Science.gov

Sample records for horonobe siliceous rocks

  1. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  2. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  3. U.S. Geological Survey silicate rock standards

    USGS Publications Warehouse

    Flanagan, F.J.

    1967-01-01

    The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.

  4. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  5. Rapid determination of nanogram amounts of tellurium in silicate rocks

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1976-01-01

    A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.

  6. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  7. Lunar highland melt rocks - Chemistry, petrology and silicate mineralogy

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1980-01-01

    A selected suite containing several of the largest samples of lunar highland melt rocks includes impact melt specimens (anorthositic gabbro, low-K Fra Mauro) and volcanic specimens (intermediate-K Fra Mauro). Although previous assumptions of LKFM volcanism have fallen into disfavor, no fatal arguments against this hypothesis have been presented, and the evidence of a possibly 'inherited igneous' olivine-plagioclase cosaturation provides cause for keeping a volcanic LKFM hypothesis viable. Comparisons of silicate mineralogy with melt rock compositions provide information on the specimen's composition and cooling history. Plagioclase-rock compositions can be matched to the experimentally determined equilibria for appropriate samples to identify melt rocks with refractory anorthitic clasts. Olivine-rock compositions indicate that melt rock vitrophyres precipitate anomalously Fe-rich olivine; the cause of this anomaly is not immediately evident. The Al-Ti and Ca-Fe-Mg zonation in pyroxene provide information on relative cooling rates of highland melt rocks, but Cr- and Al-content (where Al-rich low-Ca pyroxene cores are preserved in rapidly cooled samples) can be correlated with composition of the host rock.

  8. Petrological modeling of basaltic rocks from Venus: A case for the presence of silicic rocks

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. Gregory

    2013-06-01

    presence of highly evolved igneous rocks on Venus is a controversial issue. The formations of highland terranes and pancake domes are the two principal tectonic and volcanic features which argue in favor of the presence of silicic igneous rocks; however, the lack of water on Venus casts doubt on whether or not granites and rhyolites can form. Data returned to Earth from the Venera 13 and 14 landers show that the surface of Venus is composed of basaltic rocks similar in composition to those found on Earth. Here it is shown that anhydrous and hydrous fractional crystallization modeling using the Venera 13 and 14 data as starting materials can produce compositions similar to terrestrial phonolites and rhyolites. It is suggested that at shallow crustal levels (i.e., ≤ 0.1 GPa), mafic magmas can differentiate into silicic magmas resembling phonolites or rhyolites which may or may not erupt. Furthermore, the hydrous equilibrium partial melting models can produce rocks similar to terrestrial andesites and rhyolites, whereas anhydrous models suggest that there may be a uniquely Venusian type of silicic rock. The silicic rocks, if present, could act as "continental nucleation" sites and/or their presence may facilitate preferential sites of shearing and deformation of the Venusian crust.

  9. Petrological modeling of basaltic rocks from Venus: a case for the presence of silicic rocks

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.

    2013-12-01

    The presence of highly evolved igneous rocks on Venus is debated. The formation of highland terranes and pancake domes are the two principle tectonic and volcanic features which argue in favor of the presence of silicic igneous rocks; however, the lack of water on Venus casts doubt on whether or not granites and rhyolites can form. Data returned to Earth from the Venera 13 and 14 landers show that the surface of Venus is comprised of basaltic rocks similar in composition to those found on Earth. Here is it shown that anhydrous and hydrous fractional crystallization modeling using the Venera 13 and 14 data as starting materials can produce compositions similar to terrestrial phonolites and rhyolites. It is suggested that at shallow crustal levels (i.e. ≤ 0.1 GPa) mafic magmas can differentiate into silicic magmas resembling phonolites or rhyolites which may or may not erupt. Furthermore, the hydrous equilibrium partial melting models can produce rocks similar to terrestrial andesites and rhyolites whereas anhydrous models suggest there may be a uniquely Venusian type of silicic rock. The silicic rocks, if present, could act as ';continental nucleation' sites and/or their presence may facilitate preferential sites of shearing and deformation of the Venusian crust.

  10. Proposal for a Unified Classification System of Shock Metamorphosed Planetary Silicate Rocks — Call for Comments

    NASA Astrophysics Data System (ADS)

    Stöffler, D.; Metzler, K.

    2016-08-01

    A new classification system for progressive shock metamorphism of planetary silicate rocks is proposed. It is based exclusively on rock types and the shock effects of their mineral constituents independently of their source planets or planetoids.

  11. Precise determination of ferrous iron in silicate rocks

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Nakamura, Eizo

    2002-03-01

    We have developed a highly precise method for the determination of ferrous iron (Fe 2+) in silicate rocks. Our new method is based on Wilson's procedure (1955) in which surplus V 5+ is used to oxidize Fe 2+ into Fe 3+ while equivalently reducing V 5+ into V 4+. Because V 4+ is more resistant to atmospheric oxidation than Fe 2+, Fe 2+ in the sample can be determined by measuring unreacted V 5+ by adding excess Fe 2+ after sample decomposition and then titrating the unreacted Fe 2+ with Cr 6+. With our method, which involves conditioning the sample solution with 5 M H 2SO 4 in a relatively small beaker (7 mL), the oxidation of Fe 2+ or V 4+ that leads to erroneous results can be completely avoided, even in 100-h sample decompositions at 100°C. We have measured the concentration of FeO in 15 standard silicate rock powders provided by the Geological Survey of Japan (GSJ). Analytical reproducibility was better than 0.5% (1σ) for all but those samples that had small amounts of Fe 2+ (<1.5 wt.% of FeO). Fourteen of these samples gave FeO contents significantly higher than the GSJ reference values. This likely indicates that the GSJ reference values, obtained by compiling previously published data, contain a large number of poor-quality data obtained by methods with lower recovery of Fe 2+ caused by oxidation or insufficient sample decomposition during analyses. To achieve accurate determinations of Fe 2+ in our method, several factors besides the oxidation must be considered, including: (1) long-term variations in the concentration of Fe 2+ solution must be corrected; (2) excess use of the indicator must be avoided; and (3) the formation of inert FeF + complex must be avoided during titration when using boric acid as a masking agent.

  12. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.

    2011-12-01

    It is generally accepted that dynamic-weakening is essential for earthquake instability, and many experimental works have documented this weakening. Recent observations revealed also opposite trends of dynamic-strengthening in experiments (Reches & Lockner, 2010). We present here our experimental results of this dynamic-strengthening and discuss possible implications to earthquake behavior. We ran hundreds of experiments on experimental faults made of siliceous rock including granite, syenite, diorite, and quartzite. The experimental fault is comprised of two solid cylindrical blocks with a raised-ring contact of 7 cm diameter and 1 cm width. We recognized general, three regimes of strength-velocity relations: (I) Dynamic weakening (drop of 20-60% of static strength) as slip velocity increased from ~0.0003 m/s (lowest experimental velocity) to a critical velocity, Vc=0.008-0.16 m/s; (II) Abrupt transition to dynamic strengthening regime during which the fault strength almost regains its static strength; and (III) Quasi-constant strength with further possible drops as velocity approaches ~1 m/s. The critical velocity depends on the sample lithology: Vc is ~0.06 m/s for granite, ~0.008 m/s for syenite, ~0.01 m/s for diorite, and ~0.16 m/s for quartzite. The strengthening stage is associated with temperature increase, wear-rate increase, and the occurrence of intense, high frequency stick-slip events (Reches & Lockner, 2010). Sammis et al., (this meeting) attributed this strengthening to dehydration of the thin water layer that covers the gouge particles as the temperature increases. On the other hand, we note that tens of experiments with dolomite samples (non-siliceous), which were deformed under similar conditions, did not exhibit the velocity strengthening (unpublished). Based on the analyses by Andrews (2004, 2005), we speculate that velocity strengthening may bound the slip velocity. The numerical models of Andrews show that the slip velocity along a slip

  13. Silicic Arc Magmas And Silicic Slab Melts: The Melt-Rock Reaction Link

    NASA Astrophysics Data System (ADS)

    Straub, S. M.; Gomez-Tuena, A.; Bolge, L. L.; Espinasa-Perena, R.; Bindeman, I. N.; Stuart, F. M.; Zellmer, G. F.

    2013-12-01

    While a genetic link between silicic arc magmas and silicic melts from the subducted slab has long been proposed, this hypothesis is commonly refuted because most arc magmas lack a 'garnet-signature' which such slab melts must have. A comprehensive geochemical study of high-Mg# arc magmas from the Quaternary central Mexican Volcanic Belt (MVB), however, shows that this conflict can be reconciled if melt-rock reaction processes in the mantle wedge were essential to arc magma formation. In the central MVB, monogenetic and composite volcanoes erupt high-Mg# basalts to andesites with highly variable trace element patterns. These magmas contain high-Ni olivines (olivine Ni higher than permissible for olivines in partial peridotite melts) with high 3He/4He = 7-8 Ra that provide strong evidence for silicic slab components that infiltrate the subarc mantle to produce olivine-free segregations of 'reaction pyroxenite' in the sources of individual volcanoes. Melting of silica-excess and silica-deficient reaction pyroxenites can then produce high-Mg# basaltic and dacitic primary melts that mix during ascent through mantle and crust to form high-Mg# andesites. Mass balance requires that reaction pyroxenites contain at least >15-18 wt%, and likely more, of slab component. However, because the HREE of the slab component are efficiently retained in the eclogitic slab, elements Ho to Lu in partial melts from reaction pyroxenites remain controlled by the mantle and maintain MORB-normalized Ho/Lun ˜1.15 close to unity. In contrast, the MREE to LREE and fluid mobile LILE of the arc magmas are either controlled, or strongly influenced, by slab-contributions. The origin from hybrid sources also shows in the major elements that are blends of mantle-derived elements (Mg, Ca, Mn, Fe, Ti) and elements augmented by slab contributions (Si, Na, K, P, and possibly Al). Moreover, strong correlations between bulk rock SiO2, 87Sr/86Sr and δ18O (olivines) can be interpreted as mixtures of subarc

  14. Impedance spectra of hot, dry silicate minerals and rocks: qualitative interpretation of spectra

    USGS Publications Warehouse

    Huebner, J.S.; Dillenburg, R.G.

    1995-01-01

    Impedance spectroscopy helps distinguish the contributions that grain interiors and grain boundaries make to electrical resistance of silicate minerals and rocks. Olivine, orthopyroxene, clinopyroxenes, and both natural and synthetic clinopyroxenite were measured. A network of electrical elements is presented for use in interpreting impedance spectra and conductive paths in hot or cold, wet or dry, minerals and rocks at any pressure. In dry rocks, a series network path predominates; in wet rocks, aqueous pore fluid and crystals both conduct. Finite resistance across the sample-electrode interface is evidence that electronic charge carriers are present at the surface, and presumably within, the silicate minerals and rocks measured. -from Authors

  15. Magnesium Isotope Fractionation By Chemical Diffusion In Natural Silicate Rocks

    NASA Astrophysics Data System (ADS)

    Chopra, R.; Richter, F. M.; Watson, E. B.

    2009-12-01

    The isotopic composition of geologic materials can be altered by natural processes in a number of different ways. Important information about the conditions and the processes that operated can be documented by studying the resulting fractionations. In this study, we document the fractionation of magnesium isotopes by chemical diffusion between coeval felsic and silicic magmas from the Vinal Cove complex of the Vinalhaven Intrusive Complex in Maine. Further, we show that the isotopic fractionation can be used to determine the extent of diffusive transport associated with particular geological processes. The Vinal Cove complex is dominated by felsic porphyry along with substantial volumes of contemporaneous mafic and hybrid rocks. The rocks of the Vinal Cove complex appear to record events during the waning stages of solidification of the Vinalhaven intrusive complex, when a large mafic dike intruded a small, partially molten inner portion of the mostly solidified, coarse-grained Vinalhaven granite (Wiebe et al., 2004). An approximately 20 cm thick zone of felsic porphyry between granite and basalt is thought to have formed by the thermal rejuvenation of a silicic crystal mush by a basaltic influx. The contact between the porphyry and the basalt is irregular and crenulate. The magnesium isotopic compositions of samples from two regions across this contact were measured. In addition, two experimental diffusion couples, made by juxtaposing powders of felsic porphyry and basalt from the natural sample from Vinal Cove, were also used to quantify and to compare the magnesium isotopic fractionations associated with chemical diffusion between the natural and experimental samples. The two diffusion couples were made by annealing the powders in a piston cylinder assembly at temperatures of 1450°C, pressures of 1450 kbar, and for 22.5 and 10 hours respectively. Chemical diffusion of magnesium from basalt to felsic porphyry was driven by a concentration ratio of between 4 and

  16. Testing the role of silicic acid and bioorganic materials in the formation of rock coatings

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Philip, Ajish I.; Perry, Randall S.

    2004-11-01

    Silica, amino acids, and DNA were recently discovered in desert varnish. In this work we experimentally test the proposed role of silicic acid and bio-chemicals in the formation of desert varnish and other rock coatings. We have developed a protocol in which the rocks were treated with a mixture of silicic acid, sugars, amino acids, metals and clays, under the influence of heat and UV light. This protocol reflects the proposed mechanism of the polymerization of silicic acid with the biooganic materials, and the laboratory model for the natural conditions under which the desert varnish is formed. Our experiments produced coatings with a hardness and morphology that resemble the natural ones. These results provide a support for the role of silicic acid in the formation of rock coatings. Since the hard silica-based coatings preserve organic compounds in them, they may serve as a biosignature for life, here or possibly on Mars.

  17. Testing the Role of Silicic Acid and Bioorganic Materials in the Formation of Rock Coatings

    SciTech Connect

    Kolb, Vera; Philip, Ajish I.; Perry, Randall S.

    2004-12-01

    Silica, amino acids, and DNA were recently discovered in desert varnish. In this work we experimentally test the proposed role of silicic acid and bio-chemicals in the formation of desert varnish and other rock coatings. We have developed a protocol in which hte rocks were treated with a mixture of silicic acid, sugars, amino acids, metals and clays, under the influence of heat and UV light. This protocol reflects the proposed mechanism of hte polymerization of silicic acid with the bioorganic materials, and the laboratory model for the natural conditions under which the desert varnish is formed. Our experiments produced coatings with a hardness and morphology that resemble the nature ones. These results provide a support for the role of silicic acid in the formation of rock coatings. Since the hard silica-based coatings preserve organic compounds in them, they may serve as a biosignature for life, here or possibly Mars.

  18. Trace-element sanidine/glass distribution coefficients for peralkaline silicic rocks and their implications to peralkaline petrogenesis

    NASA Astrophysics Data System (ADS)

    Drexler, J. W.; Bornhorst, T. J.; Noble, D. C.

    1983-10-01

    Sanidine/glass distribution coefficients for 11 trace elements have been determined on six peralkaline and two subalkaline silicic rocks. Distribution coefficients for Na, Sc, Fe, Cs, La, Ce, Sm, Tb and Lu from this study and the literature show little variation, within analytical uncertainty, for silicic rocks of peralkaline and subalkaline affinity. Distribution coefficients for Eu and Rb show a marked decrease with increasing peralkalinity. This variation may be the result of the decrease in the degree of polymerization from subalkaline to peralkaline silicic melts. Previous studies involving modelling of peralkaline rocks have selected, incorrectly, Eu and Rb sanidine/glass distribution coefficients determined from subalkaline silicic rocks.

  19. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: Implications for the origin and migration of iodine during basin evolution

    NASA Astrophysics Data System (ADS)

    Togo, Yoko S.; Takahashi, Yoshio; Amano, Yuki; Matsuzaki, Hiroyuki; Suzuki, Yohey; Terada, Yasuko; Muramatsu, Yasuyuki; Ito, Kazumasa; Iwatsuki, Teruki

    2016-10-01

    This paper reports the concentration, speciation and isotope ratio (129I/127I) of iodine from both groundwater and host rocks in the Horonobe area, northern Hokkaido, Japan, to clarify the origin and migration of iodine in sedimentary rocks. Cretaceous to Quaternary sedimentary rocks deposited nearly horizontally in Tenpoku Basin and in the Horonobe area were uplifted above sea level during active tectonics to form folds and faults in the Quaternary. Samples were collected from the Pliocene Koetoi and late Miocene Wakkanai formations (Fms), which include diatomaceous and siliceous mudstones. The iodine concentration in groundwater, up to 270 μmol/L, is significantly higher than that of seawater, with the iodine enrichment factor relative to seawater reaching 800-1500. The iodine concentration in the rocks decreases from the Koetoi to Wakkanai Fms, suggesting that iodine was released into the water from the rocks of deeper formations. The iodine concentration in the rocks is sufficiently high for forming iodine-rich groundwater as found in this area. X-ray absorption near edge structure (XANES) analysis shows that iodine exists as organic iodine and iodide (I-) in host rocks, whereas it exists mainly as I- in groundwater. The isotope ratio is nearly constant for iodine in the groundwater, at [0.11-0.23] × 10-12, and it is higher for iodine in rocks, at [0.29-1.1] × 10-12, giving iodine ages of 42-60 Ma and 7-38 Ma, respectively. Some iodine in groundwater must have originated from Paleogene and even late Cretaceous Fms, which are also considered as possible sources of oil and gas, in view of the old iodine ages of the groundwater. The iodine ages of the rocks are older than the depositional ages, implying that the rocks adsorbed some iodine from groundwater, which was sourced from greater depths. The iodine concentration in groundwater decreases with decreasing chlorine concentration due to mixing of iodine-rich connate water and meteoric water. A likely scenario

  20. Discrimination of basic silicate rocks by recognition maps processed from aerial infrared data.

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.; Thomson, F. J.

    1971-01-01

    A method is presented which can be used to map silicate rock-type from aerial infrared data. The method has been partially tested over a sand quarry at Mill Creek, Oklahoma, in which highly siliceous targets were discriminated from nonsilicates in the scene. The technique is currently being tested experimentally on basic silicates. On the basis of the Mill Creek results and theoretical considerations, percent SiO2 differences as small as 14% should be detectable with the University of Michigan's currently available detectors.

  1. Petrographic and crystallographic study of silicate minerals in lunar rocks

    NASA Technical Reports Server (NTRS)

    Carmichael, I. S. E.; Turner, F. J.; Wenk, H. R.

    1974-01-01

    Optical U-stage measurements, chemical microprobe data, and X-ray procession photographs of a bytownite twin group from rock 12032,44 are compared. Sharp but weak b and no c-reflections were observed for this An89 bytownite indicating a partly disordered structure. Euler angles, used to characterize the orientation of the optical indicatrix, compare better with values for plutonic than for volcanic plagioclase. This indicates that structural and optical properties cannot be directly correlated.

  2. Characterizing silicic rocks in the Parana Magmatic Province: an update in their origin and emplacement

    NASA Astrophysics Data System (ADS)

    Luchetti, A. F.; Nardy, A. R.; Machado, F. B.; Gravley, D. M.; Gualda, G. A.

    2013-12-01

    The Paraná Magmatic Province (PMP), a large igneous province in southern Brazil (with correlative rocks in western Africa), includes 800,000 km3 of flood basalts generated during the rifting that ultimately led to the opening of the South Atlantic and covers nearly 75% of the surface of the Paraná Basin. Towards the top of the volcanic pile, silicic rocks are observed in many areas. They comprise a small proportion of the total erupted volume (2.5%), yet correspond to a significant flare-up of silicic volcanism over a period of only a few million years. In Brazil, the silicic rocks are divided into two groups, the Chapecó Member, which appears more northerly and includes porphyritic, crystal-rich, high-Ti dacites and trachydacites; and the Palmas Member, which includes fine-grained, crystal-poor, low-Ti dacites and rhyolites. The mode of emplacement (lavas vs. pyroclastic flows) of the volcanic units has been the subject of much controversy. The aim of this project is to better understand the origin and evolution of the PMP silicic rocks. We are combining information from the regional to the thin section scale to better characterize eruption dynamics and magma distribution prior to eruption. In both Palmas and Chapecó units, we observe features consistent with emplacement in the form of pyroclastic density currents, e.g. fiamme, variable weathering patterns consistent with local variations in welding at the outcrop scale, vertical gas-escape structures, sedimentary dykes, and lythophysae. Some ignimbrite units can be traced for 10's of kilometers and with more research on their spatial distribution could reveal the location of eruptive centers. In the Palmas, ignimbrites can be observed juxtaposed against or overlying discrete eruptive centers in the form of discordant structures that resemble domes and coulees typical of lava extrusion and flow. However, many of the silicic rocks are ambiguous and difficult to characterize, with features that could be related

  3. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks

    NASA Astrophysics Data System (ADS)

    Korsakov, Andrey V.; Hermann, Jörg

    2006-01-01

    Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5-6.0 GPa; T ≈ 1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate-silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene - a hydrous carbonate melt - and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the

  4. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks.

    PubMed

    Roedder, E; Weiblen, P W

    1970-01-30

    Examination of multiphase melt inclusions in 91 sections of 26 lunar rocks revealed abundant evidence of late-stage immiscibility in all crystalline rock sections and in soil fragments and most breccias. The two individual immiscible silicate melts (now glasses) vary in composition, but are essentially potassic granite and pyroxenite. This immiscibility may be important in the formation of the lunar highlands and tektites. Other inclusions yield the following temperatures at which the several minerals first appear on cooling the original magma: ilmenite (?) liquidus, 1210 degrees C; pyroxene, 1140 degrees C; plagioclase, 1105 degrees C; solidus, 1075 degrees C. The glasses also place some limitations on maximum and minimum cooling rates.

  5. Oxygen isotopes of some trondhjemites, siliceous gneisses, and associated mafic rocks

    USGS Publications Warehouse

    Barker, F.; Friedman, I.; Hunter, D.R.; Gleason, J.D.

    1976-01-01

    Analyses of oxygen isotopes in whole-rock samples of 58 Precambrian and Phanerozoic trondhjemites and siliceous gneisses and of 28 cogenetic mafic to intermediate rocks from North America, Fennoscandia, and southern Africa give the following results: 1. (1) 47 trondhjemites, tonalites, and mostly Archean acidic gneisses that apparently are not isotopically disturbed show an overage ?? 15O of +7.3??? and a range of 5.2-8.9???; 11 other samples are slightly to moderately disturbed and show higher values; and 2. (2) the mafic rocks show a wide range of ??-values, from about 0-9??? but the undisturbed ones give an average ?? 18O of 5.2???. The ?? 18O values of the trondhjemitic intrusives and siliceous gneisses of similar composition are lower than those of most granitic rocks and support models for derivation of these rocks from basaltic parents. This approach, however, cannot be used to determine if individual bodies formed by differentiation or by partial melting. ?? 1976.

  6. Late Cretaceous intraplate silicic volcanic rocks from the Lake Chad region: An extension of the Cameroon volcanic line?

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T.-Y.; Torng, P.-K.; Yang, C.-C.; Lee, Y.-H.

    2016-07-01

    Silicic volcanic rocks at Hadjer el Khamis, near Lake Chad, are considered to be an extension of the Cameroon volcanic line (CVL) but their petrogenetic association is uncertain. The silicic rocks are divided into peraluminous and peralkaline groups with both rock types chemically similar to within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma indicating the magmas erupted ˜10 million years before the next oldest CVL rocks (i.e., ˜66 Ma). The Sr isotopes (i.e., ISr = 0.7021-0.7037) show a relatively wide range but the Nd isotopes (i.e., 143Nd/144Ndi = 0.51268-0.51271) are uniform and indicate that the rocks were derived from a moderately depleted mantle source. Thermodynamic modeling shows that the silicic rocks likely formed by fractional crystallization of a mafic parental magma but that the peraluminous rocks were affected by low temperature alteration processes. The silicic rocks are more isotopically similar to Late Cretaceous basalts identified within the Late Cretaceous basins (i.e., 143Nd/144Ndi = 0.51245-0.51285) of Chad than the uncontaminated CVL rocks (i.e., 143Nd/144Ndi = 0.51270-0.51300). The age and isotopic compositions suggest the silicic volcanic rocks of the Lake Chad region are related to Late Cretaceous extensional volcanism in the Termit basin. It is unlikely that the silicic volcanic rocks are petrogenetically related to the CVL but it is possible that magmatism was structurally controlled by suture zones that formed during the opening of the Central Atlantic Ocean and/or the Pan-African Orogeny.

  7. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  8. Spectrofluorimetric determination of thallium in silicate rocks with rhodamine b in the presence of aluminum chloride

    USGS Publications Warehouse

    Shnepfe, M.M.

    1975-01-01

    A sensitive spectrofluorimetric procedure with rhodamine B in the presence of aluminum chloride is given for determining submicrogram and microgram quantities of thallium in silicate rocks. Samples are decomposed with a mixture of hydrofluoric and nitric acids and then treated with hydrochloric acid. Thallium is extracted as its dithizonate with chloroform from an alkaline medium containing ascorbate, citrate, and cyanide and then back-extracted with dilute nitric acid. After destruction of the organic matter and treatment with bromine, hydrochloric acid, aluminum chloride, and rhodamine B, the {A table is presented}. ?? 1975.

  9. On the neutralization of acid rock drainage by carbonate and silicate minerals

    NASA Astrophysics Data System (ADS)

    Sherlock, E. J.; Lawrence, R. W.; Poulin, R.

    1995-02-01

    The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.

  10. Silicate melt removal and sulfide liquid retention in ultramafic rocks of the Duke Island Complex, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Stifter, Eric C.; Ripley, Edward M.; Li, Chusi

    2014-10-01

    Magmatic Ni-Cu-PGE sulfide mineralization occurs within olivine clinopyroxenite, hornblende-bearing clinopyroxenite, and magnetite-hornblende-rich rocks in the Ural-Alaskan-Type Duke Island Complex in Southeast Alaska. The addition of large amounts of sulfur from country rocks occurred during fractional crystallization of the parental magma when clinopyroxene was becoming a liquidus mineral. Textural interfaces between sulfide and silicate minerals are strongly interlobate, and differ significantly from net-textures that are developed in many Ni-Cu-PGE deposits. Sulfide-free olivine clinopyroxenite is an adcumulate; residual liquid was efficiently expelled from the accumulating crystal pile. A significant interstitial liquid component is observable only in the form of interstitial sulfide in the S-rich rocks. Rounded sulfide inclusions and blebby to vermicular sulfide-silicate intergrowths indicate that silicate crystallization occurred under conditions of sulfide saturation. The presence of dense sulfide liquid inhibited the growth of silicate minerals and led to the development of interlobate grain boundaries. Strong, localized wetting of sulfide liquids on crystallizing silicates, and downward percolation of sulfide liquid through a crystallizing mush may have contributed to the evolution of these textures. Residual silicate liquid was removed from the system due to a combination of buoyant advection and compaction, but dense sulfide liquid remained.

  11. Study on the order degree and geochemical characteristics of major elements of siliceous rock in eastern Qinling area, China.

    PubMed

    Ming, Lü; Li, Hong-Zhong; Zhao, Ming-zhen; Ma, Ming-wu; Yang, Zhi-Jun; Liang, Jin

    2014-11-01

    Siliceous rocks were extensively distributed in the marine volcanic sedimentary formation of Erlangping Group in the Early Paleozoic in eastern Qinling area. These siliceous rocks formed in the same age, but had differences in the degree of crystallization and order because of the late diagenetic evolution. In the present study, the major elements and order degree of the siliceous rocks were studied, which were from the Erlangping Group in Xixia area, Songxian area and Nanzhao area of eartern Qinling orogenic belt. As shown in the results, the siliceous rocks contained SiO2 with percentage between 84.75% and 94.12% and average of 89.09%. The SiO2/(K2O+Na2O) values were from 26.69 to 114.78 with 65.67 as its average, and the values of SiO2/Al2O3 were from 10.48 to 61.52 with average of 30.58. These above characteristics excellently agreed with the geochemical characteristics of hydrothermal siliceous rocks, which deposited in the continental margin environment. In the Raman analytical results, the quartz contributed to the characteristic Raman shifts at 394, 464, 465 and 467 cm(-1). In the results of Gaussian fitting the degrees of order increased with the order of siliceous rocks of Songxian area, Nanzhao area and Xixia area, which were witnessed by the descending in FWHM values of quartz in the siliceous rocks of Songxian area, Nanzhao area and Xixia area orderly. Disagreeing with the FWHM values of Gaussian fitting, the silica contents of the siliceous rocks had a rising trend of Songxian (87.36%), Nanzhao (89.57%), Xixia area (90.35%), which meant a descending in impurity elements with the order of Songxian area, Nanzhao area and Xixia areas. According to this, there was high agreement between lower crystallinity degree and higher purity of silica, and this denoted that the rising in order degree of silica would result in lower impurity in siliceous rocks. Although the crystallinity degrees could change with the influences of temperature, pressure and its

  12. Study on the order degree and geochemical characteristics of major elements of siliceous rock in eastern Qinling area, China.

    PubMed

    Ming, Lü; Li, Hong-Zhong; Zhao, Ming-zhen; Ma, Ming-wu; Yang, Zhi-Jun; Liang, Jin

    2014-11-01

    Siliceous rocks were extensively distributed in the marine volcanic sedimentary formation of Erlangping Group in the Early Paleozoic in eastern Qinling area. These siliceous rocks formed in the same age, but had differences in the degree of crystallization and order because of the late diagenetic evolution. In the present study, the major elements and order degree of the siliceous rocks were studied, which were from the Erlangping Group in Xixia area, Songxian area and Nanzhao area of eartern Qinling orogenic belt. As shown in the results, the siliceous rocks contained SiO2 with percentage between 84.75% and 94.12% and average of 89.09%. The SiO2/(K2O+Na2O) values were from 26.69 to 114.78 with 65.67 as its average, and the values of SiO2/Al2O3 were from 10.48 to 61.52 with average of 30.58. These above characteristics excellently agreed with the geochemical characteristics of hydrothermal siliceous rocks, which deposited in the continental margin environment. In the Raman analytical results, the quartz contributed to the characteristic Raman shifts at 394, 464, 465 and 467 cm(-1). In the results of Gaussian fitting the degrees of order increased with the order of siliceous rocks of Songxian area, Nanzhao area and Xixia area, which were witnessed by the descending in FWHM values of quartz in the siliceous rocks of Songxian area, Nanzhao area and Xixia area orderly. Disagreeing with the FWHM values of Gaussian fitting, the silica contents of the siliceous rocks had a rising trend of Songxian (87.36%), Nanzhao (89.57%), Xixia area (90.35%), which meant a descending in impurity elements with the order of Songxian area, Nanzhao area and Xixia areas. According to this, there was high agreement between lower crystallinity degree and higher purity of silica, and this denoted that the rising in order degree of silica would result in lower impurity in siliceous rocks. Although the crystallinity degrees could change with the influences of temperature, pressure and its

  13. Photoelectrochemical reduction of CO{sub 2} by silicate rock powders

    SciTech Connect

    Ohta, Kiyohisa; Ohguchi, Youko; Kaneco, Satoshi; Mizuno, Takayuki

    1999-06-01

    The reduction in CO{sub 2} emissions by photoelectrochemical conversion of the CO{sub 2} to formic acid and methanol using silicate rock (andesite) powders suspended in water is presented. For photoelectrochemical reduction of CO{sub 2}, a homemade cell with a platinum and a copper electrode was used. 0.1 M KHCO{sub 3} solution was used as the electrolyte. In the photoelectrochemical reduction of CO{sub 2} with a copper cathode in the catholyte dispersing andesite powder, mainly formic acid, methanol, methane, ethylene, carbon monoxide, and hydrogen were produced. Consequently, it was found that this method using a copper electrode was effective for formic acid and methanol formations from carbon dioxide.

  14. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  15. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  16. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  17. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins.

    PubMed

    Yokoyama, T; Makishima, A; Nakamura, E

    1999-01-01

    A new chemical separation technique to isolate Th and U from silicate rocks was established by using two kinds of commercial extraction chromatographic resins. In the first column procedure, with U/TEVA·spec resin, almost all elements except Th and U were eluted by 4 M HNO(3). Th was then separated by using 5 M HCl, and U was finally isolated by successive addition of 0.1 M HNO(3). A significant amount of Zr still remained in the Th fraction, which was then further purified in the second column stage using TEVA·spec resin. In the second procedure, Zr was eluted first by using 2 M HNO(3), and then Th was collected by 0.1 M HNO(3). Both the Th and U fractions obtained by these procedures were sufficiently pure for thermal ionization mass spectrometric (TIMS) analysis. Recovery yields of Th and U exceeded 90%, and total blanks were <19 pg for Th and <10 pg for U. Our method has advantages over previous methods in terms of matrix effects, tailing problems, and degree of isolation. Since Th and U are effectively separated without suffering any matrix interference from coexisting cations and anions, this technique can be used not only for the analysis of igneous rock samples but also for the analysis of soils, marine sediments, carbonates, phosphates and seawater, groundwater, and surface water.

  18. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins.

    PubMed

    Yokoyama, T; Makishima, A; Nakamura, E

    1999-01-01

    A new chemical separation technique to isolate Th and U from silicate rocks was established by using two kinds of commercial extraction chromatographic resins. In the first column procedure, with U/TEVA·spec resin, almost all elements except Th and U were eluted by 4 M HNO(3). Th was then separated by using 5 M HCl, and U was finally isolated by successive addition of 0.1 M HNO(3). A significant amount of Zr still remained in the Th fraction, which was then further purified in the second column stage using TEVA·spec resin. In the second procedure, Zr was eluted first by using 2 M HNO(3), and then Th was collected by 0.1 M HNO(3). Both the Th and U fractions obtained by these procedures were sufficiently pure for thermal ionization mass spectrometric (TIMS) analysis. Recovery yields of Th and U exceeded 90%, and total blanks were <19 pg for Th and <10 pg for U. Our method has advantages over previous methods in terms of matrix effects, tailing problems, and degree of isolation. Since Th and U are effectively separated without suffering any matrix interference from coexisting cations and anions, this technique can be used not only for the analysis of igneous rock samples but also for the analysis of soils, marine sediments, carbonates, phosphates and seawater, groundwater, and surface water. PMID:21662935

  19. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  20. Thick sequences of silicate and carbonate rocks of sedimentary origin in North America an interim report

    USGS Publications Warehouse

    Love, John David

    1956-01-01

    Thick sequences of silicate and carbonate rocks of sedimentary origin have been investigated in 64 areas in North America. The areas containing the thickest and most homogeneous stratigraphic sections more than 1,000 feet thick, buried at depths greater than 10,000 feet are: 1. Uinta Basin, Utah, where the Mancos shale is 1,300 to 5,000 feet thick, the Weber sandstone is 1,000 to 1,600 feet thick, and Mississippian limestones are 1,000 to 1,500 feet thick. 2. Washakie Basin, Wyoming, and Sand Wash Ba.sin, Colorado, where the Lewis shale is 1,000 to 2,000 feet thick and the Cody-Mancos shale is 4,500 to 5,500 feet thick. 3. Green River Basin, Wyoming, where the Cody-Hilliard-Baxter-Mancos shale sequence averages more than 3,000 feet, the siltstone and shale of the Chugwater formation totals 1,000 feet, and the Madison limestone ranges from 1,000 to 1,400 feet thick. 4. Red Desert (Great Divide) Basin, Wyoming, where the Cody shale is 4,000 feet thick. 5. Hanna Basin, Wyoming, where the Steele shale is 4,500 feet thick. 6. Wind River Basin, Wyoming, where the Cody shale is 3,600 to 5,000 feet thick. Geochemical characteristics of these rocks in these areas are poorly known but are being investigated. A summary of the most pertinent recent ana1yses is presented.

  1. Oxygen isotope geochemistry of the silicic volcanic rocks of the Etendeka-Parana province: Source constraints

    SciTech Connect

    Harris, C.; Milner, S.C.; Armstrong, R.A. ); Whittingham, A.M. )

    1990-11-01

    Oxygen isotope ratios of pyroxene phenocrysts in the silicic volcanic rocks from the Cretaceous Etendeka-Parana flood basalt province (Namibia, South America) are believed to reflect the {delta}{sup 18}O values of the original magmas. The authors recognize a high {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +10{per thousand}) found in the south of both regions, and a low {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +6.5{per thousand}) found in the north. Other differences between thee two rhyolite types include higher concentrations of incompatible elements and lower initial {sup 87}Sr/{sup 86}Sr ratios in the low {delta}{sup 18}O value type. The authors suggest that the regional distribution of rhyolite types reflects differences in source composition, which can best be explained if the sources are lower crustal, Late Proterozoic mobile belt material (high {delta}{sup 18}O) and Archean lower crust (low {delta}{sup 18}O).

  2. Photoelectrochemical reduction of CO{sub 2} using silicate rock powder

    SciTech Connect

    Ohta, Kiyohisa; Ohguchi, Youko; Kaneco, Satochi

    1996-12-31

    Until now, numerous investigators have reported chemical fixation of carbon dioxide, such as electrochemical, photochemical and photoelectrochemical reductions. In these methods, relatively, a few studies on the photoelectrochemical conversion of CO{sub 2} have been reported. We have recently presented a photochemical reduction of carbon dioxide and hydrogen formation by using andesite sands as a photocatalyst under sunlight irradiation. At ambient temperature and atmospheric pressure, 6.5 {times} 10{sup -2} ml g{sup -1} methane and 7.0 {times} 10{sup -2} ml g{sup -1} of hydrogen were formed from carbon dioxide and water on the andesite. This report presents the photoelectrochemical reduction of CO{sub 2} using silicate rock (andesite) powder suspended in water. Carbon dioxide is the end product to complete combustion of all fossil fuels. The generation of carbon dioxide is the primary cause for the greenhouse effect. However, carbon dioxide is a potential carbon source. To utilize such a plentiful carbon source, it has been considered carbon dioxide as a feedstock for organic synthesis of carbonyl- and carboxyl-containing compounds or as an oxidant for oxidative synthesis of more valuable organics.

  3. Defining the Magnetic Field of the Early Earth Through Rock Magnetic and Paleomagnetic Analyses of Single Silicate Crystals

    NASA Astrophysics Data System (ADS)

    Bauch, D. G.; Tarduno, J. A.; Cottrell, R. D.; Watkeys, M. K.

    2005-12-01

    The current uncertainty on the age of the inner core, and its role in the geodynamo, highlights the need for improved paleomagnetic constraints based on Proterozoic to Archean-age rocks. However, most of the rocks available for sampling have seen low-grade metamorphic conditions; extreme care is needed in selecting suitable samples, conducting rock magnetic and paleomagnetic analyses, and interpreting the results. David Dunlop's many contributions in rock magnetism, from efforts to understand the time-temperature characteristics crucial for the preservation of magnetizations, to more recent work defining the domain state and recording characteristics of mafic minerals separated from dikes, have greatly assisted our efforts to learn more about the early magnetic field. Here we present new rock magnetic, paleomagnetic and paleointensity data from single silicate crystals separated from plutonic rocks of the Kaapvaal Craton of southern Africa. Magnetic hysteresis data demonstrates that different silicate minerals from these rocks have magnetic inclusions with vastly different magnetic domain states, suggesting that their potential to preserve primary magnetizations should vary considerably. In particular hornblende carries multidomain inclusions, whereas quartz and microcline have single to pseudo-single domain inclusions. Warming of an SIRM acquired at low temperatures (data acquired using the MPMS at the IRM) shows the Verwey transition for quartz and microcline crystals, indicating the presence of magnetite. We also will present joint paleomagnetic and paleointensity data derived from oriented crystals obtained using a stepwise CO2 laser heating approach, and field tests of the age of magnetization. These analyses will be used to discuss the strength of the mid-Archean field (3.0-3.6 Ga), its geometry and variation, and the implications for magnetic shielding in the early Earth.

  4. Paleoceanographic and tectonic controls on deposition of the Monterey formation and related siliceous rocks in California

    USGS Publications Warehouse

    Barron, J.A.

    1986-01-01

    The timing of paleoceanographic and tectonic events that shaped the deposition of the Monterey Formation of California and related siliceous rocks has been determined by application of a refined biochronology. The base of the Monterey at 17.5 Ma coincides with rising global sea level and a switch in biogenous silica deposition from the Caribbean and low-latitude North Atlantic to the North Pacific. Major polar cooling, which began at 15 Ma, postdates the base of the Monterey by more than 2 Ma and cannot be invoked to cause the deposition of diatomaceous sediments occurring in the lowermost Monterey. Later polar cooling in the early late Miocene, however, apparently caused increased upwelling and deposition of purer diatomites in the upper Monterey. The top of the Monterey at about 6 Ma coincides with a major sea level drop and is commonly marked by an unconformity. Equivalent unconformities are widespread around the rim of the North Pacific and typically separate more pelagic sediments from overlying sediments with a greater terrigenous component. Above the Monterey, diatoms persist in California sediments to 4.5-4.0 m.y., where their decline coincides with increased deposition of diatoms in the Antarctic. Carbon isotope records in the Pacific and Indian Oceans record storage of 12C in the Monterey Formation and equivalent organic-rich sediments around the rim of the North Pacific. A +1.0??? excursion in ?? 13C beginning at 17.5 Ma coincides with rising sea level and probably reflects storage of organic material in Monterey-like marginal reservoirs. A reverse -1.0??? shift at 6.2 Ma closely approximates the top of the Monterey and may represent erosion of these marginal reservoirs and reintroduction of stored organic carbon into the ocean-atmosphere system. Initiation of transform faulting and extension in the California margin in the latest Oligocene and early Miocene caused the subsidence of basins which later received Monterey sediments. A major tectonic event

  5. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  6. The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak. PMID:24302882

  7. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak. PMID:24302882

  8. Valid garnet biotite (GB) geothermometry and garnet aluminum silicate plagioclase quartz (GASP) geobarometry in metapelitic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Cheng, Ben-He

    2006-06-01

    At present there are many calibrations of both the garnet-biotite (GB) thermometer and the garnet-aluminum silicate-plagioclase-quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent'eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer-Verlag New York, Berlin, Heidelberg. pp. 199-239.; Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 255-269. Model B) are the most valid and reliable of this kind of thermometer. More specifically, we prefer the Holdaway (Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892.) and the Kleemann and Reinhardt (Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.) calibrations due to their small errors in reproducing the experimental temperatures and good accuracy in successfully discerning the systematic temperature changes of the different sequences. In addition, after applying the GASP barometer to 335 natural metapelitic samples containing one kind

  9. Metal-Silicate Segregation in Deforming Dunitic Rocks: Applications to Core Formation in Europa and Ganymede

    NASA Technical Reports Server (NTRS)

    Hustoft, J. W.; Kohlstedt, D. L.

    2004-01-01

    Core formation is an important event in the evolution of a planetary body, affecting both the geochemical and geophysical properties of the body. Metal-silicate segregation could have proceeded either by settling of liquid metal through a magma ocean or by percolation of liquid metal through a solid silicate mantle. Percolation of metallic melt had previously been excluded as a viable segregation mechanism because metallic melts do not form an interconnected network under hydrostatic conditions, except at high melt fraction (>5 vol%), due to the high dihedral angle between metals and silicates (>60 ). Without an interconnected network, porous flow of metallic melt is impossible, leaving the magma ocean scenario as the only mechanism to form the core. Moment-of-inertia measurements of Europa and Ganymede from the Galileo probe indicate that they are differentiated. This evidence suggests that a method for segregating metals and silicates at temperatures low enough to retain volatile compounds must exist. We have investigated the effect of deformation on the distribution of metallic melts in silicates. We have deformed samples of olivine + 5-9 vol% Fe-S to strains of 2.5 in simple shear and find that the metallic melt segregates into melt-rich planes oriented at 20 to the shear plane. These metallic melt-rich bands are similar in structure to the silicate melt-rich bands reported by Holtzman, indicating that deformation can interconnect isolated metallic melt pockets and allow porous flow of non-wetting melts. Such a core formation process could have occurred in the jovian satellites.

  10. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.; Begue, F.; Pamukcu, A. S.; Gravley, D. M.

    2013-12-01

    Constraining the pressure of crystallization of magmas is an important but elusive task. We propose here a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the shift of the quartz-feldspar saturation surface towards higher silica with decreasing pressure. The critical realization is that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition of interest. Thus, this method consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using Monte Carlo simulations, which reveal errors of ~20-45 MPa for the quartz+2 feldspars constraint and of ~25-100 MPa for the quartz+1 feldspar constraint; actual errors are likely closer to the lower bounds of these ranges. We demonstrate that the effect of fluid-saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations (>3 wt. %). And, we show that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O-CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data has been compiled from the literature. We apply the rhyolite-MELTS barometer to three systems we are currently studying in detail: (1) For the Bishop Tuff (CA, USA), we find that quartz-hosted glass inclusion compositions yield indistinguishable crystallization pressures for early-erupted and late-erupted pumice, consistent with the Bishop Tuff having

  11. La-Ce and Sm-Nd systematics of siliceous sedimentary rocks: A clue to marine environment in their deposition

    SciTech Connect

    Hiroshi Shimizu; Masayo Amano; Akimasa Masuda )

    1991-04-01

    La-Ce isotopic data, together with Sm-Nd isotopic data, were determined on siliceous sedimentary rocks (cherts) in order to elucidate the rare earth element (REE) character of their sources and the nature of their depositional environments. The cherts studied are a late Archean chert from the Gorge Creek Group in the Pilbara block of Western Australia, Triassic cherts from central Japan, and Cretaceous and Paleogene deep-sea cherts from the central Pacific and the Caribbean Sea. The Archean chert from the Gorge Creek Group shows chondritic Ce and Nd isotope ratios at its sedimentation age which indicate that its sources had a time-integrated chondritic REE pattern. Triassic cherts from Japan have initial Ce and Nd isotope ratios that show a direct derivation from their continental source. On the other hand, for Cretaceous and Paleogene deep-sea cherts having negative Ce anomalies in their REE patterns, two different sources for Ce and Nd are revealed from their initial Ce and Nd isotope data: Ce from long-term light-REE-depleted oceanic volcanic rocks and Nd from light-REE-enriched continental rocks. The reverse nature observed for deep-sea cherts is considered to be a reflection of their depositional environment far from a continent. These results confirm that the La-Ce isotope system is highly useful in determining the nature and cause of Ce anomalies observed in marine sedimentary rocks such as chert.

  12. Experimental high strain-rate deformation products of carbonate-silicate rocks: Comparison with terrestrial impact materials

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Schultz, P. H.; Spray, J. G.

    2008-09-01

    Introduction. The response of carbonate to impact processes has thus far been investigated using a combination of thermodynamic modelling, shock experiments, and impact experiments. Localized shear deformation was suggested to play an important role in the failure of carbonate during some shock experiments [1,2], and was invoked to explain significant degassing of carbonates during oblique impact experiments [3]. The results of the impact experiments are at odds with experiments [4] that show back-reaction of CO2 with CaO and MgO could significantly reduce CO2 degassing during impact events. We performed a frictional-welding experiment in order to investigate the effects of high strain-rate deformation on carbonate-silicate target materials, exclusive of shock deformation effects, and to investigate the differing results of other experiments. Samples and Techniques. A frictional melting experiment was performed using dolomitic marble and quartzite samples to simulate conditions during an impact into carbonate-silicate target rocks. The experiment followed the method of Spray (1995) [5]. The 1.5 cm3 samples were mounted onto separate steel cylinders with epoxy. Using a Blacks FWH-3 axial friction-welding rig, the samples were brought into contact at room temperature and under dry conditions with ~5 MPa applied pressure. Contact was maintained for two seconds at 750 rpm for a sustained strain-rate of 102 to 103 s-1. Results. Vapor or fine dust escaped from the interface during the experiment. Immediately after sample separation, the interfaces were incandescent. Once cooled, opaque white material adhered to both the quartzite and dolomitic marble samples. Quartzite sample. Material was injected into cracks that formed in the quartzite sample. Cooling and crystallization of the friction products resulted in the formation of submicron-sized minerals such as periclase and Ca- and Ca,Mg-silicates (Fig. 1) including merwinite and åkermanite. While periclase was observed

  13. Cooperative investigation of precision and accuracy: In chemical analysis of silicate rocks

    USGS Publications Warehouse

    Schlecht, W.G.

    1951-01-01

    This is the preliminary report of the first extensive program ever organized to study the analysis of igneous rocks, a study sponsored by the United States Geological Survey, the Massachusetts Institute of Technology, and the Geophysical Laboratory of the Carnegie Institution of Washington. Large samples of two typical igneous rocks, a granite and a diabase, were carefully prepared and divided. Small samples (about 70 grams) of each were sent to 25 rock-analysis laboratories throughout the world; analyses of one or both samples were reported by 34 analysts in these laboratories. The results, which showed rather large discrepancies, are presented in histograms. The great discordance in results reflects the present unsatisfactory state of rock analysis. It is hoped that the ultimate establishment of standard samples and procedures will contribute to the improvement of quality of analyses. The two rock samples have also been thoroughly studied spectrographically and petrographically. Detailed reports of all the studies will be published.

  14. Trace Elements in Olivine in Italian Potassic Volcanic Rocks Distinguish Between Mantle Metasomatism by Carbonatitic and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Ammannati, E.; Jacob, D. E.; Avanzinelli, R.; Conticelli, S.

    2014-12-01

    The Italian Peninsula is the site of intense subduction-related potassic magmatism with bimodal character in terms of silica activity: Ca-poor silica-saturated lamproitic rocks and Ca-enriched silica-undersaturated leucitites. Lamproitic magmas formed in the early phases of magmatic activity and were followed by leucititic magmas. The primary magmas are generated in the sub-continental lithospheric mantle at the destructive plate margin, and both series have olivine as the first crystallizing phenocrysts. Trace elements in olivine phenocrysts are important in recognizing metasomatic effects on the mineralogy of the mantle source. Since Ni is the most compatible trace element in olivine, particularly in alkaline melts, modal changes of olivine in the source strongly affect its bulk partition coefficient, and therefore its content in primary melts and in olivine that crystallizes from them.The concentration of other compatible trace elements (e.g. Mn, Co) in olivine phenocrysts also depends on the abundance of olivine in the magma source. Ni contents in olivine of the Italian rocks show a clear bimodal distribution. Olivine from lamproitic samples has systematically higher Fo and Ni contents, whereas olivine from leucititic rocks never exceeds Fo92 and has markedly lower Ni, reaching among the lowest levels ever observed in olivine phenocrysts in primitive melts. The Mn/Fe ratio of olivine is also sensitive to changes of the modal abundance of olivine in the source, 100*Mn/Fe of olivine from lamproitic rocks never exceeds 2, while it is always >1.8 in leucititic rocks, meaning that the leucitite source regions are much richer in olivine. Lithium is generally enriched in the crust and in sediments compared to the lithospheric mantle and to mantle-derived melts,so that Li in olivine above 10 ppm is suggested to indicate recycled sediments. Li contents are up to 35 ppm in leucititic olivines and up to >50 ppm in lamproitic olivines, confirming the recycling of crustal

  15. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  16. Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.

    2015-12-01

    High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can

  17. Coastal aquifer system in late Pleistocene to Holocene deposits at Horonobe in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Ikawa, Reo; Machida, Isao; Koshigai, Masaru; Nishizaki, Seiji; Marui, Atsunao

    2014-08-01

    The groundwater flow systems and chemistry in the deep part of the coastal area of Japan have attracted attention over recent decades due to government projects such as geological disposal of radioactive waste. However, the continuous groundwater flow system moving from the shallow to deep parts of the sedimentary soft rock has not yet been characterized. Therefore, the Cl-, δD and δ18O values of the pore water in the Horonobe coastal area in Hokkaido, Japan, were measured to 1,000 m below the ground surface, and a vertical profile of the pore-water chemistry was constructed to assist in elucidating groundwater circulation patterns in the coastal area. The results show that the groundwater flow regime may be divided into five categories based on groundwater age and origin: (1) fresh groundwater recharged by modern rainwater, (2) fresh groundwater recharged by paleo rainwater during the last glacial age, (3) low-salinity groundwater recharged during the last interglacial period, (4) mixed water in a diffusion zone, and (5) connate water consisting of paleo seawater. These results suggest that the appearance of hydrological units is not controlled by the boundaries of geological formations and that paleo seawater is stored in younger Quaternary sediments.

  18. The determination of silver in silicate rocks by electrothermal atomic absorption spectrometry

    USGS Publications Warehouse

    Aruscavage, P. J.; Campbell, E.Y.

    1979-01-01

    Silver is extracted from a 20% tartaric acid solution by using butyl acetate and diphenylthiourea, and the organic layer is analyzed directly by the graphite-furnace technique. The precisions is ca. 8% as estimated from multiple analysis of 13 standard rocks; there are no systematic errors. The detection limit is 2.4 ppb for 250-mg samples. ?? 1979.

  19. Determination of thorium concentrations and activity ratios in silicate rocks by alpha spectrometry.

    PubMed

    dos Santos, R N; Marques, L S; Nicolai, S H A; Ribeiro, F B

    2004-01-01

    A detailed radiochemical procedure for alpha spectrometry measurements of thorium concentrations and of 230Th/232Th activity ratios in silicates is presented. The Th behaviour, during each step of the chemical process, was investigated by using a 234Th tracer, which is a gamma-ray emitter. The described chemical processing provides relatively high thorium yields, which varied between 56% and 88%, in the analysis of GB-1 (granite) and BB-1 (basalt) Brazilian geological standards. Also, the application of the established radiochemical method allowed a determination of both Th concentrations and activity ratios with high reproducibility, on the order of 2%. The estimation of the concentration result accuracy is also about 2%, which was calculated by using published data obtained from neutron activation analysis as reference values.

  20. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa.

  1. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa. PMID:15228328

  2. The tungsten isotopic composition of Eoarchean rocks: Implications for early silicate differentiation and core-mantle interaction on Earth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Nakai, Shun'ichi; Sahoo, Yu Vin; Takamasa, Asako; Hirata, Takafumi; Maruyama, Shigenori

    2010-03-01

    We have measured 182W/ 184W for Eoarchean rocks from the Itsaq Gneiss Complex (3.8-3.7 Ga pillow meta-basalts, a meta-tonalite, and meta-sediments) and Acasta Gneiss Complex (4.0-3.6 Ga felsic orthogneisses) to assess possible W isotopic heterogeneity within the silicate Earth and to constrain W isotopic evolution of the mantle. The data reveal that 182W/ 184W values in the Eoarchean samples are uniform within the analytical error and indistinguishable from the modern accessible mantle signature, suggesting that the W isotopic composition of the upper mantle has not changed significantly since the Eoarchean era. The results imply either that chemical communication between the mantle and core has been insignificant in post-Hadean times, or that a lowermost mantle with a distinctive W isotope signature has been isolated from mantle convective cycling. Most terrestrial rock samples have a 0.2 ɛ142Nd/ 144Nd higher than the chondrite average. This requires either the presence of a hidden enriched reservoir formed within the first 30 Ma of the Solar System, or the bulk Earth having a ˜ 5% higher Sm/Nd than the chondrite average. We explored the relevance of the 182Hf- 182W isotope system to the 146Sm- 142Nd isotope system during early silicate differentiation events on Earth. In this context, we demonstrate that the lack of resolvable 182W excesses in the Itsaq rocks, despite 142Nd excesses compared to the modern accessible mantle, is more consistent with the view that the bulk Earth has a non-chondritic Sm/Nd. In the non-chondritic Sm/Nd Earth model, the 182W- 142Nd chronometry constrains the age of the source mantle depletion for the Itsaq samples to more than ˜ 40 Ma after the Solar System origin. Our results cannot confirm the previous report of 182W anomalies in the Eoarchean Itsaq meta-sediments, which were interpreted as reflecting an impact-derived meteoritic component.

  3. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia

    USGS Publications Warehouse

    Morgan, VI G.B.; London, D.; Luedke, R.G.

    1998-01-01

    Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.

  4. SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks

    NASA Astrophysics Data System (ADS)

    Hertogen, Jan; Mareels, Joyce

    2016-07-01

    A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a

  5. A Clinopyroxene-Plagioclase Geobarometer for A-type Silicic Volcanic Rocks

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Iveson, A. A.; Davis, K.; Johnson, T. A.; Gahagan, S.; Ellis, B. S.

    2015-12-01

    Constraining the crustal storage depths of magmas is important in understanding volcanism. The reaction: anorthite (pl) = Ca-Tschermak's (cpx) + silica (Q or liq) has a large volume change and hence offers potential as a geobarometer, but has not been extensively exploited as such. One of the chief barriers to its wide application is consistent estimation of melt silica activity for assemblages that lack quartz. We have skirted this problem by confining attention to metaluminous silicic compositions (SiO2 > 60% by weight), for which silica activity during crystallization is presumed to be close to 1, and calibrated the barometer for the range 0 - 2 GPa using the LEPR database and additional experiments from the literature. Additional improvement is obtained by excluding hydrous phase-bearing assemblages. Despite the analytical uncertainties present in older experimental investigations, with knowledge of temperature, and clinopyroxene, plagioclase and host melt compositions, pressures for amphibole- and biotite-free dacites and rhyolites can be estimated to ±0.17 GPa (1 sigma). The limitations of the barometer render it most applicable to intraplate, A-type rhyolites. Application to one such system, the Snake River Plain rhyolites, indicate that both melt-hosted phenocrysts and clinopyroxene-plagioclase aggregate grains found in these rhyolites formed at low pressures, <0.5 GPa. This is consistent with isotopic evidence for a shallow crustal origin for Snake River Plain rhyolites.

  6. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  7. Geochemistry and diagenesis of Miocene lacustrine siliceous sedimentary and pyroclastic rocks, Mytilinii basin, Samos Island, Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hein, J.R.; Magganas, A.C.

    1989-01-01

    A Late Miocene non-marine stratigraphic sequence composed of limestone, opal-CT-bearing limestone, porcelanite, marlstone, diatomaceous marlstone, dolomite, and tuffite crops out on eastern Samos Island. This lacustrine sequence is subdivided into the Hora Beds and the underlying Pythagorion Formation. The Hora Beds is overlain by the clastic Mytilinii series which contains Turolian (Late Miocene) mammalian fossils. The lacustrine sequence contains volcanic glass and the silica polymorphs opal-A, opal-CT, and quartz. Volcanic glass predominantly occurs in tuffaceous rocks from the lower and upper parts of the lacustrine sequence. Opal-A (diatom frustules) is confined to layers in the upper part of the Hora Beds. Beds rich in opal-CT underlie those containing opal-A. The occurrence of opal-CT is extensive, encompassing the lower Hora Beds and the sedimentary rocks and tuffs of the Pythagorion Formation. A transition zone between the opal-A and opal-CT zones is identified by X-ray diffraction patterns that are intermediate between those of opal-CT and opal-A, perhaps due to a mixture of the two polymorphs. Diagenesis was not advanced enough for opal-CT to transform to quartz or for volcanic glass to transform to opal-C. Based on geochemical and mineralogical data, we suggest that the rate of diagenetic transformation of opal-A to opal-CT was mainly controlled by the chemistry of pore fluids. Pore fluids were characterized by high salinity, moderately high alkalinity, and high magnesium ion activity. These pore fluid characteristics are indicated by the presence of evaporitic salts (halite, sylvite, niter), high boron content in biogenic silica, and by dolomite in both the opal-A and opal-CT-bearing beds. The absence of authigenic K-feldspar, borosilicates, and zeolites also support these pore fluid characteristics. Additional factors that influenced the rate of silica diagenesis were host rock lithology and the relatively high heat flow in the Aegean region from

  8. Diagenetic and compositional controls of wettability in siliceous sedimentary rocks, Monterey Formation, California

    NASA Astrophysics Data System (ADS)

    Hill, Kristina M.

    Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster

  9. The Kabanga Ni sulfide deposit, Tanzania: I. Geology, petrography, silicate rock geochemistry, and sulfur and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Maier, Wolfgang D.; Barnes, Sarah-Jane; Sarkar, Arindam; Ripley, Ed; Li, Chusi; Livesey, Tim

    2010-06-01

    The Kabanga Ni sulfide deposit represents one of the most significant Ni sulfide discoveries of the last two decades, with current indicated mineral resources of 23.23 Mt at 2.64% Ni and inferred mineral resources of 28.5 Mt at 2.7% Ni (Nov. 2008). The sulfides are hosted by a suite of ˜1.4 Ga ultramafic-mafic, sill-like, and chonolithic intrusions that form part of the approximately 500 km long Kabanga-Musongati-Kapalagulu igneous belt in Tanzania and Burundi. The igneous bodies are up to about 1 km thick and 4 km long. They crystallized from several compositionally distinct magma pulses emplaced into sulfide-bearing pelitic schists. The first magma was a siliceous high-magnesium basalt (approximately 13.3% MgO) that formed a network of fine-grained acicular-textured gabbronoritic and orthopyroxenitic sills (Mg# opx 78-88, An plag 45-88). The magma was highly enriched in incompatible trace elements (LILE, LREE) and had pronounced negative Nb and Ta anomalies and heavy O isotopic signatures (δ18O +6 to +8). These compositional features are consistent with about 20% contamination of primitive picrite with the sulfidic pelitic schists. Subsequent magma pulses were more magnesian (approximately 14-15% MgO) and less contaminated (e.g., δ18O +5.1 to +6.6). They injected into the earlier sills, resulting in the formation of medium-grained harzburgites, olivine orthopyroxenites and orthopyroxenites (Fo 83-89, Mg# opx 86-89), and magmatic breccias consisting of gabbronorite-orthopyroxenite fragments within an olivine-rich matrix. All intrusions in the Kabanga area contain abundant sulfides (pyrrhotite, pentlandite, and minor chalcopyrite and pyrite). In the lower portions and the immediate footwall of two of the intrusions, namely Kabanga North and Kabanga Main, there occur numerous layers, lenses, and veins of massive Ni sulfides reaching a thickness of several meters. The largest amount of high grade, massive sulfide occurs in the smallest intrusion (Kabanga North

  10. Evaluation of petrogenetic models for intermediate and silicic plutonic rocks from the Sierra de Valle Fértil-La Huerta, Argentina: Petrologic constraints on the origin of igneous rocks in the Ordovician Famatinian-Puna paleoarc

    NASA Astrophysics Data System (ADS)

    Otamendi, J. E.; Pinotti, L. P.; Basei, M. A. S.; Tibaldi, A. M.

    2010-11-01

    The whole Valle Fértil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase ± Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fértil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fértil - La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins.

  11. Carbonate- and silicate-rich globules in the kimberlitic rocks of northwestern Tarim large igneous province, NW China: Evidence for carbonated mantle source

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Santosh, M.; Hou, Tong; Zhang, Dongyang

    2014-12-01

    We report carbonate- and silicate-rich globules and andradite from the Wajilitage kimberlitic rocks in the northwestern Tarim large igneous province, NW China. The carbonate-rich globules vary in size from 1 to 3 mm, and most have ellipsoidal or round shape, and are composed of nearly pure calcite. The silicate-rich globules are elliptical to round in shape and are typically larger than the carbonate-rich globules ranging from 2 to several centimeters in diameter. They are characterized by clear reaction rims and contain several silicate minerals such as garnet, diopside and phlogopite. The silicate-rich globules, reported here for the first time, are suggested to be related to the origin of andradite within the kimberlitic rocks. Our results show that calcite in the carbonate-rich globules has a high XCa (>0.97) and is characterized by extremely high concentrations of the total rare earth elements (up to 1500 ppm), enrichment in Sr (8521-10,645 ppm) and LREE, and remarkable depletion in Nd, Ta, Zr, Hf and Ti. The calcite in the silicate-rich globules is geochemically similar to those in the carbonate-rich globules except the lower trace element contents. Garnet is dominantly andradite (And59.56-92.32Grs5.67-36.03Pyr0.36-4.61Spe0-0.33) and is enriched in light rare earth elements (LREEs) and relatively depleted in Rb, Ba, Th, Pb, Sr, Zr and Hf. Phlogopite in the silicate-rich globules has a high Mg# ranging from 0.93 to 0.97. The composition of the diopside is Wo45.82-51.39En39.81-49.09Fs0.88-0.95 with a high Mg# ranging from 0.88 to 0.95. Diopside in the silicate-rich globules has low total rare earth element (REE) contents (14-31 ppm) and shows middle REE- (Eu to Gd), slight light REE- and heavy REE-enrichment with elevated Zr, Hf and Sr contents and a negative Nb anomaly in the normalized diagram. The matrix of the kimberlitic rocks are silica undersaturated (27.92-29.31 wt.% SiO2) with low Al2O3 (4.51-5.15 wt.%) and high CaO (17.29-17.77 wt.%) contents. The

  12. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  13. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  14. Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy

    NASA Astrophysics Data System (ADS)

    Panina, Liya I.; Stoppa, Francesco

    2009-12-01

    Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 - 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform

  15. The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries.

    PubMed

    Enzweiler, J; Potts, P J

    1995-10-01

    A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks. PMID:18966370

  16. The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries.

    PubMed

    Enzweiler, J; Potts, P J

    1995-10-01

    A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks.

  17. Preliminary uncertainty and sensitivity analysis for basic transport parameters at the Horonobe Site, Hokkaido, Japan.

    SciTech Connect

    James, Scott Carlton; Zimmerman, Dean Anthony

    2003-10-01

    Incorporating results from a previously developed finite element model, an uncertainty and parameter sensitivity analysis was conducted using preliminary site-specific data from Horonobe, Japan (data available from five boreholes as of 2003). Latin Hypercube Sampling was used to draw random parameter values from the site-specific measured, or approximated, physicochemical uncertainty distributions. Using pathlengths and groundwater velocities extracted from the three-dimensional, finite element flow and particle tracking model, breakthrough curves for multiple realizations were calculated with the semi-analytical, one-dimensional, multirate transport code, STAMMT-L. A stepwise linear regression analysis using the 5, 50, and 95% breakthrough times as the dependent variables and LHS sampled site physicochemical parameters as the independent variables was used to perform a sensitivity analysis. Results indicate that the distribution coefficients and hydraulic conductivities are the parameters responsible for most of the variation among simulated breakthrough times. This suggests that researchers and data collectors at the Horonobe site should focus on accurately assessing these parameters and quantifying their uncertainty. Because the Horonobe Underground Research Laboratory is in an early phase of its development, this work should be considered as a first step toward an integration of uncertainty and sensitivity analyses with decision analysis.

  18. Insights into Oceanic Crust Accretion from a Comparison of Rock Magnetic and Silicate Fabrics from Lower Crustal Gabbros from Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Morris, A.; Friedman, S. A.; Cheadle, M. J.

    2014-12-01

    between silicate and magnetic fabric data suggests that AMS is a good proxy for bulk silicate fabrics in these samples from Hess Deep. By integrating AMS and EBSD, both sensitive indicators of magnetic and silicate fabrics in gabbroic rocks, we seek a better understanding of the formation of gabbro in oceanic crust.

  19. Long-term migration of iodine in sedimentary rocks based on iodine speciation and 129I/127I ratio

    NASA Astrophysics Data System (ADS)

    Togo, Y.; Takahashi, Y.; Amano, Y.; Matsuzaki, H.; Suzuki, Y.; Muramatsu, Y.; Iwatsuki, T.

    2012-12-01

    [Introduction] 129I is one of the available indexes of long-term migration of groundwater solutes, because of its long half-life (15.7 million years) and low sorption characteristics. The Horonobe underground research center (Japan Atomic Energy Agency), at which are conducted research and development of fundamental techniques on geological disposal of high-level radioactive waste, is an appropriate site for natural analogue studies, because iodine concentration in groundwater is high in this area. To predict iodine behavior in natural systems, speciation of iodine is essential because of different mobility among each species. In this study, we determined iodine speciation and129I/127I isotope ratios of rock and groundwater samples to investigate long term migration of iodine. [Methods] All rock and groundwater samples were collected at Horonobe underground research center. The region is underlain mainly by Neogene to Quaternary marine sedimentary rocks, the Wakkanai Formation (Wk Fm, siliceous mudstones), and the overlying Koetoi Formation (Kt Fm, diatomaceous mudstones). Iodine species in rock samples were determined by iodine K-edge X-ray absorption near edge structure (SPring-8 BL01B1). Thin sections of rock samples were prepared, and iodine mapping were obtained by micro-XRF analysis (SPring-8 BL37XU). Iodine species (IO3-, I-, and organic I) in groundwater were separately detected by high performance liquid chromatography connected to ICP-MS. The 129I/127I ratios in groundwater and rock samples were measured by accelerator mass spectrometry (MALT, Univ. of Tokyo). Iodine in rock samples were separated by pyrohydrolysis and water extraction. [Results and discussion] Concentration of iodine in groundwater varied widely and was much higher than that of seawater showing a high correlation with that of chlorine (R2 = 0.90). Species of iodine in groundwater was mainly I-. Iodine in rock samples decreased near the boundary between Wk and Kt Fms. Iodine K-edge XANES

  20. The Effect of Confining Pressure on the Chemical Osmotic Property of Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Manaka, M.; Ito, K.

    2011-12-01

    In coastal, sedimentary formations, salinity gradients may induce chemical osmosis, leading to fluid pressure anomalies from hydrostatic pressures. For the precise characterization of the groundwater flow and mass transport systems with heterogeneous salinity distributions, the possibility of chemical osmosis needs to be identified. In order to test the ability of rock to generate pressure anomalies under salinity gradient, the authors developed a laboratory apparatus for measuring the chemically induced osmotic pressure within a rock sample under confining pressure. A series of experiments were performed on a disc-shaped siliceous mudstone, taken from Horonobe area in Hokkaido, under confining pressures ranging from 1 to 20 MPa. The salinity differences between the boundaries of sample are almost consistent in the experiments, and range from 0.110 to 0.118 M NaCl. The differential pressures between the boundaries of sample reached the quasi-steady state within 3 hours in each experiment, and their averaged values range from 9.1 to 26.4 kPa. The reflection coefficients approximated from the salinity and pressure differences using van't Hoff equation range from 0.020 to 0.049, and show the correlation with the confining pressure.

  1. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  2. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    PubMed Central

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-01-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. PMID:27298370

  3. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater.

    PubMed

    Morris, Richard V; Vaniman, David T; Blake, David F; Gellert, Ralf; Chipera, Steve J; Rampe, Elizabeth B; Ming, Douglas W; Morrison, Shaunna M; Downs, Robert T; Treiman, Allan H; Yen, Albert S; Grotzinger, John P; Achilles, Cherie N; Bristow, Thomas F; Crisp, Joy A; Des Marais, David J; Farmer, Jack D; Fendrich, Kim V; Frydenvang, Jens; Graff, Trevor G; Morookian, John-Michael; Stolper, Edward M; Schwenzer, Susanne P

    2016-06-28

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  4. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    NASA Astrophysics Data System (ADS)

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-06-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides‑perchlorates‑chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  5. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    NASA Astrophysics Data System (ADS)

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-06-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  6. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater.

    PubMed

    Morris, Richard V; Vaniman, David T; Blake, David F; Gellert, Ralf; Chipera, Steve J; Rampe, Elizabeth B; Ming, Douglas W; Morrison, Shaunna M; Downs, Robert T; Treiman, Allan H; Yen, Albert S; Grotzinger, John P; Achilles, Cherie N; Bristow, Thomas F; Crisp, Joy A; Des Marais, David J; Farmer, Jack D; Fendrich, Kim V; Frydenvang, Jens; Graff, Trevor G; Morookian, John-Michael; Stolper, Edward M; Schwenzer, Susanne P

    2016-06-28

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. PMID:27298370

  7. An Example Uncertainty and Sensitivity Analysis at the Horonobe Site for Performance Assessment Calculations

    NASA Astrophysics Data System (ADS)

    James, S. C.; Makino, H.

    2004-12-01

    Given pre-existing Groundwater Modeling System (GMS) models of the Horonobe Underground Research Laboratory (URL) at both the regional and site scales, this work performs an example uncertainty analysis for performance assessment (PA) applications. After a general overview of uncertainty and sensitivity analysis techniques, the existing GMS site-scale model is converted to a PA model of the steady-state conditions expected after URL closure. This is done to examine the impact of uncertainty in site-specific data in conjunction with conceptual model uncertainty regarding the location of the Oomagari Fault. In addition, a quantitative analysis of the ratio of dispersive to advective forces, the F-ratio, is performed for stochastic realizations of each conceptual model. All analyses indicate that accurate characterization of the Oomagari Fault with respect to both location and hydraulic conductivity is critical to PA calculations. This work defines and outlines typical uncertainty and sensitivity analysis procedures and demonstrates them with example PA calculations relevant to the Horonobe URL. {\\st Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.}

  8. An example uncertainty and sensitivity analysis at the Horonobe site for performance assessment calculations.

    SciTech Connect

    James, Scott Carlton

    2004-08-01

    Given pre-existing Groundwater Modeling System (GMS) models of the Horonobe Underground Research Laboratory (URL) at both the regional and site scales, this work performs an example uncertainty analysis for performance assessment (PA) applications. After a general overview of uncertainty and sensitivity analysis techniques, the existing GMS sitescale model is converted to a PA model of the steady-state conditions expected after URL closure. This is done to examine the impact of uncertainty in site-specific data in conjunction with conceptual model uncertainty regarding the location of the Oomagari Fault. In addition, a quantitative analysis of the ratio of dispersive to advective forces, the F-ratio, is performed for stochastic realizations of each conceptual model. All analyses indicate that accurate characterization of the Oomagari Fault with respect to both location and hydraulic conductivity is critical to PA calculations. This work defines and outlines typical uncertainty and sensitivity analysis procedures and demonstrates them with example PA calculations relevant to the Horonobe URL.

  9. Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Chen, Yi; Liu, Chuan-Zhou; Wang, Jian-Gang; Su, Bin; Gao, Yi-Jie; Wu, Fu-Yuan; Sein, Kyaing; Yang, Yue-Heng; Mao, Qian

    2016-03-01

    Scheelite, which is an important ore of tungsten and colored gemstone, is well developed in the calc-silicate rocks from the Mogok metamorphic belt (MMB), Myanmar. In this study, the textural, mineralogical, and compositional characteristics of scheelite and its associated minerals were systematically investigated to constrain the petrogenesis of scheelite-bearing calc-silicate rocks and the tungsten transfer and mineralization mechanism in a hydrothermal-metasomatic system. The petrological evidence, bulk and mineral geochemical signatures, and mass-transfer calculations indicate that the calc-silicate rocks formed by local metasomatism of marble via the introduction of an externally derived Si-Al-Fe-W-F-bearing, H2O-rich fluid phase. The distinct compositional zonations [F, Fe, Ca, and heavy rare earth elements (HREEs)] of garnet in the calc-silicate rocks record a two-stage metasomatic process and significant compositional variation in the associated fluid. The late-stage metasomatic fluid that led to the formation of the F-rich garnet rims, scheelite, and most of the calc-silicate minerals has noticeably higher fluorine activity (aF-), oxygen fugacity (fo2), and HREE content than the early-stage metasomatic fluid responsible for the garnet cores. The MMB scheelite exhibits typical "skarn-type" compositional characteristics with a high LaN/YbN ratio (100-180), a negative Eu anomaly (δEu = 0.3-0.5), and a high Mo content (1100-1330 ppm). These geochemical signatures are primarily controlled by the protolith, metasomatic fluid, redox conditions, and coexisting mineral phases. The enrichment of rare earth elements (REEs) and high field strength elements (HFSEs) in the MMB scheelite was dominated by two substitution reactions: Ca2+ + W6+ = REE3+ + HFSE5+ and 3Ca2+ = 2REE3+ + □Ca (where □Ca is a Ca-site vacancy). Considerable amounts of F and OH in the metasomatic fluid substituted for O in the garnet via the substitute reaction 4(F, OH)- = 4O2- + Si4+, leading

  10. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks

    NASA Astrophysics Data System (ADS)

    Veksler, Ilya V.; Dorfman, Alexander M.; Kamenetsky, Maya; Dulski, Peter; Dingwell, Donald B.

    2005-06-01

    Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H 2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF 2) and cryolite (Na 3AlF 6) crystals, which enabled

  11. The Friction Evolution of Siliceous Rocks during High-Velocity Slip By Thermal Activated Transition from Powder Lubrication and Rolling to Gouge Melting

    NASA Astrophysics Data System (ADS)

    Chen, X.; Madden, A. S.; Reches, Z.

    2014-12-01

    Experimental analyses of the frictional strength of siliceous rocks (granite, tonalite, and diorite) sheared in a rotary apparatus in the velocity range of 0.002-1 m/s (0.3-7.1 MPa, 0.002 - 1 m/s, total slip up to 60 m) revealed that: (1) During long slip-distances (tens of m) at low to moderate velocity (< 5 cm/s) the friction coefficient evolves with a weakening-strengthening-weakening path (Fig. 1a); and (2) The dependence of the friction coefficient on the slip-velocity is non-monotonous with weakening-strengthening-weakening sections (Fig. 1b) (Reches & Lockner, 2010). In a typical run with granite (Fig. 1a), the friction coefficient dropped from a static value of 0.86 to a steady value of 0.35 after 2.5 m of slip, followed by a sharp increase to 0.5±0.1 after ~7 m that was maintained for the next 10 m. Then, the friction started to increase again at 17 m to 0.78 at ~20 m, and finally dropped rapidly to 0.4. The first weakening stage (< 2.5m) is associated with formation of cohesive gouge flakes made of mixture of partially hydrated and recrystallized fine-grained gouge (20-50 nm). The top of these flakes displayed cylindrical rolls, 1 micron in diameter, oriented normal to slip, and the macroscopic weakening correlates with the presence of abundant rolls. SEM analysis of fault surfaces at the second weakening stage (> 17m) revealed abundant melt features such as stretched melt drops, melt coating of solid grains and abundant voids in the melt matrix, contrasting with the total melt in high velocity experiments. These friction-distance curves in our granite experiments (e.g., Fig. 1a) bears a similar path of gabbro friction curve at high velocity (Hirose and Shimamoto 2005). We propose that this non-monotonous friction evolution can be explained as a phase transition from initial pulverization of the brittle stage (low velocity, low normal stress, small slip distance), that leads to powder lubrication by powder rolling, to partial-to-full melting of the

  12. Drilling effect on subsurface microbial community structure in groundwater from the -250 m gallery at the Horonobe Underground Research Laboratory, Japan

    NASA Astrophysics Data System (ADS)

    Ise, K.; Amano, Y.; Sasaki, Y.; Yoshikawa, H.

    2014-12-01

    The deep geological disposal system is regarded as the most secure and practical disposal method of high-level radioactive waste in the world. In this disposal system, preservation of reducing condition is one of the key requirements, because most of radionuclides have low solubilities in such condition. However, the host rocks near the shafts and galleries would be affected by oxidization during the construction and operation period of a repository (for about 50 years). Therefore, the recovery of reducing condition after closing the repository should be verified. During the recovery processes, it is considered that microbial activities play important roles, but the mechanisms are poorly understood. In this study, we monitored the changes in microbial communities by molecular method to evaluate microbial response toward the oxygen stress. The groundwater samples were collected from a borehole of 250 m depth at the Horonobe Underground Research Laboratory, for two years immediately after drilling of a borehole without any contamination as much as possible. Immediately after drilling of the borehole, the phylotype related to Arcobacter spp. was dominated about 65 % of the total clone library. Arcobacter spp. is known as sulfide oxidizer and which can growth chemoautotrophically. Half a year later, the phylotype related to Azoarcus spp. and Pseudomonas spp. known as nitrate reducing bacteria increased, instead of the phylotype related to Arcobacter spp. One year later, in addition to nitrate reducing bacteria, phylotype related to Dethiobacterspp. known as thiosulfate reducing bacteria was dominantly detected. Two years later, most of detected clones were related to uncultured species such as candidate division WS6 and JS1 which are detected frequently in deep-sea sediments. Our results indicate that these redox sequential reactions could contribute to the recovery and maintenance of reducing conditions and provide a conceptual model for evaluating the capacity to

  13. Preliminary model for simulation of groundwater flow and seawater / freshwater interface at coastal area of Horonobe, Hokkaido

    NASA Astrophysics Data System (ADS)

    Ito, Narimitsu; Koshigai, Masaru; Marui, Atsunao

    The characteristics of seawater / freshwater interface vary locally with groundwater flow in coastal area. A repetition is needed to confirm the updated simulation result with the latest in-situ data. This study is aimed at making a model that can be modified at any point in time for the simulation of groundwater flow and seawater / freshwater interface at the coastal area of Horonobe, where geoscientific data is now being stored for future use. Preliminary simulation results indicated that the seawater / freshwater interface at the test site may be lowered into the Yuchi Formation at the depth of about 1000m. At the future survey, long term information on sea level change will be important for the chemical analysis of groundwater samples with borehole depth. The site at Horonobe is intended for the basic research development for geological disposal waste in coastal area, and the hydrogeological structure will be clarified to the depth of 1000m in several years. The result of this research will be verified at the time.

  14. Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume

    NASA Astrophysics Data System (ADS)

    Mourão, Cyntia; Moreira, Manuel; Mata, João; Raquin, Aude; Madeira, José

    2012-06-01

    We present and discuss noble gas compositions of minerals from silicate rocks (olivines) and carbonatites (apatites and calcites) from Brava Island. The presence of an almost ubiquitous atmosphere-derived fingerprint is explained as reflecting contamination by seawater. Because of the high U and Th content in apatites, which are responsible for 4He production by α-decay, the high measured 4He/3He ratios do not represent magmatic signatures. In contrast, low values of 4He/3He in calcites (≥61,223; R/ R a ≤ 11.80) and olivines (≥56,240; R/ R a ≤ 12.85) are considered to be representative of signatures trapped at the time of crystallization, given that there are no evidences for significant cosmogenic additions. These relatively low 4He/3He ratios depicted by silicate and carbonatite rocks imply the contribution of a reservoir that evolved under low (U + Th)/3He; this is considered a strong evidence for the genesis of Brava by a mantle plume deeply anchored in the lower mantle. The inferred low 4He/40Ar* ratio (≈0.3), before degassing, is thought to reflect the contribution to the carbonatites source of a mantle domain evolving under high K/U, which cannot be explained by recycling of crustal components. The possible link between the low 4He/40Ar* source and the "missing Ar reservoir" is discussed. The usually referred geochemical dichotomy between Northern and Southern Cape Verde islands, which is markedly evident from Sr, Nd, and Pb isotope signatures, is not apparent from Brava Island (Southern Cape Verde), where some samples present relatively unradiogenic 4He/3He signatures, similar to those reported for the Northern islands of the archipelago.

  15. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  16. Experimental rock-water interactions at temperatures to 300/sup 0/C: implications for fluid flow, solute transport, and silicate mineral zoning in crustal geothermal systems

    SciTech Connect

    Potter, J.M.

    1982-01-01

    Geothermal reservoirs commonly occur in permeable volcanic rock (rhyolite, andesite, basalt) or sedimentary (sandstone) strata at temperatures below 300/sup 0/C. Knowledge of how these reservoirs develop chemically and physically has been based almost entirely on field studies. Four types of experiments were conducted to supplement available data on the chemistry, mineralogy, and fluid flow aspects of hydrothermal processes occurring in crustal geothermal systems: (1) agitated rock-water experiments; (2) high temperature flow through experiments; (3) low temperature permeability experiments; and (4) corrosion monitoring experiments. Initial experiments reacted rhyolite glass and holocrystalline basalt with water-NaCl solutions at 300/sup 0/C in agitated hydrothermal equipment. Concentrations of components in solution depend on initial salinity, rock type, and particle size. The secondary phases consist of zeolites, clay, and feldspar minerals and the alteration assemblage is dependent on both initial salinity, rock type, and duration of the experiment. A second set of experiments were conducted at 300/sup 0/C using the rhyolite glass in a flow through type of apparatus. Compositions of outlet fluids show a dependence of fluid flow rate and core length.

  17. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  18. MONITORING OF PORE WATER PRESSURE AND WATER CONTENT AROUND A HORIZONTAL DRIFT THROUGH EXCAVATION - MEASUREMENT AT THE 140m GALLERY IN THE HORONOBE URL -

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Kishi, Atsuyasu; Komatsu, Mitsuru

    Japan Atomic Energy Agency has been conducting the Horonobe Underground Research Laboratory (URL) project in Horonobe, Hokkaido, as a part of the research and development program on geological disposal of high-level radioactive waste. Pore water pressure and water content around a horizontal drift in the URL have been monitored for over 18 months since before the drift excavation was started. During the drift excavation, both pore water pressure and water content were decreasing. Pore water pressure has been still positive though it continued to decrease with its gradient gradually smaller after excavation, while water content turned to increase about 6 months after the completion of the excavation. It turned to fall again about 5 months later. An unsaturated zone containing gases which were dissolved in groundwater may have been formed around the horizontal drift.

  19. Determination of scandium, yttrium and lanthanides in silicate rocks and four new canadian iron-formation reference materials by flame atomic-absorption spectrometry with microsample injection.

    PubMed

    Sen Gupta, J G

    1984-12-01

    Enhancement of sensitivity by factors of up to 1.5 by use of the microsampling technique, coupled with the advantage of using small samples in small solution volumes, permits rapid flame AAS determination of traces of Sc, Y, Nd, Eu, Dy, Ho, Er, Tm and Yb in ultramafic and most other rocks of low rare-earth content, which would be either impossible or very difficult to analyse by direct aspiration because of the need for much larger sample weights and solution volumes. The rare-earths are separated by a modified ion-exchange or a double calcium oxalate and single hydrous ferric oxide co-precipitation procedure, and ultimately determined in an ethanolic perchlorate solution, buffered with 1% lanthanum, by the flame microsample injection technique, with a nitrous oxide-acetylene flame. The results obtained by this technique for six international reference rocks SY-2 (syenite), BCR-1 (basalt), BHVO-1 (Hawaiian basalt), SCo-1 (cody shale), MAG-1 (marine mud) and STM-1 (syenite) are compared with those obtained previously by the direct aspiration method and with other reported data. Results are given for four new Canadian iron formation reference materials FeR-1 to FeR-4. PMID:18963723

  20. Determination of scandium, yttrium and lanthanides in silicate rocks and four new canadian iron-formation reference materials by flame atomic-absorption spectrometry with microsample injection.

    PubMed

    Sen Gupta, J G

    1984-12-01

    Enhancement of sensitivity by factors of up to 1.5 by use of the microsampling technique, coupled with the advantage of using small samples in small solution volumes, permits rapid flame AAS determination of traces of Sc, Y, Nd, Eu, Dy, Ho, Er, Tm and Yb in ultramafic and most other rocks of low rare-earth content, which would be either impossible or very difficult to analyse by direct aspiration because of the need for much larger sample weights and solution volumes. The rare-earths are separated by a modified ion-exchange or a double calcium oxalate and single hydrous ferric oxide co-precipitation procedure, and ultimately determined in an ethanolic perchlorate solution, buffered with 1% lanthanum, by the flame microsample injection technique, with a nitrous oxide-acetylene flame. The results obtained by this technique for six international reference rocks SY-2 (syenite), BCR-1 (basalt), BHVO-1 (Hawaiian basalt), SCo-1 (cody shale), MAG-1 (marine mud) and STM-1 (syenite) are compared with those obtained previously by the direct aspiration method and with other reported data. Results are given for four new Canadian iron formation reference materials FeR-1 to FeR-4.

  1. A Tale of Two Melt Rocks: Equilibration and Metal/Sulfide-Silicate Segregation in the L7 Chondrites PAT 91501 and LEW 88663

    NASA Astrophysics Data System (ADS)

    Harvey, R. P.

    1993-07-01

    Type 7 ordinary chondrites have experienced temperatures near or beyond those necessary for partial melting. Two recently collected Antarctic specimens, PAT91501 (PAT) and LEW88663 (LEW), have been tentatively identified as L7 chondrites based on mineral and oxygen isotope compositions [1,2]. The petrology and mineralogy of these meteorites suggests that they have undergone significant metal/sulfide-silicate segregation, with implications for meteorite parent bodies. PAT consists of an equigranular contact-framework of nearly euhedral olivine grains, with interstitial spaces filled by plagioclase, pyroxenes, and several minor phases. Ortho- and clinopyroxene occur in an exsolution relationship. Olivine and pyroxene are highly equilibrated, varying <<1% in Fe-endmember content. Pyroxene equilibration temperatures calculated for PAT using the methods of [3] are self-consistent at about 1180 degrees C. In thin section, PAT contains only traces of metal, as tiny isolated blebs in sulfide grains; large (>1 cm) globular sulfide inclusions are seen in hand-sample [1], but are not present in the section examined. LEW was originally classified as an achondrite with olivine and pyroxene compositions similar to those in L chondrites [2]. Metal is absent in LEW, although the specimen is small and heavily rusted, making it impossible to gauge the original metal content. Olivine grains are commonly rounded in shape and seldom in contact with more than a few other grains. LEW olivine and pyroxene are also highly equilibrated. Veins of Ni-bearing metal oxides and sulfides are common. Both low- and high-Ca pyroxene occur as discrete grains, orthopyroxene often poikilitically enclosing olivine. Pyroxene equilibration temperatures for LEW are more variable than those for PAT and consistently lower, with an average around 900 degrees C. The various textural and compositional characteristics of PAT and LEW suggest they have experienced partial melting to varying degrees. Both visually

  2. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Krishna, A. Keshav; Khanna, Tarun C.; Mohan, K. Rama

    2016-08-01

    This paper introduces a calibration procedure and provides the data achieved for accuracy, precision, reproducibility and the detection limits for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (Ba, Cr, Cu, Hf, La, Nb, Ni, Pb, Rb, Sr, Ta, Th, U, Y, Zn, Zr) elements in the routine analysis of geological and environmental samples. Forty-two rock and soil reference materials were used to calibrate and evaluate the analytical method using a sequential wavelength dispersive X-ray fluorescence spectrometer. Samples were prepared as fused glass discs and analysis performed with a total measuring time of thirty-one minutes. Another set of twelve independent reference materials were analyzed for the evaluation of accuracy. The detection limits and accuracy obtained for the trace elements (1-2 mg/kg) are adequate both for geochemical exploration and environmental studies. The fitness for purpose of the results was also evaluated by the quality criteria test proposed by the International Global Geochemical Mapping Program (IGCP) from which it can be deduced that the method is adequate considering geochemical mapping application and accuracy obtained is within the expected interval of certified values in most cases.

  3. Long-term Geochemical Transport Simulation to Evaluate Ambient Chemical Conditions at Horonobe URL Site, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Shimo, M.; Fujiwara, Y.; Kunimaru, T.; Xu, T.; Laaksoharju, M.

    2005-12-01

    JNC (Japan Nuclear Cycle Development Institute) has been planning an underground research laboratory (URL) in Horonobe, northern Hokkaido, Japan. In this study, long-term evolution of groundwater chemistry was simulated to evaluate ambient chemical conditions around the Horonobe URL site. The study area is about 8km by 4km and 2km deep region centered on the URL, in which the geology mainly consists of Pliocene diatomaceous argillaceous formations. Hydro-geochemical investigations using deep boreholes in about 3km by 3km area have suggested that groundwater chemistry around the site has been formed through the mixing of shallow fresh water and deep saline water. The deep groundwater has high salinity and differs from the present seawater in that it is highly reduced and has low pH, high bicarbonate and low magnesium concentration. Prior to the simulation, a computer code M3 (Laaksoharju et al. 1999) was used to model that the groundwater composition is affected by a two end-member mixing system. Next, the simulation of chemical changes during the intrusion of fresh water from land surface into deep saline water in the past 0.1 Ma was performed. A non-isothermal multiphase reactive geochemical transport simulation code TOUGHREACT (Xu and Press, 2001) was employed to solve the complex interplay of mass transport and chemical reaction in groundwater such as mineral dissolution/precipitation and ion exchange. The simulator was applied to a site-scale 3D geological structure model in which surface topography, the structures of geologic formations and a major fault were embedded. The results suggest that: 1) the spatial patterns of salinity and major constituents observed are in the site are generally consistent with a scenario of the intrusion of the surface fresh water into the deep saline water; 2) freshening of the deep saline water increases pH by cation exchange; 3) redox front migrates as oxidized water infiltrates from surface but is strongly buffered by reducing

  4. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; Yen, A. S.; Achilles, C. N.; Bristow, T. F.; Crisp, J. A.; Des Marais, D. J.; Farmer, J. D.; Fendrich, K. V.; Frydenvang, J.; Graff, T. G.; Grotzinger, J. P.; Morookian, J. M.; Schwenzer, S. P.

    2016-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from

  5. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Miller, Calvin F.; McCracken, Reba G.

    2015-03-01

    Peach Spring samples are due to alteration. Use of altered whole-pumice compositions in rhyolite-MELTS simulations is likely the cause of the incorrect crystallization sequence reported previously for Peach Spring compositions. Using the rhyolite-MELTS geobarometer, we estimate a more realistic composition for Peach Spring Tuff high-silica rhyolite, and the calculated composition finds close matches with some analyzed rocks and results in the expected sequence of crystallization.

  6. Characterization of saline groundwater at Horonobe, Hokkaido, Japan by SEC-UV-ICP-MS: speciation of uranium and iodine.

    PubMed

    Kozai, Naofumi; Ohnuki, Toshihiko; Iwatsuki, Teruki

    2013-03-15

    The saline groundwater collected at a depth of about 500 m in Horonobe, Japan, where an underground research laboratory (URL) has been built, is rich in saline (Na 4900 ppm, Cl 7600 ppm), iodine (42 ppm), and methane gas. We analyzed the colloids and ions of this groundwater mainly by employing a size exclusion chromatography (SEC) coupled on-line to ultraviolet-visible (UV-Vis) detection and inductively coupled plasma mass spectrometry (ICP-MS) technique and focused on the speciation of uranium and iodine, both of which are of particular importance for radioactive waste disposal. For this purpose, the groundwater sample was introduced to SEC columns after being passed through a 0.45 μm filter but without further pretreatment, such as isolation of colloids. The chromatographic profiles obtained with two different SEC columns were compared. This study revealed that uranium present in the groundwater at several tens of ppt was associated with low molecular weight silica species with neutral charge. The silica species were virtually free of metal elements such as Na, K, Mg, Ca, and Al. This study also found that almost all of the iodine in the groundwater was iodide (I(-)). The groundwater contained an unidentified organic colloid that was not a carrier for the radioactive waste-relevant elements Se, Sr, I, Cs, Th, and U.

  7. Highly silicic compositions on the Moon.

    PubMed

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.

  8. Highly silicic compositions on the Moon.

    PubMed

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. PMID:20847267

  9. Silicate mineralogy of martian meteorites

    NASA Astrophysics Data System (ADS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Burger, P. V.

    2009-12-01

    Basalts and basaltic cumulates from Mars (delivered to Earth as meteorites) carry a record of the history of that planet - from accretion to initial differentiation and subsequent volcanism, up to recent times. We provide new microprobe data for plagioclase, olivine, and pyroxene from 19 of the martian meteorites that are representative of the six types of martian rocks. We also provide a comprehensive WDS map dataset for each sample studied, collected at a common magnification for easy comparison of composition and texture. The silicate data shows that plagioclase from each of the rock types shares similar trends in Ca-Na-K, and that K 2O/Na 2O wt% of plagioclase multiplied by the Al content of the bulk rock can be used to determine whether a rock is "enriched" or "depleted" in nature. Olivine data show that meteorite Y 980459 is a primitive melt from the martian mantle as its olivine crystals are in equilibrium with its bulk rock composition; all other olivine-bearing Shergottites have been affected by fractional crystallization. Pyroxene quadrilateral compositions can be used to isolate the type of melt from which the grains crystallized, and minor element concentrations in pyroxene can lend insight into parent melt compositions. In a comparative planetary mineralogy context, plagioclase from Mars is richer in Na than terrestrial and lunar plagioclase. The two most important factors contributing to this are the low activity of Al in martian melts and the resulting delayed nucleation of plagioclase in the crystallizing rock. Olivine from martian rocks shows distinct trends in Ni-Co and Cr systematics compared with olivine from Earth and Moon. The trends are due to several factors including oxygen fugacity, melt compositions and melt structures, properties which show variability among the planets. Finally, Fe-Mn ratios in both olivine and pyroxene can be used as a fingerprint of planetary parentage, where minerals show distinct planetary trends that may have been

  10. Silicate volcanism on Io

    NASA Astrophysics Data System (ADS)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  11. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  12. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  13. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  14. Geometries and Facies Distributions in Yellowstone's Siliceous Hotsprings: Implications for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2001-01-01

    Synthesis of features from several siliceous hotsprings yields a relatively simple facies model. This model facilitates our ability to recognize these hotsprings in the terrestrial and probably extraterrestrial rock record. Additional information is contained in the original extended abstract.

  15. Voluminous silicic eruptions during late Permian Emeishan igneous province and link to climate cooling

    NASA Astrophysics Data System (ADS)

    Yang, Jianghai; Cawood, Peter A.; Du, Yuansheng

    2015-12-01

    Silicic eruptive units can constitute a substantive component in flood-basalts-dominated large igneous provinces, but usually constitute only a small proportion of the preserved volume due to poor preservation. Thus, their environmental impact can be underestimated or ignored. Establishing the original volume and potential climate-sensitive gas emissions of silicic eruptions is generally lacking for most large igneous provinces. We present a case study for the ˜260 Ma Emeishan province, where silicic volcanic rocks are a very minor component of the preserved rock archive due to extensive erosion during the Late Permian. Modal and geochemical data from Late Permian sandstones derived from the province suggest that silicic volcanic rocks constituted some ˜30% by volume of the total eroded Emeishan volcanic source rocks. This volume corresponds to > 3 ×104 km3 on the basis of two independent estimate methods. Detrital zircon trace element and Hf isotopic data require the silicic source rocks to be formed mainly by fractional crystallization from associated basaltic magmas. Based on experimental and theoretical calculations, these basalt-derived ˜104 km3 silicic eruptions released ˜1017 g sulfur gases into the higher atmosphere and contribute to the contemporaneous climate cooling at the Capitanian-Wuchiapingian transition (˜260 Ma). This study highlights the potentially important impact on climate of silicic eruptions associated with large igneous province volcanism.

  16. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  17. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  18. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  19. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  20. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  1. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes.

    PubMed

    Wagner, Doris; Milodowski, Antoni E; West, Julia M; Wragg, Joanna; Yoshikawa, Hideki

    2013-08-01

    This study investigates the influence of microbes on fluid transport in sedimentary and igneous host rock environments. It particularly focuses on granodiorite rock (Äspö; Sweden) and mudstone (Horonobe; Japan) that were utilised during laboratory-based column experiments. The results showed that biofilms form on both rock types in low nutrient conditions. Cryogenic scanning electron microscopy showed that the morphology of biofilaments varied from filamentous meshwork (in crushed granodiorite column experiments) to clusters of rod-like cells (fracture surfaces in mudstone). X-ray diffraction analysis of the fine fractions (<5 µm) revealed the formation of secondary clay mineral phases within the crushed Äspö granodiorite rock substrate only. The formation of secondary clay minerals appears to be enhanced when bacteria are present. All experiments showed biofilm formation, bacterial enhanced trapping of fines blocking off pore throats and/or secondary clay mineral formation. These observations illustrate the importance of bacteria on rock transport properties which will impact on the containment and migration of contaminants. PMID:23770916

  2. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes.

    PubMed

    Wagner, Doris; Milodowski, Antoni E; West, Julia M; Wragg, Joanna; Yoshikawa, Hideki

    2013-08-01

    This study investigates the influence of microbes on fluid transport in sedimentary and igneous host rock environments. It particularly focuses on granodiorite rock (Äspö; Sweden) and mudstone (Horonobe; Japan) that were utilised during laboratory-based column experiments. The results showed that biofilms form on both rock types in low nutrient conditions. Cryogenic scanning electron microscopy showed that the morphology of biofilaments varied from filamentous meshwork (in crushed granodiorite column experiments) to clusters of rod-like cells (fracture surfaces in mudstone). X-ray diffraction analysis of the fine fractions (<5 µm) revealed the formation of secondary clay mineral phases within the crushed Äspö granodiorite rock substrate only. The formation of secondary clay minerals appears to be enhanced when bacteria are present. All experiments showed biofilm formation, bacterial enhanced trapping of fines blocking off pore throats and/or secondary clay mineral formation. These observations illustrate the importance of bacteria on rock transport properties which will impact on the containment and migration of contaminants.

  3. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  4. Contrasting siliceous replacement mineralization, east-central Nevada

    SciTech Connect

    Barton, M.D.; Ilchik, R.P. . Dept. of Geosciences); Seedorff, C.E. )

    1993-04-01

    Fine-grained siliceous replacement of carbonate-bearing rocks (jasperoid) occurs in most mineral districts in east-central Nevada. In most of these occurrences, jasperoid contains Au and(or) Ag and little or no base metals, although concentrations and ratios vary significantly. Broadly, two end-members are distinguished: (1) silicification as an intermediate- to late-stage part of complex alteration associated with igneous centers, and (2) jasperoids lacking other associated alteration and having few or no associated igneous rocks. Within this region, siliceous replacements are found with all metallic ([+-] magmatic) suites. No single factor in these occurrences relates the distribution, metal contents, fluid geochemistry, igneous rocks and associated alteration. Summarizing these characteristics: geochemical and fluid inclusion evidence shows that fluids in igneous-related jasperoids can be high-salinity magmatic (Ely), low-salinity magmatic (McCullough Butte), or metoric (Ward). Fluids in igneous-poor systems are low-salinity, exchanged meteoric waters from which a minor magmatic component can not be excluded. At this level of detail, the best predictor of Ag:Au are the district-scale alteration characteristics. Siliceous replacement takes place in many kinds systems and probably requires no more than a cooling, mildly acidic hydrothermal fluid. Metal suites, other fluid characteristics, and geological environment all need to be considered in evaluating the significance of any jasperoid.

  5. Multiple tracer study in Horonobe, northern Hokkaido, Japan: 2. Depletion of chlorofluorocarbons (CFCs) estimated using 3H/3He index and lumped parameter models

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Koki; Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi; Mizuno, Takashi

    2015-05-01

    The conservativeness of chlorofluorocarbons (CFC-12, CFC-11, and CFC-113) in an environment rich in organic carbon was evaluated using multiple tracer analyses and lumped parameter models (LPMs). Wells on a coastal plain in Horonobe, northern Hokkaido, Japan, were studied. The CFC concentrations in groundwater from 22 wells were measured, converted into atmospheric mixing ratios (CARs), and compared with estimated ratios (EARs) obtained from 3H/3He values and LPMs. The degree of CFC depletion was expressed as the percentage of the CAR relative to the EAR, and was less than 43% for CFC-12 and 28% for CFC-11 (but one well had unusual values). CFC-113 was depleted more than the other CFCs, and could not be detected in most wells. The CFC depletion mechanisms were different in each of the three well groups. Groundwater of northern Shimonuma wells (NSW) was oxic and oxidative, so CFC depletion in the NSW could be attributed to sorption by organic carbon in the lignite and peat in the aquifers. Groundwater of southern Shimonuma wells (SSW) was anoxic and reductive. The northerly SSW are supplied from the aquifer that supplies the most of the NSW, so CFC depletion in the SSW was caused by degradation under sulfate-reducing and methanogenic conditions, in addition to sorption by lignite in the northerly SSW. Gas stripping, contamination from a local source, and methane interfering with the CFC analysis were found in groundwater of Hamasato wells (HW). One well of HW was not affected by these problems, but the CFCs were depleted by microbial degradation. Assuming that the CFC depletion mechanisms follow first-order reaction kinetics, reaction rate constants of 2.7 y-1 for CFC-12 and 2.8 y-1 for CFC-11 were estimated. Microbial degradation, sorption, gas stripping of CFCs, and methane formation processes are enhanced in environments rich in organic carbon. Special attention is required when CFCs are used as transient tracers in such environments. The combination of multiple

  6. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  7. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  8. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with...

  9. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  10. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  11. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  12. Activities and volatilities of trace components in silicate melts: a novel use of metal-silicate partitioning data

    NASA Astrophysics Data System (ADS)

    Wood, Bernard J.; Wade, Jon

    2013-09-01

    Ian Carmichael spent 45 years thinking about and working on the activities of components in silicate melts and their use to estimate physicochemical conditions at eruption and in the source regions of igneous rocks. These interests, principally in major components such as SiO2, led us to think about possible ways of determining the complementary activity coefficients of trace components in silicate melts. While investigating the conditions of accretion and differentiation of the Earth, a number of authors have determined the partitioning of trace elements such as Co, Ni, Mo and W between liquid Fe metal and liquid silicate. These data have the potential to provide activity information for a large number of trace components in silicate melts. In order to turn the partitioning measurements into activities, however, we need to know the activity coefficient of FeO, γFeO in the silicate. We obtained γFeO as a function of melt composition by fitting a simple model to 83 experimental data for which the authors had measured the FeO content of the silicate melt in equilibrium with metal (Fe-bearing alloy) at known fO2. The compositional dependence of γFeO is weak, but, when calculated in the system Diopside-Anorthite-Forsterite, it decreases towards the Forsterite apex. A similar approach for Ni, for which twice as many data are available, leads to similar composition dependence of activity coefficient and confirms the suggestion that γNiO/γFeO is almost constant over a wide range of silicate melt composition. The activity coefficients for FeO were used in conjunction with measured Mo and W partitioning between Fe-rich metal and silicate melt to estimate activity coefficients for trace MoO2 and WO3 dissolved in silicate melt. When combined with data on Mo- and W-saturated silicate melts a strong dependence of activity coefficient is observed. Calculated in the system Diopside-Anorthite-Forsterite, both MoO2 and WO3 exhibit similar behaviour to FeO and NiO in that

  13. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  14. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-24

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  15. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  16. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  17. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  18. Stardust silicates from primitive meteorites.

    PubMed

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2004-04-29

    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula.

  19. Stardust silicates from primitive meteorites.

    PubMed

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2004-04-29

    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula. PMID:15118720

  20. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  1. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  2. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  3. Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George Winfred

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Early Cretaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, Idaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  4. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Vuono, Daniel J

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  5. Erosion and the rocks of Venus

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Photographs of the surface of Venus returned by the Venera 9 and 10 spacecraft have revealed the presence of smooth and angular rockline forms. Two mechanisms previously suggested (Sagan, 1975) for erosion of crater ramparts on the surface of Venus might also explain the erosion of rocks. Chemical weathering by the hydrochloric, hydrofluoric, and sulfuric acids present in the atmosphere of Venus may have been sufficient to erode angular projections of silicous rocks. Alternatively, the contours of rocks containing such low-melting materials as NaOH, KOH, HgS and KNO2 may have softened as the result of exposure to the high surface temperatures of the planet.

  6. A Calculation of Spatial Range of Colloidal Silicic Acid Deposited Downstream from the Alkali Front

    NASA Astrophysics Data System (ADS)

    Niibori, Yuichi; Iijima, Kazuki; Tamura, Naoyuki; Mimura, Hitoshi

    A high alkali domain spreads out due to the use of cement materials for the construction of the repository of radioactive wastes. Sudden change of pH at this alkali front produces colloidal silicic acid (polymeric silicic acid) in addition to the deposition of supersaturated monomeric silicic acid onto the fracture surface of flow-pathway. The colloidal silicic acid also deposits with relatively small rate-constant in the co-presence of solid phase. Once the flow-path surface is covered with the amorphous silica, the surface seriously degrades the sorption behavior of radionuclides (RNs). Therefore, so far, the authors have examined the deposition rates of supersaturated silicic acid. This study summarized the deposition rate-constants defined by the first-order reaction equation under various conditions of co-presence of amorphous silica powder. Then, using the smallest rate-constant (1.0×10-12 m/s in the co-presence of calcium ions of 1 mM) and a simulation code, COLFRAC-MRL, the spatial range of colloidal silicic acid deposited downstream from the alkali front was estimated. The results suggested the clogging caused by the deposition of colloidal silicic acid in flow-path. The altered spatial range in the flow-path was limited to around 30 m in fracture and to several centimeters in rock matrix.

  7. Silicates in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sirocky, M. M.; Levenson, N. A.; Elitzur, M.; Spoon, H. W. W.; Armus, L.

    2008-05-01

    We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescope's Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18 μm requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sight lines require dust that has a relatively high 18 μm/10 μm absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.

  8. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly

  9. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  10. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  11. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  12. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  13. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  14. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  15. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  16. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  17. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  18. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  19. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  20. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  1. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  2. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  3. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  4. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  5. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  6. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  7. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  8. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  9. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  10. Microwave dielectric properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, Myron C.; East, Jack R.; Bengal, Thomas H.; Garvin, James B.; Evans, Diane L.

    1990-01-01

    A combination of techniques was used to measure the dielectric properties of 80 rock samples in the microwave region. The real part (RP) of the relative dielectric constant was measured in 0.1-GHz steps from 0.5 to 18 GHz, and the imaginary part (IP) was measured at five frequencies between 1.6 and 16 GHz. The bulk density rho(b) was also measured for all the samples, and the bulk chemical composition (BCC) was determined for 56 of the samples. RP is found to be frequency-independent at 0.5-18 GHz for all samples, and rho(b) accounts for about 50 percent of the observed variance. For silicate rocks, as much as 78 percent of the variance is explained by the combination of rho(b) and the fractional contents of oxides when the silicates are subgrouped by genesis. In contrast, IP decreases with increasing frequency for most rock samples, and no statistically significant relationships are found between IP and rho(b). For subgrouped silicate rocks, 60 percent of the variance in IP can be explained by BCC.

  11. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  12. Silicate condensation in Mira variables

    NASA Astrophysics Data System (ADS)

    Gail, Hans-Peter; Scholz, Michael; Pucci, Annemarie

    2016-06-01

    Context. The formation of dust in winds of cool and highly evolved stars and the rate of injection of dust into the interstellar medium is not yet completely understood, despite the importance of the process for the evolution of stars and galaxies. This holds in particular for oxygen-rich stars, where it is still not known which process is responsible for the formation of the necessary seed particles of their silicate dust. Aims: We study whether the condensation of silicate dust in Mira envelopes could be caused by cluster formation by the abundant SiO molecules. Methods: We solve the dust nucleation and growth equations in the co-moving frame of a fixed mass element for a simplified model of the pulsational motions of matter in the outer layers of a Mira variable, which is guided by a numerical model for Mira pulsations. It is assumed that seed particles form through the clustering of SiO. The calculation of the nucleation rate is based on published experimental data. The quantity of dust formed is calculated via a moment method and the calculation of radiation pressure on dusty gas is based on a dirty silicate model. Results: Dust nucleation occurs in the model at the upper culmination of the trajectory of a gas parcel where it stays for a considerable time at low temperatures. Subsequent dust growth occurs during the descending part of the motion and continues after the next shock reversed motion. It is found that sufficient dust forms that radiation pressure exceeds the gravitational pull of the stars such that the mass element is finally driven out of the star. Conclusions: Nucleation of dust particles by clustering of the abundant SiO molecules could be the mechanism that triggers silicate dust formation in Miras.

  13. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  14. Apatite: a new redox proxy for silicic magmas?

    NASA Astrophysics Data System (ADS)

    Miles, Andrew; Graham, Colin; Hawkesworth, Chris; Gillespie, Martin; Bromiley, Geoff; Hinton, Richard

    2015-04-01

    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this presentation we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively[1]. This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO2=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions[2]. [1] Stephens, W. E., Whitley, J. E., Thirlwall, M. F. and Halliday, A. N. (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contributions to Mineralogy and

  15. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  16. Molecular Dynamics Simulations of Olivine-Silicate Melt Interfaces

    NASA Astrophysics Data System (ADS)

    Gurmani, Samia; Jahn, Sandro; Brasse, Heinrich; Schilling, Frank R.

    2010-05-01

    Partially molten rocks are important constituents of the Earth's crust and mantle. Their properties depend not only on the chemistry and mineralogy but also on the fraction and distribution of melt or fluid. Partially molten rocks strongly influence the chemical transport in the Earth and geodynamics. We model a partially molten rock on the atomic scale by confining a silicate melt of MgSiO3 composition between Mg2SiO4 olivine crystals. Molecular dynamics simulation is used to study the atomic scale structure and respective transport properties at the interfaces. To represent the atomic interaction, we use an advanced ionic model that accounts for anion polarization and shape deformations (Jahn and Madden, 2007). We construct interfaces between silicate melt layers of different thickness (1.85nm & 3.7nm) and mineral surfaces with different crystal orientations ((010), (001) and (100)). From the particle trajectories we derive various properties like charge density, cation coordination, connectivity of SiO4 tetrahedra and self diffusion coefficients. By adding some (Al, Ca) impurities to the system, the response to different chemical compositions is studied. To obtain a stable solid-melt interface, a temperature of 2000K is chosen. Simulations are performed at ambient pressure. We examine how the chemical composition and the self-diffusion coefficients vary across the interface. Our results indicate that with increase of surface energy, the self-diffusion coefficients of the various species decrease. This may be related to the stronger interaction of the crystal surface with the melt when the surface energy is high, which leads to more structured melt close to the interface. In conclusion, our simulations provide insight into the relation between atomic scale structure and transport properties in partially molten rocks. References S. Jahn and P.A. Madden (2007) Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction

  17. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  18. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  19. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. 'Lutefisk' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Spirit used its panoramic camera to take this image of a rock called 'Lutefisk' on the rover's 286th martian day (Oct. 22, 2004). The surface of the rock is studded with rounded granules of apparently more-resistant material up to several millimeters (0.1 inch) or more across. The visible portion of Lutefisk is about 25 centimeters (10 inches) across.

  1. Scenario of Growing Crops on Silicates in Lunar Gargens

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  2. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth

  3. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  4. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  5. Models for silicate melt viscosity

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Russell, K.; Moretti, R.; Mangiacapra, A.; Potuzak, M.; Romano, C.; Dingwell, D. B.

    2004-12-01

    The prediction of viscosity in silicate liquids, over the range of temperatures and compositions encountered in nature, remains one of the most challenging and elusive goals in Earth Sciences. Recent work has demonstrated that there are now sufficient experimental measurements of melt viscosity to create new viscosity models to replace previous Arrhenian models [1],[2] and extend the compositional range of more recent non-Arrhenian models [3]. Most recently, [4] have developed an empirical strategy for accurately predicting viscosities over a very wide range of anhydrous silicate melt compositions (e.g., rhyolite to basanite). Future models that improve upon this work, will probably extend the composition range of the model to consider, at least, H2O and other volatile components and may utilize a compositional basis that reflects melt structure. In preparation for the next generation model, we explore the attributes of the three most common equations that could be used to model the non-Arrhenian viscosity of multicomponent silicate melts. The equations for the non-Arrhenian temperature dependence of viscosity (η ) include: a) Vogel-Fulcher-Tammann (VFT): log η = A + B/(T - C) b) Adam and Gibbs (AG): log η = A + B/[T log (T/C)], and c) Avramov (Av): log η = A + [B/T]α We use an experimental database of approximately 900 high-quality viscosity measurements on silicate melts to test the ability of each equation to capture the experimental data. These equations have different merits [5]. VFT is purely empirical in nature. The AG model has a quasi-theoretical basis that links macroscopic transport properties directly to thermodynamic properties via the configurational entropy. Lastly, the model proposed by Avramov adopts a form designed to relate the fit parameter (α ) to the fragility of the melt. [1] Shaw, H.R., 1972. Am J Science, 272, 438-475. [2] Bottinga Y. and Weill, D., 1972. Am J Science, 272, 438-475. [3] Hess, K.U. and Dingwell, D.B, 1996, Am Min, 81

  6. Tailoring polymer properties with layered silicates

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    Polymer layered silicate nanocomposites have found widespread applications in areas such as plastics, oil and gas production, biomedical, automotive and information storage, but their successful commercialization critically depends on consistent control over issues such as complete dispersion of layered silicate into the host polymer and optimal interaction between the layered silicates and the polymers. Polypropylene is a commercially important polymer but usually forms intercalated structures with organically modified layered silicate upon mixing, even it is pre-treated with compatibilizing agent such as maleic anhydride. In this work, layered silicate is well dispersed in ammonium modified polypropylene but does not provide sufficient reinforcement to the host polymer due to poor interactions. On the other hand, interactions between maleic anhydride modified polypropylene and layered silicate are fine tuned by using a small amount of maleic anhydride and mechanical strength of the resultant nanocomposites are significantly enhanced. In particular, the melt rheological properties of layered silicate nanocomposites with maleic anhydride functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the maleic anhydride treated polypropylene based nanocomposites exhibit solid-like linear dynamic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized polypropylene based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interaction in maleic anhydride functionalized nanocomposites, which facilitates formation of a long-lived silicate network mediated by physisorbed polymer chains. Further, the transient shear stress of the maleic anhydride functionalized nanocomposites in start-up of steady shear is a function of the shear

  7. Getting lunar ilmenite: From soils or rocks

    SciTech Connect

    Vaniman, D.T.; Heiken, G.H.

    1989-01-01

    Lunar soils or rocks can be mined as sources of ilmenite for producing oxygen. However, separable crystals of loose ilmenite in lunar soils are rare (<2%) and small (<200 {mu}); most ilmenite in the regolith is locked together with silicate minerals as rock fragments. Since fragmentation of rock sources must be attempted to win appreciable amounts of ilmenite ({approximately}10% or more), selective collection of high-Ti basalt fragments larger than 1 cm for fragmentation and ilmenite beneficiation may be advantageous over extensive processing of fine lunar soil. Many alternative processing schemes for fragmenting rocks on the Moon have been proposed; one process which was tested early in the Apollo program successfully disaggregated lunar and terrestrial basalts by passive exposure to low-pressure alkali (K) vapor. This process is worthy of reinvestigation. 14 refs., 3 figs.

  8. Mechanical and acoustic properties of weakly cemented granular rocks

    SciTech Connect

    Nakagawa, S.; Myer, L.R.

    2001-05-09

    This paper presents the results of laboratory measurements on the mechanical and acoustic properties of weakly cemented granular rock. Artificial rock samples were fabricated by cementing sand and glass beads with sodium silicate binder. During uniaxial compression tests, the rock samples showed stress-strain behavior which was more similar to that of soils than competent rocks, exhibiting large permanent deformations with frictional slip. The mechanical behavior of the samples approached that of competent rocks as the amount of binder was increased. For very weak samples, acoustic waves propagating in these rocks showed very low velocities of less than 1000 m/sec for compressional waves. A borehole made within this weakly cemented rock exhibited a unique mode of failure that is called ''anti-KI mode fracture'' in this paper. The effect of cementation, grain type, and boundary conditions on this mode of failure was also examined experimentally.

  9. Thermal-infrared spectra and chemical analyses of twenty-six igneous rock samples

    USGS Publications Warehouse

    Vincent, R.K.; Rowan, L.C.; Gillespie, R.E.; Knapp, C.

    1975-01-01

    Emittance spectra in the 7.5 ??m to 14 ??m wavelength region and chemical compositions of 26 igneous rocks are reported. Experimental measurements on the rocks were made under simulated daytime field conditions. Some surface silicate contaminants, such as clayey silt, significantly altered the spectral emittance of a fresh sample, whereas, for these samples, hydrous and anhydrous ferric oxide weathering products did not mask important silicate spectral information. In the 11.75 ??m to 13.75 ??m wavelength region, the mean emittance of all the silicate samples was 0.956 ?? 0.008, except for periodtite, which had an average emittance of 0.895. This region of uniform emittance should be useful in remote sensing experiments for the separation of the effects of temperature and chemical composition on the spectral emittance of silicate rocks. ?? 1976.

  10. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  11. Evidence for the reversal of gradients in the uppermost parts of silicic magma reservoirs

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    Evidence from large-volume ignimbrites indicates that the source-magma reservoirs for most of these voluminous silicic pyroclastic deposits contained monotonic vertical chemical gradients at the time of eruption. However, gradients from a large-volume magma reservoir that produced a group of penecontemporaneous silicic lava domes, but no ignimbrite, show a reversal of the usual ignimbrite pattern. This reversal originated by modification of the usual pattern through minor assimilation of partially melted roof rocks. Eruptions that produced these domes apparently just tapped the uppermost part of their source reservoir. They thereby provide a high-resolution instantaneous view of this variably contaminated part of the magma system. The long-standing paradigm for monotonic zoning in large-volume reservoirs of silicic magma may require modification. -from Authors

  12. Erupted silicic cumulates in large ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Deering, C. D.; Huber, C.; Dufek, J.

    2011-12-01

    If chemical diversity in igneous rocks is dominated by crystal-liquid separation in open-system magma reservoirs, a significant number of crystal accumulation zones must be preserved in the crust and upper mantle. Such cumulates are conspicuous in mafic lithologies (MOR, layered mafic intrusions, lower crustal arc sections), but have rarely been described and/or are controversial in the silicic upper crust. Although it is possible to recognize signs of crystal accumulations in plutonic exposures, the fact that these batholiths are typically: 1) at least several millions of years old, 2) multi-stage, 3) deformed and 4) biased towards the youngest intrusive episodes, some ambiguity remains in how to interpret geochemical and textural observations. We have chosen to explore large zoned ignimbrites, which represent an instantaneous evacuation of an upper crustal magma reservoir, to isolate potential crystal accumulation zones. Late-erupted, crystal-rich scoria with unusual chemistries (e.g., high Ba, Zr, Eu/Eu*) have been found in multiple examples of these zoned ignimbrites around the world, including the 900+ km3 Ammonia Tanks and Carpenter Ridge Tuffs, both erupted during the Tertiary magmatic flare-up in the Western USA. As already suggested for the 7700 BP Crater Lake ignimbrite, such crystal-rich scoria have mineralogical and geochemical characteristics that are most convincingly explained by accumulation of low temperature minerals as highly-evolved melt escapes upward and pools at the top of large crystalline mushes. To account for the eruption of such crystal-rich zones (technically uneruptible with >50vol% crystals), some melting of low-temperature mineral phases is required; evidence for resorption textures in sanidine and quartz is commonplace in these scoria. The presence of mafic enclaves and/or mingling textures in such scoria indicate that recharge from below ultimately drove melting of part of the mineral assemblage within the cumulate rootzone, while

  13. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  14. Silicate minerals and the interferon system

    SciTech Connect

    Hahon, N.; Booth, J.A.

    1987-08-01

    Natural-occurring minerals representative of six silicate classes were examined for their influence on interferon induction by influenza virus in Rhesus monkey kidney (LLC-MK/sub 2/) cell monolayers. Minerals within the classes nesosilicate, sorosilicate, cyclosilicate, and inosilicate exhibited either little or marked (50% or greater) inhibition of interferon induction. Within the inosilicate class, however, minerals of the pyroxenoid group (wollastonite, pectolite, and rhodonite) all significantly showed a two- to threefold increase in interferon production. Silicate materials in the phyllosilicate and tectosilicate classes all showed inhibitory activity for the induction process. When silicate minerals were coated with the polymer poly(4-vinylpyridine-N-oxide), the inhibitory activity of silicates on viral interferon induction was counteracted. Of nine randomly selected silicate minerals, which inhibited viral interferon induction, none adversely affected the ability of exogenous interferon to confer antiviral cellular resistance. Increased levels of influenza virus multiplication concomitant with decreased levels of interferon occurred in cell monolayers pretreated with silicates. The findings of this study demonstrate the diverse effects of minerals representative of different silicate classes on the interferon system and indicate that certain silicates in comprising the viral interferon induction process may increase susceptibility to viral infection.

  15. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium...

  16. Volcanic rock petrochemistry as an exploration technique for geothermal energy

    SciTech Connect

    Fultz, L.A.; Bell, E.J.; Trexler, D.T.

    1983-12-01

    Large high-level silicic magma chambers offer a high potential for economically viable geothermal systems. While purely basic volcanic systems rarely form thermal anomalies, they may provide the necessary long-term heat input to silicic systems, by underplating, to sustain a high-temperature geothermal system. Petrographic and microprobe, geochemical, geochronologic, and isotopic data on young volcanic rocks in west-central Nevada indicate compositions that may result from magmatic differentiation, crystal fractionation, variation in magmatic source regions and in particular, magma mixing. Analysis of the petrochemistry and the recognition of magma mixing textures of extrusive rocks may indicate interacting mafic magma with buried shallow silicic magma systems. These systems may provide a shallow heat source for development of geothermal resources.

  17. Rock Paintings.

    ERIC Educational Resources Information Center

    Jones, Julienne Edwards

    1998-01-01

    Discusses the integration of art and academics in a fifth-grade instructional unit on Native American culture. Describes how students studied Native American pictographs, designed their own pictographs, made their own tools, and created rock paintings of their pictographs using these tools. Provides a list of references on Native American…

  18. On the Presence of Fixed Ammonium in Rocks.

    PubMed

    Stevenson, F J

    1959-07-24

    From one-fourth to one-half of the nitrogen in some granite rocks, and up to two-thirds of that in some paleozoic shales, occurred as ammonium ions held within the lattice structure of silicate minerals. The results provide greater insight into the origin of the earth's atmosphere.

  19. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  20. Comment on "Apatite: A new redox proxy for silicic magmas?" [Geochimica et Cosmochimica Acta 132 (2014) 101-119

    NASA Astrophysics Data System (ADS)

    Marks, Michael A. W.; Scharrer, Manuel; Ladenburger, Sara; Markl, Gregor

    2016-06-01

    Recently Miles et al. (2014) proposed that a negative correlation between oxygen fugacity (expressed as logfO2 and the Mn content of apatite from a range of intermediate to silicic igneous rocks could be used as an oxybarometer (Eq. (1)).

  1. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  2. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect

    Visscher, Channon; Fegley, Bruce Jr.

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  3. Uranium series, volcanic rocks

    USGS Publications Warehouse

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  4. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  5. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  6. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  7. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  8. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion.

  9. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geo- chemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth surface.

  10. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Sliverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geochemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth's surface.

  11. Silicate Composition of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Sargent, B. A.; Koch, I.

    2016-10-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μm feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  12. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  13. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  14. Authigenic Mineralization of Silicates at the Organic-water Interface

    NASA Astrophysics Data System (ADS)

    McEvoy, B.; Wallace, A. F.

    2015-12-01

    It is relatively common for some fraction of organic material to be preserved in the sedimentary rock record as disseminated molecular fragments. The survival of wholly coherent tissues from primarily soft-bodied organisms is far more unusual. However, the literature is now well- populated with spectacular examples of soft-tissue preservation ranging from a 2,600 year old human brain to the tissues of the Ediacaran biota that have survived ~600 million years. Some of the most exceptional examples of soft tissue preservation are from the Proterozoic-Cambrian transition, however, nearly all modes of fossil preservation during this time are debated. Clay mineral templates have been implicated as playing a role in several types of soft tissue preservation, including Burgess Shale and Beecher's Trilobite-type preservation, and more recently, Bitter Springs-type silicification. Yet, there is still much debate over whether these clay mineral coatings form during early stage burial and diagenesis, or later stage metamorphism. This research addresses this question by using in situ fluid cell Atomic Force Microscopy (AFM) to investigate the nucleation and growth of silicate minerals on model biological surfaces. Herein we present preliminary results on the deposition of hydrous magnesium silicates on self-assembled monolayers (-OH, -COOH, -CH3, and -H2PO3 terminated surfaces) at ambient conditions.

  15. Gels composed of sodium-aluminium silicate, lake magadi, kenya.

    PubMed

    Eugster, H P; Jones, B F

    1968-07-12

    Sodium-aluminum silicate gels are found in surficial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67 degrees to 82 degrees C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na(2)O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  16. On the Filling Process Forming Silicic Segregations: Porous Flow Experiments

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2002-05-01

    Silicic segregations are only observed in the upper parts of large diabase sill, lava lakes and gabbroic intrusions. The segregations often have sharp upper contacts and diffuse lower contacts that grade into the host rock texture. We have analyzed over 100 segregation samples from the Ferrar Dolerites of the McMurdo Dry Valleys Antarctica, to investigate the nature of the infilling process. These segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63% and temperatures between 1135o C and 1115 oC. Stratigraphic position, size, textures, and chemical composition relations indicate that silicic segregation represent a form of bimodal differentiation produced by the physical tearing of the upper Solidification Front (SF) due to gravitational instability, (SFI). Previous work (Zavala & Marsh, 2001) showed that large segregations, which are chemically and texturally non-homogeneous and have non-monotonic Si02 profiles form by multiple infilling episodes. In contrast, smaller segregations have homogeneous textures and chemical profiles, formed by perhaps longer single episode of infilling. Because the rate of melt flow forming these segregations is controlled by the resistance to flow through the crystalline matrix we performed a series of porous media flow experiments to investigate the details of the melt transport dynamics of the infilling process.

  17. Gels composed of sodium-aluminium silicate, lake magadi, kenya.

    PubMed

    Eugster, H P; Jones, B F

    1968-07-12

    Sodium-aluminum silicate gels are found in surficial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67 degrees to 82 degrees C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na(2)O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian. PMID:17770594

  18. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  19. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars.

  20. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars. PMID:16551226

  1. Effect of water on the frictional behavior of cohesive rocks during earthquakes (Invited)

    NASA Astrophysics Data System (ADS)

    Violay, M.; Nielsen, S. B.; Gibert, B.; Spagnuolo, E.; Cavallo, A.; Azais, P.; Vinciguerra, S.; Di Toro, G.

    2013-12-01

    While it is widely recognized that fluids control earthquakes nucleation and evolution, their effects on coseismic sliding friction is only conjectured. More than 100 high velocity friction experiments were conducted on carbonate- (Carrara marble, porosity <1%) and silicate- (basalt, porosity ~2.3%) bearing rocks in the presence of pressurized water, room-humidity and, for dry samples, under vacuum (10-4 mbar). Experiments were performed with a rotary shear apparatus (SHIVA, Slow to HIgh Velocity friction Apparatus) on hollow cylinders (50/30 mm ext/int diameter) at velocities of 1-6.5 m/s, displacements from 0.005 to 12 meters, normal stresses up to 40 MPa and fluid pressure up to 15 MPa. Contrary to common believe based on theoretical argumentations, we show that frictional melt of a silicate-bearing rock develops even in the presence of water. In silicate-bearing rocks, the weakening mechanism (melting of the asperities) is hindered in the presence of water; conversely, in carbonate-bearing rocks the weakening mechanism (brittle failure of the asperities), is favoured. These opposite behaviors highlight the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water. Cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.

  2. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    SciTech Connect

    Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G; Vuono, Daniel J

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  3. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  4. Redox Processes in Silicate Melts

    NASA Astrophysics Data System (ADS)

    Cicconi, M. R.; de Ligny, D.

    2015-12-01

    Studies into the redox state of magmas provide important constrains on the formation and evolution of planetary bodies Indeed, oxygen fugacity is a key parameter in controlling the physical and chemical properties of melts and therefore it determine the possible interactions between reservoirs within the mantle and between the mantle and surface. It follows that redox mechanisms play a key role in determining the dynamics of the (inner and outer) terrestrial planets. The redox conditions that have accompanied basalt evolution on planetary bodies are known to be different, albeit with some similarities. The strongly reducing environments of the moon and meteorites have led to significant reduced mineralogical assemblages, whereas analogous terrestrial materials predominantly contain the corresponding oxidized compounds. Important geochemical elements such as Fe, Cr, V, Ce and Eu, exist in magmatic systems with different valences and coordination geometries, and the key subjects which need to be understood are: factors influencing redox mechanisms, and the effect on mineral assemblage, element partitioning, mass transfers processes and rheology of the melts. Examples on the study of Ce, Eu and Fe in silicate glasses/melts and on the parameters influencing their oxidation states will be provided.

  5. Magnesium silicates adsorbents of organic compounds

    NASA Astrophysics Data System (ADS)

    Ciesielczyk, Filip; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2007-08-01

    Studies were presented on production of highly dispersed magnesium silicate at a pilote scale. The process of silicate adsorbent production involved precipitation reaction using water glass (sodium metasilicate) solution and appropriate magnesium salt, preceded by an appropriate optimization stage. Samples of best physicochemical parameters were in addition modified (in order to introduce to silica surface of several functional groups) using the dry technique and various amounts of 3-isocyanatepropyltrimethoxysilane, 3-thiocyanatepropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. The so prepared samples were subjected to a comprehensive physicochemical analysis. At the terminal stage of studies attempts were made to adsorb phenol from its aqueous solutions on the surface of unmodified and modified magnesium silicates. Particle size distributions were determined using the ZetaSizer Nano ZS apparatus. In order to define adsorptive properties of studied magnesium silicates isotherms of nitrogen adsorption/desorption on their surfaces were established. Efficiency of phenol adsorption was tested employing analysis of post-adsorption solution.

  6. New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil

    NASA Astrophysics Data System (ADS)

    Luchetti, A. C. F.; Nardy, A. J. R.; Machado, F. B.; Madeira, J. E. O.; Arnosio, J. M.

    2014-03-01

    The PMP (Paraná Magmatic Province) is characterized by lava flows of the Early Cretaceous Serra Geral Formation which covers about 75% of the Paraná Basin (southern and southeastern Brazil), composed of a thick (up to 1600 m) volcanic sequence formed by a succession of petrographically and geochemically distinct units of basic and silicic composition. The whole package must have been emplaced during approximately 3 million years of nearly uninterrupted activity. A few aeolian sandstone layers, indicating arid environmental conditions (the Botucatu Formation), are interlayered in the lower basalts. Above the basalts, the Palmas and Chapecó Members are composed of silicic volcanic rocks (quartz latites, dacites, rhyodacites and rhyolites) and basalts. This paper presents new evidence of sedimentation episodes separating silicic volcanic events, expressed by the occurrence of sedimentary deposits. Interaction between the volcanic bodies and the coeval unconsolidated sediments formed peperites. The sediments were observed between basaltic lava flows and silicic rocks or interlayered in the Palmas-type rocks, between the Chapecó-type rocks and overlying basaltic flows, between silicic bodies of the Palmas and Chapecó types, and interlayered within Palmas-type units. The observed structures indicate that the sediments were still wet and unconsolidated, or weakly consolidated, at the time of volcanism, which, coupled with the sediment features, reflect environmental conditions that are different from those characterizing the Botucatu arid conditions.

  7. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  8. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  9. Fracture of Silicate Glasses: Ductile or Brittle?

    NASA Astrophysics Data System (ADS)

    Guin, Jean-Pierre; Wiederhorn, Sheldon M.

    2004-05-01

    Atomic force microscopy is used to investigate the possibility of cavity formation during crack growth in silicate glasses. Matching areas on both fracture surfaces were mapped and then compared. For silica glass, and soda-lime-silicate glass, the fracture surfaces matched to a resolution of better than 0.3 nm normal to the surface and 5 nm parallel to the surface. We could find no evidence for cavity formation in our study and suggest that completely brittle fracture occurs in glass.

  10. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  11. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  12. Sublithospheric Triggers for Episodic Silicic Magmatism in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Vogt, K.; Schubert, M.

    2014-12-01

    The melt source and ascent mechanisms for crustal-scale silicic magmatism in subduction zones remain a matter of debate. Recent petrological-thermo-mechanical numerical experiments suggest that important physical controls of this process can be of sublithospheric origin. Firstly, deep sources of silicic magma can be related to episodic development of positively buoyant diapiric structures in the mantle wedge originated from deeply subducted rock mélanges (Gerya and Yuen, 2003; Castro and Gerya, 2008). Partial melting of these rapidly ascending lithologically mixed structures can produce silicic magmas with a relatively constant major element composition and variable time-dependent isotopic ratios inherited from the mélange (Vogt et al., 2013). Secondly, episodic injections of subduction-related mantle-derived mafic magmas into a partially molten hot zone of the arc lower crust can drive ascents of pre-existing felsic crustal magmas toward upper crustal levels. The injection of mafic magma induces overpressure in the lower crustal magma reservoir, which increases crustal stresses and triggers development of brittle/plastic fracture zones serving as conduits for the rapid episodic ascent of felsic magmas (Shubert et al., 2013). Our numerical results thus imply that subduction-related sublithospheric magma intrusions into the lower arc crust may both be the prime source for the generation of silicic magmas and the major physical driving mechanism for their episodic ascent toward upper crustal levels. References:Castro, A., and Gerya, T.V., 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138-148. Gerya, T.V., and Yuen, D.A., 2003. Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones. Earth and Planetary Science Letters 212, 47-62.Schubert, M., Driesner, T., Gerya, T.V., Ulmer, P., 2013. Mafic injection as a trigger for felsic magmatism: A numerical study. Geochemistry, Geophysics

  13. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  14. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.

    1988-01-01

    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  15. Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Yabuuchi, Satoshi; Kunimaru, Takanori

    2013-03-01

    SummaryThe flowing fluid electric conductivity (FFEC) logging method is a well-logging technique that may be used to estimate flow rate, salinity, transmissivity, and hydraulic head of individual fractures or high-permeability zones intersected by a wellbore. Wellbore fluid is first replaced with fluid of a contrasting electric conductivity, then repeated FEC logging is done while the well is pumped. Zones where fluid flows into the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow rate and salinity of the individual fractures. Conducting the procedure with two or more pumping rates (multi-rate FFEC logging) enables individual fracture transmissivity and hydraulic head to be determined. Here we describe the first application of the multi-rate FFEC logging method to an artesian well, using a 500-m well in fractured rock at Horonobe, Japan. An additional new factor at the site is the presence of regional groundwater flow, which heretofore has only been studied with synthetic data. FFEC logging was conducted for two different pumping rates. Several analysis techniques had to be adapted to account for the artesian nature of the well. The results were subsequently compared with independent salinity measurements and transmissivity and hydraulic head values obtained from packer tests in the same well. Despite non-ideal operating conditions, multi-rate FFEC logging successfully determined flow rate, salinity, and transmissivity of 17 conducting fractures intercepted by the logged section of the borehole, including two fractures with regional groundwater flow. Predictions of hydraulic head were less accurate, a not unexpected result in light of operational problems and the form of the equation for hydraulic head, which involves the difference between two uncertain quantities. This study illustrates the strengths and weaknesses of the multi-rate FFEC logging method applied to artesian wells. In conjunction with previous studies, it demonstrates the

  16. Dynamic crystallization of silicate melts

    NASA Technical Reports Server (NTRS)

    Russell, W. J.

    1984-01-01

    Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.

  17. The basis for the spectral behaviour of silicates in the thermal infrared and applications to remote sensing

    NASA Technical Reports Server (NTRS)

    Walter, L. S.; Salisbury, J. W.

    1988-01-01

    Variations in the thermal infrared (TIR) spectral response of silicate rocks is related to changes in the structures and divalent cation contents of the minerals which form the rocks. These considerations lead to a chemical parameter, SCFM, which reflects mineral structures, rock types, and their spectra. The parameter is the ratio of silica to the abundance of depolymerizing cations, defined as SCFM = SiO2/SiO2 + CaO + MgO + FeO. Parameter SCFM is therefore proposed for use in TIR remote sensing of igneous rocks. It is also demonstrated that two or three broad bands are sufficient for distinguishing among major rock types and the system noise has little effect on the quality of the results. These factors can be traded off against improved spatial resolution in instrument design.

  18. The physical basis for spectral variations in thermal infrared emittance of silicates and application to remote sensing

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1986-01-01

    The use of infrared spectroscopy for the remote characterization of planetary surfaces has received attention due to efforts in the investigation of these bodies from space. In the 8 to 14 micron region, a depression in the emittance spectra of rocks (sometimes called reststrahlen) is related to the fundamental stretching vibrations of Si-O bonds and shifts in the locations of this feature are ascribed to variations in rock composition. Thus, it should be possible to investigate, quantify, and model the relationships of reststrahlen spectral band location through silicate mineralogical composition to rock classification. This concept will be tested first through the use of laboratory-acquired data on the infrared spectra and mineralogy of selected mineral and rock samples. As a suitable classification model is developed, it will be tested through overflights of appropriate rock outcrops using the Thermal Infrared Multispectral Scanner (TIMS).

  19. Application of direct-fitting, mass-integral, and multi-ratemethods to analysis of flowing fluid electric conductivity logs fromHoronobe, Japan

    SciTech Connect

    Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S.; Kurikami, H.

    2007-08-01

    The flowing fluid electric conductivity (FFEC) loggingmethod is an efficient way to provide information on the depths,salinities, and transmissivities of individual conductive featuresintercepted by a borehole, without the use of specialized probes. Usingit in a multiple-flow-rate mode allows, in addition, an estimate of theinherent "far-field" pressure heads in each of the conductive features.The multi-rate method was successfully applied to a 500-m borehole in agranitic formation and reported recently. The present paper presents theapplication of the method to two zones within a 1000-m borehole insedimentary rock, which produced, for each zone, three sets of logs atdifferent pumping rates, each set measured over a period of about oneday. The data sets involve a number of complications, such as variablewell diameter, free water table decline in the well, and effects ofdrilling mud. To analyze data from this borehole, we apply varioustechniques that have been developed for analyzing FFEC logs:direct-fitting, mass-integral, and the multi-rate method mentioned above.In spite of complications associated with the tests, analysis of the datais able to identify 44 hydraulically conducting fractures distributedover the depth interval 150-775 meters below ground surface. Thesalinities (in FEC), and transmissivities and pressure heads (indimensionless form) of these 44 features are obtained and found to varysignificantly among one another. These results are compared with datafrom eight packer tests with packer intervals of 10-80 m, which wereconducted in this borehole over the same depth interval. They are foundto be consistent with these independent packer-test data, thusdemonstrating the robustness of the FFEC logging method under non-idealconditions.

  20. Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations

    NASA Astrophysics Data System (ADS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Ohfuji, Hiroaki; Takahashi, Manabu; Ito, Kazumasa; Kishida, Kiyoshi

    2015-07-01

    In this study, a series of long-term, intermittent permeability experiments utilizing Berea sandstone and Horonobe mudstone samples, with and without a single artificial fracture, is conducted for more than 1000 days to examine the evolution of rock permeability under relatively high-temperature and confining pressure conditions. Effluent element concentrations are also measured throughout the experiments. Before and after flow-through experiments, rock samples are prepared for X-ray diffraction, X-ray fluorescence, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy to examine the mineralogical changes between pre and postexperimental samples, and also for microfocus X-ray CT to evaluate the alteration of the microstructure. Although there are exceptions, the observed, qualitative evolution of permeability is found to be generally consistent in both the intact and the fractured rock samples—the permeability in the intact rock samples increases with time after experiencing no significant changes in permeability for the first several hundred days, while that in the fractured rock samples decreases with time. An evaluation of the Damkohler number and of the net dissolution, using the measured element concentrations, reveals that the increase in permeability can most likely be attributed to the relative dominance of the mineral dissolution in the pore spaces, while the decrease can most likely be attributed to the mineral dissolution/crushing at the propping asperities within the fracture. Taking supplemental observations by microfocus X-ray CT and using the intact sandstone samples, a slight increase in relatively large pore spaces is seen. This supports the increase in permeability observed in the flow-through experiments.

  1. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  2. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  3. Core formation in silicate bodies

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  4. Statistics of silicate units in binary glasses

    NASA Astrophysics Data System (ADS)

    Gaddam, Anuraag; Montagne, Lionel; Ferreira, José M. F.

    2016-09-01

    In this paper, we derive a new model to determine the distribution of silicate units in binary glasses (or liquids). The model is based on statistical mechanics and assumes grand canonical ensemble of silicate units which exchange energy and network modifiers from the reservoir. This model complements experimental techniques, which measure short range order in glasses such as nuclear magnetic resonance (NMR) spectroscopy. The model has potential in calculating the amounts of liquid-liquid phase segregation and crystal nucleation, and it can be easily extended to more complicated compositions. The structural relaxation of the glass as probed by NMR spectroscopy is also reported, where the model could find its usefulness.

  5. ROCK PHYSICS. Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera.

    PubMed

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2015-08-01

    Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture.

  6. ROCK PHYSICS. Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera.

    PubMed

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2015-08-01

    Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. PMID:26160377

  7. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  8. The formation of cobalt-bearing ferromanganese crusts under fluid destruction of silicate matter

    NASA Astrophysics Data System (ADS)

    Maksimov, S. O.; Safronov, P. P.

    2016-02-01

    The processes of fluid destruction of various silicate rocks under diffusion of flows of compressed gases (mainly carbonaceous) were studied. The gas condensate nature was ascertained for the forming alumoslilicate and ore (cobalt-iron-manganese hydroxide) substances produced under this fluid destruction in the forms of microcrusts and microconcretions. The ore condensates contained in high concentrations the typomorphic elements of oceanic ferromanganese formations (Mn, Co, Ni, Cu, Pb, Ce, and Pt). The elemental composition of the ore oxide substance formed under the destruction of various silicate matrices exhibits a definite degree of endemism with prevalence of the Co-Mn association. The pronounced concentration of barium is related to the substantially carbonaceous composition of the fluid systems. A cerium paradox is revealed: Ce3+ is oxidized into Ce4+ and absorbed by ferromanganese hydrogel and the minimum of cerium appears in rare-earth phosphates.

  9. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas

    USGS Publications Warehouse

    Carley, T.L.; Miller, C.F.; Wooden, J.L.; Bindeman, I.N.; Barth, A.P.

    2011-01-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), ??r??faj??kull (1362 AD) and Torfaj??kull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions. ?? 2011 Springer-Verlag.

  10. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?

    SciTech Connect

    Gaillardet, J.; Dupre, B.; Allegre, C.J.

    1999-12-01

    This study focuses on the major and trace element composition of suspended sediments transported by the world's largest rivers. Its main purpose is to answer the following question: is the degree of weathering of modern river-borne particles consistent with the estimated river dissolved loads derived from silicate weathering? In agreement with the well known mobility of elements during weathering of continental rocks, the authors confirm that river sediments are systematically depleted in Na, K, Ba with respect to the Upper Continental Crust. For each of these mobile elements, a systematics of weathering indexes of river-borne solids is attempted. A global consistency is found between all these indexes. Important variations in weathering intensities exist. A clear dependence of weathering intensities with climate is observed for the rivers draining mostly lowlands. However, no global correlation exists between weathering intensities and climatic or relief parameters because the trend observed for lowlands is obscured by rivers draining orogenic zones. An inverse correlation between weathering intensities and suspended sediment concentrations is observed showing that the regions having the highest rates of physical denudation produce the least weathered sediments. Finally, chemical and physical weathering are compared through the use of a simple steady state model. The authors show that the weathering intensities of large river suspended sediments can only be reconciled with the (silicate-derived) dissolved load or rivers, by admitting that most of the continental rocks submitted to weathering in large river basins have already suffered previous weathering cycles. A simple graphical method is proposed for calculating the proportion of sedimentary recycling in large river basins. Finally, even if orogenic zones produce weakly weathered sediments, the authors emphasize the fact that silicate chemical weathering rates (and hence CO{sub 2} consumption rates by silicate

  11. The Lassell Massif - a Silicic Lunar Volcano

    NASA Astrophysics Data System (ADS)

    Ashley, J.; Robinson, M. S.; Stopar, J. D.; Glotch, T. D.; Hawke, B. R.; Lawrence, S. J.; Jolliff, B. L.; Greenhagen, B. T.; Paige, D. A.

    2013-12-01

    Lunar volcanic processes were dominated by mare-producing basaltic extrusions. However, limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits have long been suspected on the basis of spectral anomalies (red spots), landform morphologies, and the occurrence of minor granitic components in Apollo sample suites [e.g., 1-5]. The LRO Diviner Lunar Radiometer Experiment (Diviner) measured thermal emission signatures considered diagnostic of highly silicic rocks in several red spot areas [6,7], within the Marius domes [8], and from the Compton-Belkovich feature on the lunar farside [9]. The present study focuses on the Lassell massif red spot (14.73°S, 350.97°E) located in northeastern Mare Nubium near the center of Alphonsus A crater. Here we use Diviner coverage co-projected with Lunar Reconnaissance Orbiter Camera (LROC) images [10] and digital elevation models to characterize the Lassell massif geomorphology and composition. Localized Diviner signatures indicating relatively high silica contents correlate with spatially distinct morphologic features across the Lassell massif. These features include sub-kilometer scale deposits with clear superposing relationships between units of different silica concentrations. The zone with the strongest signal corresponds to the southern half of the massif and the Lassell G and K depressions (formerly thought to be impact craters [11]). These steep-walled pits lack any obvious raised rims or ejecta blankets that would identify them as impact craters; they are likely explosive volcanic vents or collapse calderas. This silica-rich area is contained within the historic red spot area [4], but does not appear to fully overlap with it, implying compositionally distinct deposits originating from the same source region. Low-reflectance deposits, exposed by impact craters and mass wasting across the massif, suggest either basaltic pyroclastics or minor late-stage extrusion of basaltic lavas through vents

  12. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  13. Modern estuarine siliceous spiculites, Tasmania, Australia: A non-polar link to Phanerozoic spiculitic cherts

    NASA Astrophysics Data System (ADS)

    Reid, C. M.; James, N. P.; Kyser, T. K.; Barrett, N.; Hirst, A. J.

    2008-02-01

    Biosiliceous sedimentary rocks are well known from the geologicrecord and many are correctly interpreted to have formed indeep-water or cold-water environments. Shallow non-polar spiculitesare also known from the rock record, yet no modern analog hasbeen documented for such environments. Bathurst Harbour, anestuarine system in southwest Tasmania, provides this much-neededmodern analog. In this system a sharp halocline separates tannin-richlow-salinity surface waters from clear marine bottom waters.Tannins supply few nutrients and substantially reduce lightpenetration to bottom environments, resulting in a thinned photiczone and the mixing of deeper-water sub-photic biotas of softcorals, bryozoans, and sponges with other organisms more typicalof this temperate shallow-water environment. The well-definedhalocline allows a typically marine biota, including echinoderms,to live in bottom waters of this estuarine setting. The bioclasticfactory, producing both carbonate and siliceous particles, existsin marine subphotic bottom waters of incised channel and shallowrocky environments along the shoreline. Extensive organic-richsoft sediments in protected embayments generate few bioclasts,but contain allochthonous sponge spicules transported from theadjacent bioclastic factory. Trapping of organic material withinthe estuarine system lowers sediment pH and promotes dissolutionof carbonate biofragments, resulting in preferential preservationof siliceous sponge spicules. This situation implies that manybiosiliceous neritic deposits in the rock record may be theresult of similar preferential preservation.

  14. Metal-silicate partitioning of lithophile elements at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Chidester, B.; Rahman, Z.; Righter, K.; Campbell, A. J.

    2015-12-01

    Trace element abundances in Earth's core were established during core-mantle differentiation and metal-silicate equilibration processes early in the planet's history. The core has been suggested as a possible reservoir in which the presence of nominally lithophile elements can explain the observance of non-chondritic ratios of some of these elements in surface rocks (e.g. Nb/Ta, Th/U and Mg/Si)[1-2]. Additionally, several of these elements (U, Th and K) are long-lived sources of radiogenic heat and could be important for explaining the geomagnetic field early in Earth's history. Based on their metal-silicate partitioning behavior at near ambient conditions, it is frequently assumed that uranium and other strongly lithophile elements are present in the core at only trivial abundances. However, core formation took place at a variety of conditions, reaching pressures and temperatures well above those in which most metal-silicate partitioning measurements were obtained[3]. Here we report metal-silicate partitioning data of lithophile elements such as U and Mg, as well as partially siderophile elements Si and S, at conditions more relevant to metal segregation and core formation in a magma ocean. Laser heated diamond anvil methods were used to obtain pressures of 30-70 GPa and temperatures up to 5200 K. FIB/EM methods were used to section the recovered samples and measure the quenched metal and silicate melt compositions. We find that even strongly lithophile elements such as U and Mg partition measurably into the metal phase under extreme P-T conditions. References: [1]Wade, J. and Wood, B. J., Nature, 109 (2001) [2]Allegre et al. EPSL, 134 (1995) [3]Rubie, et al. Icarus, 248 (2015)

  15. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  16. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking... agent in food in an amount not in excess of that reasonably required to produce its intended effect. (b... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food...

  17. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  18. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  19. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  20. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  1. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  2. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  3. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  4. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  5. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  7. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  9. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation....

  10. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  11. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  12. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  13. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  15. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  16. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  17. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  18. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  19. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  20. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  1. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  2. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  3. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  4. Early Miocene Kirka-Phrigian caldera, western Anatolia - an example of large volume silicic magma generation in extensional setting

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Helvacı, Cahit

    2014-05-01

    Large rhyolitic ignimbrite occurrences are close connected to the Early Miocene initiation of extensional processes in the central-west Anatolia along Taşvanlı-Afyon zones. Field correlations, petrographical, geochemical and geochronological data lead to a substantial reinterpretation of the ignimbrite surrounding Kırka area, known from its world-class borate deposits, as representing the climatic event of a caldera collapse, unknown up to now and newly named "Kırka-Phrigian caldera". The caldera, which is roughly oval (24 km x 15km) in shape, one of the largest in Turkey, is supposed to have been formed in a single stage collapse event, at ~19 Ma that generated huge volume extracaldera outflow ignimbrites. Transtensive/distensive tectonic stresses since 25 Ma ago resulted in the NNW-SSE elongation of the magma chamber and influenced the roughly elliptical shape of the subsided block (caldera floor) belonging to the apex of Eskişehir-Afyon-Isparta volcanic area. Intracaldera post-collapse sedimentation and volcanism (at ~ 18 Ma) was controlled through subsidence-related faults with generation of a series of volcanic structures (mainly domes) showing a large compositional range from saturated silicic rhyolites and crystal-rich trachytes to undersaturated lamproites. Such volcanic rock association is typical for lithospheric extension. In this scenario, enriched mantle components within the subcontinental lithospheric mantle will begin to melt via decompression melting during the initiation of extension. Interaction of these melts with crustal rocks, fractionation processes and crustal anatexis driven by the heat contained in the ascending mantle melts produced the silicic compositions in a large crustal reservoir. Such silicic melts generated the initial eruptions of Kırka-Phrigian caldera ignimbrites. The rock volume and geochemical evidence suggests that silicic volcanic rocks come from a long-lived magma chamber that evolved episodically; after caldera

  5. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  6. Paleo-hydrological history in pore water extracted from sedimentary rocks in the coastal area

    NASA Astrophysics Data System (ADS)

    Ikawa, R.; Machida, I.; Koshigai, M.; Nishizaki, S.; Marui, A.; Yoshizawa, T.; Ito, N.

    2010-12-01

    Over the past decade, new utilization methods of underground space development such as geological disposal of high level radioactive waste (HLW) and carbon capture and storage (CCS) have been important issues under discussion in Japan. Coastal areas have been identified as suitable candidate sites for such projects. A good understanding of the structure of seawater/freshwater interface and fault is important due to the fact that it serves as a preferential pathway through which radionuclide can be transported by means of groundwater. There is, however, little available information worldwide on deep groundwater studies in coastal areas. There is also virtually no study has been conducted on the behavior of groundwater and pore water in coastal impermeable sedimentary rocks. In this study, large scale core drilling (1000m depth) has been carried out in coastal area at Hamasato in the Horonobe area of Hokkaido, Japan in order to investigate the geological structure and deep groundwater flow system with the residence time. Pore water with various adsorptivity from drilling core samples was gradually collected by centrifugation and squeezing methods and analyzed for water chemistry. This is aimed at estimating the paleo-hydrological history of the coastal environment by geochemical information from the pore water. Lithoface in the study area consists of sandy r and alternate (sandy and silty) layers intercalations up to 250m deep. Below 250m, shows sand and silt layers. Pore water volume collected in the sand layers by centrifugation method was almost same, contrary to that in the silt layers which decreased with depth. On the other hand, the ratio of pore water with high adsorpivity in silt layers increased with depth. Except the surface layer (<50m), electric conductivity (EC) and Cl values in pore water samples increased with depth below 300m. In this study, we report on the characteristics of seawater/freshwater interface and deep groundwater flow system based on

  7. A physical basis for remote rock mapping of igneous rocks using spectral variations in thermal infrared emittance

    NASA Technical Reports Server (NTRS)

    Walter, L. S.; Labovitz, M. L.

    1980-01-01

    Results of a theoretical investigation of the relation between spectral features in the 8-12 micrometer region and rock type are presented. Data on compositions of a suite of rocks and measurements of their spectral intensities in 8.2-10.9 and 9.4-12.1 micrometer bands published by Vincent (1973) were subjected to various quantitative procedures. There was no consistent direct relationship between rock group names and the relative spectral intensities. However, there is such a relationship between the Thornton-Tuttle (1960) Differentiation Index and the relative spectral intensities. This relationship is explicable on the basis of the change in average Si-O bond length which is a function of the degree of polymerization of the SiO4 tetrahedra of the silicate minerals in the igneous rocks.

  8. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  9. Imaging Extraterrestrial Rocks with Scanning Magnetic Microscopy

    NASA Astrophysics Data System (ADS)

    Andrade Lima, E.; Weiss, B. P.; Gattacceca, J.

    2013-05-01

    Scanning magnetic microscopes map the magnetic field produced by a geological sample at submillimeter scales. Such magnetic field maps reveal invaluable information about rocks with complex fine-scale structures. In particular, instruments based on high-sensitivity SQUID sensors can detect magnetic moments as weak as 10^-16 Am2, outperforming by four orders of magnitude the detection limit of the best commercial moment magnetometers. This unique combination of high spatial resolution and high moment sensitivity enables paleomagnetic analyses on samples that have not been accessible to standard moment magnetometry. Targets for scanning magnetic microscopy include extended samples (such as thin sections of meteorites, lunar rocks, and earth rocks) and individual particles of small size (< 500 μm) comprising impact melt spherules, zircon and other silicate cristals, chondrules, and cosmic dust. Here we present applications of the technique focusing on extraterrestrial samples and discuss how it can be an important tool in investigating the effects of shock on the magnetic record in rocks.

  10. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  11. Tracking bubble evolution inside a silicic dike

    NASA Astrophysics Data System (ADS)

    Álvarez-Valero, Antonio M.; Okumura, Satoshi; Arzilli, Fabio; Borrajo, Javier; Recio, Clemente; Ban, Masao; Gonzalo, Juan C.; Benítez, José M.; Douglas, Madison; Sasaki, Osamu; Franco, Piedad; Gómez-Barreiro, Juan; Carnicero, Asunción

    2016-10-01

    Pressure estimates from rapidly erupted crustal xenoliths constrain the depth of intrusion of the silicic lavas hosting them. This represents an opportunity for tracking magmatic bubble's evolution and quantifying the variation in bubble volume during rapid magma ascent through a volcanic dike just prior to eruption. The petrology, stable-isotope geochemistry and X-ray micro-tomography of dacites containing crustal xenoliths, erupted from a Neogene volcano in SE Spain, showed an increase in porosity from ~ 1.7 to 6.4% from ~ 19 to 13 km depth, at nearly constant groundmass and crystal volumes. This result provides additional constraints for experimental and numerical simulations of subvolcanic magma-crust degassing processes in silicic systems, and may allow the characterization of volcanic eruptive styles based on volatile content.

  12. Cooling rate calculations for silicate glasses.

    NASA Astrophysics Data System (ADS)

    Birnie, D. P., III; Dyar, M. D.

    1986-03-01

    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  13. Recycle of silicate waste into mesoporous materials.

    PubMed

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung

    2011-04-15

    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  14. Evidence for silicate dissolution on Mars from the Nakhla meteorite

    NASA Astrophysics Data System (ADS)

    Lee, M. R.; Tomkinson, T.; Mark, D. F.; Stuart, F. M.; Smith, C. L.

    2013-02-01

    Veins containing carbonates, hydrous silicates, and sulfates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially widened by etching along [001]. This orientation selective dissolution may have been due to the presence within olivine of shock-formed [001](100) and [001]{110} screw dislocations. The duration of etching is likely to have been brief, possibly less than a year, and the solutions responsible were sufficiently cool and reducing that laihunite did not form and Fe liberated from the olivine was not immediately oxidized. The pores within olivine were mineralized in sequence by siderite, nanocrystalline smectite, a Fe-Mg phyllosilicate, and then gypsum, whereas only the smectite occurs within augite. The nanocrystalline smectite was deposited as submicrometer thick layers on etched vein walls, and solution compositions varied substantially between and sometimes during precipitation of each layer. Together with microcrystalline gypsum the Fe-Mg phyllosilicate crystallized as water briefly returned to some of the veins following desiccation fracturing of the smectite. These results show that etching of olivine enhanced the porosity and permeability of the nakhlite parent rock and that dissolution and secondary mineralization took place within the same near-static aqueous system.

  15. Identifying the Crystal Graveyards Remaining After Large Silicic Eruptions

    NASA Astrophysics Data System (ADS)

    Gelman, S. E.; Deering, C. D.; Bachmann, O.; Huber, C.; Gutiérrez, F. J.

    2014-12-01

    The accumulation of voluminous crystal-poor rhyolites from an upper crustal mush environment inherently necessitates the complementary formation of unerupted silicic cumulates. However, identification of such frozen cumulates remains controversial. This has motivated us to develop of a new geochemical model aimed at better constraining the behavior of trace elements in a magma reservoir concurrently tracking crystallization and imperfect segregation of melt. We use a numerical method to solve our model equations rather than seek analytical solutions, thereby relieving overly simplistic assumptions for the dependencies between partition coefficient or melt segregation rate as functions of crystallinity. Our model allows partition coefficient to vary depending on the crystallinizing mineralogy at any particular stage in magma cooling, as well as the ability to test different rates and efficiencies of crystal-melt segregation. We apply our model first to the Searchlight Pluton as a well-constrained case study, which allows us to quantitatively test existing interpretations of that pluton. Building on this, we broaden our model to better understand the relationship between volcanic and plutonic rocks utilizing the NAVDAT database. Our results produce unambiguous fractionation signatures for segregated melts, while those signatures are muted for their cumulate counterparts. These models suggest that some large granitiods may represent accumulations of crystals, having lost melt in some cases to volcanic eruptions or to higher level evolved plutonic units, although the trace element signature of this process is expected to be subtle.

  16. Crystallization from a vapor phase in igneous rocks -- A conceptual model

    SciTech Connect

    Kleck, W.D. )

    1993-04-01

    Euhedral, late-stage crystals in pocket pegmatite and in vesicles of volcanic rocks are commonly cited as examples of crystallization from a vapor phase. If, however, crystallization takes place only from the cavity forming vapor, that vapor cannot contain sufficient material for the formation of the observed crystals. The approximate amount of H[sub 2]O vapor and percentage of dissolved silicate matter (1) for shallow pocket pegmatite is 0.5 g/cm[sup 3] and 0.3 percent; (2) for vesicles is 0.002 g/cm[sup 3] and [much lt]1 percent. These values show that the silicate matter dissolved in the vapor is insufficient for the formation of the observed crystals. No (or little) recharge of the vapor is an unstated assumption in most discussions of enclosed cavities. This, however, is not quite correct. For a simplified system, four phases will exist in equilibrium: (1) mineral grains growing from liquid, (2) late-stage, H[sub 2]O-enriched, silicate liquid, (3) vapor, (4) crystals growing from vapor. The total system (for transferal of silicate matter) is given. Little silicate matter is dissolved in the vapor at any one time, but it is replenished as the crystals grow. The vapor becomes a continuously resupplied reservoir of dissolved silicate matter; crystallization from the vapor continues until the silicate liquid is depleted.

  17. Dolomitic marbles and associated calc-silicates, Tandilia belt, Argentina: Geothermobarometry, metamorphic evolution, and P- T path

    NASA Astrophysics Data System (ADS)

    Delpino, Sergio H.; Dristas, Jorge A.

    2008-06-01

    The metamorphic evolution of dolomitic marbles and associated calc-silicate rocks from Punta Tota (NE Tandilia belt, Buenos Aires province, Argentina) has been evaluated through petrographic, geothermobarometric, and fluid inclusion studies. Thin beds of dolomitic marble are intercalated in amphibolites and constitute the upper part of a stratified basement sequence, which starts at the base with garnet migmatites showing a great abundance of pegmatitic segregates, overlain by biotite-garnet gneisses. Peak metamorphic conditions are estimated at 750-800 °C and 5-6 kb, followed by near isobaric cooling to about 500-450 °C and 5.5-6.5 kb. Anhydrous progressive metamorphic assemblages in both marbles (Fo + Cal + Dol + Cpx + Spl) and adjacent calc-silicate rocks (Cpx + An + Cal + Qtz) strongly retrogressed to hydrous minerals (Tr, Tlc, Grs, Czo, Srp) with decreasing temperatures and increasing water activities. The intense rehydration of the rocks relates to the emplacement of volatile-rich pegmatitic bodies (Qtz + Pl + Kfs + Bt + Grt), which also resulted in the crystallization of clinochlore + phlogopite in the marble and biotite + muscovite in the adjacent calc-silicate rocks. Metamorphic reactions based on textural relations and evaluated on a suitable petrogenetic grid, combined with geothermobarometric results and fluid inclusion isochores, indicate a metamorphic evolution along a counterclockwise P- T path. Two probable geotectonic settings for the determined P- T trajectory are proposed: (1) thinning of the crust and overlying supracrustal basin in an ensialic intraplate tectonic setting and (2) development of a marginal back-arc basin, associated with an oceanic-continental convergent plate margin. In both models, the initial extensional regime is followed by a compressional stage, with overthickening of the basement and supracrustal rocks, during the climax of the Transamazonian cycle at approximately 1800 Ma ago. Continuous convergence and blockage of

  18. Nature of basalt-deep crust interaction in the petrogenesis of a potassium-rich, silicic-dominated eruptive system, Davis Mountain volcanic field, west Texas

    SciTech Connect

    Ward, R.L.; Walker, J.A. . Dept. of Geology)

    1993-04-01

    The Davis Mountain volcanic field (DMVF) is one of several silicic-dominated eruptive centers that constitute the bulk of the Trans Pecos volcanic province (TPVP). New major-, trace element, and Pb-O isotope data on local granulite-facies xenoliths and the DMVF are used in evaluating the extent of basalt-deep crust interaction to produce voluminous silicic lavas and -ignimbrites. The DMVF (39.3--35.4 Ma) is a high-K, alkali basalt-potassic trachybasalt-shoshonite-latite-trachyte-rhyolite volcanoplutonic series with the evolved members being silica-saturated. DMF silicic rocks are characterized by high concentrations of Rb, Th, U, and K, low-[sup 18]O and have a broad range in Pb isotopes. These characteristics are inconsistent with an origin by partial melting of a Rb-Th-U depleted, unradiogenic Pb granulitic deep crust. However, distinctly different Pb isotope compositions between mafic and silicic rocks preclude an origin by fractional crystallization alone. Multistage-AFC involving a mantle-source, various proportions of OL-CPX-PLAG-KSPAR-MAG-AP-BIO-QTZ-aenigmatite-ZR differentiation, limited (<10%) amounts of deep and upper crustal contamination, and mixing between mafic and silicic magmas can satisfactorily account for the observed chemical and isotopic variation in the DMVF.

  19. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation. PMID

  20. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  1. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  2. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  3. IRIDIUM—a program to model reaction of silicate liquid infiltrating a porous solid assemblage

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan E.

    2003-05-01

    The migration of silicate liquid through porous rock can give rise to compositional changes in both the liquid and the host solid assemblage that are important in a number of fields of igneous petrology. Ongoing studies in numerical models of crystallization and compaction behavior in layered intrusions by our group have lead to a need to incorporate more realistic silicate crystallization behavior. The computer program IRIDIUM incorporates liquid-mineral equilibria with one-dimensional transport equations for modeling magmatic infiltration-reaction (IR) phenomenon. The program allows calculation of mineral precipitation/dissolution and chromatographic fronts as silicate liquid percolates through a porous solid matrix. The liquid-mineral equilibria part of the IRIDIUM program is based on the free energy minimization algorithm used in the MELTS software algorithm of Ghiorso and coworkers and includes trace element modeling. The IRIDIUM program incorporates both general and compaction-driven thermal and mass transport equations. A simple example involving infiltration metasomatism in olivine cumulates in the Muskox intrusion shows some of the capabilities of the program.

  4. Silicic ash beds bracket Emeishan Large Igneous province to < 1 m.y. at ~ 260 Ma

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Cawood, Peter A.; Hou, Ming-Cai; Yang, Jiang-Hai; Ni, Shi-Jun; Du, Yuan-Sheng; Yan, Zhao-Kun; Wang, Jun

    2016-11-01

    Claystone beds directly below and above the Emeishan basalts in SW China formed around the Guadalupian-Lopingian (G - L) boundary. Zircons from both levels give U-Pb ages of ~ 260 Ma, and are identical within-error to ages reported for the Emeishan Large Igneous Province (LIP). The claystones lack Nb - Ta anomalies on primitive mantle normalized elemental diagrams; zircons from these claystones have a geochemical affinity to within-plate-type magmas. These features, combined with the strong negative Eu anomalies in the zircons and high Al2O3/TiO2 ratios, indicate that claystones around the G - L boundary have a silicic volcanic component related to Emeishan LIP. Zircons from the underlying claystone bed have much higher U/Yb and Th/Nb ratios and lower εHf(t) values than those overlying the LIP, suggesting that early-stage silicic volcanic rocks had a higher crustal contamination or assimilation during magmatic processes. In terms of stratigraphic correlation, our data demonstrate that silicic eruptions occurred not only at the end, but also at the beginning of the Emeishan LIP, and the overall duration of the main basaltic phase was short (< 1 m.y).

  5. Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2015-08-01

    Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture.

  6. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  7. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  8. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  9. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  10. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    SciTech Connect

    Not Available

    1988-07-01

    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  11. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  12. Rock weathering and Carbon cycle

    NASA Astrophysics Data System (ADS)

    Strozza, Patrick

    2010-05-01

    In the history of the Earth system, we can find indicators of hot or glacial periods, as well as brutal climatic change… How can we explain those climate variations on a geological timescale ? One of the causative agents is probably the fluctuation of atmospheric CO2 amounts, (gas responsible for the greenhouse effect). A concrete study of some CO2 fluxes between Earth system reservoirs (atmo, hydro and lithosphere) is proposed in this poster. Hydrogencarbonate is the major ion in river surface waters and its amount is so high that it can not be explained by a simple atmospheric Carbon diffusion. From a simple measurement of river HCO3- concentration, we can estimate the consumption of atmospheric CO2 that arises from carbonate and silicate weathering processes. Practical experiments are proposed. These are carried out in the local environment, and are conform to the curriculums of Chemistry and Earth sciences. These tests enable us to outline long-term Carbon cycles and global climatic changes. Key words : Erosion, rock weathering, CO2 cycle, Hydrogencarbonate in waters, climatic changes

  13. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions

    SciTech Connect

    Jellinek, A. Mark; DePaolo, Donald J.

    2002-01-02

    The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10(5) to 10(6) years. We address the question of why buoyant and otherwise eruptible high silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10(18) to 10(20) Pa s(-1), dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10(2) km(3)) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid

  14. Rock and Sexuality.

    ERIC Educational Resources Information Center

    Frith, Simon; McRobbie, Angela

    1978-01-01

    Discusses rock as a form of both sexual expression and control. Describes rock's representations of masculinity and femininity and considers the contradictions involved in the representations. Relates the effects of rock to its form--as music, as commodity, as culture, and as entertainment. (JMF)

  15. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  16. The Sm-Nd systematics of silicate inclusions in iron meteorites: Results from Caddo (IAB)

    NASA Technical Reports Server (NTRS)

    Stewart, Brian W.; Papanastassiou, D. A.; Wasserburg, G. J.

    1993-01-01

    The timing of events leading to the formation of silicate-rich and metal-rich regions in planetesimals remains an important problem in the study of planetary formation and differentiation in the early solar system. The IAB irons are especially important as they are considered to represent a magmatic differentiation series. Iron meteorites present a particular challenge for chronological studies, due to the relative paucity of phases serving as hosts for radioactive parent-daughter nuclides. Recent work using the Re-Os system, following on the pioneering work by Herr et al. and Luck and Allegre, appears promising, but investigators up to now have concentrated on whole rock isochrons. Silicate clasts enclosed within iron meteorites can provide information about the chronology and thermal history of irons. Extensive work on Rb-Sr, K-Ar, and I-Xe has been reported on silicate inclusions in iron meteorites. We report the initial results from our Sm-Nd study of an inclusion with the Caddo IAB iron, the first Sm-Nd isotopic study of a silicate clast embedded within an iron meteorite. Our results include measurements of the standard long-lived Sm-147/Nd-143 (tau = 152 AE) system, as well as the shorter-lived SM-146/Nd-142 (tau = 0.149 AE) system, which has been shown to be very useful in deciphering the history of the early solar system. The Caddo silicate clast was described by Palme et al., who kindly provided us with a major part of the inclusion. The inclusion is coarse-grained consisting predominantly of olivine, clinopyroxene, and plagioclase, with lesser amounts of orthopyroxene, Fe-Ni metal, sulfide, and phosphate. The relatively large grain size (up to 3 mm) and 120 degree grain boundaries suggest extensive metamorphism at high temperatures. Based on study of a thin section, there is evidence for metal invading along grain boundaries in some regions of the inclusion, suggesting that the Fe-Ni metal was molten when the silicate clast was incorporated. Metamorphic

  17. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  18. Silicate melt inclusions and glasses in lunar soil fragments from the Luna 16 core sample

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1972-01-01

    More than 2000 fragments were studied microscopically, and electron microprobe analyses were made of 39 selected areas, from a few square mm of polished surface, through 75- to 425-??m fragments of lunar soil from two samples of the Luna 16 core. The silicate melt inclusions and glasses differ in important details from those observed earlier in the Apollo samples. Melt inclusions in olivine contain epitaxially oriented daughter crystals, but also show a similar epitaxy around the outside of the crystals not observed in previous lunar samples. Melt inclusions in ilmenite suggest trapping at successive stages in a differentiation sequence. There is abundant evidence for late-stage silicate liquid immiscibility, with melt compositions similar but not identical to those from Apollo 11 and 12. A comparison of the alkali ratio of any given bulk rock analysis with that of its late-stage, high-silica melt shows gross differences for different rocks. This is pertinent to understanding late-stage differentiation processes. Glass fragments and spherules exhibit a wide range of crystallization textures, reflecting their wide range of compositions and cooling histories. No significant differences were found between the two portions of core examined (Zones A and D). ?? 1972.

  19. In Situ Evaluation of Water-Rock Reactions during Carbon Dioxide Injection in Basaltic and Metasedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Assayag, N.; Goldberg, D.; Takahashi, T.

    2006-12-01

    Large differences between laboratory and field derived mineral reaction rates underscore the importance of evaluating mineral-fluid reactions under in situ conditions in a natural environment. This study investigates the extent of in situ water-rock reactions in basaltic and metasedimentary rocks (rich in Ca, Mg silicates) after the injection of CO2 enriched water, with the objective of providing information pertinent to permanent storage of anthropogenic CO2 in geologic reservoirs. CO2 injections were conducted using a single-well push-pull testing strategy. CO2 saturated water (pH 3.5) was injected into a hydraulically isolated and permeable aquifer in a 300-m experimental borehole. Water samples were retrieved after the CO2 injection. Mass transfer terms for Ca, Mg, Na, and Si were determined by using the measured ion concentrations. Using the mass balance, the weeks-long incubation time of the injected solution, and geometric estimates of the reactive surface area of the host rocks, in situ bulk rock dissolution rates of aquifer material were estimated. In addition, δ13C data coupled with total CO2 concentration were used as a tracer to quantitatively evaluate processes such as carbonate dissolution and precipitation, oxidation of organic matter and biological activity within the aquifer. Results show that the injected CO2 was neutralized within several days by two processes; mixing with aquifer water, and rock-water reactions. Calculated bulk rock dissolution rates decrease with increasing pH. The pH dependence of the dissolution rate for Ca is twice as large as for Mg, strongly favoring Ca release and possibly suggesting an additional source of Ca besides silicate minerals. Analyses of δ13C on water and rock samples confirm dissolution of calcium carbonates within the aquifer.

  20. Calcium-aluminum-silicate-hydrate "cement" phases and rare Ca-zeolite association at Colle Fabbri, Central Italy

    NASA Astrophysics Data System (ADS)

    Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V. V.; Bortolozzi, G.

    2010-06-01

    Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — "cement" phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

  1. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  2. Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, S.

    2012-01-01

    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs.

  3. [Sequential extraction experiments applied to study chemical mobility of fluorine in rocks].

    PubMed

    Xu, Li-Rong; Liang, Han-Dong; Luo, Kun-Li; Feng, Fu-Jian; Tan, Jian-An

    2006-11-01

    Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian.

  4. [Sequential extraction experiments applied to study chemical mobility of fluorine in rocks].

    PubMed

    Xu, Li-Rong; Liang, Han-Dong; Luo, Kun-Li; Feng, Fu-Jian; Tan, Jian-An

    2006-11-01

    Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian. PMID:17326440

  5. Adsorption of β-carotene on modified magnesium silicate

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Guo, Ning; Fu, Yongfeng

    2016-02-01

    Modified flocculation magnesium silicate is prepared by a hydrothermal process at 120°C for 18 h after adding Al2(SO4)3 into the magnesium silicate gel. Compared with standard magnesium silicate with 328.116 m2 g-1 surface area, this modified magnesium silicate has a bigger BET surface area of 536.803 m2 g-1 and a lower interlayer water content. Modified magnesium silicate exhibits high β-carotene adsorption with a maximum adsorption capacity of 364.96 mg g-1. It is shown that when suspended in organic solvent, this material can be used effectively for carotenoid separation. Furthermore, our results suggest that modified magnesium silicate may be a promising candidate as an absorbent in the decoloring of oil.

  6. Charge Generation and Propagation in Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    2000-01-01

    Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the

  7. The evolution of immiscible silicate and fluoride melts: Implications for REE ore-genesis

    NASA Astrophysics Data System (ADS)

    Vasyukova, O.; Williams-Jones, A. E.

    2016-01-01

    exsolved from the silicate melt and altered the inclusion, replacing fluorbritholite-(Ce) with fluocerite-(Ce) and then bastnäsite-(Ce). This was followed by the formation of a fine-grained intergrowth of bastnäsite-(Ce), gagarinite-(Y) and fluorite at the expense of the earlier bastnäsite-(Ce). Chevkinite-(Ce) was not affected. Zircon, however, was replaced by anhydrous zirconosilicates and, in turn, by hydrous zirconosilicates. The inclusion represents the first macroscopic example of silicate-fluoride immiscibility in nature. We propose that globules of the fluoride melt were initially dispersed within the silicate melt and preserved only rarely in unaltered hypersolvus granite. They accumulated in the residual melt (and therefore in pegmatites) scavenging REE, Ca and F from the silicate melt and, with rare exceptions, were later destroyed by fluids. The latter process contributed significantly to the enrichment of the host rocks in REE, Ca and F.

  8. Late Mesozoic post-collisional intermediate to silicic magmatism in the Badjal area, Far East of Russia

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. I.; Pshenichny, C. A.

    1998-12-01

    The Late Cretaceous Badjal intrusive suite at the Far East of Russia includes a spectrum of rocks having emplaced successively in four phases, from (i) diorite and quartz diorite to (ii) granodiorite, (iii) granite and (iv) high-silica granite, various facies being distinguished within the phases. The generation of these rocks took place after the collision of a number of island arcs and a terrane now locally preserved in Sikhote-Alin region with the Asian continent, that had happened in the end of Early to the beginning of Late Cretaceous. The massifs intrude in Early Mesozoic sedimentary and volcanic-sedimentary rocks topping the basement, and in comagmatic volcanic rocks. Chemically, the granitoid rocks have high-K calc-alkaline character and form continuous and regular trends of most of major oxides and trace elements with the SiO 2 contents ranging from 55 to 77 wt.%, that favors the concept of crystal fractionation. Major oxides and REE have a break at 70 wt.% SiO 2 pointing to a change of precipitating mineral assemblage. Such change is also documented by the negative Eu anomaly. We believe that the fractionation of mafic minerals had to take place at the first stage of fractionation, whereas plagioclase and possibly biotite began precipitating later, as supposed by abrupt decrease of Ba. This hypothesis is in accordance with the mass balance calculations. Diorite magma compositionally similar to the first intrusive phase rocks should be taken for parental for the entire Badjal suite. Small volume of these oldest rocks makes us suggest that the parental magma was a mixture of silicic liquid and restite mineral phases that would result from the partial melting of a heterogeneous metapelite-basaltic or metapelite-amphibolitic protolith. Almost total absence of basalt and gabbro of close age in the area makes a suggestion of crustal silicic contamination of a mantle-produced basic magma unlikely. After the melting, the differentiation of the derived magmatic

  9. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  10. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  11. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  12. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  13. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  14. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  15. Automated igneous rock identifiers for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-04-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions [1]. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. Our algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high-resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples. Our prototype image analysis system identifies some igneous rocks from texture and color information. Spectral analysis algorithms have also been developed that successfully identify quartz, silica polymorphs, calcite, pyroxene, and jarosite from both visible/near-IR and mid-IR spectra. We have also developed spectral recognizers that identify high-iron pyroxenes and iron-bearing minerals using visible/near-IR spectra only. We are building a combined image and spectral database of rocks and minerals with which to continue development of our algorithms. Future plans include developing algorithms to identify

  16. Iron-rich silicates in the Earth's D'' layer.

    PubMed

    Mao, Wendy L; Meng, Yue; Shen, Guoyin; Prakapenka, Vitali B; Campbell, Andrew J; Heinz, Dion L; Shu, Jinfu; Caracas, Razvan; Cohen, Ronald E; Fei, Yingwei; Hemley, Russell J; Mao, Ho-kwang

    2005-07-12

    High-pressure experiments and theoretical calculations demonstrate that an iron-rich ferromagnesian silicate phase can be synthesized at the pressure-temperature conditions near the core-mantle boundary. The iron-rich phase is up to 20% denser than any known silicate at the core-mantle boundary. The high mean atomic number of the silicate greatly reduces the seismic velocity and provides an explanation to the low-velocity and ultra-low-velocity zones. Formation of this previously undescribed phase from reaction between the silicate mantle and the iron core may be responsible for the unusual geophysical and geochemical signatures observed at the base of the lower mantle.

  17. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  18. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  19. Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.

    USGS Publications Warehouse

    Zientek, M.L.; Foose, M.P.; Leung, Mei

    1986-01-01

    Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.

  20. Sr-Nd-Hf-Pb isotopic constraints on the origin of silicic lavas in the northern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Martindale, M.; Mullen, E.; Weis, D.

    2015-12-01

    The Cascade Arc is the type-locality for a 'hot' subduction zone, where the downgoing slab is young and subduction is relatively slow; a unique setting for studying the controls on silicic (>56 wt% SiO2) magma genesis [1,2]. We present high precision Sr-Nd-Hf-Pb isotopic and trace element data for silicic lavas and country rocks from the major centres of the Garibaldi Volcanic Belt (GVB) in British Columbia, which are hosted by the Mesozoic Coast Plutonic Complex and accreted Coast Belt terranes. In isotopic plots, the silicic GVB lavas define mixing curves between northern Cascadia Basin sediment [3] and Juan de Fuca MORB. The silicic GVB lavas have lower ɛNd, and higher ɛHf, 87Sr/86Sr, 208Pb/204Pb and 207Pb/204Pb for a given 206Pb/204Pb than co-existing alkalic mafic lavas [2,4] which define a separate isotopic cluster. The alkalic mafic lavas have OIB-like trace element compositions [2,4], but the silicic lavas are calc-alkaline with a typical 'arc' trace element signature. Geochemical systematics suggest that a mafic, isotopically 'depleted' contaminant may be affecting the composition of GVB silicic lavas. However, modelling indicates that slab melts do not constitute a major component of the lavas despite high slab temperatures. Geochemical models also rule out the accreted Coast Belt terranes as an assimilant. However, AFC modelling using 147 Ma Cloudburst quartz diorite [5] as the assimilant can explain both the trace element and isotopic compositional range displayed by GVB silicic magmas, consistent with the Coast Plutonic Complex as a major component of the deep crust in this region. Crustal assimilation would have partially overprinted any alkalic mantle-derived signature of parental magmas, while imparting a calc-alkaline arc signature to resulting silicic magmas. [1] Green & Harry (1999) EPSL, 171; [2] Mullen & Weis (2013) G3, 14; [3] Carpentier et al. (2014) Chem Geol, 382; [4] Mullen & Weis (2015) EPSL, 414; [5] Friedman & Armstrong (1995) GSA

  1. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  2. SPM nanolithography of hydroxy-silicates.

    PubMed

    Valdrè, G; Moro, D; Hounsome, C M; Antognozzi, M

    2012-09-28

    Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium-aluminum hydroxide-silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium-aluminum hydroxide-silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s(-1). We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface. PMID:22948182

  3. Stability of foams in silicate melts

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander A.; Sahagian, Dork L.; Kutolin, Vladislav A.

    1993-12-01

    Bubble coalescence and the spontaneous disruption of high-porosity foams in silicate melts are the result of physical expulsion of interpore melt (syneresis) leading to bubble coalescence, and diffusive gas exchange between bubbles. Melt expulsion can be achieved either along films between pairs of bubbles, or along Plateau borders which represent the contacts between 3 or more bubbles. Theoretical evaluation of these mechanisms is confirmed by experimental results, enabling us to quantify the relevant parameters and determine stable bubble size and critical film thickness in a foam as a function of melt viscosity, surface tension, and time. Foam stability is controlled primarily by melt viscosity and time. Melt transport leading to coalescence of bubbles proceeds along inter-bubble films for smaller bubbles, and along Plateau borders for larger bubbles. Thus the average bubble size accelerates with time. In silicate melts, the diffusive gas expulsion out of a region of foam is effective only for water (and even then, only at small length scales), as the diffusion of CO 2 is negligible. The results of our analyses are applicable to studies of vesicularity of lavas, melt degassing, and eruption mechanisms.

  4. Thermochemistry of dense hydrous magnesium silicates

    NASA Astrophysics Data System (ADS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  5. Research drilling in young silicic volcanoes

    SciTech Connect

    Eichelberger, J.C.

    1989-06-30

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  6. Lithium alumino-silicate ion source development

    NASA Astrophysics Data System (ADS)

    Roy, Prabir Kumar; Seidl, Peter A.; Kwan, Joe W.; Greenway, Wayne G.; Waldron, William L.; Wu, James K.; Mazaheri, Kavous

    2009-11-01

    We report experimental progress on Li+ source development in preparation for warm dense matter heating experiments. To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, we are pursuing the use of a low (E < 5 MeV) kinetic energy singly ionized lithium beam and a thin target. Two kinds of lithium (Li+) alumino-silicate ion sources, β-spodumene and β-eucryptite, each of area 0.31 cm2, have been fabricated for ion emission measurements. These surface ionization sources are heated to 1200 to 1300 C where they preferentially emit singly ionized alkali ions. Tight process controls were necessary in preparing and sintering the alumino-silicate to the porous tungsten substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. Current density limit of the two kinds have been measured, and ion species identification of possible contaminants has been verified with a Wien (E x B) filter.

  7. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  8. Pristine moon rocks - Apollo 17 anorthosites

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.

    1991-01-01

    New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.

  9. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  10. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements

    USGS Publications Warehouse

    Carroll, R.D.

    1969-01-01

    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  11. Shock melting and vaporization of lunar rocks and minerals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  12. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  13. Paleomagnetism and Mineralogy of Unusual Silicate Glasses and Baked Soils on the Surface of the Atacama Desert of Northern Chile: A Major Airburst Impact ~12ka ago?.

    NASA Astrophysics Data System (ADS)

    Roperch, P. J.; Blanco, N.; Valenzuela, M.; Gattacceca, J.; Devouard, B.; Lorand, J. P.; Tomlinson, A. J.; Arriagada, C.; Rochette, P.

    2015-12-01

    Unusual silicate glasses were found in northern Chile in one of the driest place on earth, the Atacama Desert. The scoria-type melted rocks are littered on the ground at several localities distributed along a longitudinal band of about 50km. The silicate glasses have a stable natural remanent magnetization carried by fine-grained magnetite and acquired during cooling. At one locality, fine-grained overbank sediments were heated to form a 10 to 20 cm-thick layer of brick-type samples. Magnetic experiments on oriented samples demonstrate that the baked clays record a thermoremanent magnetization acquired in situ above 600°C down to more than 10cm depth and cooled under a normal polarity geomagnetic field with a paleointensity of 40μT. In some samples of the silicate glass, large grains of iron sulphides (troilite) are found in the glass matrix with numerous droplets of native iron, iron sulphides and iron phosphides indicating high temperature and strong redox conditions during melting. The paleomagnetic record of the baked clays and the unusual mineralogy of the silicate glasses indicate a formation mainly by in situ high temperature radiation. Paleomagnetic experiments and chemical analyses indicate that the silicate glasses are not fulgurite type rocks due to lightning events, nor volcanic glasses or even metallurgical slags related to mining activity. The existence of a well-developped baked clay layer indicates that the silicate glasses are not impact-related ejectas. The field, paleomagnetic and mineralogical observations support evidence for a thermal event likely related to a major airburst. The youngest calibrated 14C age on a charcoal sample closely associated with the glass indicates that the thermal event occurred around 12 to 13 ka BP. The good conservation of the surface effects of this thermal event in the Atacama Desert could provide a good opportunity to further estimate the threats posed by large asteroid airbursts.

  14. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  15. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  16. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  17. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  18. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2012-03-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210-3080 kg km-2 yr-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (2560 kg km-2 yr-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km-2 yr-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer

  19. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shintaro; Nakamura, Toshihiro

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and total Fe2O3). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g- 1 range (e.g., 140 μg g- 1 for Na2O, 31 μg g- 1 for Al2O3, and 8.9 μg g- 1 for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry.

  20. Stratigraphy, regional distribution, and reconnaisance geochemistry of Oligocene and Miocene volcanic rocks in the Paradise Range and northern Pactolus Hills, Nye County, Nevada

    SciTech Connect

    Not Available

    1992-01-01

    In this paper, stratigraphy, geochronology, and geochemistry of about 40 units of Oligocene and Miocene silicic ash-flow tuff, intermediate to silicic lava, and minor sedimentary rock exposed in three stratigraphic sections are described. The distribution and sources of five regionally widespread ash-flow tuff units were delineated. The late Cenozoic volcanic and tectonic history of the Paradise Range and northern Pactolus Hills was compared to other areas in the Great Basin.

  1. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  2. The pulse of large silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Schmitt, A. K.

    2008-12-01

    Large silicic volcanic fields (LSVFs) are considered windows into the tops of upper crustal batholiths that are the foundations of the continental crust. The space-time-volume records of volcanism in LSVFs are therefore assumed to mirror the accumulation record of the associated upper crustal batholith. However, key questions about the link between the volcanic and plutonic realms remain to be addressed if this view is to be substantiated. Among these are: 1) What does the surface pattern of volcanism really tell us about the development of the plutonic system below? Do these eruptions represent evacuation from a distinct batch of magma that formed just prior to eruption or do they represent the periodic tapping of a long lived regional magma body? 2) What does the cyclicity of the large caldera systems and the regional concordance of eruptions tell us about the development of the magmatic systems beneath? Does the repose period represent the time scale of development of the next magma batch or does the erupted magma develop in a timescale much shorter than the repose period? 3) What does the self-organization of single batholithic scale magmatic systems, for instance the development of a zoned system, tell us about the dynamics and time scales over which these systems differentiate and evolve? We are addressing some of these questions in the Altiplano-Puna Volcanic Complex of the Central Andes. Here, time scales of assembly and organization of batholith-scale silicic magma systems investigated using 40Ar/39Ar and U-Pb in zircon connote: 1) Supereruptions in the APVC evacuated distinct magma batches that accumulated within a few hundred thousand years prior to eruption 2) The repose period of cyclic supervolcanic systems is considerably longer than the time scale to develop the next eruptible magma batch 3) Batholith scale-silicic magma chambers can develop significant zonations in time scales of a few hundred thousand years. Additionally, our data suggest quasi

  3. Characterizing the hypersiliceous rocks of Belgium used in (pre-)history: a case study on sourcing sedimentary quartzites

    NASA Astrophysics Data System (ADS)

    Veldeman, Isis; Baele, Jean-Marc; Goemaere, Eric; Deceukelaire, Marleen; Dusar, Michiel; De Doncker, H. W. J. A.

    2012-08-01

    Tracking raw material back to its extraction source is a crucial step for archaeologists when trying to deduce migration patterns and trade contacts in (pre-)history. Regarding stone artefacts, the main rock types encountered in the archaeological record of Belgium are hypersiliceous rocks. This is a newly introduced category of rock types comprising those rocks made of at least 90% silica. These are strongly silicified quartz sands or sedimentary quartzites, siliceous rocks of chemical and biochemical origin (e.g. flint), very pure metamorphic quartzites and siliceous volcanic rocks (e.g. obsidian). To be able to distinguish between different extraction sources, ongoing research was started to locate possible extraction sources of hypersiliceous rocks and to characterize rocks collected from these sources. Characterization of these hypersiliceous rocks is executed with the aid of optical polarizing microscopy, optical cold cathodoluminescence and scanning-electron microscopy combined with energy-dispersive x-ray spectrometry and with back-scatter electron imaging. In this paper, we focus on various sedimentary quartzites of Paleogene stratigraphical level.

  4. Melt inclusion evidence of second immiscibility within a magma derived non-silicate phase (Mt Vesuvius)

    NASA Astrophysics Data System (ADS)

    Fulignati, P.; Kamenetsky, V.; Marianelli, P.; Sbrana, A.

    2003-04-01

    Processes of melt immiscibility occurring during late magmatic differentiation play important role in the generation of many magmatic-hydrothermal ore deposits and may activate and control the style of volcanic eruptions. The exsolution of a non-silicate, volatile-rich phase from the phonolitic magma occurred at the peripheral parts of the 79AD Vesuvius magma chamber. The results of our work suggest that this immiscible phase can further experience another unmixing event that occurs in essentially "post-magmatic" environment. Heating/cooling experiments were carried out on the cogenetic multiphase (clear daughter crystals + vapour bubble(s) + interstial liquid) inclusions, hosted in K-feldspar of cognate felsic xenoliths, representative of rocks in the peripheral parts of the magma chamber. During heating, solid phases begin to dissolve at about 150^oC and melt completely at 530^oC. These low temperatures of melting argue for a non-silicate composition of daughter minerals, and thus bulk inclusion content. The remaining vapour bubble dissolves at 880^oC. During subsequent cooling, vapour bubble nucleates at 785^oC and increases in size. Unmixing of at least two melt phases occurs instantaneously at 500^oC in all studied inclusions. Globules of one melt float freely in the matrix of another melt, change their shape and size, coalesce and split apart continuously down to 100--150^oC. The movements of globules slow down with decreasing temperature until final solidification at 40--50^oC. The similarity of observed phase transformations inside inclusions suggests their homogeneous trapping at magmatic temperatures. By analogy with results of the study of xenoliths from the Vesuvius 472AD eruption (Fulignati et al., 2001) we interpret unmixed phases as globules of the Na-K chloride melt set in the matrix of Ca-carbonate melt. We infer that immiscibility between low viscosity, highly fugitive non-silicate melts may significantly influence partitioning of metals

  5. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  6. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  7. Making silica rock coatings in the lab: synthetic desert varnish

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Kolb, Vera M.; Philip, Ajish I.; Lynne, Bridget Y.; McLoughlin, Nicola; Sephton, Mark; Wacey, David; Green, Owen R.

    2005-09-01

    Desert varnish and silica rock coatings have perplexed investigators since Humboldt and Darwin. They are found in arid regions and deserts on Earth but the mechanism of their formation remains challenging (see Perry et al. this volume). One method of researching this is to investigate natural coatings, but another way is to attempt to produce coatings in vitro. Sugars, amino acids, and silicic acid, as well as other organic and (bio)organic compounds add to the complexity of naturally forming rock coatings. In the lab we reduced the complexity of the natural components and produced hard, silica coatings on basaltic chips obtained from the Mojave Desert. Sodium silicate solution was poured over the rocks and continuously exposed to heat and/or UV light. Upon evaporation the solutions were replenished. Experiments were performed at various pH's. The micro-deposits formed were analyzed using optical, SEM-EDAX, and electron microprobe. The coatings formed are similar in hardness and composition to silica glazes found on basalts in Hawaii as well as natural desert varnish found in US southwest deserts. Thermodynamic mechanisms are presented showing the theoretical mechanisms for overcoming energy barriers that allow amorphous silica to condense into hard coatings. This is the first time synthetic silica glazes that resemble natural coatings in hardness and chemical composition have been successfully reproduced in the laboratory, and helps to support an inorganic mechanism of formation of desert varnish as well as manganese-deficient silica glazes.

  8. Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Holtz, Francois; Cartier, Camille; McCammon, Catherine

    2016-08-01

    Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200-1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2- and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from <1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW- 5.4 ± 0.4. We also calculate that

  9. Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Coble, M. A.; Wooden, J. L.; Fisher, C. M.; Vervoort, J. D.; Hanchar, J. M.

    2016-09-01

    The Austurhorn intrusive complex (AIC) in southeast Iceland comprises large bodies of granophyre and gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. Despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ high spatial resolution zircon elemental and isotopic geochemistry and U-Pb geochronology as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ. The trace element compositions of AIC zircon crystals form a broad but coherent array that partly overlaps with the geochemical signature for zircons from Icelandic silicic volcanic rocks. Typical of Icelandic zircons, Hf concentrations are relatively low (<10,000 ppm) and Ti concentrations range from 5 to 40 ppm (Ti-in-zircon model temperatures = 761-981 °C). Zircon δ18O values vary from +2.2 to +4.8 ‰, consistent with magmatic zircons from other Icelandic silicic rocks, and preserve evidence for recycling of hydrothermally altered crust as a significant contribution to the generation of silicic magmas within the AIC. Zircon ɛ Hf values generally range from +11 to +15. This range overlaps with that of Icelandic basalts from off-rift settings as well as the least depleted rift basalts, suggesting that the AIC developed within a transitional rift environment. In situ zircon U-Pb ages yield a weighted mean of 6.52 ± 0.03 Ma for the entire complex, but span a range of ~320 kyr, from 6.35 ± 0.08 to 6.67 ± 0.06 Ma (2 σ SE). Gabbros and the most silicic units make up the older part of this range, while granophyres and intermediate units make up the younger part of the complex, consistent with field relationships. We interpret the ~320 kyr range in zircon ages to represent the approximate timescale of magmatic construction

  10. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  11. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  12. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  13. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  14. Germanium isotopic variations in igneous rocks and marine sediments

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Galy, Albert; Elderfield, Henry

    2006-07-01

    A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICPMS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/ 70Ge ratios are expressed as δ74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2‰ for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4‰ in δ74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/ 70Ge, 73Ge/ 70Ge and 72Ge/ 70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of δ74Ge in igneous rocks is only 0.25‰ without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a δ74Ge of 1.3 ± 0.2‰ can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher δ74Ge values between 2.0‰ and 3.0‰. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the δ74Ge of the seawater to +3.0‰.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have δ74Ge values ranging from 0.7‰ to 2.0‰. The variable values of the cherts cannot be explained by binary mixing

  15. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  16. The effect of land plants on weathering rates of silicate minerals

    NASA Astrophysics Data System (ADS)

    Drever, James I.

    1994-05-01

    Land plants and their associated microbiota directly affect silicate mineral weathering in several ways: by generation of chelating ligands, by modifying pH through production of CO 2 or organic acids, and by altering the physical properties of a soil, particularly the exposed surface areas of minerals and the residence time of water. In laboratory experiments far from equilibrium, 1 mM oxalate (a strong chelator of Al) has a negligible effect on the dissolution rate of alkali feldspars, but some effect on calcic feldspars and olivine. By analogy to oxalate, the overall effect of organic ligands on the weathering rate of silicate minerals in nature is likely to be small, except perhaps in microenvironments adjacent to roots and fungal hyphae. The effect of pH on silicate mineral dissolution rate depends on pH: below pH 4-5, the rate increases with decreasing pH, in the circumneutral region the rate is pH-independent, and at pH values above around 8 the rate increases with increasing pH. Vegetation should thus cause an increase in weathering rate through the pH effect only where the pH is below 4-5. As an overall generalization, the effect of plants on weathering rate through changes in soil-solution chemistry is probably small for granitic rocks; it may be greater for more mafic rocks. It is the release of Ca and Mg from mafic rocks that has the greatest influence on the global CO 2 budget. The effect of changes in soil physical properties on weathering rate can be major. By binding fine particles, plants can greatly increase weathering rates in areas of high physical erosion. Where erosion rates are lower, the effect of plants is less clear. On long timescales plants may decrease chemical weathering by binding secondary products and isolating unweathered minerals from meteoric water. A major unknown in estimating the effect of the advent of land plants on weathering rates is the nature (thickness, particle size distribution, permeability) of the regolith on the

  17. Spinel-silicate co-crystallization relations in sample 15555. [lunar rocks

    NASA Technical Reports Server (NTRS)

    Dalton, J.; Hollister, L. S.

    1974-01-01

    The results on the crystallization history of medium-grained mare basalt sample 15555,171, based on microprobe analyses (Dalton, 1973) of host and inclusion mineral pairs are summarized with emphasis placed on that part of the crystallization history during which chromite and ulvospinel were crystallizing. Compositional data on pyroxene olivine, chromite and ulvospinel in 15555,171 were collected using microprobe; data are based on corrected counts ratios for nine elements. It is concluded that systematic chemical relations between host and inclusion minerals suggest continuous in situ nucleation and growth of these minerals; that the data allow the possibility of some minerals, especially chromite, settling out of the melt during crystallization; and that the chromite to ulvospinel transition is correlated with a compositional change of the melt resulting from nucleation and growth of plagioclase.

  18. DISORDERED SILICATES IN SPACE: A STUDY OF LABORATORY SPECTRA OF 'AMORPHOUS' SILICATES

    SciTech Connect

    Speck, Angela K.; Whittington, Alan G.; Hofmeister, Anne M.

    2011-10-20

    We present a laboratory study of silicate glasses of astrophysically relevant compositions including olivines, pyroxenes, and melilites. With emphasis on the classic Si-O stretching feature near 10 {mu}m, we compare infrared spectra of our new samples with laboratory spectra on ostensibly similar compositions, and also with synthetic silicate spectral data commonly used in dust modeling. Several different factors affect spectral features including sample chemistry (e.g., polymerization, Mg/Fe ratio, oxidation state, and Al-content) whereas different sample preparation techniques lead to variations in porosity, density, and water content. The convolution of chemical and physical effects makes it difficult to attribute changes in spectral parameters to any given variable. It is important that detailed chemical and structural characterization be provided along with laboratory spectra. In addition to composition and density, we measured the glass transition temperatures for the samples which place upper limits on the formation and/or processing temperatures of these solids in space. Popular synthetically generated optical functions do not have spectral features that match any of our glass samples. However, the {approx}10 {mu}m feature generated by the synthetic data rarely exactly matches the shape and peak position of astronomically observed silicate features. Our comparison with the synthetic spectra allows astronomers to determine likely candidates among our glass samples for matching astronomical observations.

  19. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  20. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  1. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  2. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  3. Evidence for a tektosilicate structure and dominance of Fe(III) over Fe(II) in silicic volcanic glasses of the Nevada Test Site

    SciTech Connect

    Warren, R.G.

    1983-01-01

    More than 400 individual analyses have been obtained by electron microprobe for silicic glasses in 58 samples of tuff and lava from the Nevada Test Site (NTS). These samples comprise a wide range in chemical and petrographic types, including calc-alkaline and peralkaline rock types, and include most of the volcanic units of the NTS. Locations and brief petrographic descriptions are given for representative samples.

  4. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  5. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, Hung-Chun; You, Chen-Feng; Liu, Hou-Chun; Chung, Chuan-Hsiung

    2015-09-01

    Radiogenic Sr isotopes (87Sr/86Sr) are robust for provenance identification in hydrology, affected mainly by the age of background lithologies and the degree of chemical weathering. However, there is limited knowledge concerning the fractionation mechanism of stable Sr isotopes (88Sr/86Sr) in rivers. In this study, river water was collected on a weekly to monthly basis throughout dry and wet seasons. Furthermore, to study the variations of radiogenic and stable Sr isotopes during intense weathering, a major flooding event (2000 mm precipitation in three days, Typhoon Morakot), water was captured within a small drainage catchment system (161 km2) along the Hou-ku River in southwestern Taiwan. For a better constraint on the end member compositions, bedload sediments, suspended particles, and several host rocks were sampled for a systematic investigation. The carbonate and silicate phases of these solids were chemically separated. Dissolved major elements indicate that the watersheds were predominated by silicate weathering. Stable Sr isotopes show no significant variation (δ88Sr = 0.24-0.31‰) temporally and spatially with an average of 0.28‰. Additionally, all solids showed lower δ88Sr values than the river water while the host rocks had higher δ88Sr values (δ88Sr = 0.20-0.26‰) than the residual weathering products (δ88Sr = 0.08-0.22‰), indicating preferential leaching of heavy Sr into the hydrosphere and leaving light Sr in the residual solids. Results of laboratory acid leaching experiments reveal that dissolution of high δ88Sr value minerals occurred at an early stage of weathering. The variation of weathering intensity does not alter stable Sr isotopes in silicate weathering dominated river water, which contains higher stable Sr isotopes than the associated sediments. The silicatic sedimentary rocks preferentially released higher stable Sr isotopes into the hydrosphere during chemical weathering, thus leaving lower stable Sr isotopes in the residual

  7. Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.

    2012-01-01

    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal

  8. INTERSTELLAR SILICATE DUST IN THE z = 0.89 ABSORBER TOWARD PKS 1830-211: CRYSTALLINE SILICATES AT HIGH REDSHIFT?

    SciTech Connect

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni

    2012-03-20

    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  9. CO2-dependent fractional crystallization of alkaline silicate magmas and unmixing of carbonatites within the intrusive complexes of Brava Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Weidendorfer, D.; Schmidt, M. W.; Mattsson, H. B.

    2014-12-01

    Intrusive carbonatites often occur in intimate association with SiO2-undersaturated rocks such as melilitites, nephelinites, syenites and phonolites. The occurrence of carbonatites on five of the 10 main islands of the Cape Verde hotspot argues for a CO2-enriched mantle source. Whether alkali-poor carbonatites on the Cape Verdes directly represent small mantle melt fractions or form by extreme fractionation and/or liquid immiscibility from a CO2-rich silicate magma remains a matter of debate. This study focuses on the pyroxenites, nephelinites, ijolites, syenites, phonolites and carbonatites of the intrusive unit of Brava Island. This relative complete series allows for the deduction of a CO2-dependent fractionation pathway from the most primitive basanitic dikes towards phonolitic compositions through an ijolitic series. Major and trace element whole rock and mineral composition trends can be reproduced by fractionating a sequence of olivine, augite, perovskite, biotite, apatite, sodalite and FeTi-oxides, present as phenocrysts in the rocks corresponding to their fractionation interval. To reproduce the observed chemistry of the alkaline silicate rocks a total fractionation of ~87% is required. The melts evolve towards the carbonatite-silicate miscibility gap, an initial CO2 of 0.5 wt% would be sufficient to maintain CO2-saturation in the more evolved compositions. The modelled carbonatite compositions, conjugate to nepheline-syenites to phonolites, correspond well to the observed ones except for an alkali-enrichment with respect to the natural samples. The alkali-depleted nature of the small carbonatite intrusions and dikes on Brava is likely a consequence of fluid-release to the surrounding wall-rocks during crystallization, where fenitization can be observed. The trace element chemistry of primary carbonates and also cpx within both, the carbonatites and the associated silicate rocks, substantiates our fractionation model. Furthermore, carbonatite and silicate

  10. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  11. Deep ocean biogeochemistry of silicic acid and nitrate

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Simeon, J.; Gnanadesikan, A.; Gruber, N.; Key, R. M.; Schlitzer, R.

    2007-03-01

    Observations of silicic acid and nitrate along the lower branch of the global conveyor belt circulation show that silicic acid accumulation by diatom opal dissolution occurs at 6.4 times the rate of nitrate addition by organic matter remineralization. The export of opal and organic matter from the surface ocean occurs at a Si:N mole ratio that is much smaller than this almost everywhere (cf. Sarmiento et al., 2004). The preferential increase of silicic acid over nitrate as the deep circulation progresses from the North Atlantic to the North Pacific is generally interpreted as requiring deep dissolution of opal together with shallow remineralization of organic matter (Broecker, 1991). However, Sarmiento et al. (2004) showed that the primary reason for the low silicic acid concentration of the upper ocean is that the waters feeding the main thermocline from the surface Southern Ocean are depleted in silicic acid relative to nitrate. By implication, the same Southern Ocean processes that deplete the silicic acid in the surface Southern Ocean must also be responsible for the enhanced silicic acid concentration of the deep ocean. We use observations and results from an updated version of the adjoint model of Schlitzer (2000) to confirm that this indeed the case.

  12. On the Stabilization of Ribose by Silicate Minerals

    NASA Astrophysics Data System (ADS)

    Vázquez-Mayagoitia, Álvaro; Horton, Scott R.; Sumpter, Bobby G.; Šponer, Jiří; Šponer, Judit E.; Fuentes-Cabrera, Miguel

    2011-03-01

    The RNA-world theory hypothesizes that early Earth life was based on the RNA molecule. However, the notion that ribose, the sugar in RNA, is unstable still casts a serious doubt over this theory. Recently, it has been found that the silicate-mediated formose reaction facilitates the stabilization of ribose. Using accurate quantum chemical calculations, we determined the relative stability of the silicate complexes of arabinose, lyxose, ribose, and xylose with the intent to determine which would form predominantly from a formose-like reaction. Five stereoisomers were investigated for each complex. The stereoisomers of 2:1 ribose-silicate are the more stable ones, to the extent that the least stable of these is even more stable than the most stable stereoisomer of the other 2:1 sugar-silicate complexes. Thus, thermodynamically, a formose-like reaction in the presence of silicate minerals should preferentially form the silicate complex of ribose over the silicate complex of arabinose, lyxose, and xylose.

  13. Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen Volcanic Center, California

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2012-01-01

    Hydrogen isotope ratio, water content and Fe3 +/Fe2 + in coexisting amphibole and biotite phenocrysts in volcanic rocks can provide insight into shallow pre- and syn-eruptive magmatic processes such as vesiculation, and lava drainback with mixing into less devolatilized magma that erupts later in a volcanic sequence. We studied four ~ 35 ka and younger eruption sequences (i.e. Kings Creek, Lassen Peak, Chaos Crags, and 1915) at the Lassen Volcanic Center (LVC), California, where intrusion of crystal-rich silicic magma mushes by mafic magmas is inferred from the varying abundances of mafic magmatic inclusions (MMIs) in the silicic volcanic rocks. Types and relative proportions of reacted and unreacted hydrous phenocryst populations are evaluated with accompanying chemical and H isotope changes. Biotite phenocrysts were more susceptible to rehydration in older vesicular glassy volcanic rocks than coexisting amphibole phenocrysts. Biotite and magnesiohornblende phenocrysts toward the core of the Lassen Peak dome are extensively dehydroxylated and reacted from prolonged exposure to high temperature, low pressure, and higher fO2 conditions from post-emplacement cooling. In silicic volcanic rocks not affected by alteration, biotite phenocrysts are often relatively more dehydroxylated than are magnesiohornblende phenocrysts of similar size; this is likely due to the ca 10 times larger overall bulk H diffusion coefficient in biotite. A simplified model of dehydrogenation in hydrous phenocrysts above reaction closure temperature suggests that eruption and quench of magma ascended to the surface in a few hours is too short a time for substantial H loss from amphibole. In contrast, slowly ascended magma can have extremely dehydrogenated and possibly dehydrated biotite, relatively less dehydrogenated magnesiohornblende and reaction rims on both phases. Eruptive products containing the highest proportions of mottled dehydrogenated crystals could indicate that within a few days

  14. Miocene silicic volcanism in southwestern Idaho: Geochronology, geochemistry, and evolution of the central Snake River Plain

    USGS Publications Warehouse

    Bonnichsen, B.; Leeman, W.P.; Honjo, N.; McIntosh, W.C.; Godchaux, M.M.

    2008-01-01

    New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone 'hotspot track'. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or 'events' appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW-NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. ?? Springer-Verlag 2007.

  15. Gravity and thermal models for the twin peaks silicic volcanic center, Southwestern Utah

    SciTech Connect

    Carrier, D.L.; Chapman, D.S.

    1981-11-10

    Gravity, heat flow, and surface geology observations have been used as constraints for a thermal model of a late Tertiary silicic volcanic center at Twin Peaks, Utah. Silicic Volcanism began in the area with the extrusion of the Coyote Hills rhyolite 2.74 +- 0.1 m.y. ago, followed by the Cudahy Mine obsidian, felsite, and volcanoclastics, and finally by a complex sequence of domes and flows that lasted until 2.3 +- 0.1 m.y. ago. Basalt sequence span the time 2.5 to 0.9 m.y. Terrain-corrected Bouguer gravity anomalies at Twin Peaks are shaped by three features of varying characteristic dimensions: (1) a major north-northeast trending --30 mGal gravity trough roughly 40 km wide caused by a thick sequence of Cenozoic sediments in the Black Rock Desert Valley, (2) a local roughly circular -7 mGal gravity low, 26 km across, probably related to an intrusive body in the basement, and (3) a series of narrow positive anomalies up to + 10 mGal produced by the major Twin Peaks volcanic domes. The intrusive bodies have been modeled as three-dimensional vertical cylinders; the total volume of intrusive material is estimated to be about 500 km/sup 3/. Simple models, assuming conductive heat transfer and using geometrical constraints from the gravity results, predict that a negligible thermal anomaly should exist 1 m.y. after emplacement of the intrusion. This prediction is consistent with an average heat flow of 96 mW m/sup -2/ for the area, not significantly different from eastern Basin and Range values elsewhere. Magmatic longevity of this system 2.7 to 2.3 m.y. for silicic volcanism of 2.5 to 0.9 m.y. for basaltic volcanism, does not seem to prolong the cooling of the system substantially beyond that predicted by conductive cooling.

  16. Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles

    NASA Astrophysics Data System (ADS)

    Fiege, Katherina; Trieloff, Mario; Hillier, Jon K.; Guglielmino, Massimo; Postberg, Frank; Srama, Ralf; Kempf, Sascha; Blum, Jürgen

    2014-10-01

    Impact ionization mass spectrometers, e.g., the Cosmic Dust Analyzer (CDA) onboard the Cassini spacecraft can quantitatively analyze the chemical composition of impacting particles, if the ionization efficiencies of the elements to be quantified are appropriately calibrated. Although silicates are an abundant dust species inside and outside the Solar System, an experimental calibration was not available for elements typically found in silicates. We performed such a calibration by accelerating orthopyroxene dust of known composition with a modified Van de Graaff accelerator to velocities of up to 37.9 km s-1 and subsequent analyses by a high resolution impact ionization mass spectrometer, the Large Area Mass Analyzer (LAMA). The orthopyroxene dust, prepared from a natural rock sample, contains ∼90% orthopyroxene and ∼10% additional mineral species, such as clinopyroxene, spinel, amphibole, olivine and glasses, which are present as impurities within the orthopyroxene, due to inclusion or intergrowth. Hence, the dust material can be regarded as a multi-mineral mixture. After analyses, we find that most particle data cluster at a composition ascribed to pure orthopyroxene. Some data scatter is caused by stochastic effects, other data scatter is caused by the chemically different mineral impurities. Our data indicate that these minor mineral phases can be recognized within a multi-mineral mixture. Here, for the first time, we present experimentally derived relative sensitivity factors (RSFs) for impact ionization mass spectroscopy of silicates, enabling the quantitative determination of the composition of cosmic dust grains. Orthopyroxene data were used to infer RSFs for Na, Mg, Al, Si, Ca, Ti, Fe and K, for particles with radii ranging from 0.04 μm to 0.2 μm and velocities between 19 and 37.9 km s-1, impacting on a Rh-target.

  17. Appalachian piedmont regolith: Relations of saprolite and residual soils to rock-type

    USGS Publications Warehouse

    Pavich, M.J.

    1996-01-01

    Saprolite is a major product of rock weathering on the Appalachian Piedmont from New Jersey to Alabama. On the Piedmont, it is the primary substrate from which residual soils are developed. Properties of saprolite and residual soils are highly related to their parent rocks. Studies of cores and outcrops illustrate that rock structure and mineralogy control upland regolith zonation. Saprolite develops by in situ chemical alteration of a wide variety of mafic to highly silicic rocks. Thickness of upland saprolite varies from a few meters on mafic rocks to tens of meters on silicic rocks. Saprolite thickness decreases with increasing slope and saprolite is generally thin or absent in valley bottoms. Massive residual subsoils and soils develop by physical and chemical processes that alter the upper few meters of saprolite. The fabric, texture and mineralogy of residual soils are distinctly different from underlying saprolite. The boundary between soil and saprolite is often gradual, and often a zone of low permeability. Geologic maps are useful guides to Piedmont regolith thickness and zonation. In regional design studies, geologic maps and regolith characteristics can be useful in environmental decision-making.

  18. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  19. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs

    NASA Astrophysics Data System (ADS)

    Deering, Chad D.; Vogel, Thomas A.; Patino, Lina C.; Szymanski, David W.; Alvarado, Guillermo E.

    2012-02-01

    Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical

  20. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  1. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  2. Thermally responsive aqueous silicate mixtures and use thereof

    SciTech Connect

    Smith, W.H.; Vinson, E.F.

    1987-02-03

    A method is described of plugging or sealing a zone in a subterranean formation comprising: (a) contacting the zone with an aqueous silicate composition consisting essentially of (i) an aqueous solution containing an alkali metal silicate; and, (ii) a thermally responsive gelation activator selected from the group consisting of lactose, dextrose, fructose, galactose, mannose, mantose, xylose and mixtures thereof; and (b) activating the gelation activator in response to a thermal change in the composition within the formation whereby the silicate composition is caused to form a gel in the zone.

  3. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  4. Anionic constitution of 1-atmosphere silicate melts: implications for the structure of igneous melts.

    PubMed

    Virgo, D; Mysen, B O; Kushiro, I

    1980-06-20

    A structural model is proposed for the polymeric units in silicate melts quenched at 1 atmosphere. The anionic units that have been identified by the use of Raman spectroscopy are SiO(4)(4-) monomers, Si(2)O(7)(6-) dimers, SiO(3)(2-) chains or rings, Si(2)O(5)(2-) sheets, and SiO(2) three-dimensional units. The coexisting anionic species are related to specific ranges of the ratio of nonbridging oxygens to tetrahedrally coordinated cations (NBO/Si). In melts with 2.0 < NBO/Si < approximately 4.0, the equilibrium is of the type [See equation in the PDF file]. In melts with NBO/Si approximately 1.0 to 2.0, the equilibrium anionic species are given by [See equation in the PDF file]. In alkali-silicate melts with NBO/Si <~ 1.3 and in aluminosilicate melts with NBO/T < 1.0, where T is (Si + Al), the anionic species in equilibrium are given by [See equation in the PDF file]. In multicomponent melts with compositions corresponding to those of the major igneous rocks, the anionic species are TO(2), T(2)O(5), T(2)O(6), and TO(4), and the coexisting polymeric units are determined by the second and third of these disproportionation reactions.

  5. Compositions of magmas and carbonate silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy

    NASA Astrophysics Data System (ADS)

    Solovova, I. P.; Girnis, A. V.; Kogarko, L. N.; Kononkova, N. N.; Stoppa, F.; Rosatelli, G.

    2005-11-01

    This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate-carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate-silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.

  6. Silicate facies iron-formation of the Egbe-Isanlu Palaeoproterozoic schist belt, southwest Nigeria

    NASA Astrophysics Data System (ADS)

    Annor, A. E.; Olobaniyi, S. B.; Mücke, A.

    1997-02-01

    Field, petrological, mineralogical and geochemical data on the Egbe-Isanlu Palaeoproterozoic schist belt are presented, high-lighting the main features of a silicate facies iron-formation, which hitherto had been described as a metamorphosed, impure sandstone. The iron-formation is relatively thin (max. 15 m) and concordantly interbedded with schistose, semi-pelitic, amphibolitic and talcose host rocks, with which it shares a common polyphase tectonometamorphic history. The last of these is the Pan-African overprint, during which time the iron-formation was locally silicified. The main constituent minerals are garnet (almandine-spessartine solid solution), amphibole (Mn and Ca bearing grunerite-cummingtonite solid solution), quartz and ilmenite. Magnetite was not observed. Geochemical data show that the iron-formation and metasediments are of different origins. The silicate facies iron-formation of Isanlu belongs to the Algoma-type and was derived by the metamorphism of a volcano-exhalative-sedimentary protolith, probably during Eburnian times.

  7. Pressure effect on elastic anisotropy of crystals from ab initio simulations: The case of silicate garnets

    SciTech Connect

    Mahmoud, A.; Erba, A. Dovesi, R.; Doll, K.

    2014-06-21

    A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical CRYSTAL program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet end-members, among the most important rock-forming minerals of the Earth's mantle, are considered, whose elastic anisotropy is fully characterized under high hydrostatic compressions, up to 60 GPa. The pressure dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals are accurately simulated and compared with available single-crystal measurements.

  8. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  9. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  11. Continental Basaltic Rocks

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2003-12-01

    During the past few decades, geochemical studies of continental basaltic rocks and their petrologic kin have become mainstays of studies of the continental lithosphere. These igneous rocks have taken on such an important role largely because the chemical and isotopic composition of continental basaltic rocks and their mantle (see Chapter 2.05) and crustal xenoliths (see Chapter 3.01) provide the best proxy record available to earth scientists for the chemical and physical evolution of the deep continental lithosphere and underlying mantle, areas that are otherwise resistant to direct study. Keeping this in mind, the primary goal of this chapter is to illustrate how geochemical data can be used both to assess the origin of these rocks and to study the evolution of the continental lithosphere.A complete overview of continental basaltic rocks will not be attempted here, because continental "basalts" come in too wide a range of compositions, and because of the sheer volume of geochemical data available for such rocks worldwide. The scope of the chapter is limited to a discussion of a select group of ultramafic to mafic composition "intraplate" continental igneous rocks consisting primarily of kimberlites, potassic and sodic alkali basalts, and continental flood basalts. Igneous rocks forming at active continental margins, such as convergent or transform plate margins, are important examples of continental magmatism but are not directly discussed here (convergent margin magmas are discussed in Chapters 2.11, 3.11, and 3.18). The geochemistry of intraplate igneous rocks of the ocean basins are covered in Chapters 2.04 and 3.16. Although basaltic magmatism has occurred throughout the Earths history, the majority of the examples presented here are from Mesozoic and Cenozoic volcanic fields due to the more complete preservation of younger continental mafic igneous rocks. While considerable effort has been expended in studying the chemical differentiation of mafic magmas

  12. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  13. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  14. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  15. Copper isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Huang, Jian; Liu, Jingao; Wörner, Gerhard; Yang, Wei; Tang, Yan-Jie; Chen, Yi; Tang, Limei; Zheng, Jianping; Li, Shuguang

    2015-10-01

    Copper isotopes have been successfully applied to many fields in geochemistry, and in particular, as a strongly chalcophile element, the isotope systematics of Cu can be potentially applied as a proxy for crust-mantle and core-mantle differentiation processes. However, to date, the Cu isotopic composition of distinct silicate reservoirs in the Earth, as well as the behaviour of Cu isotopes during igneous processes and slab dehydration are not well constrained. To address these issues, here we report high-precision (±0.05‰; 2SD) Cu isotope data for 132 terrestrial samples including 28 cratonic peridotites, 19 orogenic peridotites, 70 basalts (MORBs, OIBs, arc basalts and continental basalts) and 15 subduction-related andesites/dacites sourced worldwide. The peridotites are classified into metasomatized and non-metasomatized groups, based upon their rare earth element (REE) patterns and the presence or lack of minerals diagnostic of metasomatism (e.g., phlogopite). The metasomatized peridotites span a wide range of δ65Cu values from -0.64 to +1.82‰, in sharp contrast to the non-metasomatized peridotites that exhibit a narrow range of δ65Cu from -0.15 to +0.18‰ with an average of + 0.03 ± 0.24 ‰ (2SD). Comparison between these two groups of peridotites demonstrates that metasomatism significantly fractionates Cu isotopes with sulfide breakdown and precipitation potentially shifting Cu isotopes towards light and heavy values, respectively. MORBs and OIBs have homogeneous Cu isotopic compositions (+ 0.09 ± 0.13 ‰; 2SD), which are indistinguishable from those of the non-metasomatized peridotites within uncertainty. This suggests that Cu isotope fractionation during mantle partial melting is limited, even if sulfides are a residual phase. Compared with MORBs and OIBs, arc and continental basalts are more heterogeneous in Cu isotopic composition. In particular, basalts that were collected from a traverse across the Kamchatka arc over a distance of 200 to 400

  16. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  17. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin.

    PubMed

    Sylvan, Jason B; Sia, Tiffany Y; Haddad, Amanda G; Briscoe, Lindsey J; Toner, Brandy M; Girguis, Peter R; Edwards, Katrina J

    2013-01-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.

  18. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin.

    PubMed

    Sylvan, Jason B; Sia, Tiffany Y; Haddad, Amanda G; Briscoe, Lindsey J; Toner, Brandy M; Girguis, Peter R; Edwards, Katrina J

    2013-01-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis. PMID:23543862

  19. Low Temperature Geomicrobiology Follows Host Rock Composition Along a Geochemical Gradient in Lau Basin

    PubMed Central

    Sylvan, Jason B.; Sia, Tiffany Y.; Haddad, Amanda G.; Briscoe, Lindsey J.; Toner, Brandy M.; Girguis, Peter R.; Edwards, Katrina J.

    2013-01-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis. PMID:23543862

  20. Deformation and failure of single- and multi-phase silicate liquids: seismic precursors and mechanical work

    NASA Astrophysics Data System (ADS)

    Vasseur, Jeremie; Lavallée, Yan; Hess, Kai-Uwe; Wassermann, Joachim; Dingwell, Donald B.

    2013-04-01

    Along with many others, volcanic unrest is regarded as a catastrophic material failure phenomenon and is often preceded by diverse precursory signals. Although a volcanic system intrinsically behave in a non-linear and stochastic way, these precursors display systematic evolutionary trends to upcoming eruptions. Seismic signals in particular are in general dramatically increasing prior to an eruption and have been extensively reported to show accelerating rates through time, as well as in the laboratory before failure of rock samples. At the lab-scale, acoustic emissions (AE) are high frequency transient stress waves used to track fracture initiation and propagation inside a rock sample. Synthesized glass samples featuring a range of porosities (0 - 30%) and natural rock samples from volcán de Colima, Mexico, have been failed under high temperature uniaxial compression experiments at constant stresses and strain rates. Using the monitored AEs and the generated mechanical work during deformation, we investigated the evolutionary trends of energy patterns associated to different degrees of heterogeneity. We observed that the failure of dense, poorly porous glasses is achieved by exceeding elevated strength and thus requires a significant accumulation of strain, meaning only pervasive small-scale cracking is occurring. More porous glasses as well as volcanic samples need much lower applied stress and deformation to fail, as fractures are nucleating, propagating and coalescing into localized large-scale cracks, taking the advantage of the existence of numerous defects (voids for glasses, voids and crystals for volcanic rocks). These observations demonstrate that the mechanical work generated through cracking is efficiently distributed inside denser and more homogeneous samples, as underlined by the overall lower AE energy released during experiments. In contrast, the quicker and larger AE energy released during the loading of heterogeneous samples shows that the

  1. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  2. Writing Rock Music Reviews.

    ERIC Educational Resources Information Center

    Brown, Donal

    1980-01-01

    Suggests ways student reviewers of rock music groups can write better reviews. Among the suggestions made are that reviewers occasionally discuss the audience or what makes a particular group unique, support general comment with detail, and avoid ecstatic adjectives. (TJ)

  3. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  4. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  5. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  6. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  7. Layered Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Now that solar conjunction is over so that communication between Earth and Mars is no longer blocked by the Sun, NASA's Mars Exploration Rover Spirit is continuing its trek through the 'Columbia Hills' in Gusev Crater. Straight ahead, in the foreground of this image, is a horizontally layered rock dubbed 'Tetl,' which scientists hope to investigate. Layering can be either volcanic or sedimentary in origin; researchers aim to determine which of these processes created this rock. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba,' just to the right, toward the middle of this image. Spirit took this image with its navigation camera on its 263rd martian day, or sol (Sept. 28, 2004).

  8. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  9. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  10. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  11. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  12. Metal-Silicate Segregation in Asteroidal Meteorites

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.

    2006-01-01

    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.

  13. Selective silicate-directed motility in diatoms

    PubMed Central

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen; Vyverman, Wim; Pohnert, Georg

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 1012 mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment–water dSi fluxes and biogeochemical cycling. PMID:26842428

  14. Nanostructure of Er3+ doped silicates.

    PubMed

    Yao, Nan; Hou, Kirk; Haines, Christopher D; Etessami, Nathan; Ranganathan, Varadh; Halpern, Susan B; Kear, Bernard H; Klein, Lisa C; Sigel, George H

    2005-06-01

    We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

  15. Study of thermal effects of silicate-containing hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Zaits, A. V.; Berdinskaya, N. V.; Mylnikova, T. S.

    2016-02-01

    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 0C that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state.

  16. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life.

  17. History of Nebular Processing Traced by Silicate Stardust in IDPs

    NASA Astrophysics Data System (ADS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A.

    2010-03-01

    We have identified two presolar silicate grains as polycrystalline assemblages, or equilibrated aggregates. These grains occur in a stardust-rich interplanetary dust particle (IDP). We propose these grains were annealed in the solar nebula.

  18. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  19. Determination of small and large amounts of fluorine in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.; Ingram, B.; Cuttitta, F.

    1955-01-01

    Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.

  20. Experimental calibration of a new oxybarometer for silicic magmas based on the partitioning of vanadium between magnetite and silicate melt

    NASA Astrophysics Data System (ADS)

    Arató, Róbert; Audétat, Andreas

    2016-04-01

    Oxygen fugacity is an important parameter in magmatic systems that affects the stability of mineral phases and fluid species. However, there is no well-established method to reconstruct the oxygen fugacity of slowly cooled magmas such as granite, for example, because existing oxybarometers (e.g., magnetite-ilmenite method) are susceptible to re-equilibration processes during slow cooling and thus lead to erroneous results when applied for granitic rocks. In this study, we aim at developing an oxybarometer that is based on the partitioning of vanadium (a redox-sensitive element) between magnetite inclusions and silicate melt inclusions preserved in quartz phenocrysts, where they were protected from subsolidus alteration and can be measured as entities by LA-ICP-MS. In the first - experimental - part of this study we investigated the effects of temperature (800-950 ° C), pressure (1-2 kbar), oxygen fugacity (from ΔFMQ+0.7 to ΔFMQ+4.0), magnetite composition, and melt composition on the partition coefficient of vanadium between magnetite and melt (DVmgt-melt). The experiments were carried out in cold-seal pressure vessels and the starting material was a mixture of V-doped haplogranite glasses or natural obsidian powder with variable aluminum saturation index (ASI), and synthetic, V-free magnetite of 10-20 μm grain size. The vanadium partition coefficient was found to depend strongly on oxygen fugacity, and to lesser (but still considerable) degrees on melt composition and temperature. A more than 1.5 log unit decrease in DVmgt-melt values with increasing oxygen fugacity can be explained by a change of the dominant valence state of V in the silicate melt. For a given oxygen fugacity buffer DVmgt-melt decreases with increasing temperature, but this reflects mostly the change in absolute fO2 values while the net temperature effect is in fact positive. DVmgt-melt depends significantly on melt composition, resulting in higher D-values with increasing aluminum

  1. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  2. Use of a large quartz spectrograph for the determination of thorium, yttrium and the rare earths in silicates.

    PubMed

    Cohen, N E; Reeves, R D; Brooks, R R

    1968-12-01

    Studies were carried out on the optimum conditions for the successful use of a large quartz spectrograph for the determination of thorium, yttrium and the rare earths in silicate rocks. The best line-to-background ratios were achieved by arcing samples in a matrix of 4 % sodium chloride in carbon powder. An atmosphere of 20 % argon and 80% oxygen was used to reduce background and eliminate cyanogen band interference. An anion-exchange procedure was used to separate the rare earths from other elements. The resultant enrichment allowed use to be made of less sensitive rare earth lines in the ultraviolet end of the spectrum where the spectrographic dispersion is greater. Line interferences were studied and necessary corrections for these interferences were calculated. The technique was tested by analysing the standard rocks, G-1, W-1 and CAAS syenite. Good agreement with recommended values was obtained. PMID:18960451

  3. Use of a large quartz spectrograph for the determination of thorium, yttrium and the rare earths in silicates.

    PubMed

    Cohen, N E; Reeves, R D; Brooks, R R

    1968-12-01

    Studies were carried out on the optimum conditions for the successful use of a large quartz spectrograph for the determination of thorium, yttrium and the rare earths in silicate rocks. The best line-to-background ratios were achieved by arcing samples in a matrix of 4 % sodium chloride in carbon powder. An atmosphere of 20 % argon and 80% oxygen was used to reduce background and eliminate cyanogen band interference. An anion-exchange procedure was used to separate the rare earths from other elements. The resultant enrichment allowed use to be made of less sensitive rare earth lines in the ultraviolet end of the spectrum where the spectrographic dispersion is greater. Line interferences were studied and necessary corrections for these interferences were calculated. The technique was tested by analysing the standard rocks, G-1, W-1 and CAAS syenite. Good agreement with recommended values was obtained.

  4. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  5. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  6. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  7. A method to estimate the composition of the bulk silicate Earth in the presence of a hidden geochemical reservoir

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2009-11-01

    The possibility of a hidden geochemical reservoir in the deep mantle has long been debated in geophysics and geochemistry, because of its bearings on the structure of the core-mantle boundary region, the origin of hotspots, the style of mantle convection, the history of the geomagnetic field, and the thermal evolution of Earth. The presence of such hidden reservoir, however, may invalidate existing models for the composition of the bulk silicate Earth because these models invariably assume that major chemical differentiation in the mantle follows the compositional trend exhibited by upper-mantle rocks. This article presents a new method to estimate the composition of the bulk silicate Earth by explicitly taking into account the possibility of a hidden reservoir. This geochemical inference is formulated as a nonlinear inverse problem, for which an efficient Markov chain Monte Carlo algorithm is developed. Inversion results indicate that the formation of a hidden reservoir, if any, took place at low pressures probably within the first 10 Myr of the history of the solar system and was subsequently lost from the Earth by impact erosion. The global mass balance of the bulk silicate Earth is revisited with the inversion results, and the depletion of highly incompatible elements in the present-day Earth is suggested to be moderate.

  8. Implications from a study of the timing of oil entrapment in Monterey siliceous shales, Lost Hills, San Joaquin Valley, California

    SciTech Connect

    Julander, D.R. )

    1992-01-01

    The oil and gas-rich upper Miocene siliceous shales of the Monterey Group are the primary development target in the Lost Hills Oil Field, San Joaquin Valley, California. As a result of diagenesis, the siliceous shales can be subdivided by opal phase into three sections (from shallow to deep): the Opal-A diatomites which are rich in oil saturation; the Opal-CT porcellanites which are predominantly wet but include pockets of moderate oil saturation; and the Quartz cherts and porcellanites which in some places are highly oil saturated immediately below the Opal CT section. Productivity trends in each of the three sections have been established through drilling and production testing, but a predictive model was not available until a study of the timing of oil entrapment at Lost Hills was recently completed. The study included an analysis of the depositional history of the siliceous shales and timing of: (1) structural growth of the Lost Hills fold, (2) source-rock maturation, and (3) development of the opal-phase segregation of the Monterey shales. The study led to enhanced understanding of the known oil saturation and production trends in the three opal-phase sections and yielded a predictive model that is being used to identify areas in the field with remedial or delineation potential. The study also produced evidence of fold axis rotation during the Pliocene and Pleistocene that helps explain differences in fracture orientations within the Monterey shales.

  9. Middle Jurassic Radiolaria from a siliceous argillite block in a structural melange zone near Viqueque, Timor Leste: Paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Haig, David W.; Bandini, Alexandre Nicolas

    2013-10-01

    Thin-bedded siliceous argillite forming a large block within a structural melange zone at Viqueque, Timor Leste, has yielded a Middle Jurassic (late Bathonian-early Callovian) radiolarian assemblage belonging to Unitary Association Zone 7. Fifty-five species are recognized and illustrated, forming the most diverse radiolarian fauna yet documented from the Jurassic of Timor. The fauna shows little similarity in species content to the few other assemblages previously listed from the Middle or Late Jurassic of Timor, and also has few species in common with faunas known elsewhere in the region from Rotti, Sumatra, South Kalimantan, and Sula. Based on lithofacies similarities and age, the siliceous argillite succession in the melange block at Viqueque is included in the Noni Group originally described as the lower part of the Palelo Series in West Timor. In terms of lithofacies, the Noni Group is distinct from other stratigraphic units known in Timor. It may be associated with volcanic rocks but age relationships are uncertain, although some of the radiolarian cherts in the Noni Group in West Timor have been reported to include tuffaceous sediment. The deep-water character of the siliceous hemipelagite-pelagite facies, the probable volcanic association, and an age close to that of continental breakup in the region suggest deposition in a newly rifted Indian Ocean. In Timor's tectonostratigraphic classification scheme, the Noni Group is here placed in the "Indian Ocean Megasequence".

  10. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  11. Crustal-scale perspective on the rapid development of Oligocene silicic calderas and related underlying plutonic systems, western Nevada USA

    NASA Astrophysics Data System (ADS)

    Colgan, J. P.; John, D. A.; Henry, C.; Watts, K. E.

    2015-12-01

    Geologic mapping, U-Pb zircon ages, and 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed five nested silicic calderas and related granitic plutons to crustal depths locally ≥9 km. The ≤29.4-28.8 Ma Job Canyon caldera in the Stillwater Range is filled with ~4 km of intracaldera tuff and lava flows; the 28.4 Ma IXL pluton intrudes intracaldera tuff and extends to ≥9 km depth. The 29 Ma Deep Canyon caldera covers ~250 km2 of the Clan Alpine Mountains, but only the upper ~1 km is exposed. The ≤26.0-25.2 Ma Poco Canyon caldera in the Stillwater Range is filled with two distinct intracaldera tuffs totaling 4.5 km thick, underlain by the 24.8 Ma Freeman Creek pluton exposed to depths ≥8 km. The small 25.3 Ma Louderback Mountains caldera in the SW Clan Alpine Mountains is filled with ~600 m of intracaldera tuff deposited on Oligocene rhyolite lava flows. The 25.1 Ma Elevenmile Canyon caldera spans ~1600 km2 in the Stillwater Range, Clan Alpine Mountains, and Desatoya Mountains, where it overlaps or cross cuts older calderas. Its total volume is ≥2500 km3, mostly consisting of the 1-4 km thick tuff of Elevenmile Canyon. 24.9-25.5 Ma silicic intrusive rocks underlie the Louderback Mountains and Elevenmile Canyon calderas to depths ≥6-8 km, locally surrounding septa of basement rock and older Oligocene igneous rocks. Two magmatic pulses, each lasting ~1 m.y. and associated with the 29 and 25 Ma caldera complexes, replaced almost the entire Mesozoic upper crust with Oligocene intrusive and extrusive rock to depths ≥9 km over a 1500 km2 area (pre-extension). Magma emplacement was most likely accommodated by downward transfer of country rocks and accompanied by isostatic surface uplift. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada may be underlain by a

  12. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Kimura, Hiroshi

    2010-07-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  13. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  14. Crystallographic Relationships of Silicate-hosted Magnetite Inclusions Determined with Electron Backscatter Pattern Indexing (EBSP)

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Wenk, H.; Renne, P. R.; Scott, G. R.

    2002-12-01

    Crystallographically controlled laths of magnetite exsolved in silicates such as clinopyroxene and plagioclase are common features in gabbros and mafic granulite facies rocks. As the inclusions cool below the Curie temperature of magnetite (580°C) they record a component of the direction and intensity of the Earth's ambient magnetic field. The extreme anisotropy of the inclusions' aspect ratio allows them to retain an unusually stable magnetization, as exemplified by their single-domain behavior. In order to transform these magnetite inclusions into a useful paleomagnetic tool it is necessary to clearly describe the epitaxial relationship between the magnetite and its host silicate phases. In the past the crystallographic orientation of magnetite inclusions and their host silicates were determined using single-crystal X-ray diffraction or diffraction patterns obtained with a transmission electron microscope. Although both of these techniques are ultimately successful, they are time consuming and cumbersome. The Electron Backscatter Diffraction Pattern (EBSP) technique is an alternative approach that uses diffraction patterns of Kikuchi bands generated in a scanning electron microscope. The geometric relationships between intersecting Kikuchi bands can be used to determine the orientation of a crystal. Generally the EBSP technique is used to determine preferred orientation patterns in aggregates. However, in this application we use it to investigate local crystallographic relationships. First, inclusions in a thin section are visualized on a backscattered electron image and verified chemically with an EDX signal. Then EBSPs are produced for both the host silicate and the magnetite inclusions and the orientation relationship is ascertained. The EBSP technique's straightforward sample preparation and rapid measurement time, combined with the broad accessibility of scanning electron microscopes allow scientists to more efficiently determine crystallographic

  15. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  16. Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization

    NASA Astrophysics Data System (ADS)

    Zeyen, Nina; Benzerara, Karim; Li, Jinhua; Groleau, Alexis; Balan, Etienne; Robert, Jean-Louis; Esteve, Imene; Tavera, Rosaluz; Moreira, David; Lopez-Garcia, Purificacion

    2015-10-01

    Microbialites are organo-sedimentary rocks found in abundance throughout the geological record back to ~3.5 Ga. Interpretations of the biological and environmental conditions under which they formed rely on comparisons with modern microbialites. Therefore, a better characterization of diverse modern microbialites is crucial to improve such interpretations. Here, we studied modern microbialites from three Mexican alkaline crater lakes: Quechulac, La Preciosa and Atexcac. The geochemical analyses of water solutions showed that they were supersaturated to varying extents with several mineral phases, including aragonite, calcite, hydromagnesite, as well as hydrated Mg-silicates. Consistently, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that microbialites are composed of a diversity of mineral phases including aragonite and sometimes calcite, hydromagnesite, and more interestingly, a poorly-crystalline hydrated silicate phase. Coupling of scanning electron microscopy with energy dispersive X-ray spectrometry microanalyses on polished sections showed that this latter phase is abundant, authigenic, magnesium-rich and sometimes associated with iron and manganese. This mineral phase is similar to kerolite, a hydrated poorly crystalline talc-like phase (Mg3Si4O10(OH)2·nH2O). Diverse microfossils were permineralized by this silicate phase. Some of them were imaged in 3D by FIB-tomography showing that their morphologically was exquisitely preserved down to the few nm-scale. The structural and chemical features of these fossils were further studied using a combination of transmission electron microscopy and scanning transmission X-ray microscopy at the carbon and magnesium K-edges and iron L2,3-edges. These results showed that organic carbon is pervasively associated with kerolite. Overall, it is suggested that the poorly-crystalline hydrated magnesium-rich silicate forms in many alkaline lakes and has a strong potential for fossilization of

  17. Large-scale Explosive Silicic Volcanic Eruptions in Maine, USA: Where, When, and Why

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Van Lankvelt, A.; Williams, M. L.

    2014-12-01

    Two magmatic belts in Maine host essentially undeformed, well-preserved Silurian to Devonian volcanic sequences that include thick ash flow tuffs and rhyolitic lava flows. The Coastal Maine volcanic belt consists of at least five bimodal volcanic complexes (419 to 424 +/- 2 Ma) hosting volcanic sequences 1-4 km thick, spanning approximately 160 km of the Maine coastline. Entire cross-sections of the volcanic-plutonic complexes are visible, providing excellent sites to study the volcano/pluton interface. The Central Maine belt also extends approximately 160 km, northeast to southwest, across central Maine, and also hosts several bimodal plutonic/volcanic complexes. Rocks in the Central Maine belt range from 400 to 410 Ma (Hubacher and Lux, 1987; Bradley et al., 1996). The largest complex in the Central Maine belt is the ~407 Ma (Rankin and Tucker, 1995) Katahdin granite and Moxie mafic intrusive complex and the coeval Traveler Rhyolite, a monotonous two-member, 3200-meter-thick pyroclastic succession. In Rankin and Hon (1987), Hon argued that the original volume of the Traveler rhyolite was at least 5000 km3, making it one of the largest silicic caldera eruptions in the rock record. Both the Coastal Maine volcanic belt and the Central Maine belt are on the Gander terrane, a peri-Gondwanan crustal block that accreted to Laurentia during the Salinic orogeny. Accretion of the block was complete by ~421 Ma (Pollock et al., 2012), but by then the Avalon terrane was accreting to Gander. Either back-arc extension associated with subduction of oceanic lithosphere on the leading edge of the Avalonian plate, or delamination of that plate beneath Gander resulted in back-arc extension, decompression melting of the mantle, and partial melting of thick crust. The Central Maine belt, farther inboard of the downgoing Avalonian slab, developed similar bimodal, extension-related magmatism by approximately 410 Ma. Large silicic caldera eruptions developed in these belts as a result of

  18. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  19. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons

    USGS Publications Warehouse

    Charlier, B.L.A.; Wilson, C.J.N.; Lowenstern, J. B.; Blake, S.; van Calsteren, P.W.; Davidson, J.P.

    2005-01-01

    Young (silicic volcanism at Taupo volcano, New Zealand, has involved the development and evacuation of several crustal magmatic systems. Up to and including the 26??5 ka 530 km 3 Oruanui eruption, magmatic systems were contemporaneous but geographically separated. Subsequently they have been separated in time and have vented from geographically overlapping areas. Single-crystal (secondary ionization mass spectrometry) and multiple-crystal (thermal ionization mass spectrometry) zircon model-age data are presented from nine representative eruption deposits from ??? 45 to ???3??5 ka. Zircon yields vary by three orders of magnitude, correlating with the degrees of zircon saturation in the magmas, and influencing the spectra of model ages. Two adjacent magma systems active up to 26??5 ka show wholly contrasting model-age spectra. The smaller system shows a simple unimodal distribution. The larger system, using data from three eruptions, shows bimodal model-age spectra. An older ???100 ka peak is interpreted to represent zircons (antecrysts) derived from older silicic mush or plutonic rocks, and a younger peak to represent zircons (phenocrysts) that grew in the magma body immediately prior to eruption. Post-26??5 ka magma batches show contrasting age spectra, consistent with a mixture of antecrysts, phenocrysts and, in two examples, xenocrysts from Quaternary plutonic and Mesozoic-Palaeozoic metasedimentary rocks. The model-age spectra, coupled with zircon-dissolution modelling, highlight contrasts between short-term silicic magma generation at Taupo, by bulk remobilization of crystal mush and assimilation of metasediment and/or silicic plutonic basement rocks, and the longer-term processes of fractionation from crustally contaminated mafic melts. Contrasts between adjacent or successive magma systems are attributed to differences in positions of the source and root zones within contrasting domains in the quartzo-feldspathic (<15 km deep) crust below

  20. Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids

    NASA Astrophysics Data System (ADS)

    Le Guillou, Corentin; Changela, Hitesh G.; Brearley, Adrian J.

    2015-06-01

    (higher temperature, longer duration, change of fluid composition). In a fully closed system, equilibrium thermodynamics suggest that the water to rock ratios, typically assumed to be low (<1) for chondrites, should primarily control the iron valency of the silicates and predict a lower Fe3+ / ∑ Fe ratio. Such a high Fe3+ / ∑ Fe value could be accounted for, however, if the system was partially open, at least with respect to H2 (and other gases as well). Rapid degassing of the fluid would have favored more oxidizing fluid conditions. Recently proposed scenarios involving some degree of water D/H increase through Rayleigh isotopic fractionation are supported by these results.

  1. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  2. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    SciTech Connect

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  3. Petrologic Constraints on Amorphous and Crystalline Magnesium Silicates: Dust Formation and Evolution in Selected Herbig Ae/Be Systems

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and "amorphous silicates with olivine and pyroxene stoichiometry" around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting "astronomical nomenclature" and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the "Principle of Actualism" that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  4. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2011-09-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.65 to 38.3 ha) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ yr stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (22.1-30.8 kg ha-1 a-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (25.6 kg ha-1 a-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<5.3 kg ha-1 a-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2+ + Mg2)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions

  5. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  6. Rock mechanics research awards

    NASA Astrophysics Data System (ADS)

    Wagner, John E.

    The U.S. National Committee for Rock Mechanics, at its June 1983 annual meeting, adopted three actions to enhance the competition and public awareness of its annual awards program for rock mechanics papers. It will issue a call for nominations of outstanding papers; it will request participating societies to announce the names of award winners and the titles of papers, and it will publish an abstract of the winning papers in the proceedings of the annual U.S. Rock Mechanics Symposium in the year following the awards.The competition is open to papers, by U.S residents or students in a U.S. school, published in an English language publication normally available in the United States. The following authors and papers are the 1983 award winners:

  7. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  8. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  9. West Candor Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock exposures in western Candor Chasma, part of the vast Valles Marineris trough system. Most of west Candor's interior includes exposures of layered rock with very few superimposed impact craters. The rock may be very ancient, but the lack of craters suggests that the erosion of these materials is on-going.

    Location near: 6.3oS, 76.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  10. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  11. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  12. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  13. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs

    NASA Astrophysics Data System (ADS)

    Vogel, T. A.; Deering, C. D.; Patino, L. C.; Alvarado, G. E.; Szymanski, D. W.

    2010-12-01

    Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate - a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 10 Ma have chemical compositions typical of oceanic basalts and intra-oceanic arcs. In contrast, younger igneous deposits (<10 Ma) contain abundant silicic rocks with geochemical signatures similar to the average continental crust, which are significantly enriched in SiO2, alkalis and light rare-earth elements. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low-oxygen fugacity where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g. Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic

  14. Water and carbon in rusty lunar rock 66095

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, Kenneth G.; Gleason, J.D.

    1974-01-01

    Lunar rock 66095 contains a hydrated iron oxide and has an unusual amount of water for a lunar rock (140 to 750 parts per million), 90 percent of which is released below 690??C. The ??D of water released at these low temperatures varies from -75 to -140 per mil relative to standard mean ocean water (SMOW). The small amount of water released between 690?? and 1300??C has a ??D of about -175 ?? 25 per mil SMOW. These ??D values are not unusual for terrestrial water. The ??18O of water extracted from 110?? to 400??C has a value of + 5 ?? 1 per mil SMOW, similar to the value for lunar silicates from rock 66095 and different from the value of -4 to -22 per mil found for samples of terrestrial rust including samples of rusted meteoritic iron. The amount of carbon varies from 11 to 59 parts per million with a ??13C from -20 to -30 per mil relative to Pee Dee belemnite. Only very small amounts of reduced species (such as hydrogen, carbon monoxide, and methane) were found, in contrast to the analyses of other lunar rocks. Although it is possible that most of the water in the iron oxide (goethite) may be terrestrial in origin or may have exchanged with terrestrial water during sample return and handling, evidence presented herein suggests that this did not happen and that some lunar water may have a ??D that is indistinguishable from that of terrestrial water.

  15. New oil source rocks cut in Greek Ionian basin

    SciTech Connect

    Karakitsios, V.; Rigakis, N.

    1996-02-12

    The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

  16. Comment on "The shape and composition of interstellar silicate grains"

    SciTech Connect

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS) amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007)). Recent

  17. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  18. Test of a model for trace element partition during closed-system solidification of a silicate liquid. [lunar basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Korotev, R. L.

    1977-01-01

    Trace-element concentrations in separated minerals and rock fragments from a coarsely crushed and sieved sample of medium-grained lunar basalt are determined by high-precision instrumental neutron activation analysis for three main purposes. These are: (1) to test a previously proposed model for describing trace-element behavior during solidification of a silicate liquid under conditions of a closed system; (2) to compare trace-element concentrations among different size fractions of a comminuted basalt; and (3) to investigate small-scale heterogeneity within a single medium-grained basalt. It is found that an excellent mass balance for the whole rock is attained in terms of the trace-element concentrations of the component minerals and mesostasis, that the mixing model describing this mass balance yields a superior modal analysis for the whole rock, and that different size fractions of the coarsely crushed basalt vary in mineral composition. The closed-system model is shown to account properly for the average behavior of the trace elements during solidification of the basalt, and values of distribution coefficients are obtained for incompatible elements in that rock.

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  20. Rock blasting environmental impacts

    SciTech Connect

    Agreda, C.

    1995-12-31

    The rock blasting environmental impacts such as: flyrock, ground vibrations, air-blast, and/or noise, dust and fumes are identified and mentioned. Some comments on the correction factors that might be taken into consideration to calculate the initial velocity and the maximum projection of the rock fragments are mentioned as well. The blast fumes causes, its alleviation and protective measures are identified, described and discussed. To mitigate, minimize and/or avoid blast fumes, the AN/FO, Al/AN/FO and S/AN/FO dry blasting agents optimum equations are developed, discussed and recommended.

  1. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  3. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  4. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  5. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  6. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  7. Assessing Silicate Weathering in Permafrost-Dominated Catchments Using Lithium Isotopes: The Lena River, Siberia

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Pogge von Strandmann, P.; Porcelli, D.; Katchinoff, J. A.; Moreras Martí, A.; Hirst, C. A.; Andersson, P. S.; Maximov, T. C.

    2015-12-01

    Rising global temperatures have the potential to influence the Earth's climate feedback cycles due to permafrost thawing, altering the freshwater input and trace metal and carbon fluxes into the ocean and atmosphere. Riverine lithium isotope ratios (d7Li) are a tracer of silicate weathering processes, which are key in the removal of atmospheric CO2 over geological timescales. Despite this, little is known about the effects of permafrost thawing on d7Li variations. Strong seasonal changes in the thawed active layer thickness dictate surficial water flow paths, which may influence intra-annual riverine d7Li signatures. We present a study of the dissolved d7Li from the large permafrost-dominated watersheds of the Lena River (Siberia), which drain into the Arctic Ocean. This work comprises a temporal study during the May 2015 spring flood, from ice breakup through peak flooding, thus monitoring changes in water-rock and water-soil interaction, both processes that control weathering and hence Li isotopes. Before riverine ice started to break up, high [Li] are observed as the river signature is governed by winter base flow conditions. As the river ice breaks up, surface runoff flows over the impermeable permafrost, interacting with leaf litter, diluting the [Li]. We compare d7Li over the spring flood period with a greater spatial study conducted over two summer field seasons (2012/2013) of the main Lena River channel and its tributaries, which drain a variety of lithologies/topographies. During the summer, the thawed active layer promotes deeper water flow paths, greater water-rock interaction and enhanced secondary minerals formation which preferentially take up 6Li. Summer riverine d7Li typically fall between +14.5 ‰ to +28.5 ‰, with rivers draining the Central Siberian Plateau typically exhibiting high [Li], but similar δ7Li to rivers draining the Verkhoyansk Mountain Range. Overall, this study demonstrates how Li isotopes respond to weathering in a permafrost

  8. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  9. Gas-phase molecular structure and energetics of anionic silicates

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Cordeiro, M. Natália D. S.; Jorge, Miguel

    2008-09-01

    The gas-phase stabilities of linear, branched and cyclic silicates made of up to five silicon atoms were studied with density functional theory (DFT). The starting geometries for the DFT calculations at the B3LYP/6-311+G(2d,2p) level of theory were obtained from classical molecular dynamics simulations. We have observed that geometric parameters and charges are mainly affected by the degree of deprotonation. Charges on Si atoms are also influenced by their degree of substitution. The enthalpy of deprotonation of the neutral species was found to decrease with the size of the molecule, while the average deprotonation enthalpy of highly charged compounds increased with molecular size. Furthermore, the formation of rings in highly charged silicates is enthalpically preferred to chain growth. These observations result from two competing effects: the easier distribution of negative charge in silicates with low charge density and the strong intramolecular repulsions present in silicates with high charge density. As a consequence, highly charged silicates in the gas phase tend to be as small and as highly condensed as possible, which is in line with experimental observations from solution NMR.

  10. Properties of cometary crystalline silicate before and after perihelion passage

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2013-01-01

    Crystalline silicate is sometimes observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to be born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough OC samples, while we have observed several ECs. Fortunately, we can observe three comets in this semester. In particular, C/2012 S1 (ISON) is a bright sungrazing comet, and we might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet. The comet C/2012 S1 (ISON), along with two other comets, is an unparalleled target for this study.

  11. Behavior of Np(VII, VI, V) in Silicate Solutions

    SciTech Connect

    Shilov, V P.; Fedoseev, A M.; Yusov, A B.; Delegard, Calvin H.

    2004-11-30

    Spectrophotometric methods were used to investigate the properties of neptunium(VII), (VI), and (V) in silicate solution. The transition of cationic neptunium(VII) to anionic species in non-complexing environments proceeds in the range of ?? 5.5 to 7.5. In the presence of carbonate, this transition occurs at ?? 10.0 to 11.5 and in silicate solutions at ?? 10.5-12.0. These findings show that cationic neptunium(VII) forms complexes with both carbonate and silicate and that the silicate complex is stronger than that of the carbonate. The competition of complex formation reactions for neptunium(VI) with carbonate and silicate and on the known complex stability constant of NpO2(CO3)34- allowed the NpO2SiO3 complex stability constant, log ? = 16.5, to be estimated. Determination of the formation constant of Np(V) complexes with SiO32- was not possible using similar methods.

  12. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  13. 'Scarecrow' Climbs Rocks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scarecrow, a mobility-testing model for NASA's Mars Science Laboratory, easily traverses large rocks in the Mars Yard testing area at NASA's Jet Propulsion Laboratory.

    The Mars Science Laboratory rover is in development for launch in 2009. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for the NASA Science Mission Directorate, Washington.

  14. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  15. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  16. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  17. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  18. A Rock Retrospective.

    ERIC Educational Resources Information Center

    O'Grady, Terence J.

    1979-01-01

    The author offers an analysis of musical techniques found in the major rock trends of the 1960s. An annotated list of selected readings and a subject-indexed list of selected recordings are appended. This article is part of a theme issue on popular music. (Editor/SJL)

  19. Estimating Rock Strength Parameters from Rock Abrasion Tool (RAT) Grinds

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Bridges, N. T.; Cohen, J.; Hurowitz, J.; Lennon, A.

    2011-03-01

    We have developed an empirical correlation between rock abrasion tool (RAT) grind energy and compressive strength. This correlation can be used to infer the physical properties of rocks ground by the MER rovers on Mars.

  20. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)