotis bats, other, as yet unknown, genetic

  8. Change of the growth hormone-insulin-like growth factor-I axis in patients with gastrointestinal cancer: related to tumour type and nutritional status.

    PubMed

    Huang, Qi; Nai, Yong-Jun; Jiang, Zhi-Wei; Li, Jie-Shou

    2005-06-01

    Changes in the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis, especially acquired GH resistance, develop in many severe illnesses, including cachexia. To study changes in the GH-IGF-I axis in patients with cancer cachexia, biochemical markers and body composition parameters were measured in eighty-eight gastric cancer patients, thirty colorectal cancer patients (subclassified according to the presence or absence of cachexia) and twenty-four healthy control subjects. Fifty-nine patients were defined as cachectic, based on the percentage of weight loss compared with their previous normal weight. The remaining fifty-nine patients were defined as non-cachectic. Measurements were repeated in twenty-seven patients (sixteen with gastric cancer and eleven with colorectal cancer) 3 months after radical operation. Compared with the controls, the cachectic gastric cancer patients had high GH levels (1.36 v. 0.32 ng/ml; P=0.001), a trend towards high IGF-I levels (223.74 v. 195.15 ng/ml; P=0.128 compared with non-cachectic patients) and a low log IGF-I/GH ratio (2.55 and 2.66 v. 3.00; P=0.002), along with a decreased BMI; the cachectic colorectal cancer patients showed the biochemical characteristics of acquired GH resistance: high GH (0.71 v. 0.32 ng/ml; P=0.016), a trend towards decreased IGF-I levels (164.18 v. 183.24 ng/ml; P=0.127) and a low log IGF-I/GH ratio (2.54 v. 2.99; P=0.005), with increased IGF-I levels following radical surgery (200.49 v. 141.91 ng/ml; P=0.046). These findings suggest that normal GH reaction and sensitivity occur in gastric cancer patients, controlled by nutritional status, whereas acquired GH resistance develops in cachectic colorectal cancer patients, which may be caused by tumour itself.

  9. Endometrial expression of leptin receptor and members of the growth hormone-Insulin-like growth factor system throughout the estrous cycle in heifers.

    PubMed

    Sosa, C; Carriquiry, M; Chalar, C; Crespi, D; Sanguinetti, C; Cavestany, D; Meikle, A

    2010-12-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is expressed in bovine uterus during the estrous cycle and early pregnancy and is acknowledged to play an important role in regulating the development of the embryo and uterus. The leptin receptor (LEPR) is also expressed in the bovine uterus although it is not known whether its expression varies during the estrous cycle. In this study, the expression of the IGF-I and -II, the type 1 IGF receptor (IGF-1R), GH receptor (GHR) and LEPR transcripts was determined on endometrial transcervical biopsies collected on days 0 (estrus), 5, 12 and 19 of the cow estrous cycle (n=8). The expression of mRNA was determined by RT real time PCR using ribosomal protein L19 as a housekeeping gene. It has been demonstrated for the first time that LEPR mRNA is expressed in the bovine uterus throughout the estrous cycle and that it presents a cycle-dependent variation, with higher levels observed during the luteal phase. The expression of IGF-I mRNA was greatest at estrus and day 5 (100%), and decreased on days 12 and 19 to 47% and 35% of the initial values. IGF-II mRNA increased on day 12 and decreased sharply thereafter (to one-third of day 12 values). Interestingly, IGF-1R showed the same pattern as IGF-II: increased 50% on day 12 compared to values at estrus and presented a sharp decrease on day 19. The expression of GHR transcript was greatest at estrus and on day 5 and progressively decreased thereafter. These results show that the GH-IGF system components are distinctively regulated during the estrous cycle suggesting that modulation of the IGF system may influence uterine activity during this period. The increase in the uterine sensitivity to IGFs during the late luteal phase - as demonstrated by the increased IGF-1R expression - concomitant with the increased IGF-II mRNA expression may reinforce the role of IGF-II during early pregnancy. Moreover, leptin is also likely to play roles during early embryo development.

  10. Growth hormone activation of human monocytes for superoxide production but not tumor necrosis factor production, cell adherence, or action against Mycobacterium tuberculosis.

    PubMed Central

    Warwick-Davies, J; Lowrie, D B; Cole, P J

    1995-01-01

    We have previously demonstrated that growth hormone (GH) is a human macrophage-activating factor which primes monocytes for enhanced production of H2O2 in vitro. This report extends our observations to other monocyte functions relevant to infection. We find that GH also primes monocytes for O2- production, to a degree similar to the effect of gamma interferon. Neither macrophage-activating factor alone stimulates monocytes to release bioactive tumor necrosis factor. However, GH, unlike gamma interferon, does not synergize with endotoxin for enhanced tumor necrosis factor production. In further contrast, GH does not alter monocyte adherence or morphology, while phagocytosis and killing of Mycobacterium tuberculosis by GH-treated monocytes are also unaffected. Therefore, despite the multiplicity of the effects of GH on the immune system in vivo, its effects on human monocytes in vitro appear to be limited to priming for the release of reactive oxygen intermediates. PMID:7591064

  11. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  12. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  13. Oral manifestations in growth hormone disorders

    PubMed Central

    Atreja, Gaurav; Atreja, Shikha Handa; Jain, Nitul; Sukhija, Urvashi

    2012-01-01

    Growth hormone is of vital importance for normal growth and development. Individuals with growth hormone deficiency develop pituitary dwarfism with disproportionate delayed growth of skull and facial skeleton giving them a small facial appearance for their age. Both hyper and hypopituitarism have a marked effect on development of oro-facial structures including eruption and shedding patterns of teeth, thus giving an opportunity to treating dental professionals to first see the signs and symptoms of these growth disorders and correctly diagnose the serious underlying disease. PMID:22629503

  14. [Human growth hormone and Turner syndrome].

    PubMed

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Follicle-stimulating hormone promotes age-related endometrial atrophy through cross-talk with transforming growth factor beta signal transduction pathway.

    PubMed

    Zhang, Dan; Li, Jingyi; Xu, Gufeng; Zhang, Runjv; Zhou, Chengliang; Qian, Yeqing; Liu, Yifeng; Chen, Luting; Zhu, Bo; Ye, Xiaoqun; Qu, Fan; Liu, Xinmei; Shi, Shuai; Yang, Weijun; Sheng, Jianzhong; Huang, Hefeng

    2015-04-01

    It is widely believed that endometrial atrophy in postmenopausal women is due to an age-related reduction in estrogen level. But the role of high circulating follicle-stimulating hormone (FSH) in postmenopausal syndrome is not clear. Here, we explored the role of high circulating FSH in physiological endometrial atrophy. We found that FSH exacerbated post-OVX endometrial atrophy in mice, and this effect was ameliorated by lowering FSH with Gonadotrophin-releasing hormone agonist (GnRHa). In vitro, FSH inhibited endometrial proliferation and promoted the apoptosis of primary cultured endometrial cells in a dose-dependent manner. In addition, upregulation of caspase3, caspase8, caspase9, autophagy-related proteins (ATG3, ATG5, ATG7, ATG12 and LC3) and downregulation of c-Jun were also observed in endometrial adenocytes. Furthermore, smad2 and smad3 showed a time-dependent activation in endometrial cells which can be partly inhibited by blocking the transforming growth factor beta receptor II (TβRII). In conclusion, FSH regulated endometrial atrophy by affecting the proliferation, autophagy and apoptosis of endometrial cells partly through activation of the transforming growth factor beta (TGFβ) pathway.

  16. Growth hormone replacement therapy in Costello syndrome.

    PubMed

    Triantafyllou, Panagiota; Christoforidis, Athanasios; Vargiami, Euthymia; Zafeiriou, Dimitrios I

    2014-12-01

    Costello syndrome (CS) is considered an overgrowth disorder given the macrosomia that is present at birth .However, shortly after birth the weight drops dramatically and the patients are usually referred for failure to thrive. Subsequently, affected patients develop the distinctive coarse facial appearance and are at risk for cardiac anomalies and solid tumor malignancies. Various endocrine disorders, although not very often, have been reported in patients with CS, including growth hormone deficiency, hypoglycemia, ACTH deficiency, cryptorchidism and hypothyroidism. We report a case of Costello syndrome with hypothyroidism, cryptorchidism and growth hormone deficiency and we evaluate the long-term safety and efficacy of growth hormone replacement therapy. The index patient is a paradigm of successful and safe treatment with growth hormone for almost 7 years. Since patients with CS are at increased risk for cardiac myopathy and tumor development they deserve close monitoring during treatment.

  17. Effects of short- and long-term dexamethasone treatment on growth and growth hormone (GH)-releasing hormone (GRH)-GH-insulin-like growth factor-I axis in conscious rats.

    PubMed

    Ohyama, T; Sato, M; Niimi, M; Hizuka, N; Takahara, J

    1997-12-01

    Although the inhibitory effects of a chronic excess of glucocorticoids (GC) on body growth and GH secretion are well established, the mechanisms involved remain unclear. In this study, we examined the chronic effects of a high dose of dexamethasone (DEX) on spontaneous GH secretion and insulin-like growth factor (IGF)-I in conscious rats. The animals were given daily i.p. injections of DEX (200 microg/day) for either one or four weeks. Body growth assessed by tibia length and serum IGF-I levels was significantly inhibited 1 week after treatment. By contrast, spontaneous GH secretion was not altered 1 week after the treatment. Neither hypothalamic GRH and somtatostain mRNA levels nor GH responses to GRH from single somatotropes were affected 1 week after the treatment. Four weeks after DEX treatment, body growth of the rats was noticeably suppressed. Interestingly, spontaneous GH secretion, hypothalamic GRH mRNA levels and GH responses to GRH were all inhibited 4 weeks after treatment. Pituitary GRH receptor mRNA levels were not altered 1 week after treatment, but increased after 4 weeks. These results indicate that a high dose of DEX initially impairs IGF-I production and subsequently inhibits spontaneous GH secretion in rats. Inhibition of spontaneous GH secretion resulting from chronic GC excess is due, at least in part, to the impairment of hypothalamic GRH synthesis and pituitary GH responsiveness. An increase in the pituitary GRH receptor may be caused by decreased GRH secretion.

  18. Hormonal and lactational responses to growth hormone-releasing hormone treatment in lactating Japanese Black cows.

    PubMed

    Shingu, H; Hodate, K; Kushibiki, S; Ueda, Y; Touno, E; Shinoda, M; Ohashi, S

    2004-06-01

    Ten multiparous lactating Japanese Black cows (beef breed) were used to evaluate the effects of bovine growth hormone-releasing hormone (GHRH) analog on milk yield and profiles of plasma hormones and metabolites. The cows received 2 consecutive 21-d treatments (a daily s.c. injection of 3-mg GHRH analog or saline) in a 2 (group) x 2 (period) Latin square crossover design. The 5 cows in group A received GHRH analog during period 1 (from d 22 to 42 postpartum) and saline during period 2 (from d 57 to 77 postpartum), and those in group B received saline and GHRH analog during periods 1 and 2, respectively. Mean milk yield decreased in saline treated compared with that during the 1-wk period before treatment 7.4 and 19.1% during periods 1 (group B) and 2 (group A), respectively. Treatment with GHRH analog increased milk yield 17.4% (period 1, group A) and 6.3% (period 2, group B). Treatment with GHRH analog induced higher basal plasma concentrations of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, and glucose compared with saline-treated cows. In glucose challenge, the GHRH analog-treated beef cows had greater insulin secretion than the saline-treated beef cows. In insulin challenge, however, there were no significant differences in the areas surrounded by hypothetical lines of basal glucose concentrations and glucose response curves between GHRH analog- and saline-treated cows. These results demonstrate that GHRH analog treatment facilitates endogenous GH secretion in lactating Japanese Black cows, leading to increases in milk yield and plasma concentrations of IGF-1, insulin, and glucose.

  19. Detecting growth hormone misuse in athletes

    PubMed Central

    Holt, Richard I. G.

    2013-01-01

    Athletes have been misusing growth hormone (GH) for its anabolic and metabolic effects since the early 1980s, at least a decade before endocrinologists began to treat adults with GH deficiency. Although there is an ongoing debate about whether GH is performance enhancing, recent studies suggest that GH improves strength and sprint capacity, particularly when combined with anabolic steroids. The detection of GH misuse is challenging because it is an endogenous hormone. Two approaches have been developed to detect GH misuse; the first is based on the measurement of pituitary GH isoforms and the ratio of 22-kDa isoform to total GH. The second is based on the measurement of insulin like growth factor-I (IGF-I) and N-terminal propeptide of type III procollagen (P-III-NP) which increase in a dose-dependent manner in response to GH administration. Both methodologies have been approved by the World Anti-Doping Agency (WADA) and have led to the detection of a number of athletes misusing GH. PMID:24251151

  20. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem. Copyright © 2012 Wiley Periodicals, Inc.

  1. Obtaining growth hormone from calf blood

    NASA Technical Reports Server (NTRS)

    Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.

    1979-01-01

    The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.

  2. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  3. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  4. Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth.

    PubMed

    Rehfeldt, Charlotte; Nissen, Pia M; Kuhn, Gerda; Vestergaard, Mogens; Ender, Klaus; Oksbjerg, Niels

    2004-10-01

    Prenatal growth is very complex and a highly integrated process. Both maternal nutrition and the maternal somatotropic axis play a significant role in coordinating nutrient partitioning and utilization between maternal, placental and fetal tissues. Maternal nutrition may alter the nutrient concentrations and in turn the expression of growth regulating factors such as IGFs and IGFBPs in the blood and tissues, while GH acts in parallel via changing IGFs/IGFBPs and nutrient availability. The similarity in the target components implies that maternal nutrition and the somatotropic axis are closely related to each other and may induce similar effects on placental and fetal growth. Severe restriction of nutrients throughout gestation has a permanent negative effect on fetal and postnatal growth, whereas the effects of both temporary restriction and feeding above requirements during gestation seem to be of transitional character. Advantages in fetal growth gained by maternal growth hormone treatment during early to mid-gestation are not maintained to term, whereas treatment during late or greatest part of gestation increases progeny size at birth, which could be of advantage for postnatal growth. This review summarizes the available knowledge on the effects of different maternal feeding strategies and maternal GH administration during pregnancy and their interactions on metabolic and hormonal (especially IGFs/IGFBPs) status in the feto-maternal unit, skeletal muscle development and growth of the offspring in pigs.

  5. Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental-specific expression of their mRNA transcripts in fathead minnow (Pimephales promelas).

    PubMed

    Filby, Amy L; Tyler, Charles R

    2007-01-01

    Growth hormone (GH), insulin-like growth factor-I (IGF-I), thyroid hormones, and corticosteroids play central roles in a wide range of body functions but, in fish, information on their interactions is limited. These axes of the endocrine system are also potential targets for disruption of signaling pathways by hormone-mimicking chemicals, but have received little study. Molecular approaches offer an effective way to help unravel these endocrine interactions but require the appropriate gene-specific assays to do so. In this study, the cDNAs for a suite of hormones and/or receptors involved in signaling for the effects of GH and IGF-I [GH, GH receptor (GHR), IGF-I, IGF-I receptor (IGF-IR)], thyroid hormones [thyroid hormone receptor alpha (TRalpha) and beta (TRbeta)], and corticosteroids [glucocorticoid receptor (GR)] were cloned from the fathead minnow (Pimephales promelas; fhm), and the tissue-, developmental-, and gender-related expression of their mRNA transcripts established. By polymerase chain reaction (PCR) strategy, we obtained full-length 1123-bp GH, 817-bp IGF-I, 1584-bp TRbeta, and 2571-bp GR cDNAs, coding for 210 amino acid (aa) GH, 161 aa IGF-I, 378 aa TRbeta, and 745 aa GR putative proteins, and partial-length 158-bp GHR, 811-bp IGF-IR, and 446-bp TRalpha cDNAs. Real-time PCR analyses revealed broad tissue expression for the target mRNAs; all targets were expressed in brain, pituitary, gill, liver, gonad, intestine, and muscle, with the exception of GH that was expressed only in the pituitary and gonad. Expression patterns in both juvenile and adult fhm were complex, with both temporal-, tissue-, and sex-specific characteristics. For example, hepatic expressions of GHR, IGF-I, and IGF-IR were far higher in males than in females, possibly reflecting the sex-related dimorphism in growth that occurs in this species, and TRalpha and TRbeta showed divergent expression patterns during development (where TRbeta predominated) and in adult tissues implying some

  6. Changing patterns of insulin-like growth factor-I and glucose-suppressed growth hormone levels after pituitary surgery in patients with acromegaly.

    PubMed

    Espinosa-de-los-Monteros, Ana Laura; Mercado, Moisés; Sosa, Ernesto; Lizama, Oscar; Guinto, Gerardo; Lopez-Felix, Blas; Garcia, Oscar; Hernández, Irma; Ovalle, Alfonso; Mendoza, Victoria

    2002-08-01

    According to a recent consensus statement on the treatment of acromegaly, its biochemical cure is defined as the normalization of age- and sex-adjusted insulin-like growth factor (IGF)-I levels and the suppression of growth hormone (GH) by glucose to lower than 1 ng/ml. The present study was prompted by the clinical observation that many cases of acromegaly can be considered cured according to one criterion but not others at different moments in a patient's postoperative course. Fifty-three patients with acromegaly (30 women and 23 men) harboring nine microadenomas and 44 macroadenomas were evaluated after surgery by assessing age- and sex-adjusted IGF-I levels as well as glucose-suppressed GH levels. Fifty of these patients were studied more than once during follow up. Acromegaly was categorized as cured if the patient's IGF-I level was normal and their glucose-suppressed GH level was lower than 1 ng/ml; the disease was considered to be active if the patient's IGF-I level was high and the GH nadir was higher than 1 ng/ml following administration of glucose. Discordant categories of the disease were found in patients with high IGF-I levels and a GH nadir lower than 1 ng/ml after glucose administration and in those with normal IGF-I levels and a GH nadir higher than 1 ng/ml after glucose intake. At the first postoperative biochemical evaluation (1-3 months), 34% of patients harboring macroadenomas were classified as having been cured of acromegaly, 39% as having the active disease, and 27% as having the discordant form of the disease. When last evaluated (> or = 12 months postoperatively), the percentage of patients with the discordant form dropped to 14% and the proportion of cases cured and active was 44% and 41%, respectively. Of the nine patients with microadenomas, 44.4% were cured of acromegaly, 33.2% had the active disease, and 22% had the discordant variety on first evaluation. Twelve months or longer after transsphenoidal surgery, 55.5% of cases were cured

  7. Time- and dose-dependent responses of brain histamine to intracerebroventricular and intraperitoneal administrations of growth hormone-releasing factor (GRF1-44).

    PubMed

    Cacabelos, R; Yamatodani, A; Fukui, H; Niigawa, H; Miyake, A; Watanabe, T; Nishimura, T; Wada, H

    1987-04-01

    Changes in the level of histamine (HA) in rat brain induced by intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administrations of growth hormone-releasing factor (GRF1-44) were studied. HA was determined by high-performance liquid chromatography (HPLC) in the anterior hypothalamic region, posterior hypothalamic region, median eminence, adenohypophysis, neurohypophysis, hippocampus and prefrontal cortex. GRF1-44 (1-10 micrograms, i.c.v.) induced significant time- and dose-dependent increases in the concentration of HA in the hypothalamo-hypophyseal system and time-dependent decrease of HA in the hippocampus. In contrast, after i.p. administration of GRF1-44 (10 micrograms) the level of HA in the hypothalamus tended to decrease but the total amount of H-1 receptors in the hypothalamo-hypophyseal system did not change. Circadian variations in the GRF-induced HA and growth hormone responses were also observed, responses being lower in the evening than in the morning. It is concluded that GRF interacts with HA at the central level to optimize the function of the somatotropinergic system.

  8. Factors predictive of the short- and long-term efficacy of growth hormone treatment in prepubertal children with chronic renal failure. The German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    PubMed

    Haffner, D; Wühl, E; Schaefer, F; Nissel, R; Tönshoff, B; Mehls, O

    1998-10-01

    To evaluate the growth-stimulating effects of short- and long-term treatment with recombinant human growth hormone (rhGH) in growth-retarded children with chronic renal failure (CRF), 103 prepubertal children with CRF on conservative treatment (n = 74) or dialysis (n = 29) were treated with rhGH for up to 5 yr. rhGH treatment persistently increased standardized height (+ 1.6 SD scores) and predicted adult height (+7.7 cm, Tanner method) during the first 3 treatment years (P < 0.001 versus baseline), followed by percentile parallel growth during continued treatment. Both standardized height and predicted adult height were significantly more increased in conservatively treated than in dialyzed children (P < 0.001). Age, GFR, target height, and prestudy growth rate were identified as independent predictors of the response to rhGH treatment during the first and second treatment year. GFR and target height were positively correlated with the change in height SD score and the change in absolute or age-standardized height velocity. Age affected the growth response depending on which outcome measure was used: Although the first-year change in height SD score was inversely correlated with age, the change in absolute height velocity was independent of age, and the change in standardized height velocity was positively correlated with age. The growth response during the first treatment year positively predicted the long-term response. In conclusion, the short- and long-term growth response to rhGH treatment in prepubertal growth-retarded children with CRF is significantly affected by age, GFR, target height, and the pretreatment growth rate. Therefore, rhGH should be preferably started at a young age, and early in the course of CRF.

  9. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle.

    PubMed

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J

    2014-11-25

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.

  10. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle

    PubMed Central

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J.

    2014-01-01

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility. PMID:25385589

  11. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  12. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  13. Adrenergic receptor control mechanism for growth hormone secretion.

    PubMed

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  14. Effects of Growth Hormone on Bone.

    PubMed

    Tritos, Nicholas A; Klibanski, Anne

    2016-01-01

    Describe the effects of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) on the skeleton. The GH and IGF-1 axis has pleiotropic effects on the skeleton throughout the lifespan by influencing bone formation and resorption. GH deficiency leads to decreased bone turnover, delayed statural growth in children, low bone mass, and increased fracture risk in adults. GH replacement improves adult stature in GH deficient children, increases bone mineral density (BMD) in adults, and helps to optimize peak bone acquisition in patients, during the transition from adolescence to adulthood, who have persistent GH deficiency. Observational studies suggest that GH replacement may mitigate the excessive fracture risk associated with GH deficiency. Acromegaly, a state of GH and IGF-1 excess, is associated with increased bone turnover and decreased BMD in the lumbar spine observed in some studies, particularly in patients with hypogonadism. In addition, patients with acromegaly appear to be at an increased risk of morphometric-vertebral fractures, especially in the presence of active disease or concurrent hypogonadism. GH therapy also has beneficial effects on statural growth in several conditions characterized by GH insensitivity, including chronic renal failure, Turner syndrome, Prader-Willi syndrome, postnatal growth delay in patients with intrauterine growth retardation who do not demonstrate catchup growth, idiopathic short stature, short stature homeobox-containing (SHOX) gene mutations, and Noonan syndrome. GH and IGF-1 have important roles in skeletal physiology, and GH has an important therapeutic role in both GH deficiency and insensitivity states. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle.

    PubMed

    Zulu, Victor Chisha; Nakao, Toshihiko; Sawamukai, Yutaka

    2002-08-01

    The current review aims to establish insulin-like growth factor-1 (IGF-I) as the factor that signals nutritional status to the reproductive axis, and show that assessment of IGF-I in blood early postpartum during the negative energy balance (NEB) period could be used to predict both nutritional and reproductive status in dairy cattle. The review also explores the effect of nutritional status on circulating IGF-I concentrations and the endocrine role of IGF-I on the reproductive axis. IGF-I plays an important role in gonadotropin-induced folliculogenesis, ovarian steroidogenesis and corpus luteum (CL) function. It also modulates pituitary and hypothalamus function. IGF-I clearly has an endocrine role on the reproductive axis. Severe under nutrition significantly reduces plasma IGF-I concentrations. During the critical period of NEB in high yielding dairy cattle early postpartum, IGF-I concentrations are low in blood and its levels are positively correlated to energy status and reproductive function during this period. Changes in circulating IGF-I immediately postpartum may help predict both nutritional and reproductive status in dairy cattle. IGF-I is therefore one of the long sought factors that signal nutritional status to the reproductive axis.

  16. Racial variation in sex steroid hormones and the insulin-like growth factor axis in umbilical cord blood of male neonates

    PubMed Central

    Rohrmann, Sabine; Sutcliffe, Catherine G.; Bienstock, Jessica L.; Monsegue, Deborah; Akereyeni, Folasade; Bradwin, Gary; Rifai, Nader; Pollak, Michael N.; Agurs-Collins, Tanya; Platz, Elizabeth A.

    2010-01-01

    Aim To address whether umbilical cord blood concentrations of sex steroid hormones and the insulin-like growth factor (IGF)-axis differ between African-American and white male neonates. Methods In 2004/2005, venous cord blood samples were collected from 75 African-American and 38 white male full-term uncomplicated births along with birth weight, placental weight, mother’s age and parity, and time of birth. Testosterone, androstanediol glucuronide, estradiol, and sex hormone binding globulin (SHBG) were measured by immunoassay, and IGF-1, IGF-2, and IGF binding protein (BP)-3 by ELISA. Crude and multivariable-adjusted geometric mean concentrations were computed. Results Androstanediol glucuronide, estradiol, and SHBG concentrations did not differ by race; however, the molar ratio of testosterone to SHBG was higher in African-American than white male babies after adjustment (p=0.01). Both before and after adjustment, whites had higher concentrations of IGF-1 (adjusted; white, African-American: 93.1, 71.9 ng/mL), IGF-2 (537.3, 474.8 ng/mL), and IGFBP-3 (1673, 1482 ng/mL) than African-Americans (p<0.05), although the molar ratio of IGF-1 plus IGF-2 to IGFBP-3 did not differ by race. Conclusion The higher cord blood testosterone to SHBG ratio in African-American compared with white male babies after taking into account maternal and birth factors is compatible with the hypothesis that differences in androgen levels in utero contribute to their higher prostate cancer risk, although we would have expected crude differences as well. Lower cord blood IGF-1 and IGF-2 levels in African-American compared with white male babies are not consistent with the hypothesis that differences in growth factor levels contribute to their higher prostate cancer risk. PMID:19423525

  17. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    USDA-ARS?s Scientific Manuscript database

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  18. Growth differentiation factor-9 and anti-Müllerian hormone expression in cultured human follicles from frozen-thawed ovarian tissue.

    PubMed

    Sadeu, J C; Smitz, J

    2008-10-01

    In-vitro growth of frozen-thawed human follicles is perceived as a potential option for restoring women's fertility. The aims of this study were: (i) to test the usefulness of a defined serum-free medium for growth of frozen-thawed human follicles; and (ii) to evaluate the expression of growth differentiation factor-9 (GDF-9) and anti-Müllerian hormone (AMH) in cultured follicles. Frozen-thawed ovarian cortical pieces from 7-, 12-, 25- and 27-year-old women were cultured for 0, 7, 14, 21 and 28 days. Follicle developmental quality was evaluated and expression of proliferating cell nuclear antigen (PCNA) (day 21), GDF-9 (days 14 and 28) and AMH (day 21) was assessed by immunohistochemistry. Primary follicles and enclosed oocytes underwent significant growth at the end of culture (P < 0.05). Cultured follicles from all patients studied reached the early secondary stage and a few follicles from two patients developed up to the secondary stage. The rate of atresia was variable throughout the culture periods. PCNA was expressed in the granulosa cells at all the different follicular stages. AMH and GDF-9 immunostaining were found respectively in the granulosa cells and oocytes after several weeks of culture. The transition from resting to growing follicles leading to the development of secondary follicles showed the normal expression patterns of GDF-9 and AMH.

  19. Thyroid hormones in fetal growth and prepartum maturation.

    PubMed

    Forhead, A J; Fowden, A L

    2014-06-01

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

  20. Differential effects of central and peripheral administration of growth hormone (GH) and insulin-like growth factor on hypothalamic GH-releasing hormone and somatostatin gene expression in GH-deficient dwarf rats.

    PubMed

    Sato, M; Frohman, L A

    1993-08-01

    The roles of GH and insulin-like growth factor-I (IGF-I) in the regulation of hypothalamic GH-releasing hormone (GRH) and somatostatin (SRIH) gene expression were investigated in the GH-deficient dwarf (dw) rat, in which endogenous feedback signals are lacking. Adult male and female dw rats were treated with GH or IGF-I by systemic (sc) administration or intracerebroventricular (icv) infusion, and hypothalamic GRH and SRIH mRNA were determined by Northern blotting and densitometric analysis. Systemic sc injection of rGH (75 micrograms every 12 h for 3 days) decreased GRH mRNA levels in both sexes. However, systemic sc injection of human IGF-I (150 micrograms every 12 h for 3 days) did not affect GRH mRNA levels in either sex despite significant stimulation of body weight gain. The use of a continuous sc infusion, which normalized serum IGF-I levels, and prolongation of the treatment period to 7 days also failed to change GRH mRNA levels. SRIH mRNA was unaffected by systemic administration of either GH or IGF-I. Continuous icv infusion of GH (1 microgram/h for 7 days) decreased GRH mRNA levels in both sexes, but did not alter SRIH mRNA levels. Continuous icv infusion of IGF-I (100 ng/h for 7 days) decreased GRH mRNA in both sexes. In contrast, SRIH mRNA levels were increased in both sexes. IGF-I decreased GRH mRNA levels at icv infusion rates of 100 and 300 ng/h and stimulated SRIH mRNA levels at infusion rates of 30 and 100 ng/h. Food intake was unaffected at these infusion rates. Changes in GRH and SRIH mRNA levels in response to systemic or central GH and IGF-I administration were similar in both sexes, except that the decrease in GRH mRNA levels produced by the icv infusion of IGF-I was greater in female than in male rats. The results provide evidence for a direct inhibitory feedback effect of GH in the central nervous system on the regulation of hypothalamic GRH gene expression that is independent of peripheral IGF-I. IGF-I feedback, in contrast, appears to

  1. [The evaluation of changes in concentration of ghrelin, somatotropin, insulin-like growth factor-1, insulin, leptin and thyroid hormones in mother and umbilical blood in case of physiologic pregnancy with normosomia and macrosomia of fetus].

    PubMed

    Shul'ga, A S; Butenko, E V; Aleksandrova, A A; Gutnikova, L V; Rymashevskiĭ, A A; Shestopalov, A V; Shkurat, T P

    2013-02-01

    The sample of women with physiologic pregnancy consisting of 40 females with fetus normosomia and 8 females with fetus macrosomia were examined. The examination covered the evaluation of changes in concentration of ghrelin, somatotropin, insulin-like growth factor-I, insulin, leptin and thyroid hormones in mother and umbilical blood. In females with fetus macrosomia the changes in concentration of hormones regulating trophism, energy balance and anabolic processes in organisms of mother and fetus were detected

  2. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  3. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  4. Growth hormone and the kidney: the use of recombinant human growth hormone (rhGH) in growth-retarded children with chronic renal insufficiency.

    PubMed

    Fine, R N

    1991-04-01

    Hypothalamic production of growth hormone releasing hormone stimulates the anterior pituitary gland to release growth hormone (GH). The clinical manifestations of GH on tissues are either direct or are mediated by insulin-like growth factors (IGF). Both the somatic effects of GH and the renal manifestations of an increase in glomerular filtration rate and renal plasma flow are mediated by IGF. The increase in glomerular filtration rate/renal plasma flow that occurs with either exogenous or endogenous GH is not apparent in patients with chronic renal failure (CRF); therefore, it is unlikely that recombinant human growth hormone (rhGH) treatment of patients with CRF will result in glomerular hyperfiltration. Longitudinal studies are required to determine if the glomerulosclerosis and renal functional impairment occurring in GH and growth hormone releasing hormone transgenic mice occurs after rhGH treatment of growth-retarded uremic rats with GH resulted in an improvement in growth velocity. This led to preliminary studies in growth-retarded children with CRF by using rhGH. The acceleration of growth velocity was dramatic despite the fact that GH levels are elevated in uremia. The elevated IGF carrier proteins in uremic children may contribute to the growth retardation. Treatment with rhGH may be efficacious by stimulating a net increase in the free (unbound) IGF levels. Hyposecretion of GH may contribute to the failure to achieve optimal growth after successful renal transplantation. Treatment with rhGH may be efficacious in improving the growth velocity of renal allograft recipients.

  5. Associations of Ionizing Radiation and Breast Cancer-Related Serum Hormone and Growth Factor Levels in Cancer-Free Female A-Bomb Survivors

    PubMed Central

    Grant, Eric J.; Neriishi, Kazuo; Cologne, John; Eguchi, Hidetaka; Hayashi, Tomonori; Geyer, Susan; Izumi, Shizue; Nishi, Nobuo; Land, Charles; Stevens, Richard G.; Sharp, Gerald B.; Nakachi, Kei

    2013-01-01

    Levels of exposure to ionizing radiation are increasing for women worldwide due to the widespread use of CT and other radiologic diagnostic modalities. Exposure to ionizing radiation as well as increased levels of estradiol and other sex hormones are acknowledged breast cancer risk factors, but the effects of whole-body radiation on serum hormone levels in cancer-free women are unknown. This study examined whether ionizing radiation exposure is associated with levels of serum hormones and other markers that may mediate radiation-associated breast cancer risk. Serum samples were measured from cancer-free women who attended biennial health examinations with a wide range of past radiation exposure levels (N = 412, ages 26–79). The women were selected as controls for separate case-control studies from a cohort of A-bomb survivors. Outcome measures included serum levels of total estradiol, bioavailable estradiol, testosterone, progesterone, prolactin, insulin-like growth factor-1 (IGF1), insulin-like growth factor-binding protein 3 (IGFBP-3), and ferritin. Relationships were assessed using repeated-measures regression models fitted with generalized estimating equations. Geometric mean serum levels of total estradiol and bioavailable estradiol increased with 1 Gy of radiation dose among samples collected from postmenopausal women (17%1Gy, 95% CI: 1%–36% and 21%1Gy, 95% CI: 4%–40%, respectively), while they decreased in samples collected from premenopausal women (−11%1Gy, 95% CI: −20%–1% and −12%1Gy, 95% CI: −20%– −2%, respectively). Interactions by menopausal status were significant (P = 0.003 and P < 0.001, respectively). Testosterone levels increased with radiation dose in postmenopausal samples (30.0%1Gy, 95% CI: 13%–49%) while they marginally decreased in premenopausal samples (−10%1Gy, 95% CI: −19%–0%) and the interaction by menopausal status was significant (P < 0.001). Serum levels of IGF1 increased linearly with radiation dose (11%1Gy

  6. Regulation of growth hormone secretion by the growth hormone releasing hexapeptide (GHRP-6).

    PubMed

    Micic, D; Mallo, F; Peino, R; Cordido, F; Leal-Cerro, A; Garcia-Mayor, R V; Casanueva, F F

    1993-01-01

    Growth hormone (GH) secretion is regulated by a complex system of central and peripheral signals. Recently, a new GH-releasing hexapeptide (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) called GHRP-6 which specifically releases GH has been studied. In the present work the mechanism of action of GHRP-6 has been addressed in experimental animal models as well as in obese subjects. GHRP-6 releases GH independently of the hypothalamic factors GHRH and somatostatin and is a powerful GH releaser in obesity.

  7. Nuclear factor-I and activator protein-2 bind in a mutually exclusive way to overlapping promoter sequences and trans-activate the human growth hormone gene.

    PubMed Central

    Courtois, S J; Lafontaine, D A; Lemaigre, F P; Durviaux, S M; Rousseau, G G

    1990-01-01

    Transcription of the human growth hormone (hGH) gene and its regulation are controlled by trans-acting factors that bind to hGH gene promoter sequences. Several DNase I footprints have been described within 500 bp of this promoter, one of which (-289 to -267) has not yet been ascribed to a defined factor. By DNase I footprinting, gel mobility shift, and methylation interference assays with extracts from HeLa cells and GH-producing pituitary tumor (GC) cells, we show that this factor belongs to the NF-I family. When NF-I was competed out of the cell extracts, the trans-acting factor AP-2 bound to the same site as NF-I. AP-2 was present not only in HeLa cells, but also in GC cells albeit at a much lower concentration. Consistent with the mutually exclusive binding of NF-I and AP-2, their methylation interference patterns included four guanine residues that were crucial for binding of both NF-I and AP-2. Cell-free transcription from the hGH gene promoter showed that these two factors can transactivate this gene. Images PMID:2308836

  8. Racial variation in umbilical cord blood sex steroid hormones and the insulin-like growth factor axis in African-American and white female neonates

    PubMed Central

    Agurs-Collins, Tanya; Rohrmann, Sabine; Sutcliffe, Catherine; Bienstock, Jessica L.; Monsegue, Deborah; Akereyeni, Folasade; Bradwin, Gary; Rifai, Nader; Pollak, Michael N.; Platz, Elizabeth A.

    2012-01-01

    Purpose To evaluate whether there is racial variation in venous umbilical cord blood concentrations of sex steroid hormones and the insulin-like growth factor (IGF)-axis between female African-American and white neonates. Methods Maternal and birth characteristics and venous umbilical cord blood samples were collected from 77 African-American and 41 white full-term uncomplicated births at two urban hospitals in 2004 and 2005. Cord blood was measured for testosterone, dehydroespiandrosterone-sulfate (DHEAS), estradiol, sex-steroid hormone binding globulin (SHBG) by immunoassay. IGF-1, IGF-2, and IGF binding protein-3 (IGFBP-3) were measured by ELISA. Crude and multivariable-adjusted geometric mean concentrations were computed for the hormones. Results African-American neonates weighed less at birth (3,228 vs. 3,424 grams, p<0.004) than whites. Birth weight was positively correlated with IGF-1, IGFBP-3 and the molar ratio of IGF1 to IGFBP-3, but inversely correlated with the molar ratio of IGF-2 to IGFBP-3. Adjusted models showed higher testosterone (1.82 vs. 1.47 ng/mL, p=0.006) and the molar ratio of testosterone to SHBG (0.42 vs. 0.30, p=0.03) in African-American compared to white female neonates. IGF-1, IGF-2, and IGFBP-3 were lower in African-American compared to white female neonates, but only the difference for IGF-2 remained significant (496.5 vs. 539.2 ng/mL, p=0.04). Conclusion We provide evidence of racial variation in cord blood testosterone and testosterone to SHBG in African-American compared to white female neonates, and higher IGF-2 in white compared to African-American female neonates. Findings suggest plausible explanations for a prenatal influence on subsequent breast cancer risk and mortality. Further work is needed to confirm these observations. PMID:22252677

  9. Genome-wide association study for inhibin, luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species.

    PubMed

    Fortes, M R S; Reverter, A; Kelly, M; McCulloch, R; Lehnert, S A

    2013-07-01

    The fertility of young bulls impacts on reproduction rates, farm profit and the rate of genetic progress in beef herds. Cattle researchers and industry therefore routinely collect data on the reproductive performance of bulls. Genome-wide association studies were carried out to identify genomic regions and genes associated with reproductive traits measured during the pubertal development of Tropical Composite bulls, from 4 to 24 months of age. Data from 1 085 bulls were collected for seven traits: blood hormone levels of inhibin at 4 months (IN), luteinizing hormone following a gonadotropin releasing hormone challenge at 4 months (LH), insulin-like growth factor 1 at 6 months (IGF1), scrotal circumference at 12 months (SC), sperm motility at 18 months (MOT), percentage of normal spermatozoa at 24 months (PNS) and age at a scrotal circumference of 26 cm (AGE26, or pubertal age). Data from 729 068 single-nucleotide polymorphisms were used in the association analysis. Significant polymorphism associations were discovered for IN, IGF1, SC, AGE26 and PNS. Based on these associations, INHBE, INHBC and HELB are proposed as candidate genes for IN regulation. Polymorphisms associated with IGF1 mapped to the PLAG1 gene region, validating a reported quantitative trait locus on chromosome 14 for IGF1. The X chromosome contained most of the significant associations found for SC, AGE26 and PNS. These findings will contribute to the identification of diagnostic genetic markers and informed genomic selection strategies to assist breeding of cattle with improved fertility. Furthermore, this work provides evidence contributing to gene function annotation in the context of male fertility.

  10. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

  11. Growth hormone regulates the expression of hepatocyte nuclear factor-3 gamma and other liver-enriched transcription factors in the bovine liver.

    PubMed

    Eleswarapu, S; Jiang, H

    2005-01-01

    Growth hormone (GH) regulates the expression of many genes in the liver, and for some genes this regulation may be mediated through liver-enriched transcription factors (LETFs). As part of the long-term goal to investigate the role of LETFs in GH regulation of gene expression in the liver, in this study we determined the effect of GH administration on the expression of 10 LETFs, including hepatocyte nuclear factor (HNF)-1alpha, HNF-1beta, HNF-3alpha, HNF-3beta, HNF-3gamma, HNF-4alpha, HNF-6, CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBPbeta, and albumin D-element binding protein (DBP) in the bovine liver. Eighteen non-lactating and non-pregnant Angus cows were assigned randomly to three groups (n=6 per group) and each cow received a single intramuscular injection of 500 mg slow-release recombinant bovine GH. Liver biopsy samples were taken from group 1 cows 6 h after GH administration, from group 2 cows 24 h after GH administration, and from group 3 cows 1 week after GH administration. Liver biopsies were also collected from group 3 cows 1 day before GH administration, serving as pre-GH controls. The LETF mRNAs in these liver samples were quantified using ribonuclease protection assays with probes generated from bovine LETF cDNAs cloned by standard reverse transcription-polymerase chain reaction. The levels of HNF-3gamma and HNF-6 mRNAs were higher (P< 0.05) in the cows 24 h and 1 week after GH administration than in the untreated cows or the cows 6 h after GH administration. The levels of HNF-4alpha mRNA were higher (P< 0.05) in the cows 1 week after GH administration than in the other three groups of cows. The levels of C/EBPalpha mRNA were higher (P< 0.05) in the cows 24 h after GH administration than in the untreated cows or the cows 6 h after GH administration. The levels of HNF-3alpha mRNA were higher (P< 0.05) in the cows 6 h after GH administration but were lower (P< 0.05) in the cows 24 h or 1 week after GH administration compared with those in the

  12. Growth hormone (GH)-transgenic insulin-like growth factor 1 (IGF1)-deficient mice allow dissociation of excess GH and IGF1 effects on glomerular and tubular growth.

    PubMed

    Blutke, Andreas; Schneider, Marlon R; Wolf, Eckhard; Wanke, Rüdiger

    2016-03-01

    Growth hormone (GH)-transgenic mice with permanently elevated systemic levels of GH and insulin-like growth factor 1 (IGF1) reproducibly develop renal and glomerular hypertrophy and subsequent progressive glomerulosclerosis, finally leading to terminal renal failure. To dissociate IGF1-dependent and -independent effects of GH excess on renal growth and lesion development in vivo, the kidneys of 75 days old IGF1-deficient (I(-/-)) and of IGF1-deficient GH-transgenic mice (I(-/-)/G), as well as of GH-transgenic (G) and nontransgenic wild-type control mice (I(+/+)) were examined by quantitative stereological and functional analyses. Both G and I(-/-)/G mice developed glomerular hypertrophy, hyperplasia of glomerular mesangial and endothelial cells, podocyte hypertrophy and foot process effacement, albuminuria, and glomerulosclerosis. However, I(-/-)/G mice exhibited less severe glomerular alterations, as compared to G mice. Compared to I(+/+) mice, G mice exhibited renal hypertrophy with a significant increase in the number without a change in the size of proximal tubular epithelial (PTE) cells. In contrast, I(-/-)/G mice did not display significant PTE cell hyperplasia, as compared to I(-/-) mice. These findings indicate that GH excess stimulates glomerular growth and induces lesions progressing to glomerulosclerosis in the absence of IGF1. In contrast, IGF1 represents an important mediator of GH-dependent proximal tubular growth in GH-transgenic mice. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. The Role of Epidermal Growth Factor-Like Module Containing Mucin-Like Hormone Receptor 2 in Human Cancers

    PubMed Central

    Safaee, Michael; Ivan, Michael E.; Oh, Michael C.; Oh, Taemin; Sayegh, Eli T.; Kaur, Gurvinder; Sun, Matthew Z.; Bloch, Orin; Parsa, Andrew T.

    2014-01-01

    G-protein coupled receptors (GPCRs) are among the most diverse and ubiquitous proteins in all of biology. The epidermal growth factor-seven span transmembrane (EGF-TM7) subfamily of adhesion GPCRs is a small subset whose members are mainly expressed on the surface of leukocytes. The EGF domains on the N-terminus add significant size to these receptors and they are considered to be among the largest members of the TM7 family. Although not all of their ligands or downstream targets have been identified, there is evidence implicating the EGF-TM7 family diverse processes such as cell adhesion, migration, inflammation, and autoimmune disease. Recent studies have identified expression of EGF-TM7 family members on human neoplasms including those of the thyroid, stomach, colon, and brain. Their presence on these tissues is not surprising given the ubiquity of GPCRs, but because their functional significance and pathways are not completely understood, they are of tremendous clinical and scientific interest. Current evidence suggests that expression of certain EGF-TM7 receptors is correlated with tumor grade, confers a more invasive phenotype, and increases the likelihood of metastatic disease. In this review, we will discuss the structure, function, and regulation of these receptors. We also describe the expression of these receptors in human cancers and explore their potential mechanistic significance. PMID:25992231

  14. New active series of growth hormone secretagogues.

    PubMed

    Guerlavais, Vincent; Boeglin, Damien; Mousseaux, Delphine; Oiry, Catherine; Heitz, Annie; Deghenghi, Romano; Locatelli, Vittorio; Torsello, Antonio; Ghé, Corrado; Catapano, Filomena; Muccioli, Giampiero; Galleyrand, Jean-Claude; Fehrentz, Jean-Alain; Martinez, Jean

    2003-03-27

    New growth hormone secretagogue (GHS) analogues were synthesized and evaluated for growth hormone releasing activity. This series derived from EP-51389 is based on a gem-diamino structure. Compounds that exhibited higher in vivo GH-releasing potency than hexarelin in rat (subcutaneous administration) were then tested per os in beagle dogs and for their binding affinity to human pituitary GHS receptors and to hGHS-R 1a. Compound 7 (JMV 1843, H-Aib-(d)-Trp-(d)-gTrp-formyl) showed high potency in these tests and was selected for clinical studies.(1)

  15. Sex steroids and growth hormone interactions.

    PubMed

    Fernández-Pérez, Leandro; de Mirecki-Garrido, Mercedes; Guerra, Borja; Díaz, Mario; Díaz-Chico, Juan Carlos

    2016-04-01

    GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  16. Calorie restriction minimizes activation of insulin signaling in response to glucose: potential involvement of the growth hormone-insulin-like growth factor 1 axis.

    PubMed

    Hayashi, Hiroko; Yamaza, Haruyoshi; Komatsu, Toshimitsu; Park, Seongjoon; Chiba, Takuya; Higami, Yoshikazu; Nagayasu, Takeshi; Shimokawa, Isao

    2008-09-01

    Calorie restriction (CR) may modulate insulin signaling in response to energy intake through suppression of the growth hormone (GH)-IGF-1 axis. We investigated the glucose-stimulated serum insulin response and subsequent alterations in insulin receptor (IR), Akt, and FoxO1 in the rat liver and quadriceps femoris muscle (QFM). Nine-month-old wild-type (W) male Wistar rats fed ad libitum (AL) or a 30% CR diet initiated at 6 weeks of age and GH-suppressed transgenic (Tg) rats fed AL were killed 15 min after intraperitoneal injection of glucose or saline. In W-AL rats, the serum insulin concentration was elevated by glucose injection. Concomitantly, the phosphorylated (p)-IR and p-Akt levels were increased in both tissues. The active FoxO1 level was decreased in the liver, but not significantly in the QFM. In W-CR and Tg-AL rats, the serum insulin response was lower, and no significant changes were noted for the p-IR, p-Akt, or active FoxO1 levels in the liver. In the QFM, the p-Akt level was increased in W-CR and Tg-AL rats with an insignificant elevation of p-IR levels. The phenotypic similarity of W-CR and Tg-AL rats suggest that CR minimizes activation of insulin signaling in response to energy intake mostly through the GH-IGF-1 axis.

  17. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  18. Placental steroids in cattle: hormones, placental growth factors or by-products of trophoblast giant cell differentiation?

    PubMed

    Schuler, G; Greven, H; Kowalewski, M P; Döring, B; Ozalp, G R; Hoffmann, B

    2008-07-01

    The bovine placenta produces large amounts of steroids, mainly estrone (E1) and progesterone (P4). Specific features of bovine placental steroidogenesis are 1) the expression of all enzymes needed for the production of estrogens from cholesterol in the trophoblast 2) an only marginal and temporal contribution to peripheral maternal P4 levels restricted to a period between approx. days 150 - 240 of gestation 3) the predominance of sulfoconjugated over free E1 and 4) a complementary setting of steroidogenic enzymes in the two morphologically discriminable trophoblast cell types, the uninucleated trophoblast cells (UTC) and the trophoblast giant cells (TGC). In cattle so far no definite information is available on the specific biological roles of placental estrogens and P4. However, the detection of estrogen receptors and progesterone receptors in the placentomes suggests a role primarily as local regulators of caruncular growth, differentiation and functions. Inconsistent with a function as a caruncular growth factor is the strong evidence that in cattle placental estrogens enter the maternal compartment almost completely as estrone sulfate (E1S), which is not active at classical nuclear receptors. On the other hand, E1S may be converted locally to free active estrogens via the action of steroid sulfatase (StS), which has been detected in specific parts of the bovine caruncular epithelium. Alternatively or in addition, StS expression in the caruncular epithelium may serve the utilization of sulfated neutral steroid precursors (e.g. pregnenolone sulfate or cholesterol sulfate) supplied with maternal blood, thus providing free substrates for further metabolization in the adjacent trophoblast. The down-regulation of P450scc and P450c17 and the up-regulation of 3beta-HSD and aromatase during the differentiation of TGC from UTC in parallel with the up-regulation of ER beta and estrogen sulfotransferase in maturing TGC suggests a function of placental estrogens primarily

  19. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  20. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  1. Peripheral activities of growth hormone-releasing hormone.

    PubMed

    Granata, R

    2016-07-01

    Growth hormone (GH)-releasing hormone (GHRH) is produced by the hypothalamus and stimulates GH synthesis and release in the anterior pituitary gland. In addition to its endocrine role, GHRH exerts a wide range of extrapituitary effects which include stimulation of cell proliferation, survival and differentiation, and inhibition of apoptosis. Accordingly, expression of GHRH, as well as the receptor GHRH-R and its splice variants, has been demonstrated in different peripheral tissues and cell types. Among the direct peripheral activities, GHRH regulates pancreatic islet and β-cell survival and function and endometrial cell proliferation, promotes cardioprotection and wound healing, influences the immune and reproductive systems, reduces inflammation, indirectly increases lifespan and adiposity and acts on skeletal muscle cells to inhibit cell death and atrophy. Therefore, it is becoming increasingly clear that GHRH exerts important extrapituitary functions, suggesting potential therapeutic use of the peptide and its analogs in a wide range of medical settings.

  2. The Physiology of Growth Hormone-Releasing Hormone (GHRH) in Breast Cancer

    DTIC Science & Technology

    2003-06-01

    production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly . Prog Clin Biol Res 1981; 74:259-271. (16...promotion of apop- cause of acromegaly . More recently, expression has been tosis. These results indicate that disruption of enaog- demonstrated in tumors

  3. Bovine growth hormone: human food safety evaluation.

    PubMed

    Juskevich, J C; Guyer, C G

    1990-08-24

    Scientists in the Food and Drug Administration (FDA), after reviewing the scientific literature and evaluating studies conducted by pharmaceutical companies, have concluded that the use of recombinant bovine growth hormone (rbGH) in dairy cattle presents no increased health risk to consumers. Bovine GH is not biologically active in humans, and oral toxicity studies have demonstrated that rbGH is not orally active in rats, a species responsive to parenterally administered bGH. Recombinant bGH treatment produces an increase in the concentration of insulin-like growth factor-I (IGF-I) in cow's milk. However, oral toxicity studies have shown that bovine IGF-I lacks oral activity in rats. Additionally, the concentration of IGF-I in milk of rbGH-treated cows is within the normal physiological range found in human breast milk, and IGF-I is denatured under conditions used to process cow's milk for infant formula. On the basis of estimates of the amount of protein absorbed intact in humans and the concentration of IGF-I in cow's milk during rbGH treatment, biologically significant levels of intact IGF-I would not be absorbed.

  4. IGF-1 and insulin as growth hormones.

    PubMed

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  5. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  6. History of growth hormone therapy.

    PubMed

    Blizzard, Robert M

    2012-01-01

    The first human to receive GH therapy was in 1956; it was of bovine origin and was given for 3 wk for metabolic balance studies revealing no effects. By 1958, three separate laboratories utilizing different extraction methods retrieved hGH from human pituitaries, purified it and used for clinical investigation. By 1959 presumed GHD patients were being given native hGH collected and extracted by various methods. Since 1 mg of hGH was needed to treat one patient per day, >360 human pituitaries were needed per patient per year. Thus, the availability of hGH was limited and was awarded on the basis of clinical research protocols approved by the National Pituitary Agency (NPA) established in 1961. hGH was dispensed and injected on a milligram weight basis with varied concentrations between batches from 0.5 units/mg to 2.0 units/mg of hGH. By 1977 a centralized laboratory was established to extract all human pituitaries in the US, this markedly improved the yield of hGH obtained and most remarkably, hGH of this laboratory was never associated with Creutzfeld-Jacob disease (CJD) resulting from the injection of apparently prior- contaminated hGH produced years earlier. However, widespread rhGH use was not possible even if a pituitary from each autopsy performed in the US was collected, this would only permit therapy for about 4,000 patients. Thus, the mass production of rhGH required the identification of the gene structure of the hormone, methodology that began in 1976 to make insulin by recombinant technology. Serendipity was manifest in 1985 when patients who had received hGH years previously were reported to have died of CJD. This led to the discontinuation of the distribution and use of hGH, at a time when a synthetic rhGH became available for clinical use. The creation of a synthetic rhGH was accompanied by unlimited supplies of hGH for investigation and therapy. However, the appropriate use and the potential abuse of this hormone are to be dealt with. The

  7. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release.

    PubMed

    Steyn, F J

    2015-07-01

    Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.

  8. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland.

    PubMed

    Aupperlee, Mark D; Zhao, Yong; Tan, Ying Siow; Leipprandt, Jeffrey R; Bennett, Jessica; Haslam, Sandra Z; Schwartz, Richard C

    2014-06-01

    It is well documented that macrophages and eosinophils play important roles in normal murine pubertal mammary gland development. Although it is accepted that estrogen (E) and progesterone (P) are key players in mammary gland development, the roles these hormones might play in regulating the actions of leukocytes in that process is an understudied area. We show here that P and E, respectively, induce unique, but overlapping, sets of proinflammatory and angiogenic cytokines and chemokines, in the pubertal female BALB/c mammary gland, as well as induce infiltration of macrophages and eosinophils to the mammary periepithelium. This extends earlier studies showing P induction of proinflammatory products in pubertal and adult mammary epithelial organoids and P-induced in vivo infiltration of leukocytes to the adult mammary periepithelium. Importantly, epidermal growth factor receptor-signaling, which is likely mediated by amphiregulin (Areg), a downstream mediator of E and P, is both necessary and sufficient for both E- and P-induced recruitment of macrophages and eosinophils to the pubertal mammary periepithelium. We further show that receptor activator of nuclear factor κB ligand (RANKL), although not sufficient of itself to cause macrophage and eosinophil recruitment, contributes to an optimal response to P. The potency of Areg is highlighted by the fact that it is sufficient to induce macrophage and eosinophil recruitment at levels equivalent to that induced by either E or P. Our finding of a dominant role for Areg in hormonally induced leukocyte recruitment to the pubertal mammary gland parallels its dominance in regulating ductal outgrowth and its role in P-induced proliferation in the pubertal gland.

  9. Parathyroid hormone, aldosterone-to-renin ratio and fibroblast growth factor-23 as determinants of nocturnal blood pressure in primary hyperparathyroidism: the eplerenone in primary hyperparathyroidism trial.

    PubMed

    Verheyen, Nicolas; Fahrleitner-Pammer, Astrid; Pieske, Burkert; Meinitzer, Andreas; Belyavskiy, Evgeny; Wetzel, Julia; Gaksch, Martin; Grübler, Martin R; Catena, Cristiana; Sechi, Leonardo A; Van Ballegooijen, Adriana J; Brandenburg, Vincent M; Scharnagl, Hubert; Perl, Sabine; Brussee, Helmut; März, Winfried; Pilz, Stefan; Tomaschitz, Andreas

    2016-09-01

    The high prevalence of arterial hypertension in primary hyperparathyroidism (pHPT) is largely unexplained. Apart from parathyroid hormone (PTH), the mineral hormones fibroblast growth factor (FGF)-23 and aldosterone-to-renin ratio (ARR) are upregulated in pHPT. We aimed to determine whether nocturnal blood pressure (BP) is related with PTH, FGF-23 or ARR in a relatively large sample of pHPT patients. Cross-sectional data of the single-center "Eplerenone in Primary Hyperparathyroidism" trial were used. All patients with a biochemical diagnosis of pHPT who had both available 24-h ambulatory BP monitoring and valid laboratory data were included. Full data were available in 136 patients (mean age 67 ± 10 years, 78% women). Median PTH was 99 (interquartile range: 82-124) pg/ml and mean calcium was 2.63 ± 0.15 mmol/l. ARR, but not PTH or FGF-23, was significantly and directly related with nocturnal SBP (Pearson's r = 0.241, P < 0.01) and DBP (r = 0.328, P < 0.01). In multivariate regression analyses, with adjustment for age, sex, PTH, FGF-23, traditional cardiovascular risk factors, antihypertensive medication and parameters of calcium metabolism ARR remained significantly and directly related with nocturnal BP (SBP: adjusted β-coefficient = 0.289, P < 0.01; DBP: β = 0.399, P < 0.01). The relationship between ARR and nocturnal SBP was exclusively present in patients with PTH levels above the median of 99 pg/ml. ARR, but not FGF-23 or PTH, was independently and directly related with nocturnal BP parameters in patients with pHPT, and this relationship was dependent on pHPT disease severity. Inappropriately, elevated aldosterone may partially explain the high prevalence of arterial hypertension in pHPT.

  10. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  11. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  12. Growth hormone: health considerations beyond height gain

    USDA-ARS?s Scientific Manuscript database

    The therapeutic benefit of growth hormone (GH) therapy in improving height in short children is widely recognized; however, GH therapy is associated with other metabolic actions that may be of benefit in these children. Beneficial effects of GH on body composition have been documented in several dif...

  13. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  14. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  15. Growth hormone releasing factor (GRF) increases free arachidonate levels in the pituitary: a role for lipoxygenase products

    SciTech Connect

    Canonico, P.L.; Speciale, C.; Sortino, M.A.; Cronin, M.J.; MacLeod, R.M.; Scapagnini, U.

    1986-01-20

    GRF, a specific stimulator of GH release, increased in a concentration- and time-dependent manner pituitary (/sup 3/H)-arachidonate levels in vitro. This effect was antagonized by 100 nM somatostatin. Exogenous arachidonate also stimulated GH release in vitro. Quinacrine, a phospholipase A2 inhibitor, reduced both basal and GRF-stimulated free arachidonate levels as well as GH release. The cyclooxygenase inhibitor indomethacin was ineffective, while BW755c, which also inhibits the lipoxygenase pathway, produced a further increase in the levels of the fatty acid stimulated by GRF and potently reduced GH release. These results provide additional evidence for the involvement of arachidonate metabolism in the hormone-releasing effect of GRF at the somatotroph. 14 references, 1 figure, 2 tables.

  16. Reappraisal of serum insulin-like growth factor-I (IGF-1) measurement in the detection of isolated and combined growth hormone deficiency (GHD) during the transition period.

    PubMed

    Boguszewski, Cesar L; Lacerda, Claudio Silva de; Lacerda Filho, Luiz de; Carvalho, Julienne A R de; Boguszewski, Margaret C S

    2013-12-01

    To evaluate the accuracy of serum IGF-1 in the detection of isolated (IGHD) or combined growth hormone deficiency (CGHD) at the transition phase. Forty nine patients with GHD during childhood [16 with IGHD (10 men) and 33 with CGHD (24 men); age 23.2 ± 3.5 yrs.] were submitted to an insulin tolerance test (ITT) with a GH peak < 5 µg/L used for the diagnosis of GHD at the transition phase. Pituitary function and IGF-1 measurements were evaluated in the basal sample of the ITT. Transition patients were reclassified as GH-sufficient (SGH; n = 12), IGHD (n = 7), or CGHD (n = 30). Five (31%) patients with IGHD and 32 (97%) with CGHD at childhood persisted with GHD at retesting. One patient with IGHD was reclassified as CGHD, whereas 3 patients with CGHD were reclassified as IGHD. Mean GH peak was 0.2 ± 0.3 µg/L in the CGHD, 1.3 ± 1.5 µg/L in the IGHD, and 18.1 ± 13.1 µg/L in the SGH group. Serum IGF-1 level was significantly higher in the SGH (272 ± 107 ng/mL) compared to IGHD (100.2 ± 110) and CGHD (48.7 ± 32.8) (p < 0.01). All patients reclassified as CGHD, 86% reclassified as IGHD, and 8.3% reclassified as SGH had low IGF-1 level, resulting in 97.3% sensitivity and 91.6% specificity in the detection of GHD at the transition period; the cutoff value of 110 ng/mL showed 94.5% sensitivity and 100% specificity. Mean IGF-1 values did not differ in IGHD or CGHD associated with one, two, three, or four additional pituitary deficiencies. IGF-1 measurement is accurate to replace ITT as initial diagnostic test for IGHD and CGHD detection at the transition phase.

  17. Growth hormone-releasing hormone is produced by adipocytes and regulates lipolysis through growth hormone receptor.

    PubMed

    Rodríguez-Pacheco, F; Gutierrez-Repiso, C; García-Serrano, S; Ho-Plagaro, A; Gómez-Zumaquero, J M; Valdes, S; Gonzalo, M; Rivas-Becerra, J; Montiel-Casado, C; Rojo-Martínez, G; García-Escobar, E; García-Fuentes, E

    2017-10-01

    Growth hormone-releasing hormone (GHRH) has a crucial role in growth hormone (GH) secretion, but little is known about its production by adipocytes and its involvement in adipocyte metabolism. To determine whether GHRH and its receptor (GHRH-R) are present in human adipocytes and to study their levels in obesity. Also, to analyze the effects of GHRH on human adipocyte differentiation and lipolysis. GHRH/GHRH-R and GH/GH-R mRNA expression levels were analyzed in human mature adipocytes from non-obese and morbidly obese subjects. Human mesenchymal stem cells (HMSC) were differentiated to adipocytes with GHRH (10(-14)-10(-8) M). Adipocyte differentiation, lipolysis and gene expression were measured and the effect of GH-R silencing was determined. Mature adipocytes from morbidly obese subjects showed a higher expression of GHRH and GH-R, and a lower expression of GHRH-R and GH than non-obese subjects (P<0.05). A total of 10(-14)-10(-10) M GHRH induced an inhibition of lipid accumulation and PPAR-γ expression (P<0.05), and an increase in glycerol release and HSL expression (P<0.05) in human differentiated adipocytes. A total of 10(-12)-10(-8) M GHRH decreased GHRH-R expression in human differentiated adipocytes (P<0.05). A total of 10(-10)-10(-8) M GHRH increased GH and GH-R expression in human differentiated adipocytes (P<0.05). The effects of GHRH at 10(-10) M on adipocyte differentiation and lipolysis were blocked when GH-R expression was silenced. GHRH and GHRH-R are expressed in human adipocytes and are negatively associated. GHRH at low doses may exert an anti-obesity effect by inhibiting HMSC differentiation in adipocytes and by increasing adipocyte lipolysis in an autocrine or paracrine pathway. These effects are mediated by GH and GH-R.

  18. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  19. Interactions Between Genome-wide Significant Genetic Variants and Circulating Concentrations of Insulin-like Growth Factor 1, Sex Hormones, and Binding Proteins in Relation to Prostate Cancer Risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    PubMed Central

    Tsilidis, Konstantinos K.; Travis, Ruth C.; Appleby, Paul N.; Allen, Naomi E.; Lindstrom, Sara; Schumacher, Fredrick R.; Cox, David; Hsing, Ann W.; Ma, Jing; Severi, Gianluca; Albanes, Demetrius; Virtamo, Jarmo; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Johansson, Mattias; Quirós, J. Ramón; Riboli, Elio; Siddiq, Afshan; Tjønneland, Anne; Trichopoulos, Dimitrios; Tumino, Rosario; Gaziano, J. Michael; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Stampfer, Meir J.; Giles, Graham G.; Andriole, Gerald L.; Berndt, Sonja I.; Chanock, Stephen J.; Hayes, Richard B.; Key, Timothy J.

    2012-01-01

    Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. There is limited information on the mechanistic basis of these associations, particularly about whether they interact with circulating concentrations of growth factors and sex hormones, which may be important in prostate cancer etiology. Using conditional logistic regression, the authors compared per-allele odds ratios for prostate cancer for 39 GWAS-identified SNPs across thirds (tertile groups) of circulating concentrations of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), testosterone, androstenedione, androstanediol glucuronide, estradiol, and sex hormone-binding globulin (SHBG) for 3,043 cases and 3,478 controls in the Breast and Prostate Cancer Cohort Consortium. After allowing for multiple testing, none of the SNPs examined were significantly associated with growth factor or hormone concentrations, and the SNP-prostate cancer associations did not differ by these concentrations, although 4 interactions were marginally significant (MSMB-rs10993994 with androstenedione (uncorrected P = 0.008); CTBP2-rs4962416 with IGFBP-3 (uncorrected P = 0.003); 11q13.2-rs12418451 with IGF-1 (uncorrected P = 0.006); and 11q13.2-rs10896449 with SHBG (uncorrected P = 0.005)). The authors found no strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of IGF-1, sex hormones, or their major binding proteins. PMID:22459122

  20. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  1. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed.

  2. [Immunohistochemical hormonal mismatch and human epidermal growth factor type 2 [HER2] phenotype of brain metastases in breast cancer carcinoma compared to primary tumors].

    PubMed

    Joubert, C; Boissonneau, S; Fina, F; Figarella-Branger, D; Ouafik, L; Fuentes, S; Dufour, H; Gonçalves, A; Charaffe-Jauffret, E; Metellus, P

    2016-06-01

    Phenotype changes between primary tumor and the corresponding brain metastases are recent reported data. Breast cancer, with biological markers predicting prognosis and guiding therapeutic strategy remains an interesting model to observe and evaluate theses changes. The objective of our study was to compare molecular features (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor type 2, [HER2]) between brain metastases and its primary tumor in patients presenting with pathologically confirmed breast cancer. This retrospective study was based on the immunohistochemical analysis of the brain metastases paraffin embedded samples stored in our institutional tumor bank, after surgical resection. The level of expression of hormonal receptors and HER2 on brain metastases were centrally reviewed and compared to the expression status in primary breast cancer from medical records. Forty-four samples of brain metastases were available for analysis. Hormonal receptor modification status was observed in 11/44 brain metastases (25%) for ER and 6/44 (13.6%) for PR. A modification of HER2 overexpression was observed in brain metastases in 6/44 (13.6%). Molecular subtype modification was shown in 17 cases (38.6%). A significant difference was demonstrated between time to develop brain metastases in cases without status modification (HER2, ER and PR) (med=49.5months [7.8-236.4]) and in cases in which brain metastases status differs from primary tumor (med=27.5months [0-197.3]), (P=0.0244, IC95=3.09-51.62, Mann and Whitney test). the main interest of this study was to focus on the molecular feature changes between primary tumor and their brain metastases. Time to develop brain metastases was correlated to phenotypic changes in brain metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Development of a recombinant bovine leukemia virus vector for delivery of a synthetic bovine growth hormone-releasing factor gene into bovine cells.

    PubMed

    Mehigh, C S; Elias, V D; Mehigh, R J; Helferich, W G; Tucker, H A

    1993-03-01

    Continuous intravenous infusion of bovine growth hormone-releasing factor (bGRF) increases milk synthesis in dairy cattle by as much as 46%. We have begun to develop a system for delivery and expression of a synthetic bGRF gene in cultured bovine cells using the provirus of the bovine leukemia virus (BLV). The gene encoding synthetic bGRF, constructed from eight overlapping oligonucleotides, was fused to the whey acidic protein promoter (WAP) or the mouse mammary tumor virus promoter (MMTV). These plasmids, termed pWAP.GRF and pMMTV.GRF, were able to induce transcription of bGRF upon transfection into Madin-Darby bovine kidney (MDBK) cells and induction with a lactogenic hormonal milieu (prolactin, hydrocortisone, triiodothyronine, insulin) or dexamethasone. When these constructs were cloned into a BLV vector in place of its oncogenic region, and transfected into MDBK cells, bGRF was expressed. Virus particles were prepared from these cultures and used to deliver the bGRF gene by viral infection into fresh MDBK cells. Northern blot analysis of MDBK total RNA revealed a fivefold higher level of expression of bGRF mRNA in transfected cultures than in virally infected cells, and no expression was detected in control cultures. The bGRF peptide was detected in both cell extracts and media samples from transfected cultures but was not detected in cell extracts or media samples from virally infected cells. This provirus construct may prove useful as a delivery system for peptides into cattle.

  4. Growth hormone receptor polymorphisms and growth hormone response to stimulation test: a pilot study.

    PubMed

    Pagani, Sara; DE Filippo, Gianpaolo; Genoni, Giulia; Rendina, Domenico; Meazza, Cristina; Bozzola, Elena; Bona, Gianni; Bozzola, Mauro

    2016-06-29

    No gold standard pharmacological stimulation test exists for the diagnosis of growth hormone deficiency (GHD). In addition, the genetic factors that influence growth hormone (GH) responses remain unclear. This study aimed to determine whether polymorphisms in exon 6 of the GH receptor gene influence responses to the L-arginine GH stimulation test. This study included 27 prepubertal patients with confirmed GHD. GHD was defined as a peak GH level <8 ng/ml in response to pharmacological stimulation. The mean GH peak after L-arginine stimulation was 2.9 ± 2.9 ng/ml. The included patients had the following genotypes at the third position of codon 168: AA (n=1), AG (n=15) and GG (n=11). Patients carrying the AA and AG genotypes exhibited stronger responses to arginine than patients with the GG genotype (3.1 ± 2.7 vs. 1.5 ± 1.3 ng/ml, p = 0.01). The approach employed in this study could elucidate GH profiles under physiological and pathological conditions, facilitating improved interpretation of pharmacological stimulation tests.

  5. Enzyme immunoassay for rat growth hormone: applications to the study of growth hormone variants

    SciTech Connect

    Farrington, M.A.; Hymer, W.C.

    1987-06-29

    A sensitive and specific competitive enzyme immunoassay (EIA) for rat growth hormone was developed. In this assay soluble growth hormone and growth hormone adsorbed to a solid-phase support compete for monkey anti-growth hormone antibody binding sites. The immobilized antibody-growth hormone complex is detected and quantified using goat anti-monkey immunoglobin G covalently conjugated to horse radish peroxidase. Therefore, a high concentration of soluble growth hormone in the sample will result in low absorbance detection from the colored products of the enzyme reaction. Assay parameters were optimized by investigating the concentration of reagents and the reaction kinetics in each of the assay steps. The assay can be performed in 27 hours. A sensitivity range of 0.19 ng to 25 ng in the region of 10 to 90% binding was obtained. Near 50% binding (3 ng) the intraassay coefficient of variation (CV) was 5.54% and the interassay CV was 5.33%. The correlation coefficient (r/sup 2/) between radioimmunoassay and EIA was 0.956 and followed the curve Y = 0.78X + 1.0. 9 references, 6 figures.

  6. Preventing Growth Hormone Abuse: An Emerging Health Concern.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1989-01-01

    Facts about growth hormone abuse should be incorporated into substance abuse components of health education curriculums. Sources, uses, and dangers associated with human growth hormones are discussed. A sample lesson plan is included. (IAH)

  7. The effect of low and high plasma levels of insulin-like growth factor-1 (IGF-1) on the morphology of major organs: studies of Laron dwarf and bovine growth hormone transgenic (bGHTg) mice.

    PubMed

    Piotrowska, Katarzyna; Borkowska, Sylwia J; Wiszniewska, Barbara; Laszczyńska, Maria; Słuczanowska-Głabowska, Sylwia; Havens, Aaron M; Kopchick, John J; Bartke, Andrzej; Taichman, Russel S; Kucia, Magda; Ratajczak, Mariusz Z

    2013-10-01

    It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals. To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on the morphology of major organs, we analyzed lung, heart, liver, kidney, bone marrow, and spleen isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice (with low circulating plasma levels of IGF-1) and 6-month-old bovine growth hormone transgenic (bGHTg) mice (with high circulating plasma levels of IGF-1). The ages of the two mutant strains employed in our studies were selected based on their overall ~50% survival (Laron dwarf mice live up to ~4 years and bGHTg mice up to ~1 year). Morphological analysis of the organs of long-living 2-year-old Laron dwarf mice revealed a lower biological age for their organs compared with normal littermates, with more brown adipose tissue (BAT) surrounding the main body organs, lower levels of steatosis in liver, and a lower incidence of leukocyte infiltration in different organs. By contrast, the organs of 6-month-old, short-living bGHTg mice displayed several abnormalities in liver and kidney and a reduced content of BAT around vital organs.

  8. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  9. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  10. Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells.

    PubMed

    Bhatia, Vandanajay; Cao, Yanna; Ko, Tien C; Falzon, Miriam

    2016-01-01

    Transforming growth factor β (TGF-β) regulates immune and fibrotic responses of chronic pancreatitis. The bone morphogenetic protein 2 (BMP-2) antagonist gremlin is regulated by TGF-β. Parathyroid hormone-related protein (PTHrP) levels are elevated in chronic pancreatitis. Here, we investigated the cross-talk between TGF-β/BMP-2/gremlin and PTHrP signaling. Reverse transcription/real-time polymerase chain reaction, chromatin immunoprecipitation, Western blotting, and transient transfection were used to investigate PTHrP regulation by TGF-β and BMP-2 and gremlin regulation by PTHrP. The PTHrP antagonist PTHrP (7-34) and acinar cells with conditional Pthrp gene deletion (PTHrP) were used to assess PTHrP's role in the proinflammatory and profibrotic effects of TGF-β and gremlin. Transforming growth factor β increased PTHrP levels in acinar cells and pancreatic stellate cells (PSCs) through a Smad3-dependent pathway. Transforming growth factor β's effects on levels of IL-6 and intercellular adhesion molecule 1 (ICAM-1) (acinar cells) and procollagen I and fibronectin (PSCs) were inhibited by PTHrP (7-34). PTHrP suppressed TGF-β's effects on IL-6 and ICAM-1. Parathyroid hormone-related hormone increased gremlin in acinar cells, and inhibiting gremlin action suppressed TGF-β's and PTHrP's effects on IL-6 and ICAM-1. Transforming growth factor β-mediated gremlin up-regulation was suppressed in PTHrP cells. Bone morphogenetic protein 2 suppressed PTHrP levels in PSCs. Parathyroid hormone-related hormone functions as a novel mediator of the proinflammatory and profibrotic effects of TGF-β. Transforming growth factor β and BMP-2 regulate PTHrP expression, and PTHrP regulates gremlin levels.

  11. Absolute Benefit of Adjuvant Endocrine Therapies for Premenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Early Breast Cancer: TEXT and SOFT Trials.

    PubMed

    Regan, Meredith M; Francis, Prudence A; Pagani, Olivia; Fleming, Gini F; Walley, Barbara A; Viale, Giuseppe; Colleoni, Marco; Láng, István; Gómez, Henry L; Tondini, Carlo; Pinotti, Graziella; Price, Karen N; Coates, Alan S; Goldhirsch, Aron; Gelber, Richard D

    2016-07-01

    Risk of recurrence is the primary consideration in breast cancer adjuvant therapy recommendations. The TEXT (Tamoxifen and Exemestane Trial) and SOFT (Suppression of Ovarian Function Trial) trials investigated adjuvant endocrine therapies for premenopausal women with hormone receptor-positive breast cancer, testing exemestane plus ovarian function suppression (OFS), tamoxifen plus OFS, and tamoxifen alone. We examined absolute treatment effect across a continuum of recurrence risk to individualize endocrine therapy decision making for premenopausal women with human epidermal growth factor receptor 2 (HER2) -negative disease. The TEXT and SOFT hormone receptor-positive, HER2-negative analysis population included 4,891 women. The end point was breast cancer-free interval (BCFI), defined as time from random assignment to first occurrence of invasive locoregional, distant, or contralateral breast cancer. A continuous, composite measure of recurrence risk for each patient was determined from a Cox model incorporating age, nodal status, tumor size and grade, and estrogen receptor, progesterone receptor, and Ki-67 expression levels. Subpopulation treatment effect pattern plot methodology revealed differential treatment effects on 5-year BCFI according to composite risk. SOFT patients who remained premenopausal after chemotherapy experienced absolute improvement of 5% or more in 5-year BCFI with exemestane plus OFS versus tamoxifen plus OFS or tamoxifen alone, reaching 10% to 15% at intermediate to high composite risk; the benefit of tamoxifen plus OFS versus tamoxifen alone was apparent at the highest composite risk. The SOFT no-chemotherapy cohort-for whom composite risk was lowest on average-did well with all endocrine therapies. For TEXT patients, the benefit of exemestane plus OFS versus tamoxifen plus OFS in 5-year BCFI ranged from 5% to 15%; patients not receiving chemotherapy and with lowest composite risk did well with both treatments. Premenopausal women with

  12. Effect of sequential medium with fibroblast growth factor-10 and follicle stimulating hormone on in vitro development of goat preantral follicles.

    PubMed

    Almeida, A P; Magalhães-Padilha, D M; Araújo, V R; Costa, S L; Chaves, R N; Lopes, C A P; Donato, M A M; Peixoto, C A; Campello, C C; Junior, J Buratini; Figueiredo, J R

    2015-01-01

    A sequential medium with fibroblast growth factor-10 (FGF-10) and follicle stimulating hormone (FSH) was evaluated on the survival, ultrastructure, activation and growth rate of caprine preantral follicles submitted to long-term culture, aiming to establish an ideal in vitro culture system. Ovarian fragments were cultured for 16 days in α-MEM(+) alone or supplemented with FGF-10 and/or FSH added sequentially on different days of culture. Ovarian fragments were cultured during the first (days 0-8) and second (days 8-16) halves of the culture period, generating 10 treatments: α-MEM(+)/α-MEM(+) (cultured control), FSH/FSH, FSH/FGF-10, FSH/FSH+FGF-10, FGF-10/FGF-10, FGF-10/FSH, FGF-10/FSH+FGF-10, FSH+FGF-10/FSH+FGF-10, FSH+FGF-10/FSH and FSH+FGF-10/FGF-10. Follicle morphology, viability and ultrastructure were analyzed. The FSH/FGF-10 treatment showed a higher (P<0.05) percentage of normal follicles compared to all other treatments. In addition, follicles from the FSH/FGF-10 treatment maintained ultrastructural integrity after the culture period. After 16 days of culture, the FSH/FGF-10 and FSH/FSH treatments showed a higher percentage of activation compared to the cultured control (α-MEM(+)/α-MEM(+)). Moreover, the FSH/FGF-10 treatment promoted greater follicular and oocyte diameters compared to the fresh control. In conclusion, this study showed that a sequential medium with FSH followed by FGF-10 (FSH/FGF-10 and FSH/FSH) maintains follicular viability and ultrastructure and promotes transition from the primordial to primary stage (activation) and growth in goat preantral follicles cultured in vitro.

  13. Growth hormone is permissive for neoplastic colon growth

    PubMed Central

    Chesnokova, Vera; Zonis, Svetlana; Zhou, Cuiqi; Recouvreux, Maria Victoria; Ben-Shlomo, Anat; Araki, Takako; Barrett, Robert; Workman, Michael; Wawrowsky, Kolja; Ljubimov, Vladimir A.; Uhart, Magdalena; Melmed, Shlomo

    2016-01-01

    Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)−/− mice exhibited induced colon p53 levels, and cross-breeding them with Apcmin+/− mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial–mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the “field change” milieu permissive for neoplastic colon growth. PMID:27226307

  14. Growth hormone is permissive for neoplastic colon growth.

    PubMed

    Chesnokova, Vera; Zonis, Svetlana; Zhou, Cuiqi; Recouvreux, Maria Victoria; Ben-Shlomo, Anat; Araki, Takako; Barrett, Robert; Workman, Michael; Wawrowsky, Kolja; Ljubimov, Vladimir A; Uhart, Magdalena; Melmed, Shlomo

    2016-06-07

    Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)(-/-) mice exhibited induced colon p53 levels, and cross-breeding them with Apc(min+/-) mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial-mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the "field change" milieu permissive for neoplastic colon growth.

  15. A Single-Tube Quantitative Assay for mRNA Levels of Hormonal and Growth Factor Receptors in Breast Cancer Specimens

    PubMed Central

    Iverson, Ayuko A.; Gillett, Cheryl; Cane, Paul; Santini, Christopher D.; Vess, Thomas M.; Kam-Morgan, Lauren; Wang, Alice; Eisenberg, Marcia; Rowland, Charles M.; Hessling, Janice J.; Broder, Samuel E.; Sninsky, John J.; Tutt, Andrew; Anderson, Steven; Chang, Sheng-Yung P.

    2009-01-01

    Knowledge of estrogen receptor (ER) and progesterone receptor (PR) status has been critical in the evolution of modern targeted therapy of breast cancer and remains essential for making informed therapeutic decisions. Recently, growth factor receptor HER2/neu (ERBB2) status has made it possible to provide another form of targeted therapy linked to the overexpression of this protein. Presently, pathologists determine the receptor status in formalin-fixed, paraffin-embedded sections using subjective, semiquantitative immunohistochemistry (IHC) assays and quantitative fluorescence in situ hybridization for HER2. We developed a single-tube multiplex TaqMan (mERPR+HER2) assay to quantitate mRNA levels of ER, PR, HER2, and two housekeeping genes for breast cancer formalin-fixed, paraffin-embedded sections. Using data from the discovery sample sets, we evaluated IHC-status-dependent cutoff-point and IHC-status-independent clustering methods for the classification of receptor status and then validated these results with independent sample sets. Compared with IHC-status, the accuracies of the mERPR+HER2 assay with the cutoff-point classification method were 0.98 (95% CI: 0.97−1.00), 0.92 (95% CI: 0.88−0.95), and 0.97 (95% CI: 0.95−0.99) for ER, PR, and HER2, respectively, for the validation sets. Furthermore, the areas under the receiver operating-characteristic curves were 0.997 (95% CI: 0.994−1.000), 0.967 (95% CI: 0.949−0.985), and 0.968 (95% CI: 0.915−1.000) for ER, PR, and HER2, respectively. This multiplex assay provides a sensitive and reliable method to quantitate hormonal and growth factor receptors. PMID:19225135

  16. Cyclin A1 modulates the expression of vascular endothelial growth factor and promotes hormone-dependent growth and angiogenesis of breast cancer.

    PubMed

    Syed Khaja, Azharuddin Sajid; Dizeyi, Nishtman; Kopparapu, Pradeep Kumar; Anagnostaki, Lola; Härkönen, Pirkko; Persson, Jenny Liao

    2013-01-01

    Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein-protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.

  17. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  18. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  19. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  20. Cortistatin vaccination--a solution to growth hormone deficiency.

    PubMed

    Moaeen-ud-Din, M; Malik, Nosheen; Guo, Yang Li; Ali, Ahmad; Babar, Masroor Ellahi

    2009-12-01

    Cortistatin and somatostatin are neuropeptides which have inhibitory effects on growth hormone through common five receptors. Although, both have inhibitory effects but, only cortistatin has direct inhibitory effects on growth hormone secretagogue and is more potent inhibitor of growth hormone than somatostatin. This control of growth hormone can be manipulated through immunoneutralization of cortistatin through cortistatin DNA vaccine rather than antibodies application. A DNA vaccine of cortistatin can be produced using recombinant DNA technology in a eukaryotic expression system and will serve as a tool not to only alleviate the growth hormone deficiency problems in human but, can also be used to improve growth rate in farm animals.

  1. Human growth hormone doping in sport

    PubMed Central

    Saugy, M; Robinson, N; Saudan, C; Baume, N; Avois, L; Mangin, P

    2006-01-01

    Background and objectives Recombinant human growth hormone (rhGH) has been on the list of forbidden substances since availability of its recombinant form improved in the early 1990s. Although its effectiveness in enhancing physical performance is still unproved, the compound is likely used for its potential anabolic effect on the muscle growth, and also in combination with other products (androgens, erythropoietin, etc.). The degree of similarity between the endogenous and the recombinant forms, the pulsatile secretion and marked interindividual variability makes detection of doping difficult. Two approaches proposed to overcome this problem are: the indirect method, which measures a combination of several factors in the biological cascade affected by administration of GH; and the direct method, which measures the difference between the circulating and the recombinant (represented by the unique 22 kD molecule) forms of GH. This article gives an overview of what is presently known about hGH in relation to sport. The available methods of detection are also evaluated. Methods Review of the literature on GH in relation to exercise, and its adverse effects and methods of detection when used for doping. Results and conclusion The main effects of exercise on hGH production and the use and effects of rhGH in athletes are discussed. Difficulties encountered by laboratories to prove misuse of this substance by both indirect and direct analyses are emphasised. The direct method currently seems to have the best reliability, even though the time window of detection is too short. hGH doping is a major challenge in the fight against doping. The effect of exercise on hGH and its short half‐life are still presenting difficulties during doping analysis. To date the most promising method appears to be the direct approach utilising immunoassays. PMID:16799101

  2. Stress effects on hormonal growth factors in tobacco tissues indicated by special changes in the isoelectric peroxidase patterns.

    PubMed

    Rücker, W; Maier, R

    1992-01-01

    The isoelectric peroxidase patterns of tobacco tissue cultures allow us to draw inferences to cell elongation and cell division because certain zones in acid pH ranges respond to the influence of auxines and gibberellins (promoting cell elongation) and others respond to the influence of cytokinins (promoting cell division). Stress, due to the absence of phosphate and presence of lead in the medium, causes characteristic changes in the intensity of these sensitive zones in peroxidase patterns. It may be deduced that the increase and decrease of these zones correspond to stimulation and inhibition of cell elongation and cell division, respectively. Cell elongation remains almost unaltered by lack of phosphate but is markedly inhibited by lead, while cell division is enhanced. However, stress brings about a reduction of dry weight. Reactions to stress can be observed earlier in patterns of peroxidase than in growth.

  3. Hereditary gingival fibromatosis associated with growth hormone deficiency.

    PubMed

    Oikarinen, K; Salo, T; Käär, M L; Lahtela, P; Altonen, M

    1990-10-01

    A case report of gingival fibromatosis in association with growth hormone (GH) deficiency due to a lack of growth hormone releasing factor (GRF) is presented. The girl is the youngest member of a family of eight children, five of whom lack the same hormone and have or have had similar gingival enlargements. After the growth hormone deficiency had been diagnosed and hormone substitute administered the dental age of the girl presented came closer to that of her age and sex-matched controls but did not reach the corresponding values even though the teeth were exposed by excising the overgrown gingiva. Test fibroblasts cultured from the overgrown gingiva proliferated at a slower rate than those cultured from age-matched controls. Total RNA was extracted from the test and three control fibroblasts and examined by Northern hybridisation using cDNAs for pro alpha 1(I) and pro alpha 1(III) chains. The amount of type I and III procollagen mRNAs were lower in the test fibroblasts as compared to the controls.

  4. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running

    PubMed Central

    Malm, Christer; Sjödin, Bertil; Sjöberg, Berit; Lenkei, Rodica; Renström, Per; Lundberg, Ingrid E; Ekblom, Björn

    2004-01-01

    Muscular adaptation to physical exercise has previously been described as a repair process following tissue damage. Recently, evidence has been published to question this hypothesis. The purpose of this study was to investigate inflammatory processes in human skeletal muscle and epimysium after acute physical exercise with large eccentric components. Three groups of subjects (n= 19) performed 45 min treadmill running at either 4 deg (n= 5) or 8 deg (n= 9) downhill or 4 deg uphill (n= 5) and one group served as control (n= 9). One biopsy was taken from each subject 48 h post exercise. Blood samples were taken up to 7 days post exercise. Compared to the control group, none of the markers of inflammation in muscle and epimysium samples was different in any exercised group. Only subjects in the Downhill groups experienced delayed onset of muscle soreness (DOMS) and increased serum creatine kinase activity (CK). The detected levels of immunohistochemical markers for T cells (CD3), granulocytes (CD11b), leukaemia inhibitory factor (LIF) and hypoxia-inducible factor 1β (HIF-1β) were greater in epimysium from exercised subjects with DOMS ratings >3 (0–10 scale) compared to exercised subjects without DOMS but not higher than controls. Eccentric physical exercise (downhill running) did not result in skeletal muscle inflammation 48 h post exercise, despite DOMS and increased CK. It is suggested that exercise can induce DOMS by activating inflammatory factors present in the epimysium before exercise. Repeated physical training may alter the content of inflammatory factors in the epimysium and thus reduce DOMS. PMID:14766942

  5. In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone.

    PubMed

    Araújo, V R; Gastal, M O; Wischral, A; Figueiredo, J R; Gastal, E L

    2014-12-01

    The aim of this study was to evaluate the development and estradiol production of isolated bovine secondary follicles in two-dimensional (2D, experiment 1) and three-dimensional (3D using alginate, experiment 2) long-term culture systems in the absence (control group; only α-MEM(+)) or presence of vascular endothelial growth factor (VEGF), insulin-like growth factor-1, or GH alone, or a combination of all. A total of 363 isolated secondary follicles were cultured individually for 32 days at 38.5 °C in 5% CO2 in a humidified incubator with addition of medium (5 μL) every other day. In 2D culture system, follicular growth and antrum formation rates were higher (P < 0.05) in VEGF treatment compared with the other treatments. In 3D culture system, only estradiol concentration was greater (P < 0.05) in the GH than in the control group, whereas the other end points were similar (P > 0.05). In summary, this study demonstrated that the benefits of using a certain type of medium supplement depended on the culture system (2D vs. 3D). Vascular endothelial growth factor was an effective supplement for the in vitro culture of bovine secondary follicles when the 2D culture system was used, whereas GH only affected estradiol production using the 3D culture system. This study sheds light on advancements in methodology to facilitate subsequent studies on bovine preantral follicle development. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    PubMed

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease.

  7. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding.

    PubMed

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei

    2010-11-19

    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.

  8. From bench to bedside: what do we know about Hormone Receptor-positive and Human Epidermal Growth Factor Receptor 2-positive breast cancer?

    PubMed Central

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-01-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e. estrogen receptor [ER] and progesterone receptor [PgR]) and Human Epidermal Growth Factor Receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2−) breast cancer and HR-negative (HR−) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. PMID:25998416

  9. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  10. Delaying Chemotherapy in the Treatment of Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer

    PubMed Central

    Brufsky, Adam M.

    2015-01-01

    Global guidelines for the management of locally advanced or metastatic hormone receptor–positive (HR-positive), human epidermal growth factor 2–negative (HER2-negative) breast cancer recommend endocrine therapy as first-line treatment for all patients, regardless of age or postmenopausal status. However, current practice patterns in the United States and Europe suggest that these modes of therapy are not being used as recommended, and many patients with advanced HR-positive, HER2-negative disease are being treated first-line with chemotherapy or switched to chemotherapy after a single endocrine therapy. Given that chemotherapy is associated with increased toxicity and reduced quality of life (QOL) compared with endocrine therapy, prolonging the duration of response obtained with endocrine therapy may help delay chemotherapy and its attendant toxicities. Several strategies to delay or overcome endocrine resistance and thereby postpone chemotherapy have been explored, including the use of second-line endocrine agents with different mechanisms of action, adding targeted agents that inhibit specific resistance pathways, and adding agents that act in complementary or synergistic ways to inhibit tumor cell proliferation. This review analyzes the different therapy options available to HR-positive, HER2-negative patients with advanced breast cancer that can be used to delay chemotherapy and enhance QOL. PMID:26793013

  11. Set-up of large laboratory-scale chromatographic separations of poly(ethylene glycol) derivatives of the growth hormone-releasing factor 1-29 analogue.

    PubMed

    Piquet, G; Gatti, M; Barbero, L; Traversa, S; Caccia, P; Esposito, P

    2002-01-25

    In this paper we report the scale-up of the purification of poly(ethylene glycol) (PEG) derivatives of the growth hormone-releasing factor 1-29, from laboratory scale (100 mg of bulk starting material) to larger scale (3 g of bulk), through the use of a cation-exchange TSK-SP-5PW chromatographic column. A one-step purification process capable of purifying large amounts of mono-PEGylated GRF species from the crude reaction mixture was developed. A simple, straightforward stepwise gradient elution separation was developed at laboratory scale and then scaled up with a larger column packed with a chromatographic resin with the same chemistry which maintained the laboratory-scale separation profile. Active material recovery and material purity remained constant through the scale-up from the 13-microm stationary phase to the 25-microm larger column. Overall, the gram GRF equivalent/batch process scale showed to be quite reproducible, and could be considered as a good platform for scale up to production scale.

  12. The Epidermal Growth Factor Receptor (EGFR) Inhibitor Gefitinib Reduces but Does Not Prevent Tumorigenesis in Chemical and Hormonal Induced Hepatocarcinogenesis Rat Models

    PubMed Central

    Ribback, Silvia; Sailer, Verena; Böhning, Enrico; Günther, Julia; Merz, Jaqueline; Steinmüller, Frauke; Utpatel, Kirsten; Cigliano, Antonio; Peters, Kristin; Pilo, Maria G.; Evert, Matthias; Calvisi, Diego F.; Dombrowski, Frank

    2016-01-01

    Activation of the epidermal growth factor receptor (EGFR) signaling pathway promotes the development of hepatocellular adenoma (HCA) and carcinoma (HCC). The selective EGFR inhibitor Gefitinib was found to prevent hepatocarcinogenesis in rat cirrhotic livers. Thus, Gefitinib might reduce progression of pre-neoplastic liver lesions to HCC. In short- and long-term experiments, administration of N-Nitrosomorpholine (NNM) or intrahepatic transplantation of pancreatic islets in diabetic (PTx), thyroid follicles in thyroidectomized (TTx) and ovarian fragments in ovariectomized (OTx) rats was conducted for the induction of foci of altered hepatocytes (FAH). Gefitinib was administered for two weeks (20 mg/kg) or three and nine months (10 mg/kg). In NNM-treated rats, Gefitinib administration decreased the amount of FAH when compared to controls. The amount of HCA and HCC was decreased, but development was not prevented. Upon all transplantation models, proliferative activity of FAH was lower after administration of Gefitinib in short-term experiments. Nevertheless, the burden of HCA and HCC was not changed in later stages. Thus, EGFR inhibition by Gefitinib diminishes chemical and hormonal also induced hepatocarcinogenesis in the initiation stage in the non-cirrhotic liver. However, progression to malignant hepatocellular tumors was not prevented, indicating only a limited relevance of the EGFR signaling cascade in later stages of hepatocarcinogenesis. PMID:27669229

  13. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin

    PubMed Central

    2012-01-01

    Background Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by varying degrees of dysfunctional social abilities, learning deficits, and stereotypic behaviors. Many patients with ASDs have ‘allergy-like’ symptoms and respond disproportionally to stress. We have previously shown that the peptide neurotensin (NT) is increased in the serum of young children with autism and that can stimulate extracellular secretion of mitochondrial (mt)DNA which was also increased in the serum of these children. Methods Human mast cells were stimulated by corticotropin-releasing hormone (CRH), mitochondrial DNA, IgE/anti-IgE, either for 24 hours to measure vascular endothelial growth factor (VEGF) release by ELISA or for 6 hours or quantitative PCR. Results CRH augmented IgE/anti-IgE-induced human mast-cell release of VEGF and it also induced the expression of IgE receptor (FcεRI) on mast cells. Moreover, sonicated mitochondria also augmented VEGF release, and this effect was blocked by the natural flavone luteolin. Conclusion These results indicate that stress and infection-mimicking extracellular mitochondrial components augment allergic inflammation that may be involved in the early pathogenesis of ASDs. Moreover, luteolin inhibits these processes and may be helpful in the treatment of ASDs. PMID:22559745

  14. Individual risk factors of the metabolic syndrome in adult patients with growth hormone deficiency--a cross-sectional case-control study.

    PubMed

    Uzunova, I; Kirilov, G; Zacharieva, S; Shinkov, A; Borissova, A-M; Kalinov, K

    2015-01-01

    Growth hormone deficiency in adults (GHDA) is considered to be associated with increased cardiovascular risk, most commonly reflected by the prevalence of the metabolic syndrome (MS). However, there are still a limited number of studies comparing directly the MS prevalence in GHD patients to that in general population. The aim of this study was to investigate the individual risk factors of the MS in a cohort of GHD patients and to compare its prevalence with an age- and sex-matched control group. A cross-sectional case-control study. In total, 54 adult patients with GHD (childhood onset GHD (COGHD): n=19, adult onset GHD (AOGHD): n=35) and 2 153 control subjects were studied. GHD was diagnosed according to the Endocrine Society Clinical Practice Guideline recommendations from 2011 and MS was scored by the NCEP-ATP III definition. The main metabolic abnormalities in GHD group were increased waist circumference (50.0%), low HDL-cholesterol (42.6%) and hypertriglyceridemia (40.7%) and their prevalence was significantly higher (p=0.013, p=0.019 and p=0.010, respectively) than in control group, where increased blood pressure prevailed (64.2%, p<0.0001). However, the difference in the MS prevalence between the 2 groups (29.6% vs. 24.9% in controls) failed to reach statistical significance (p=0.429). Patients with MS from both groups did not differ significantly in their metabolic profile (except for increased blood pressure), mean age and gender distribution. Although GHDA was associated with the development of visceral obesity and dyslipidemia, these adverse cardiovascular risk factors did not determine a higher prevalence of the MS in Bulgarian GHD patients compared to control subjects. Furthermore, the individual risk factors of the MS did not significantly differ between patients with MS from both groups. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review.

    PubMed

    Scarth, J P

    2006-01-01

    The growth hormone-insulin-like growth factor (GH-IGF) axis has gained considerable focus over recent years. One cause of this increased interest is due to a correlation of age-related decline in plasma GH/IGF levels with age-related degenerative processes, and it has led to the prescribing of GH replacement therapy by some practitioners. On the other hand, however, research has also focused on the pro-carcinogenic effects of high GH-IGF levels, providing strong impetus for finding regimes that reduce its activity. Whereas the effects of GH/IGF activity on the action of xenobiotic-metabolizing enzyme systems is reasonably well appreciated, the effects of xenobiotic exposure on the GH-IGF axis has not received substantial review. Relevant xenobiotics are derived from pharmaceutical, nutraceutical and environmental exposure, and many of the mechanisms involved are highly complex in nature, not easily predictable from existing in vitro tests and do not always predict well from in vivo animal models. After a review of the human and animal in vivo and in vitro literature, a framework for considering the different levels of direct and indirect modulation by xenobiotics is developed herein, and areas that still require further investigation are highlighted, i.e. the actions of common endocrine disruptors such as pesticides and phytoestrogens, as well as the role of xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. It is anticipated that a fuller appreciation of the existing human paradigms for GH-IGF axis modulation gained through this review may help explain some of the variation in levels of plasma IGF-1 and its binding proteins in the population, aid in the prescription of particular dietary regimens to certain individuals such as those with particular medical conditions, guide the direction of long-term drug/nutraceutical safety trials, and stimulate ideas for future research. It also serves to warn athletes that using

  16. Growth hormone (GH) secretory dynamics in a case of acromegalic gigantism associated with hyperprolactinemia: nonpulsatile secretion of GH may induce elevated insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 levels.

    PubMed

    Yoshida, T; Shimatsu, A; Sakane, N; Hizuka, N; Horikawa, R; Tanaka, T

    1996-01-01

    We describe a case of pituitary gigantism with low levels of growth hormone (GH), elevated insulin-like growth factor-I (IGF-I), and IGF-binding protein-3 (IGF-BP-3). The patient had characteristic clinical features of gigantism and acromegaly. The basal serum GH levels ranged from 1.2-1.9 micrograms/L, which were considered to be within normal limits. Serum GH response to either insulin-induced hypoglycemia or GH-releasing hormone was blunted. Frequent blood samplings during daytime and at night showed nonpulsatile GH secretion. Serum prolactin, IGF-I and IGF-binding protein-3 levels were elevated. After unsuccessful surgery, bromocryptine treatment normalized serum prolactin without affecting serum GH and IGF-I levels. Combined administration of octreotide and bromocryptine reduced serum GH and IGF-I levels. GH bioactivity as measured by Nb2 cell proliferation assay was within reference range. In the present case, nonpulsatile GH secretion and enhanced tissue sensitivity to GH may induce hypersecretion of IGF-I and IGF-BP-3 and cause clinical acromegalic gigantism.

  17. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  18. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  19. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  20. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  1. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and

  2. Direct effects of growth hormone (GH)-releasing hexapeptide (GHRP-6) and GH-releasing factor (GRF) on GH secretion from cultured porcine somatotropes.

    PubMed

    Sánchez-Hormigo, A; Castaño, J P; Torronteras, R; Malagón, M M; Ramírez, J L; Gracia-Navarro, F

    1998-01-01

    Growth hormone (GH)-releasing hexapeptide (GHRP-6) belongs to the expanding family of synthetic GH secretagogues (GHSs). Previous studies have shown that non-peptidyl GHRP-6 analogues stimulate GH release in vivo in pigs, and interact synergistically with GH-releasing factor (GRF), but its direct effects on porcine somatotropes have not been addressed hitherto. In the present study, we have evaluated the response of cultured porcine pituitary cells to GHRP-6, and its interaction with GRF and somatostatin (SRIF). Secretory response of somatotropes was assessed by using two distinct techniques. GH released by monolayer cell cultures was evaluated by enzyme immunoassay, whereas that secreted by individual somatotropes was measured by immunodensitometry using a cell blotting assay. Our results demonstrate that both GHRP-6 and GRF stimulated GH release from monolayer cultures at doses equal to or above 10(-9) M. Use of cell immunoblot assay demonstrated that, like GRF, the hexapeptide acts directly upon porcine somatotropes to exert its action. Moreover, regardless of the technique applied, combined administration of GHRP-6 (10(-6) or 10(-9) M) and GRF (10(-8) M) resulted in an additive, but not synergistic, stimulatory GH response. Finally, SRIF (10(-7) M) inhibited the stimulatory effect of GHRP-6 alone or in combination with GRF. These results indicate that GHRP-6 directly and effectively stimulates GH secretion from porcine somatotropes in vitro, and acts additively when coadministered with GRF. Therefore, the synergistic stimulatory effect of GHSs and GRF reported in vivo in this species might require additional factors that are lacking in the in vitro situation.

  3. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  4. Dimerization of Human Growth Hormone by Zinc

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian C.; Mulkerrin, Michael G.; Wells, James A.

    1991-08-01

    Size-exclusion chromatography and sedimentation equilibrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn2+-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn2+-hGH dimeric complex may be important for storage of hGH in secretory granules.

  5. Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5.

    PubMed

    Yu, Jie; Zhao, Lidan; Wang, Aihua; Eleswarapu, Satyanarayana; Ge, Xiaomei; Chen, Daiwen; Jiang, Honglin

    2012-02-01

    Fibroblast growth factor 21 (FGF21) is a recently discovered metabolic regulator. Interestingly, FGF21 is also known to inhibit Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling from the GH receptor in the liver, where FGF21 mRNA is predominantly expressed. In this study, we tested the hypothesis that FGF21 gene expression in the liver is controlled by GH through STAT5. We found that GH injection to cattle increased FGF21 mRNA expression in the liver. Mapped by a 5'-rapid amplification of cDNA ends assay, transcription of the FGF21 gene in the bovine liver was mainly initiated from a nucleotide 24 bp downstream of a TATA box. The bovine FGF21 promoter contains three putative STAT5-binding sites. EMSA confirmed the ability of them to bind to liver STAT5 protein from GH-injected cattle. Chromatin immunoprecipitation assays demonstrated that GH administration increased the binding of STAT5 to the FGF21 promoter in the liver. Cotransfection analyses showed that GH induced reporter gene expression from the FGF21 promoter in a STAT5-dependent manner. GH also stimulated FGF21 mRNA expression in cultured mouse hepatocytes. These data together indicate that GH directly stimulates FGF21 gene transcription in the liver, at least in part, through STAT5. This finding, together with the fact that FGF21 inhibits GH-induced JAK2-STAT5 signaling in the liver, suggests a novel negative feedback loop that prevents excessive JAK2-STAT5 signaling from the GH receptor in the liver.

  6. Human Growth Hormone (HGH): Does It Slow Aging?

    MedlinePlus

    ... hormone can: Increase exercise capacity Increase bone density Increase muscle mass Decrease body fat Human growth hormone is also approved to treat ... Although it appears that human growth hormone can increase muscle mass and ... the amount of body fat in healthy older adults, the increase in muscle ...

  7. Hormonal therapy followed by chemotherapy or the reverse sequence as first-line treatment of hormone-responsive, human epidermal growth factor receptor-2 negative metastatic breast cancer patients: results of an observational study.

    PubMed

    Bighin, Claudia; Dozin, Beatrice; Poggio, Francesca; Ceppi, Marcello; Bruzzi, Paolo; D'Alonzo, Alessia; Levaggi, Alessia; Giraudi, Sara; Lambertini, Matteo; Miglietta, Loredana; Vaglica, Marina; Fontana, Vincenzo; Iacono, Giuseppina; Pronzato, Paolo; Mastro, Lucia Del

    2017-01-18

    Introduction Although hormonal-therapy is the preferred first-line treatment for hormone-responsive, HER2 negative metastatic breast cancer, no data from clinical trials support the choice between hormonal-therapy and chemotherapy.Methods Patients were divided into two groups according to the treatment: chemotherapy or hormonal-therapy. Outcomes in terms of clinical benefit and median overall survival (OS) were retrospectively evaluated in the two groups. To calculate the time spent in chemotherapy with respect to OS in the two groups, the proportion of patients in chemotherapy relative to those present in either group was computed at every day from the start of therapy.Results From 1999 to 2013, 119 patients received first-line hormonal-therapy (HT-first group) and 100 first-line chemotherapy (CT-first group). Patients in the CT-first group were younger and with poorer prognostic factors as compared to those in HT-first group. Clinical benefit (77 vs 81%) and median OS (50.7 vs 51.1 months) were similar in the two groups. Time spent in chemotherapy was significantly longer during the first 3 years in CT-first group (54-34%) as compared to the HT-first group (11-18%). This difference decreased after the third year and overall was 28% in the CT-first group and 18% in the HT-first group.Conclusions The sequence first-line chemotherapy followed by hormonal-therapy, as compared with the opposite sequence, is associated with a longer time of OS spent in chemotherapy. However, despite the poorer prognostic factors, patients in the CT-first group had a superimposable OS than those in the HT-first group.

  8. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inhibition by interleukin-1 beta and tumor necrosis factor-alpha of the insulin-like growth factor I messenger ribonucleic acid response to growth hormone in rat hepatocyte primary culture.

    PubMed

    Thissen, J P; Verniers, J

    1997-03-01

    The cytokines are the putative mediators of the catabolic reaction that accompanies infection and trauma. Evidence suggests that their catabolic actions are indirect and potentially mediated through changes in hormonal axis such as the hypothalamo-pituitary-adrenal axis. Insulin-like growth factor I (IGF-I) is a GH-dependent growth factor that regulates the protein metabolism. To determine whether cytokines can directly inhibit the production of IGF-I by the liver, we investigated the regulation of IGF-I gene expression by interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha (10 ng/ml) in a model of rat primary cultured hepatocytes. Hepatocytes were isolated by liver collagenase perfusion and cultured on Matrigel 48 h before experiments. Each experiment was performed in at least three different animals. In the absence of GH, IL-1 beta and TNF-alpha did not affect the IGF-I messenger RNA (mRNA) basal levels, whereas IL-6 increased it by a factor of 2.5 after 24 h (P < 0.05). GH (500 ng/ml) alone stimulated the IGF-I gene expression markedly (5-to 10-fold increase) after 24 h (P < 0.001). IL-1 beta, and TNF-alpha to a lesser extent, dramatically inhibited the IGF-I mRNA response to GH (IL-1 beta: -82%, P < 0.001 and TNF-alpha: -47%, P < 0.01). The half-maximal inhibition of the IGF-I mRNA response to GH was observed for a concentration of IL-1 beta between 0.1 and 1 ng/ml. Moreover, IL-1 beta abolished the IL-6-induced IGF-I mRNA response. In contrast, IL-6 did not impair the IGF-I mRNA response to GH. To determine the potential role of the GH receptor (GHR) and the GH-binding protein (GHBP) in this GH resistance, we assessed the GHR and GHBP mRNAs response to these cytokines. GH alone did not affect the GHR/GHBP mRNA levels. IL-1 beta markedly decreased the GHR and GHBP mRNA levels (respectively, -68% and -60%, P < 0.05). Neither TNF-alpha nor IL-6 affected the GHR/GHBP gene expression. In conclusion, our results show that IL-1 beta, and TNF-alpha to

  10. Psychomotor retardation in a girl with complete growth hormone deficiency.

    PubMed

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  11. Human growth hormone (GH) immunoassay: standardization and clinical implications.

    PubMed

    Carrozza, Cinzia; Lapolla, Rosa; Canu, Giulia; Annunziata, Francesca; Torti, Eleonora; Baroni, Silvia; Zuppi, Cecilia

    2011-05-01

    The poor comparability of growth hormone (GH) results obtained using commercially available methods, is partly due to standard preparations used in calibration. The system relies on the use of the International Reference Preparation (IRP) international standard (IS) 80/505, of human pituitary origin, containing all GH isoforms. Recently, a 22K recombinant GH isoform IRP IS 98/574 was commercialized. Our aim was to evaluate the influence of both calibrators on GH results. GH concentration in 97 serum samples from children undergoing a growth hormone releasing hormone+arginine stimulation test was measured using Siemens IMMULITE electro-chemiluminescence method, calibrated with both IS 80/505 and IS 98/574 (GRH Growth hormone-Recombinant 98/574-kit). Comparison of our results obtained with the two sets of calibrators showed good correlation, although we found higher percentage variation (var%) than that stated by Siemens. The mean var% value was confirmed when all results were sub-divided into subgroups based on both high and low GH concentrations. Since the GH assay is influenced by a variety of binding proteins, isoforms and conversion factors, standardization of the assay is strongly required. In Italy, the Agenzia Italiana del Farmaco 39 note provides GH laboratory values which are useful for therapy. On the basis of our results, we therefore propose to adjourn these GH values in order to ensure better management of patients with GH-related disorders.

  12. Liquid growth hormone: preservatives and buffers.

    PubMed

    Kappelgaard, Anne-Marie; Bojesen, Anders; Skydsgaard, Karsten; Sjögren, Ingrid; Laursen, Torben

    2004-01-01

    Growth hormone (GH) treatment is a successful medical therapy for children and adults with GH deficiency as well as for growth retardation due to chronic renal disease, Turner syndrome and in children born small for gestational age. For all of these conditions, treatment is long term and patients receive daily subcutaneous injections of GH for many years. Patient compliance is therefore of critical importance to ensure treatment benefit. One of the major factors influencing compliance is injection pain. Besides the injection device used, pain perception and local tissue reaction following injection are dependent on the preservative used in the formulation and the concentration of GH. Injection pain may also be related to the buffer substance and injection volume. A liquid formulation of GH, Norditropi SimpleXx, has been developed that dispenses with the need for reconstitution before administration. The formulation uses phenol (3 mg/ml) as a preservative (to protect product from microbial degradation or contamination) and histidine as a buffer. Alternative preservatives used in other GH formulations include m-cresol (9 mg/ml) and benzyl alcohol (3-9 mg/ml). Buffering agents include citrate and phosphate. Phenol has been successfully used as a preservative in drug formulations for more than 50 years and is considered a safe and effective agent which complies with strict international requirements for preservatives in drug formulations. In toxicological studies, no or only mild local reactions have been observed following subcutaneous administration of phenol (7.5 mg/ml), m-cresol (3-4 mg/ml) and benzyl alcohol (9 mg/ml). No general toxicity reactions were observed after subcutaneous administration of these agents. Clinical evaluation of the preservatives and buffers used in Norditropin SimpleXx showed that pain perception was similar between formulations containing phenol and benzyl alcohol, whereas m-cresol was associated with more painful injections than benzyl

  13. Effects of ghrelin, growth hormone-releasing peptide-6, and growth hormone-releasing hormone on growth hormone, adrenocorticotropic hormone, and cortisol release in type 1 diabetes mellitus.

    PubMed

    de Sá, Larissa Bianca Paiva Cunha; Nascif, Sergio Oliva; Correa-Silva, Silvia Regina; Molica, Patricia; Vieira, José Gilberto Henriques; Dib, Sergio Atala; Lengyel, Ana-Maria Judith

    2010-10-01

    In type 1 diabetes mellitus (T1DM), growth hormone (GH) responses to provocative stimuli are normal or exaggerated, whereas the hypothalamic-pituitary-adrenal axis has been less studied. Ghrelin is a GH secretagogue that also increases adrenocorticotropic hormone (ACTH) and cortisol levels, similarly to GH-releasing peptide-6 (GHRP-6). Ghrelin's effects in patients with T1DM have not been evaluated. We therefore studied GH, ACTH, and cortisol responses to ghrelin and GHRP-6 in 9 patients with T1DM and 9 control subjects. The GH-releasing hormone (GHRH)-induced GH release was also evaluated. Mean fasting GH levels (micrograms per liter) were higher in T1DM (3.5 ± 1.2) than in controls (0.6 ± 0.3). In both groups, ghrelin-induced GH release was higher than that after GHRP-6 and GHRH. When analyzing Δ area under the curve (ΔAUC) GH values after ghrelin, GHRP-6, and GHRH, no significant differences were observed in T1DM compared with controls. There was a trend (P = .055) to higher mean basal cortisol values (micrograms per deciliter) in T1DM (11.7 ± 1.5) compared with controls (8.2 ± 0.8). No significant differences were seen in ΔAUC cortisol values in both groups after ghrelin and GHRP-6. Mean fasting ACTH values were similar in T1DM and controls. No differences were seen in ΔAUC ACTH levels in both groups after ghrelin and GHRP-6. In summary, patients with T1DM have normal GH responsiveness to ghrelin, GHRP-6, and GHRH. The ACTH and cortisol release after ghrelin and GHRP-6 is also similar to controls. Our results suggest that chronic hyperglycemia of T1DM does not interfere with GH-, ACTH-, and cortisol-releasing mechanisms stimulated by these peptides.

  14. Expression of Vascular Endothelial Growth Factor A During Ligand-Induced Down-Regulation of Luteinizing Hormone Receptor in the Ovary☆

    PubMed Central

    Harada, M.; Peegel, H.; Menon, K. M. J.

    2010-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important regulators of ovarian angiogenesis. In this study, we examined the temporal relationship between VEGF-A and luteinizing hormone receptor (LHR) mRNA expression during ligand-induced down-regulation of LHR. Immature female rats were treated with pregnant mare’s serum gonadotropin followed by 25 IU hCG 56h later (day 0). On day 5, treatment with hCG (50 IU) to down-regulate LHR showed a temporal decrease in VEGF-A mRNA and protein levels in parallel with decreasing LHR mRNA. This effect was specific since the expression of CYP11A1 mRNA showed no decline. Examination of VEGF-A mRNA expression, using in situ hybridization histochemistry with 35S-labeled antisense VEGF-A mRNA probe, showed intense signal in the corpora lutea on day 5. Treatment with 50 IU hCG to down-regulate LHR mRNA showed a decline in the intensity of VEGF-A mRNA in the corpora lutea. VEGF-A mRNA expression returned to control level 53 hours later when the expression of LHR mRNA also recovered. These results show that the transient down-regulation of VEGF-A mRNA and protein closely parallels the ligand-induced down-regulation of LHR mRNA. The present study establishes a close association between VEGF-A and LHR mRNA expression, suggesting the possibility that VEGF-A-induced vascularization of the ovary is dictated by the expression of LHR and this might play a regulatory role in ovarian physiology. PMID:20619315

  15. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  16. Hormonal Factors and Disturbances in Eating Disorders.

    PubMed

    Culbert, Kristen M; Racine, Sarah E; Klump, Kelly L

    2016-07-01

    This review summarizes the current state of the literature regarding hormonal correlates of, and etiologic influences on, eating pathology. Several hormones (e.g., ghrelin, CCK, GLP-1, PYY, leptin, oxytocin, cortisol) are disrupted during the ill state of eating disorders and likely contribute to the maintenance of core symptoms (e.g., dietary restriction, binge eating) and/or co-occurring features (e.g., mood symptoms, attentional biases). Some of these hormones (e.g., ghrelin, cortisol) may also be related to eating pathology via links with psychological stress. Despite these effects, the role of hormonal factors in the etiology of eating disorders remains unknown. The strongest evidence for etiologic effects has emerged for ovarian hormones, as changes in ovarian hormones predict changes in phenotypic and genetic influences on disordered eating. Future studies would benefit from utilizing etiologically informative designs (e.g., high risk, behavioral genetic) and continuing to explore factors (e.g., psychological, neural responsivity) that may impact hormonal influences on eating pathology.

  17. Random Secretion of Growth Hormone in Humans

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Kloppstech, Mirko; Nowlan, Steven J.; Sejnowski, Terrence J.; Brabant, Georg

    1996-08-01

    In normal humans, growth hormone (GH) is secreted from a gland located adjacent to the brain (pituitary) into the blood in distinct pulses, but in patients bearing a tumor within the pituitary (acromegaly) GH is excessively secreted in an irregular manner. It has been hypothesized that GH secretion in the diseased state becomes random. This hypothesis is supported by demonstrating that GH secretion in patients with acromegaly cannot be distinguished from a variety of linear stochastic processes based on the predictability of the fluctuations of GH concentration in the bloodstream.

  18. Effect of growth hormone therapy on Taiwanese children with growth hormone deficiency.

    PubMed

    Huang, Ying-Hua; Wai, Yau-Yau; Van, Yang-Hau; Lo, Fu-Sung

    2012-07-01

    Human growth hormone (GH) has been successfully used in children with GH deficiency (GHD). However, there are few published data on the effect of GH in Taiwanese children with GHD. We performed a retrospective cohort study to identify factors influencing the effect of GH therapy on ethnic Chinese children with GHD in Taiwan. Idiopathic GHD can be classified into isolated GHD (IGHD) and multiple pituitary hormone deficiency (MPHD). The study looked at the effect of GH on the auxological, biochemical, and imaging parameters of 51 patients (13 girls and 38 boys) in three different diagnostic groups: MPHD (n = 12), IGHD (n = 8), and transient GHD (TGHD; n = 31). TGHD is defined as a GH peak >10 μg/L in re-evaluation by two GH stimulation tests approximately 6 months after discontinuation of GH therapy. The height velocity for first-year GH therapy was 7.61 ± 1.46, 8.14 ± 1.92, and 9.99 ± 2.75 cm/y in the TGHD, IGHD, and MPHD groups, respectively. After post hoc comparison, the MPHD group had a significantly accelerated height velocity in the first year compared to the TGHD group. Correlation analysis showed that a change in height standard deviation score (SDS) in the first year had a significant negative correlation with the following variables: peak GH (r = -0.52, p < 0.001), pretreatment height SDS (r = -0.49, p < 0.001), and height-target height (Ht-TH) SDS (r = -0.49, p < 0.001). Change in height SDS in the first 2 years had a significantly negative correlation with peak GH (r = -0.51, p < 0.001), insulin-like growth factor-1 SDS (r = -0.35, p = 0.022), height SDS (r = -0.60, p < 0.001), difference between bone age and chronological age (r = -0.46, p = 0.001), and Ht-TH SDS (r = -0.50, p = 0.001). After using multiple linear regression, the pretreatment GH peak value was found to be significantly associated with height increments after 1 year of GH treatment (B = -0.07, p = 0.014). The administration of GH to children with GHD results in a pronounced

  19. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  20. Effect of growth hormone administration to mature miniature Brahman cattle treated with or without insulin on circulating concentrations of insulin-like growth factor-I and other metabolic hormones and metabolites.

    PubMed

    Chase, C C; Elsasser, T H; Spicer, L J; Riley, D G; Lucy, M C; Hammond, A C; Olson, T A; Coleman, S W

    2011-07-01

    Previously, we determined that a primary cause of proportional stunted growth in a line of Brahman cattle was related to an apparent refractoriness in metabolic response to GH in young animals. The objective of this study was to determine the effect of administration of GH, insulin (INS), and GH plus INS to mature miniature Brahman cows (n = 6; 9.7 ± 2.06 y; 391 ± 48.6 kg) and bulls (n = 8; 9.4 ± 2.00 y; 441 ± 54.0 kg) on circulating concentrations of metabolic hormones and metabolites, primarily IGF-I and IGF-I binding proteins. We hypothesized that IGF-I secretion could be enhanced by concomitant administration of exogenous GH and INS, and neither alone would be effective. Animals were allotted to a modified crossover design that included four treatments: control (CON), GH, INS, and GH + INS. At the start of the study, one-half of the cattle were administered GH (Posilac; 14-d slow release) and the other one-half served as CON for 7 d. Beginning on day 8, and for 7 d, INS (Novolin L) was administered (0.125 IU/kg BW) twice daily (7:00 AM and 7:00 PM) to all animals; hence, the INS and GH + INS treatments. Cattle were rested for 14 d and then were switched to the reciprocal crossover treatments. Blood samples were collected at 12-hour intervals during the study. Compared with CON, GH treatment increased (P < 0.01) mean plasma concentrations of GH (11.1 vs 15.7 ± 0.94 ng/mL), INS (0.48 vs 1.00 ± 0.081 ng/mL), IGF-I (191.3 vs 319.3 ± 29.59 ng/mL), and glucose (73.9 vs 83.4 ± 2.12 mg/dL) but decreased (P < 0.05) plasma urea nitrogen (14.2 vs 11.5 ± 0.75 mg/dL). Compared with INS, GH + INS treatment increased (P < 0.05) mean plasma concentration of INS (0.71 vs 0.96 ± 0.081 ng/mL), IGF-I (228.7 vs 392.3 ± 29.74 ng/mL), and glucose (48.1 vs 66.7 ± 2.12 mg/dL), decreased (P < 0.01) plasma urea nitrogen (13.6 vs 10.4 ± 0.76 mg/dL), and did not affect GH (13.5 vs 12.7 ± 0.95 ng/mL). In the miniature Brahman model, both the GH and GH + INS treatments

  1. Thyroid Hormones and Growth in Health and Disease

    PubMed Central

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631

  2. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  3. The preliminary study on the effects of growth hormone and insulin-like growth factor-I on κ-casein synthesis in bovine mammary epithelial cells in vitro.

    PubMed

    Wang, M Z; Ji, Y; Wang, C; Chen, L M; Wang, H R; Loor, J J

    2016-04-01

    The effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) on protein synthesis and gene expression of κ-casein in bovine mammary epithelial cell in vitro were studied. The treatments were designed as follows: the growth medium without serum was set as the control group, while the treatments were medium supplemented with GH (100 ng/ml), IGF-I (100 ng/ml), and GH (100 ng/ml) + IGF-I (100 ng/ml). The quantity of κ-casein protein was measured by ELISA, and the κ-casein gene (CSN3) expression was examined by real-time quantitative PCR (RT-qPCR). Compared with the control group, all the experimental groups had greater (p < 0.05) expression of CSN3. The concentration of κ-casein followed a similar response as CSN3, but the difference between the treatments and the control was not statistically significant (p > 0.05). Furthermore, no synergistic effect of GH and IGF-I was observed for both the κ-casein concentration and CSN3 expression. It is therefore concluded that GH or IGF-I can independently promote the expression of CSN3 in bovine mammary epithelial cells in vitro.

  4. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production

    PubMed Central

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    2016-01-01

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET. PMID:27746436

  5. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production.

    PubMed

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET.

  6. Continuous Positive Airway Pressure Increases Pulsatile Growth Hormone Secretion and Circulating Insulin-like Growth Factor-1 in a Time-Dependent Manner in Men With Obstructive Sleep Apnea: A Randomized Sham-Controlled Study

    PubMed Central

    Hoyos, Camilla M.; Killick, Roo; Keenan, Daniel M.; Baxter, Robert C.; Veldhuis, Johannes D.; Liu, Peter Y.

    2014-01-01

    Study Objectives: To assess the time-dependent effect of continuous positive airway pressure (CPAP), on insulin-like growth factor-1 (IGF-1), IGF binding proteins (IGFBPs) and pulsatile growth hormone (GH) secretion. Design: A randomized, double-blind, sham-controlled, parallel group study. Participants: Sixty-five middle-aged men with moderate to severe obstructive sleep apnea. Intervention: Active (n = 34) or sham (n = 31) CPAP for 12 weeks, followed by 12 weeks of active CPAP (n = 65). Measurements and Results: Fasting morning IGF-1, IGFBP-3, and IGFBP-1 blood levels at 0, 6, 12, and 24 weeks. Overnight GH secretion was calculated by mathematical deconvolution of serial GH measurements from serum samples collected every 10 min (22:00-06:00) during simultaneous polysomnography in a subset of 18 men (active n = 11, sham n = 7) at week 12. Active, compared with sham, CPAP increased IGF-1 at 12 weeks (P = 0.006), but not at 6 weeks (P = 0.44). Changes in IGFBP-3 and IGFBP-1 were not different between groups at 6 or 12 weeks (all P ≥ 0.15). At week 24, there was a further increase in IGF-1 and a decrease in IGFBP-1 in the pooled group (P = 0.0001 and 0.046, respectively). In the subset, total (P = 0.001) and pulsatile (P = 0.002) GH secretion, mean GH concentration (P = 0.002), mass of GH secreted per pulse (P = 0.01) and pulse frequency (P = 0.04) were all higher after 12 weeks of CPAP compared with sham. Basal secretion, interpulse regularity, and GH regularity were not different between groups (all P > 0.11). Conclusions: Twelve weeks, but not 6 weeks, of CPAP increases IGF-1, with a further increase after 24 weeks. Total and pulsatile GH secretion, secretory burst mass and pulse frequency are also increased by 12 weeks. CPAP improves specific elements of the GH/IGF-1 axis in a time-dependent manner. Clinical Trials Registration: Australia New Zealand Clinical Trials Network, www.anzctr.org.au, number ACTRN12608000301369. Citation: Hoyos CM; Killick R; Keenan DM

  7. Influences of incorporating detoxified Jatropha curcas kernel meal in common carp (Cyprinus carpio L.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes.

    PubMed

    Kumar, V; Khalil, W K B; Weiler, U; Becker, K

    2013-02-01

    Jatropha curcas is a drought-resistant shrub or small tree widespread all over the tropics and subtropics. The use of J. curcas (L) kernel meal in fish feed is limited owing to the presence of toxic and antinutritional constituents. In this study, it was detoxified using heat treatment and organic solvent extraction method. The detoxification process was carried out for 60 min to obtain the detoxified meal. Cyprinus carpio L. fingerlings (n = 180; avg. wt. 3.2 ± 0.07 g) were randomly distributed in five treatment groups with four replicates and fed isonitrogenous diets (crude protein 38%) for 8 weeks. The inclusion levels of the detoxified Jatropha kernel meal (DJKM) and soybean meal (SBM) were as follows: control diet was prepared with fish meal (FM) and wheat meal, without any DJKM and SBM; diets S(50) and J(50) : 50% of FM protein replaced by SBM and DJKM respectively; diets S(75) and J(75) : 75% of FM protein replaced by SBM and DJKM respectively. Highest body mass gain and insulin-like growth factor-1 (IGF-1) gene expression in brain, liver and muscle were observed for the control group, which were statistically similar to those for J(50) group and significantly (p < 0.05) higher than for all other groups, whereas growth hormone gene expression in brain, liver and muscle exhibited opposite trend. Insulin-like growth factor-1 concentration in plasma did not differ significantly among the five groups. Conclusively, growth performance was in parallel with IGF-1 gene expression and exhibited negative trend with GH gene expression.

  8. [Effects of growth hormone replacement therapy on bone metabolism].

    PubMed

    Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2014-06-01

    Growth hormone (GH) as well as insulin like growth factor-1 (IGF-1) are essential hormones to maintain homeostasis of bone turnover by activating osteoblastogenesis and osteoclastogenesis. Results from GH replacement therapy for primary osteoporosis and adult-onset GH deficiency (AGHD) suggest that one year or more treatment period by this agent is required to gain bone mineral density (BMD) over the basal level after compensating BMD loss caused by dominant increase in bone resorption which was observed at early phase of GH treatment. A recent meta-analysis demonstrates the efficacy of GH replacement therapy on increases in BMD in male patients with AGHD. Additional analyses are needed to draw firm conclusions in female patients with AGHD, because insufficient amounts of GH might be administrated to them without considerations of influence of estrogen replacement therapy on IGF-1 production. Further observational studies are needed to clarify whether GH replacement therapy prevent fracture risk in these patients.

  9. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone.

    PubMed

    Morley, J E; Kaiser, F; Raum, W J; Perry, H M; Flood, J F; Jensen, J; Silver, A J; Roberts, E

    1997-07-08

    A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > -0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH-IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH-IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.

  10. Predictors of Treatment Response to Tesamorelin, a Growth Hormone-Releasing Factor Analog, in HIV-Infected Patients with Excess Abdominal Fat

    PubMed Central

    Mangili, Alexandra; Falutz, Julian; Mamputu, Jean-Claude; Stepanians, Miganush; Hayward, Brooke

    2015-01-01

    Background Tesamorelin, a synthetic analog of human growth hormone-releasing factor, decreases visceral adipose tissue (VAT) in human immunodeficiency virus (HIV)-infected patients with lipodystrophy. Objectives 1) To evaluate the utility of patient characteristics and validated disease-risk scores, namely indicator variables for the metabolic syndrome defined by the International Diabetes Federation (MetS-IDF) or the National Cholesterol Education Program (MetS-NCEP) and the Framingham Risk Score (FRS), as predictors of VAT reduction during tesamorelin therapy at 3 and 6 months, and 2) To explore the characteristics of patients who reached a threshold of VAT <140 cm2, a level associated with lower risk of adverse health outcomes, after 6 months of treatment with tesamorelin. Methods Data were analyzed from two Phase 3 studies in which HIV-infected patients with excess abdominal fat were randomized in a 2:1 ratio to receive tesamorelin 2 mg (n = 543) or placebo (n = 263) subcutaneously daily for 6 months, using ANOVA and ANCOVA models. Results Metabolic syndrome (MetS-IDF or MetS-NCEP) and FRS were significantly associated with VAT at baseline. Presence of metabolic syndrome ([MetS-NCEP), triglyceride levels >1.7 mmol/L, and white race had a significant impact on likelihood of response to tesamorelin after 6 months of therapy (interaction p-values 0.054, 0.063, and 0.025, respectively). No predictive factors were identified at 3 months. The odds of a VAT reduction to <140 cm2 for subjects treated with tesamorelin was 3.9 times greater than that of subjects randomized to placebo after controlling for study, gender, baseline body mass index (BMI) and baseline VAT (95% confidence interval [CI] 2.03; 7.44). Conclusions Individuals with baseline MetS-NCEP, elevated triglyceride levels, or white race were most likely to experience reductions in VAT after 6 months of tesamorelin treatment. The odds of response of VAT <140 cm2 was 3.9 times greater for tesamorelin

  11. Predictors of Treatment Response to Tesamorelin, a Growth Hormone-Releasing Factor Analog, in HIV-Infected Patients with Excess Abdominal Fat.

    PubMed

    Mangili, Alexandra; Falutz, Julian; Mamputu, Jean-Claude; Stepanians, Miganush; Hayward, Brooke

    2015-01-01

    Tesamorelin, a synthetic analog of human growth hormone-releasing factor, decreases visceral adipose tissue (VAT) in human immunodeficiency virus (HIV)-infected patients with lipodystrophy. 1) To evaluate the utility of patient characteristics and validated disease-risk scores, namely indicator variables for the metabolic syndrome defined by the International Diabetes Federation (MetS-IDF) or the National Cholesterol Education Program (MetS-NCEP) and the Framingham Risk Score (FRS), as predictors of VAT reduction during tesamorelin therapy at 3 and 6 months, and 2) To explore the characteristics of patients who reached a threshold of VAT <140 cm2, a level associated with lower risk of adverse health outcomes, after 6 months of treatment with tesamorelin. Data were analyzed from two Phase 3 studies in which HIV-infected patients with excess abdominal fat were randomized in a 2:1 ratio to receive tesamorelin 2 mg (n = 543) or placebo (n = 263) subcutaneously daily for 6 months, using ANOVA and ANCOVA models. Metabolic syndrome (MetS-IDF or MetS-NCEP) and FRS were significantly associated with VAT at baseline. Presence of metabolic syndrome ([MetS-NCEP), triglyceride levels >1.7 mmol/L, and white race had a significant impact on likelihood of response to tesamorelin after 6 months of therapy (interaction p-values 0.054, 0.063, and 0.025, respectively). No predictive factors were identified at 3 months. The odds of a VAT reduction to <140 cm2 for subjects treated with tesamorelin was 3.9 times greater than that of subjects randomized to placebo after controlling for study, gender, baseline body mass index (BMI) and baseline VAT (95% confidence interval [CI] 2.03; 7.44). Individuals with baseline MetS-NCEP, elevated triglyceride levels, or white race were most likely to experience reductions in VAT after 6 months of tesamorelin treatment. The odds of response of VAT <140 cm2 was 3.9 times greater for tesamorelin-treated patients than that of patients receiving placebo.

  12. Regulatory mechanisms of growth hormone secretion are sexually dimorphic.

    PubMed Central

    Jaffe, C A; Ocampo-Lim, B; Guo, W; Krueger, K; Sugahara, I; DeMott-Friberg, R; Bermann, M; Barkan, A L

    1998-01-01

    Sexually dimorphic growth hormone (GH) secretory pattern is important in the determination of gender-specific patterns of growth and metabolism in rats. Whether GH secretion in humans is also sexually dimorphic and the neuroendocrine mechanisms governing this potential difference are not fully established. We have compared pulsatile GH secretion profiles in young men and women in the baseline state and during a continuous intravenous infusion of recombinant human insulin-like growth factor I (rhIGF-I). During the baseline study, men had large nocturnal GH pulses and relatively small pulses during the rest of the day. In contrast, women had more continuous GH secretion and more frequent GH pulses that were of more uniform size. The infusion of rhIGF-I (10 microg/kg/h) potently suppressed both spontaneous and growth hormone-releasing hormone (GHRH)-induced GH secretion in men. In women, however, rhIGF-I had less effect on pulsatile GH secretion and did not suppress the GH response to GHRH. These data demonstrate the existence of sexual dimorphism in the regulatory mechanisms involved in GH secretion in humans. The persistence of GH responses to GHRH in women suggests that negative feedback by IGF-I might be expressed, in part, through suppression of hypothalamic GHRH. PMID:9649569

  13. [Growth hormone in adults. An elixir of youth?].

    PubMed

    Rainfray, M; Hamon-Vilcot, B; Cnockaert, X; Pellerin, J; Bouillanne, O; Durand, D; Piette, F

    1995-01-01

    Studies have revealed a partial deficiency of growth hormone (GH) secretion in the elderly. Aging has a central effect on the GH secretion and probably a peripheral effect on insulin-like growth factor 1 (IGF-1) or somatomedin C through changes in body composition. Simultaneously therapeutic efficiency of recombinant GH was confirmed in adults with GH deficiency. These notions have led to some controlled trials of GH treatment in elderly. Further studies of GH replacement are needed, examining issues such as dosage, tolerance (still inadequate) and efficacy before the widespread use of GH or IGH-F 1 in the elderly is advocated.

  14. Initiating growth hormone therapy for children and adolescents.

    PubMed

    Acerini, Carlo; Albanese, Assunta; Casey, Angela; Denvir, Louise; Jones, Julie; Mathew, Verghese; Musson, Pauline; Sparrow, Susan

    It is common for children and adolescents on growth hormone (GH) treatment to miss one or more injections per week, thereby compromising their linear growth outcome. Among factors likely to affect treatment concordance are patient education and support in the selection of the most appropriate GH injection device. The authors discovered inconsistencies in the process of starting patients on GH therapy throughout the UK, and found that there were no clinical recommendations to support health professionals starting patients on treatment. This article describes the issues involved and the development of practical recommendations for use when starting paediatric patients on long-term GH therapy.

  15. Diagnostic and therapeutic advances in growth hormone insensitivity.

    PubMed

    David, Alessia; Metherell, Louise A; Clark, Adrian J L; Camacho-Hübner, Cecilia; Savage, Martin O

    2005-09-01

    Diagnostic and therapeutic advances in growth hormone insensitivity (GHI) have occurred principally in two areas: the molecular characterization of patients with GHI and treatment with recombinant human insulin like growth factor-I (IGF-I). This article discusses the current status of molecular diagnosis across the spectrum of the disorder. Treatment with recombinant human IGF-I in classical cases is summarized, and potential new targets for treatment are discussed together with the potential for therapy using the newly developed compound recombinant human IGF-I/IGF binding protein-3.

  16. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  17. Replacement treatment with biosynthetic human growth hormone in growth hormone-deficient hypopituitary adults.

    PubMed

    Beshyah, S A; Freemantle, C; Shahi, M; Anyaoku, V; Merson, S; Lynch, S; Skinner, E; Sharp, P; Foale, R; Johnston, D G

    1995-01-01

    The physiological role of