NASA Technical Reports Server (NTRS)
1996-01-01
On this tenth day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Missions Specialists Jeffrey Hoffman, Maurizio Cheli (ESA), and Claude Nicollier (ESA), are shown performing middeck and Microgravity lab experiments, including the Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO) experiment, as well as some material burn tests. Earth views include cloud cover and horizon shots.
Experimental validation of photon-heating calculation for the Jules Horowitz Reactor
NASA Astrophysics Data System (ADS)
Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.; Reynard-Carette, C.; Di Salvo, J.; Gruel, A.
2015-04-01
The Jules Horowitz Reactor (JHR) is the next Material-Testing Reactor (MTR) under construction at CEA Cadarache. High values of photon heating (up to 20 W/g) are expected in this MTR. As temperature is a key parameter for material behavior, the accuracy of photon-heating calculation in the different JHR structures is an important stake with regard to JHR safety and performances. In order to experimentally validate the calculation of photon heating in the JHR, an integral experiment called AMMON was carried out in the critical mock-up EOLE at CEA Cadarache to help ascertain the calculation bias and its associated uncertainty. Nuclear heating was measured in different JHR-representative AMMON core configurations using ThermoLuminescent Detectors (TLDs) and Optically Stimulated Luminescent Detectors (OSLDs). This article presents the interpretation methodology and the calculation/experiment (C/E) ratio for all the TLD and OSLD measurements conducted in AMMON. It then deals with representativeness elements of the AMMON experiment regarding the JHR and establishes the calculation biases (and its associated uncertainty) applicable to photon-heating calculation for the JHR.
STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical
NASA Technical Reports Server (NTRS)
1996-01-01
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-105 Crew Interview: Scott Horowitz
NASA Technical Reports Server (NTRS)
2001-01-01
STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.
Warm-Season Flows on Slope in Horowitz Crater Nine-Image Sequence
2011-08-04
This image comes from observations of Horowitz crater by the HiRISE camera onboard NASA Mars Reconnaissance Orbiter. The features that extend down the slope during warm seasons are called recurring slope lineae.
Horowitz checks flight notes at the commander's station
2001-08-10
STS105-E-5002 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.
Horowitz checks flight notes at the commander's station
2001-08-10
STS105-E-5001 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.
Neutron fluxes in test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles Jean-Michel
Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.
ERIC Educational Resources Information Center
Brock, Allan D.
1979-01-01
The "Horowitz" case is consistent with the general reluctance of courts to sustain constitutional challenges to decisions by educators in academic matters. Available from Willamette University College of Law, Salem, OR 97301. (Author)
Thermodynamic aspects of information transfer in complex dynamical systems
NASA Astrophysics Data System (ADS)
Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom
2016-02-01
From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.
Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)
NASA Astrophysics Data System (ADS)
Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier
2017-09-01
Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.
Technologies, processes, business approaches, and policies to drive clean energy technology cost reductions and Muhammad Alam. 2017. An analysis of the Cost and Performance of Photovoltaic Systems as a Function Wiley & Sons, Ltd. doi:10.1002/pip.2755 Horowitz, Kelsey A.W. and Michael Woodhouse. "Cost and
Horowitz adheres a STS-105 mission logo to a Node 1 panel
2001-08-01
ISS003-E-6189 (August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, adds the STS-105 crew patch to the growing collection of those representing Shuttle crews who have worked on the International Space Station (ISS). This image was taken with a digital still camera.
Horowitz and Barry inside Soyuz spacecraft with Sokol suits
2001-08-20
STS105-E-5389 (20 August 2001) --- Scott J. Horowitz (center), STS-105 commander, and Daniel T. Barry, mission specialist, pose among the stowage bags and Sokol suits in the Soyuz spacecraft which is docked to the International Space Station (ISS). This image was taken with a digital still camera.
Horowitz at the aft flight deck during rendezvous ops
2001-08-12
STS105-E-5061 (12 August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, looks over a checklist on the aft flight deck of the Space Shuttle Discovery during rendezvous operations with the International Space Station (ISS). The image was recorded with a digital still camera.
2012-03-22
USC Team Members: SERC Research Council Dr. Abhi Deshmukh , Purdue Dr. Michael Griffin. U. Alabama-Huntsville Dr. Barry Horowitz, U. Virginia Dr...Areas ................................................. 34 3.2.1 Affordability, Agility, and Resilience (Barry Boehm and Abhi Deshmukh , Leads...statement was reinterpreted to involve the SERC Research Council (Drs. Deshmukh , Griffin, Horowitz, Rouse, and Wade, with Dr. Boehm as chair) in defining
Horowitz and Sturckow with the ISS logbook in Node 1
2001-08-01
ISS003-E-6185 (August 2001) --- Astronauts Frederick W. (Rick) Sturckow (left), STS-105 pilot, and Scott J. Horowitz, mission commander, add their names to the ships log of visitors in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
Forrester is presented with a medal by Voss and Horowitz in Node 1
2001-08-01
ISS003-E-6191 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, are photographed in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
Forrester is presented with a medal by Voss and Horowitz in Node 1
2001-08-01
ISS003-E-6193 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, exchange greetings in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
Citera, Maryalice; Freeman, Phyllis R; Horowitz, Richard I
2017-01-01
Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals. Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of the scale and evaluated discriminant validity with the Big Five personality characteristics. The third study compared a sample of 236 patients with confirmed Lyme disease with an online sample of 568 healthy individuals. Factor analysis results identified six underlying latent dimensions; four of these overlapped with critical symptoms identified by Horowitz - neuropathy, cognitive dysfunction, musculoskeletal pain, and fatigue. The HMQ showed acceptable levels of internal reliability using Cronbach's coefficient alpha and exhibited evidence of convergent and divergent validity. Components of the HMQ correlated more highly with each other than with unrelated traits. The results consistently demonstrated that the HMQ accurately differentiated those with Lyme disease from healthy individuals. Three migratory pain survey items (persistent muscular pain, arthritic pain, and nerve pain/paresthesias) robustly identified individuals with verified Lyme disease. The results support the use of the HMQ as a valid, efficient, and low-cost screening tool for medical practitioners to decide if additional testing is warranted to distinguish between Lyme disease and other illnesses.
Citera, Maryalice; Freeman, Phyllis R; Horowitz, Richard I
2017-01-01
Purpose Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals. Methods Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of the scale and evaluated discriminant validity with the Big Five personality characteristics. The third study compared a sample of 236 patients with confirmed Lyme disease with an online sample of 568 healthy individuals. Results Factor analysis results identified six underlying latent dimensions; four of these overlapped with critical symptoms identified by Horowitz – neuropathy, cognitive dysfunction, musculoskeletal pain, and fatigue. The HMQ showed acceptable levels of internal reliability using Cronbach’s coefficient alpha and exhibited evidence of convergent and divergent validity. Components of the HMQ correlated more highly with each other than with unrelated traits. Discussion The results consistently demonstrated that the HMQ accurately differentiated those with Lyme disease from healthy individuals. Three migratory pain survey items (persistent muscular pain, arthritic pain, and nerve pain/paresthesias) robustly identified individuals with verified Lyme disease. The results support the use of the HMQ as a valid, efficient, and low-cost screening tool for medical practitioners to decide if additional testing is warranted to distinguish between Lyme disease and other illnesses. PMID:28919803
Horowitz is hugged by Usachev in the ISS Service Module/Zvezda
2001-08-12
STS-105-E-5121 (12 August 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, and Scott J. Horowitz, STS-105 commander, embrace in the Zvezda Service Module with open arms during the initial ingress into the International Space Station (ISS) for the STS-105 mission. This image was taken with a digital still camera.
STS-105 MS Barry and Commander Horowitz pose in the U.S. Laboratory
2001-08-17
ISS003-E-5185 (17 August 2001) --- Astronauts Daniel T. Barry (left), STS-105 mission specialist, and Scott J. Horowitz, commander, pause from their daily activities to pose for this photo in the Destiny laboratory while visiting the International Space Station (ISS). This image was taken with a digital still camera.
Millions and Billions of Channels
NASA Astrophysics Data System (ADS)
Leigh, Darren; Horowitz, Paul
The history of the Harvard SETI group is inextricably linked with the history of Paul Horowitz. Horowitz became enamored with SETI as a student at Harvard, reading Ed Purcell's paper "Radio Astronomy and Communication Through Space" (Purcell, 1960), discussing with his roommates a class that Carl Sagan was teaching there using a draft of Shklovskii and Sagan's "Intelligent Life in the Universe" (Shklovskii and Sagan, 1966) as a text, and finally attending a Loeb Lecture series at Harvard by Frank Drake (Drake, 1969). The series was officially about pulsars but Drake did manage to slip in one inspiring talk about SETI. Horowitz says that "It was this lecture that launched me into this field; it was a revelation that you could go beyond idle speculation - you could actually calculate stuff."
Horowitz shows off the hand-crafted thermal insulation he made for the HST
1997-02-18
S82-E-5686 (17 Feb. 1997) --- Astronaut Scott J. Horowitz, STS-82 pilot, shows the hand-crafted thermal insulation blanket to support the goal of the final Extravehicular Activity (EVA) to cover tears in Hubble Space Telescope's (HST) insulation caused by changes in thermal conditions. This view was taken with an Electronic Still Camera (ESC).
Audio App Brings a Better Nights Sleep
NASA Technical Reports Server (NTRS)
2015-01-01
Neuroscientist Seth Horowitz was part of a NASA-funded team at State University of New York Stony Brook demonstrating that low-amplitude vestibular stimulation could induce sleep. After recognizing the same stimulation could be applied through sound, Horowitz founded Sleep Genius, located in Park City, Utah, and released a mobile app of the same name that helps people to get a more restful sleep.
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Brock, Allan D.
1979-01-01
The Horowitz case is consistent with the general reluctance of courts to sustain constitutional challenges to decisions by educators in academic matters. Precedent is heavily weighted in favor of the academic community and should be overcome in future challenges. (Journal availability: Willamette University College of Law, Salem, OR 97301, $5.00…
1990-09-01
expanded in a specific direction if movement is indicated. Controlled dumping at precise coordinates or at marker buoys may reduce the required survey area...of the meters or theft of the marker buoys. Subsurface markers using acoustic releases prevent vandalism and loss of marker buoys, but they...data from field studies such as impact investigations ’Underwood 1981; Heck and Horowitz 1984; Hurlbert 1984; Millard and Lettenmaier 1986; Stewart
Pilot Scott Horowitz fashions cord loop fasteners for a contingency spacewalk
1997-02-16
S82-E-5597 (17 Feb. 1997) --- Astronaut Scott J. Horowitz at pilot's station works with a hand-fashioned loop fastener device to be used in support of the additional STS-82 Extravehicular Activity (EVA) to service Hubble Space Telescope (HST). Note sketches overhead which were sent by ground controllers to guide the pilot's engineering of the task. This view was taken with an Electronic Still Camera (ESC).
Mutation analysis of Australasian Gaucher disease patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.V.; Carey, W.F.; Morris, C.P.
1995-09-25
We have previously reported phenotype and genotype analyses in 28 Australasian Gaucher patients who were screened for several of the common Gaucher mutations: N370S, L444P, 84GG, and R463C. Horowitz and Zimran have reported that the complex alleles recNciI and recTL, which contain several point mutations including L444P, are relatively common, especially in non-Jewish Gaucher patients. Zimran and Horowitz have also stated that these recombinant alleles could easily be missed by laboratories testing only for the common Gaucher point mutations. Failure to correctly identify these mutations would influence any attempt to correlate genotype with phenotype. We have therefore retested our Gauchermore » patients for recNciI (L444P, A456P, and V46OV) and recTL (D409H, L444P, A456P, and V46OV) by PCR amplification, followed by hybridization with allele-specific oligonucleotides. 4 refs.« less
Culbertson and Horowitz prepare to open the ODS hatch into the ISS
2001-08-12
STS105-E-5089 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and Frank L. Culbertson, Jr., Expedition Three mission commander, prepare to open Space Shuttle Discovery's airlock hatch leading to the International Space Station (ISS). Culbertson and cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov will be replacing the Expedition Two crew as residents aboard the ISS. This image was taken with a digital still camera.
Horowitz and Culbertson prepare to open the ODS hatch into the ISS
2001-08-12
STS105-E-5092 (12 August 2001) --- Scott J. Horowitz (bottom), STS-105 commander, and Frank L. Culbertson, Jr., Expedition Three mission commander, prepare to open Space Shuttle Discovery's airlock hatch leading to the International Space Station (ISS). Culbertson and cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov will be replacing the Expedition Two crew as residents aboard the ISS. This image was taken with a digital still camera.
Post-Traumatic Stress Disorder and the Casual Link to Crime: A Looming National Tragedy
2008-04-01
Edited by Mardi J. Horowitz. New York and London: New York University Press. 1999, 19. Sigmund Freud . Introduction to Psycho-Analysis and the...placed. Horowitz, Freud , and Smith all discuss the draconian measures used by nearly all parties to the conflict in returning cowards and malingerers...stop the torturous process- -even return to the fighting.40 Binneveld and Freud both note that this type of “punishment” oriented treatment fell into
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.
Somalia Background Information for Operation Restore Hope 1992-93
1992-12-01
consolidation of Ethiopia under Emperor Menelik in the last decade of the 19th century also led to confrontations in the Ogaden. These external interventions...Horowitz, ibid., pp. 523-524. Horowitz, ibid., p. 552. - Ii - One of the most unfortunate aspects of Siad’s rule was the introduction of his family to...daughters of Lijj Iyasu, the chosen successor son to King Menelik , who was demonstrating interest in converting to Islam, causing alarm throughout the
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
NASA Astrophysics Data System (ADS)
Li, Qiang; Zeng, Xiaoxiong
2009-06-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.
STS-101: Crew Activity Report CAR/Flight Day 04 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
On this fourth day of the STS-101 Atlantis mission, the flight crew, Commander James D. Halsell Jr., Pilot Scott J. Horowitz, and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev are seen performing final preparations for the scheduled space walk. Horowitz, Williams and Voss are seen in the mid-deck before the space walk. Horowitz and Weber are also seen in the flight deck, powering-up the robot-arm. During the space walk Voss is seen checking the American Cargo Crane-Orbital Replacement Unit Transfer Device. Voss and Williams are shown securing the American-built crane that was installed on the station last year. They are seen as they install the final parts (boom extension) of a Russian-built crane on the station. Voss and Williams are also shown as they replace a faulty antenna for one of the station's communications systems on the Unity Module, and install several handrails and a camera cable on the station's exterior.
Horowitz and Dezhurov float into Node 1/Unity from U.S. Laboratory/Destiny
2001-08-12
STS105-E-5109 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and cosmonaut Vladimir N. Dezhurov, Expedition Three flight engineer, move into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Dezhurov, accompanied by cosmonaut Mikhail Tyurin and astronaut Frank L. Culbertson, Jr., will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001
NASA Technical Reports Server (NTRS)
2006-01-01
Delores Beasley, NASA Public Affairs, introduces the panel who consist of: Scott "Doc" Horowitz, Associate Administrator of Exploration Systems from NASA Headquarters; Jeff Henley, Constellation Program Manager from NASA Johnson Space Flight Center; and Steve Cook, Manager Exploration Launch Office at NASA Marshall Space Flight Center. Scott Horowitz presents a short video entitled, "Ares Launching the Future". He further explains how NASA personnel came up with the name of Ares and where the name Ares was derived. Jeff Henley, updates the Constellation program and Steve Cook presents two slide presentations detailing the Ares l crew launch vehicle and Ares 5 cargo launch vehicle. A short question and answer period from the news media follows.
Entanglement Entropy of the Six-Dimensional Horowitz-Strominger Black Hole
NASA Astrophysics Data System (ADS)
Li, Huai-Fan; Zhang, Sheng-Li; Wu, Yue-Qin; Ren, Zhao
By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of six-dimensional Horowitz-Strominger black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in six-dimensional Horowitz-Strominger black hole and the fields are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. Using the quantum statistical method, we directly calculate the partition function of the Bose and Fermi fields under the background of the six-dimensional black hole. The difficulty in solving the wave equations of various particles is overcome.
Thermal degradation and morphological studies on raw and reinforced polyacrylic rubbers
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-05-01
Poly acrylate rubbers (ACM) of today are saturated copolymers of monomeric acrylic esters and reactive cure site monomers. ACM elastomer have also found use in vibration damping due to its excellent resilience. Other applications include textiles, adhesives, and coatings. Two state of Poly acrylic raw and reinforced Rubber are analyzed using FTIR spectroscopy, Optical Microscopy, DSC and TGA measurements. With the objective of determined the mechanical strength, Thermal analysis on TGA and DSC studies show that, the thermal degradation temperature Tg of the sample material is obtained and activation energy is also calaulated by Broido, Horowitz - Metzger, Piloyan-Novikova and Coats Redfern methods which are found.
Gallup, Gordon G; Anderson, James R
2018-03-01
The recent attempt by Horowitz (2017) to develop an "olfactory mirror" test of self-recognition in domestic dogs raises some important questions about the kinds of data that are required to provide definitive evidence for self-recognition in dogs and other species. We conclude that the "olfactory mirror" constitutes a compelling analog to the mark test for mirror self-recognition in primates, but despite claims to the contrary neither dogs, elephants, dolphins, magpies, horses, manta rays, squid, nor ants have shown compelling, reproducible evidence for self-recognition in any modality. Copyright © 2017 Elsevier B.V. All rights reserved.
1997-01-21
STS-82 Mission Commander, far left, takes a photograph of his fellow crew members Pilot Scott J. "Doc" Horowitz, at far right, and Mission Specialist Joseph R. "Joe" Tanner while they are training in the M-113 armored personnel carrier. George Hoggard, a training officer with KSC Fire Services, looks on. The STS-82 crew is at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The 10-day flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff
2007-08-23
NASA officials and government leaders participated in a groundbreaking event for a new rocket engine test stand at NASA's Stennis Space Center, Miss. Pictured (left to right) are Deputy Associate Administrator for Exploration Systems Doug Cooke, Pratt & Whitney Rocketdyne President Jim Maser, Stennis Space Center Director Richard Gilbrech, NASA Associate Administrator for Exploration Systems Scott Horowitz, NASA Deputy Administrator Shana Dale, Mississippi Gov. Haley Barbour, Sen. Thad Cochran, Sen. Trent Lott, Rep. Gene Taylor, SSC's Deputy Director Gene Goldman, and SSC's A-3 Project Manager Lonnie Dutreix. Stennis' A-3 Test Stand will provide altitude testing for NASA's developing J-2X engine. That engine will power the upper stages of NASA's Ares I and Ares V rockets. A-3 is the first large test stand to be built at SSC since the site's inception in the 1960s.
STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
1997-01-21
STS-82 crew members ride in and learn how to operate an M-113 armored personnel carrier during Terminal Countdown Demonstration Test (TCDT) activities prior to launch. The four crew members dressed in their blue flight suits and visible here are, from left, Pilot Scott J. "Doc" Horowitz, Mission Specialist Joseph R. "Joe" Tanner, Mission Commander Kenneth D. Bowersox and Payload Commander Mark C. Lee. George Hoggard, a training officer with KSC Fire Services, is visible in the background at left. The 10-day STS-82 flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff
Genetics Home Reference: Angelman syndrome
... Gentile JK, Tan WH, Horowitz LT, Bacino CA, Skinner SA, Barbieri-Welge R, Bauer-Carlin A, Beaudet ... article on PubMed Central Tan WH, Bacino CA, Skinner SA, Anselm I, Barbieri-Welge R, Bauer-Carlin ...
Jhingran A, Russell AH, Seiden MV, et al. Cancers of the cervix, vulva, and vagina. In: Niederhuber JE, Armitage JO, Doroshow ... Updated January 31, 2018. Accessed March 9, 2018. Russell AH, Horowitz NS. Cancers of the vulva and ...
STS-82 Crew Members in M-113 armored personnel carrier during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-82 crew members ride in and learn how to operate an M-113 armored personnel carrier during Terminal Countdown Demonstration Test (TCDT) activities prior to launch. The four crew members dressed in their blue flight suits and visible here are, from left, Pilot Scott J. 'Doc' Horowitz, Mission Specialist Joseph R. 'Joe' Tanner, Mission Commander Kenneth D. Bowersox and Payload Commander Mark C. Lee. George Hoggard, a training officer with KSC Fire Services, is visible in the background at left. The 10- day STS-82 flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
NASA Astrophysics Data System (ADS)
He, Juan; Xu, Shuai; Ye, Liu
2016-05-01
We investigate the quantum correlation via measurement-induced-nonlocality (MIN) for Dirac particles in Garfinkle-Horowitz-Strominger (GHS) dilation space-time. It is shown that the physical accessible quantum correlation decreases as the dilation parameter increases monotonically. Unlike the case of scalar fields, the physical accessible correlation is not zero when the Hawking temperature is infinite owing to the Pauli exclusion principle and the differences between Fermi-Dirac and Bose-Einstein statistics. Meanwhile, the boundary of MIN related to Bell-violation is derived, which indicates that MIN is more general than quantum nonlocality captured by the violation of Bell-inequality. As a by-product, a tenable quantitative relation about MIN redistribution is obtained whatever the dilation parameter is. In addition, it is worth emphasizing that the underlying reason why the physical accessible correlation and mutual information decrease is that they are redistributed to the physical inaccessible regions.
Koslowsky; Solomon; Bleich; Laor
1994-06-01
In one of the few models specific to victims' reactions to traumatic events, it has been proposed that consequences typically include alternating patterns of intrusive and avoidance symptoms. The present exploratory investigation examined the responses of 120 victims who had been evacuated to a hotel after a SCUD missile attack on their home. Analyses using structural equation modeling showed that both psychological states follow stressful stimuli and perceived threat. In addition, results were found to be consistent with a model that posits intrusion as antecedent to anxiety which, in turn, was found to precede a latent outcome measure consisting of psychological, physical, and work functioning.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Quantum healing of spacetime singularities: A review
NASA Astrophysics Data System (ADS)
Konkowski, D. A.; Helliwell, T. M.
2018-02-01
Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.
The Deployment of Visual Attention
2006-03-01
targets: Evidence for memory-based control of attention. Psychonomic Bulletin & Review , 11(1), 71-76. Torralba, A. (2003). Modeling global scene...S., Fencsik, D. E., Tran, L., & Wolfe, J. M. (in press). How do we track invisible objects? Psychonomic Bulletin & Review . *Horowitz, T. S. (in press
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed
Counselors as Caregivers: The Validation of the Counselor Caregiving Questionnaire (CCQ)
ERIC Educational Resources Information Center
Fitch, Jenelle C.
2008-01-01
This research is a validation study of the Counselor Caregiving Questionnaire (CCQ). Doctoral-level students (N = 188) in clinical and counseling psychology training programs completed the following questionnaires: (a) Counselor Caregiving Questionnaire (Fitch & Pistole, 2006), (b) Relationship Questionnaire (Bartholomew & Horowitz, 1991),…
Stability of flat spacetime in quantum gravity
NASA Astrophysics Data System (ADS)
Jordan, R. D.
1987-12-01
In a previous paper, a modified effective-action formalism was developed which produces equations satisfied by the expectation value of the field, rather than the usual in-out average. Here this formalism is applied to a quantized scalar field in a background which is a small perturbation from Minkowski spacetime. The one-loop effective field equation describes the back reaction of created particles on the gravitational field, and is calculated in this paper to linear order in the perturbation. In this way we rederive an equation first found by Horowitz using completely different methods. This equation possesses exponentially growing solutions, so we confirm Horowitz's conclusion that flat spacetime is unstable in this approximation to the theory. The new derivation shows that the field equation is just as useful as the one-loop approximation to the in-out equation, contrary to earlier arguments. However, the instability suggests that the one-loop approximation cannot be trusted for gravity. These results are compared with the corresponding situation in QED and QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guimbal, P.; Huotilainen, S.; Taehtinen, S.
2015-07-01
As a prototype of future instrumented material experiments in the Jules Horowitz Reactor (JHR), the MELODIE project was launched in 2009 by the CEA in collaboration with VTT. Being designed as a biaxial creep experiment with online capability, MELODIE is able to apply an online-controlled biaxial loading on a LWR clad sample up to 120 MPa and to perform an online measurement of its biaxial deformation. An important experimental challenge was to perform reliably accurate measurements under the high nuclear heat load of in-core locations while keeping within their tight space. For that purpose, specific sensors were co-designed with andmore » built by IFE Halden. Manufacturing of the MELODIE components was completed one year ago. The complexity of its in-pile section and of the pressurization system requested a step-by-step tuning of the setup. The toughest part of this process dealt with the Diameter gauge which required a partial redesign to take into account unexpected and unwanted electromagnetic interactions with the hosting device. Final cold performance tests of the on-board instrumentation will be presented. The MELODIE device is now ready and irradiation should start in OSIRIS reactor this spring. (authors)« less
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
STS-105 preflight water survival training in NBL pool in SCTF
2000-12-11
JSC2000-07459 (11 December 2000) --- Astronaut Scott J. Horowitz, STS-105 commander, simulates a parachute drop into water during emergency bailout training with his crew members. The exercise took place in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
Recruiting, Retention, and Future Levels of Military Personnel
2006-10-01
analysis. Nabeel Alsalam, David Moore, Matthew Schmit, and Roberton Williams provided comments. Stanley A. Horowitz of the Institute for Defense Analyses...afps04.htm. 8. See Congressional Budget Office, The Army’s Future Combat Sys - tem and Alternatives (August 2006), Table 2-1, p. 18. 9. See the Ronald W
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, looks on as Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, center, speaks as Jeff Hanley, Constellation Program Manager, right, looks on during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
McMillen, Liz
2009-01-01
At the annual gathering of the Modern Language Association (MLA), panel members seemed to talk past each other. Mark Bauerlein and David Horowitz each criticized the professoriate for not acknowledging real problems in the classroom or the ways identity politics can infringe on academic freedom. Norma V. Canti and Cary Nelson did not respond to…
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Facilitating L2 Writers' Interpretation of Source Texts
ERIC Educational Resources Information Center
Doolan, Stephen M.; Fitzsimmons-Doolan, Shannon
2016-01-01
Student success in higher education often involves the effective integration of source texts into students' writing (Horowitz, 1986); therefore, advanced second language (L2) students are particularly well served by effective reading-to-write instruction. Teaching L2 students to write from sources is challenging because of several issues,…
STS-105 crew poses for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson happily sits through suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency, are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester waits to don his helmet during suit fit check as part of Terminal Countdown Demonstration Test activities. He and other crew members Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Daniel Barry are also taking part in the TCDT, which includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew - Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency - several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
NASA Astrophysics Data System (ADS)
Abdulhay, Ibrahim Shakib
1995-01-01
The thermoluminescent dosimeter (TLD) response (integrated light output per unit exposure) of a high Z material increases more rapidly with decreasing photon energy and with energy above the pair production threshold than that of lower Z materials. The ratio of the responses obtained when two thermoluminescent dosimeter (TLD) materials are simultaneously exposed to gamma or x-rays could be used to obtain information about the incident photon energies. In addition, the responses are affected by the presence of the material surrounding the dosimeters. Two TLD's, LiF and CaSO_4, with respective effective atomic number of 8.2 and 15.3, have been chosen to be sandwiched between different absorber materials (Al, Cu, and Pb) and irradiated at selected distances from gamma radiation sources. The photon energies used in this investigation were 60 keV, 142 keV, 662 keV, 1.25 MeV, and 6.129 MeV. Fit equations of the responses of the dosimeters to different energies have been obtained and used to evaluate the energy distributions of unknown ionizing radiation fields. In addition, the electron mass attenuation coefficient beta used in Burlin and Burlin-Horowitz Cavity Theory has been modified to produce better agreement with experimental data at low photon energies and at high energies.
NASA Astrophysics Data System (ADS)
Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.
2018-04-01
The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.
Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber
NASA Astrophysics Data System (ADS)
Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish
2018-01-01
Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.
NASA Astrophysics Data System (ADS)
Rizwan, C. L. Ahmed; Vaid, Deepak
2018-05-01
We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.
"Dissoi Logoi," Civic Friendship, and the Politics of Education
ERIC Educational Resources Information Center
Olbrys, Stephen Gencarella
2006-01-01
This essay examines the recent debate over the politics of American education, particularly the accusation of liberal bias by members of the Right such as David Horowitz and Students for Academic Freedom. It draws parallels between the contemporary movement for an "Academic Bill of Rights" and the historical context of the "Powell…
ERIC Educational Resources Information Center
Kerner, Sarah Shankman
2015-01-01
Adolescent depression is a prevalent and debilitating disorder that is associated with social and academic impairment, suicidality, comorbid psychiatric disorders, and high-risk behaviors (Horowitz, Garber, Ciesla, Young, & Mufson, 2007). Yet many adolescents experiencing depressive symptoms do not receive adequate services, and those that do…
The morphological basis for olfactory perception of steroids during agonistic behavior in lobsters: preliminary experiments. Borsay Horowitz, DJ1, Kass-Simon, G2, Coglianese, D2, Martin, L2, Boseman, M2, Cromarty, S3, Randall, K3, Fini, A.3 1US EPA, NHEERL, ORD, Atlantic Ecology...
2006-06-05
Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Two Sides of the Same Coin: Politics in the Classroom
ERIC Educational Resources Information Center
Berg, Steven L.
2005-01-01
This paper presents interviews with David Horowitz, an author, professor, and President of the Center for the Study of Popular Culture headquartered in Los Angeles, California and Carol King, an adjunct professor of theology at Xavier University in Cincinnati, Ohio, and manager of the Cinergy Foundation, also in Cincinnati. The interviews present…
Diversifying the Academy: How Conservative Academics Can Thrive in Liberal Academia
ERIC Educational Resources Information Center
Maranto, Robert; Woessner, Matthew
2012-01-01
Researchers have long recognized that higher education is dominated by professors whose politics are well to the left of the American political center. The cause and implications of this ideological imbalance have been intensely debated since the 1960s. Although critics of higher education, such as David Horowitz, argue that the political…
Decomposition of Some Well-Known Variance Reduction Techniques. Revision.
1985-05-01
34use a family of transformatlom to convert given samples into samples conditioned on a given characteristic (p. 04)." Dub and Horowitz (1979), Granovsky ...34Antithetic Varlates Revisited," Commun. ACM 26, 11, 064-971. Granovsky , B.L. (1981), "Optimal Formulae of the Conditional Monte Carlo," SIAM J. Alg
Attachment Styles, Social Skills, and Depression in College Women
ERIC Educational Resources Information Center
Cooley, Eileen L.; Van Buren, Amy; Cole, Steven P.
2010-01-01
Attachment styles, social skills, and depression were studied in 3 college women using the Relationship Questionnaire (K. Bartholomew & L. M. Horowitz, 1991), the Beck Depression Inventory-II (A. T. Beck, R. A. Steer, & G. K. Brown, 1996), and the Interpersonal Competence Questionnaire (D. Buhrmester, W. Furman, M. T. Wittenberg, & H.…
The Contours of Inclusion: Frameworks and Tools for Evaluating Arts in Education
ERIC Educational Resources Information Center
Glass, Don; Palmer Wolf, Dennie; Molloy, Traci; Rodriguez, Aamir; Horowitz, Robert; Burnaford, Gail; Mertens, Donna M.
2008-01-01
This collection of essays explores various arts education-specific evaluation tools, as well as considers Universal Design for Learning (UDL) and the inclusion of people with disabilities in the design of evaluation instruments and strategies. Prominent evaluators Donna M. Mertens, Robert Horowitz, Dennie Palmer Wolf, and Gail Burnaford are…
Campaign Targets Perceived Liberal Bias in Schools
ERIC Educational Resources Information Center
Cavanagh, Sean
2006-01-01
Having witnessed what they regard as the corruption of colleges by liberals and left-leaning academics, conservative activists say they are launching a venture to eliminate any such bias from the nation's public schools. "It's a campaign we're beginning today," said David Horowitz, who helped organize an April 7, 2006 conference to promote those…
STS-105 crew poses for photo on Fixed Service Structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov gets ready to drive the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other crew members taking part are the STS-105 crew, Commander Scott Horowitz, Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester; and the rest of Expedition Three, Commander Frank Culbertson and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in front of the M-113 armored personnel carrier that is part of emergency egress training at the pad. From left to right, they are STS-105 Commander Scott Horowitz, Mission Specialist Daniel Barry, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson is behind the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Mikhail Tyurin are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Disabled-2 Mediation of Retinoic Acid Cell Growth Arrest Signal in Breast Cancer
2002-08-01
C. Cohen, L. E. Mendez , I. R. Horowitz, ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. A. I Godwin, and X X. Xu, submitted for publication. T...trans., 9-cis-retinoic acid) and P- caro - forming units of adenovirus were added to the cells in medium with low tene were purchased from Sigma
Personal Writing and the ESL Student.
ERIC Educational Resources Information Center
Simmons, Mary Beth
Personal writing is not only valid in such places as the academy, it is vital--even though Daniel Horowitz, in his essay "Process, Not Product: Less Than Meets the Eye," said that "teaching students to write intelligently on topics they do not care about seems to be a more useful goal than having them pick topics which interest them." But…
2006-06-04
NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Creating a Data-Informed Culture in Community Colleges: A New Model for Educators
ERIC Educational Resources Information Center
Phillips, Brad C.; Horowitz, Jordan E.
2017-01-01
Brad C. Phillips and Jordan E. Horowitz offer a research-based model and actionable approach for using data strategically at community colleges to increase completion rates as well as other metrics linked to student success. They draw from the fields of psychology, neuroscience, and behavioral economics to show how leaders and administrators can…
Trends in Freshman Attitudes and Use of Drugs. Research Report No. 4-74.
ERIC Educational Resources Information Center
Howard, Beverley R.; Sedlacek, William E.
An anonymous questionnaire was administered to a representative sample of incoming freshmen at the University of Maryland, College Park (N=491; 53 percent male, 47 percent female). Data were compared with previous surveys at Maryland (Horowitz and Sedlacek, 1973; Fago and Sedlacek, 1974 a,b) and analyzed by percentages, chi-square, F and Friedman…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leray, O.; Hudelot, J. P.; Antony, M.
2011-07-01
The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has beenmore » performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)« less
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
2006-06-04
Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)
2006-06-04
NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)
Statistical Entropy of the G-H-S Black Hole to All Orders in Planck Length
NASA Astrophysics Data System (ADS)
Sun, Hangbin; He, Feng; Huang, Hai
2012-02-01
Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of the scalar field near the horizon of Garfinkle-Horowitz-Strominger (G-H-S) black hole without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.
Calculation to experiment comparison of SPND signals in various nuclear reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien
2015-07-01
In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov . Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
STS-75 liftoff - left side close up
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Columbia hurtles skyward from Launch Pad 39B. Columbia lifted off right on time at 3:18:00 p.m. EST, Feb. 22, following a smooth countdown. NASA's second Shuttle mission of 1996 and the 75th overall in Shuttle program history will be highlighted by the re-flight of the Tethered Satellite System (TSS-1R) designed to investigate new sources of spacecraft power and ways to study Earth's atmosphere. Mission STS-75 also will see Columbia's seven-person crew work with the U.S. Microgravity Payload (USMP-3), which continues research efforts into development of new materials and processes that could lead to a new generation of computers, electronics and metals. The STS-75 crew includes: Mission Commander Andrew M. Allen; Pilot Scott J. 'Doc' Horowitz; Payload Commander Franklin R. Chang-Diaz; Mission Specialists Jeffrey A. Hoffman, Claude Nicollier and Maurizio Cheli; and Payload Specialist Umberto Guidoni. Nicollier and Cheli represent the European Space Agency (ESA) while Guidoni represents the Italian Space Agency (ASI).
Voss videotapes the STS-105 crewmembers in the U.S. Laboratory
2001-08-17
ISS003-E-5188 (17 August 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, photographs astronauts Scott J. Horowitz (front left), STS-105 mission commander, Frederick W. (Rick) Sturckow, pilot, Daniel T. Barry (back left), and Patrick G. Forrester, both mission specialists, in the Destiny laboratory on the International Space Station (ISS). This image was taken with a digital still camera.
Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone
NASA Astrophysics Data System (ADS)
Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew
2016-10-01
Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for: the frequent occurrence of erosionally truncated deformation structures in the Navajo Sandstone; the production of such erosional truncations during bedform climb and aggradation of the accumulation; and the dramatic fluctuations in the water table required to deposit dry eolian sand, deform those deposits under saturated conditions, and then dry the deformed sand to enable deflation.
STS-105 and Expedition Three crews talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-105 and Expedition Three crews pose for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
STS-105 and Expedition Three crews in White Room at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Electron binding energy of uranium-ligand and uranyl-ligand anions
NASA Astrophysics Data System (ADS)
Wang, Lei; Horowitz, Steven; Marston, Brad
2012-02-01
Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Constellation Program Press Conference
2006-06-04
NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)
STS-105 crewmembers pose for their group photo in the U.S. Laboratory
2001-08-17
ISS003-E-5190 (17 August 2001) --- The STS-105 crew members pause for this group photo in the Destiny laboratory on the International Space Station (ISS). Clockwise from bottom are, Scott J. Horowitz and Frederick W. (Rick) Sturckow, mission commander and pilot, respectively, Patrick G. Forrester and Daniel T. Barry, both mission specialists. This image was taken with a digital still camera.
NASA Astrophysics Data System (ADS)
Ahmed, M. F.; Hussain, A.; Malik, A. Q.
2016-08-01
Use of energetic materials has long been considered for only military purposes. However, it is very recent that their practical applications in wide range of commercial fields such as mining, road building, under water blasting and rocket propulsion system have been considered. About 5mg of 2,4,6-trinitrotoluene (TNT) in serviceable (Svc) as well as unserviceable (Unsvc) form were used for their thermal decomposition and kinetic parameters investigation. Thermogravimetric/ differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to characterize two types of TNT. Arrhenius kinetic parameters like activation energy (E) and enthalpy (AH) of both TNT samples were determined using TG curves with the help of Horowitz and Metzger method. Simultaneously, thermal decomposition range was evaluated from DTA curves. Distinct diffraction peaks showing crystalline nature were obtained from XRD analysis. SEM results indicated that Unsvc TNT contained a variety of defects like cracks and porosity. Similarly, it is observed that thermal as well as kinetic behavior of both TNT samples vary to a great extent. Likewise, a prominent change in the activation energies (E) of both samples is observed. This in-depth study provides a way forward in finding solutions for the safe reutilization of decanted TNT.
Modulation of TIP60 by Human Papilloma Virus in Breast Cancer
2013-04-01
infection caused by adenovirus make us hypothesize that adenovirus can also be a etiological agent or can augment the breast epithelial cells...cells. These cells were cultured in selective HAT medium to select for fused cells called Hybridoma cells. These hybridoma cells were cultured and...KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA et al. Association between an oncogenes and an anti -oncogene: the adenovirus EIA protein binds to
Intrusive Thought and Relativity Associated with Task Performance
1995-01-23
currently living with a partner; Ninety percent of participants were full-time students, 8 percent were employed full-time, and 2 percent were unemployed ...employed full-time 2% unemployed 83% Caucasian 8% Asian 7% African American 2% Hispanic 80% some college 8% high school 5% college degree 5...Research, 11, 213--21B. Horowitz, M.J. (1969). Psychic trauma: Return of images after a stress film. Archives of General Psychiatry, 20, 552- 559
History of the Combat Zone Tax Exclusion
2011-09-01
and Accounting Service (DFAS), Military Pay Tables, 1943 and 1945. Note: Minimum and maximum pay values vary within grades due to a member’s years of...Horowitz, Task Leader Log: H 11-001279 Approved for public release; distribution is unlimited. The Institute for Defense Analyses is a non- profit ...instrumental to the functioning of a fair tax system for members of the armed services. Despite its historical ties to wartime finance, the income tax
Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M
2013-12-01
The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.
2013-12-01
The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.
The Importance of Architecture in DoD Software
1991-07-01
01282 92 1 14 060 M91-35 The Importance of Architecture in DOD Software S ACCesion For- * DTIC "r,’L- .S Dr. Barry M. Horowitz July 1991 D;.t ibto...resource utilization: architecture determines how the system sustains , 06 operations when parts of the system fail. The architecture also determines...software maintainers to ensure that we deliver to them whatever is necessary for them Medium to sustain and use the architecture . Fault Rate 37% Getting
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.
Electrochemical and Photochemical Treatment of Aqueous Waste Streams
1996-01-01
TREATMENT OF AQUEOUS WASTE STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H...STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H. Siegel and James F. Carley...1992). Wilbourne , C. M. Wong, , W. S. Gillam, S. Johnson, R. H. Horowitz, "Electrosorb Process for Desalting Water," Res. Dev. Prog. Rept. No. 516, 16. J
Proceedings of the Second IDA-CIISS Workshop: Common Security Challenges and Defense Personnel Costs
2008-01-01
exchanges with about 100 relevant research institutions in more than 50 countries . CIISS believes the academic exchanges in the forms of exchanging...personnel costs. Session 4 focused on the personnel portion of total defense costs in both countries , with Stanley Horowitz discussing DoD personnel...was the system was intended to deal with rogue countries and the system was not capable of dealing with China. Secretary Gates called for more
Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes
NASA Astrophysics Data System (ADS)
Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang
2018-06-01
Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.
2006-06-04
NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)
1997-02-11
Looking relaxed and ready to fly, the STS-82 crew departs from the Operations and Checkout Building en route to Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the Hubble Space Telescope (HST). Leading the way is Mission Commander Kenneth D. Bowersox. Following him, clockwise from left front, are Mission Specialist Steven L. Smith, Payload Commander Mark C. Lee, Mission Specialists Gregory J. Harbaugh, Steven A. Hawley and Joseph R. "Joe" Tanner and Pilot Scott J. "Doc" Horowitz
In Defense of Freedom: Protection of Human Rights at Home and Abroad
2010-10-01
ed. The World of Child Labor: An Historical and Regional Survey. Armonk: M.E. Sharpe, 2009. (HD 6231 .W67 2009) Hollenbach, David, ed. Driven from...no. 2 (Summer 2007 ): 163-74 Horowitz, Andrew W. and Julie R. Trivitt. "Does Child Labor Reduce Youth Crime?" Kyklos 60, no. 4 (November 2007...Parreńas. "Screening Sexual Slavery? Southeast Asian Gonzo Porn and US Anti-Trafficking Law." Sexualities 13, no. 2 (April 2010 ): 161-70 Siraj, Mazhar
Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water
1996-01-01
Aerogel Electrodes as a Means of Remediating Ground Water Joseph C. Farmer, Sally M. Bahowick, Jackson E. Harrar, David V. Fix, Roger E. Martinelli...Newman, R. G. Wilbourne , C. M. Wong,, W. S. Gillam, S. Johnson, R. H. Horowitz, "Electrosorb Process for Desalting Water," Office of Saline Water...Research and Development Progress Report No. 516, U.S. Dept. Interior Pub. 200 056, March 1970, 31 p. 15. A. M. Johnson, A. W. Venolia, R. G. Wilbourne , J
Meal for Expedition Two, Three and STS-105 crews in the ISS Service Module/Zvezda
2001-08-15
STS105-E-5198 (15 August 2001) --- Ten astronauts and cosmonauts dine in the Zvezda Service Module. Clockwise from lower left corner are Scott J. Horowitz, Frederick W. (Rick) Sturckow, Vladimir N. Dezhurov, Mikhail Tyurin, Susan J. Helms, Frank L. Culbertson, Yury V. Usachev, James S. Voss and Patrick G. Forrester. Daniel T. Barry is out of frame at lower right. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. The image was recorded with a digital still camera.
STS-101 Mission Specialist Williams takes his seat in Atlantis during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Jeffrey N. Williams takes his seat inside Space Shuttle Atlantis before taking part in a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms, and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
STS-101 Mission Specialist J.Williams arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Jeffrey Williams arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft flown by STS- 101 Pilot Scott Horowitz. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a dress rehearsal for launch. The other crew members are Commander James Halsell and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms and Yuri Usachev. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
STS-101 crew members Weber and Williams take their seats in Atlantis during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialists Mary Ellen Weber (left) and Jeffrey N. Williams (right) happily settle into their seats inside Space Shuttle Atlantis for a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists James Voss, Susan Helms and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.
2010-08-01
Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.
NASA Technical Reports Server (NTRS)
1996-01-01
On this first day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Mission Specialists Jeffrey Hoffman, Maurizio Cheli (ESA) and Claude Nicollier (ESA), were shown performing pre-launch and launching activities. This international space mission's primary objective is the deployment of the Tethered Satellite System Reflight (TSS-1R) to a 12 mile length from the shuttle, a variety of experiments, and the satellite retrieval. These experiments include: Research on Orbital Plasma Electrodynamics (ROPE); TSS Deployer Core Equipment and Satellite Core Equipment (DCORE/SCORE); Research on Electrodynamic Tether Effects (RETE); Magnetic Field Experiments for TSS Missions (TEMAG); Shuttle Electrodynamic Tether Systems (SETS); Shuttle Potential and Return Electron Experiment (SPREE); Tether Optical Phenomena Experiment (TOP); and Observations at the Earth's Surface of Electromagnetic Emissions by TSS (OESSE). The mission's secondary objectives were those experiments found in the United States Microgravity Payload-3 (USMP-3), which include: Advanced Automated Directional Solidification Furnace (AADSF); Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO); Space Acceleration Measurement System (SAMS); Orbital Acceleration Research Experiment (OARE); Critical Fluid Scattering Experiment (ZENO); and Isothermal Dendritic Growth Experiment (IDGE).
Astronaut Voss Works in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.
NASA Technical Reports Server (NTRS)
2000-01-01
Six astronauts and a Russian cosmonaut comprised the STS-101 mission that launched aboard the Space Shuttle Atlantis on May 19, 2000 at 5:11 am (CDT). Seated in front are astronauts James D. Halsell (right), mission commander; and Scott J. Horowitz, pilot. Others, from the left, are Mary Ellen Weber, Jeffrey N. Williams, Yury V. Usachev, James S. Voss and Susan J. Helms, all mission specialists. Usachev represents the Russian Space Agency (RSA). The crew of the STS- 101 mission refurbished and replaced components in both the Zarya and Unity modules, with top priority being the Zarya module.
1997-02-11
STS-82 Mission Commander Kenneth D. Bowersox leads the way to the astronaut van as the crew departs from the Operations and Checkout Building en route to Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the Hubble Space Telescope (HST). Directly behind him is Pilot Scott J. "Doc" Horowitz. The other five crew members, clockwise from left, are Mission Specialist Steven L. Smith, Payload Commander Mark C. Lee, and Mission Specialists Steven A. Hawley, Gregory J. Harbaugh and Joseph R. "Joe" Tanner
Fiscal Year 2007 Budget Press Conference
2006-02-06
NASA Administrator Michael Griffin outlines the President's budget for fiscal year 2007 during a news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. Griffin was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. Seated left to right: Scott Horowitz, NASA Associate Administrator for Exploration Systems, William Gerstenmaier, NASA Associate Administrator for Space Operations, Lisa Porter, NASA Associate Administrator for Aeronautics Research and Mary Cleave, NASA Associate Administrator for Science. Photo Credit: (NASA/Bill Ingalls)
1983-07-01
crEE impose une onde de choc situde dane is zone Evolutive CD oO elle peut occuper une position stable en raison de is divergence...ENTR.E UNE ONDE DE CHOC ET UNE STRUCTURE TOURBILLONNAIRE ENROU LEE par J.Delery et E.Horowitz 5 ON THE GENERATION AND SUBSEQUENT DEVELOPMENT OF SPIRAL...dont une dclotge. ont fitA analysdes plus finement au vdlocimktre loser. Pour un dclatement, is structure moyenne de l’dcoulement ,dr*dien inclut un
2000-02-25
KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A
The STS-101 crew takes part in CEIT activities at SPACEHAB.
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.
2000-02-25
KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A
STS-101 Mission Specialist Williams practices driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
Seated on top of an M-113 personnel carrier, Capt. George Hoggard of the KSC/CCAFS Fire Department gives instruction to STS-101 Mission Specialist Yuri Usachev (right), who is in the driver seat. In the rear are Mission Specialists James Voss (holding a camera), Jeffrey N. Williams, Pilot Scott J. 'Doc' Horowitz and Mary Ellen Weber. Other crew members taking part are Commander James D. Halsell Jr. and Mission Specialist Susan J. Helms. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
The STS-101 crew takes part in CEIT activities at SPACEHAB.
NASA Technical Reports Server (NTRS)
2000-01-01
At SPACEHAB, in Cape Canaveral, Fla., STS-101 Mission Specialists Susan Helms and Yuri Usachev, with Commander James Halsell, handle an air duct to be installed during their mission to the International Space Station. The air duct is for the Russian module Zarya to improve ventilation. At right are Mission Specialists Jeffrey Williams and Mary Ellen Weber. In the background at left is Pilot Scott Horowitz. Not shown is Mission Specialist James Voss. The crew is taking part in Crew Equipment Interface Test (CEIT) activities to learn about some of the equipment they will be working with on their mission to the Space Station. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.
STS-101 crew talks with the media after TCDT activities at the pad
NASA Technical Reports Server (NTRS)
2000-01-01
After Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-101 crew talk to the media. At the far left is George Diller, with NASA Public Affairs, who is moderating the event. At the microphone Commander James D. Halsell Jr. answers a question. Next to him, standing left to right, are Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James Voss, Susan J. Helms and Yuri Usachev of Russia. The TCDT includes emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
NASA Astrophysics Data System (ADS)
Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.
2013-11-01
A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.
NASA Astrophysics Data System (ADS)
Villard, Jean-Francois; Schyns, Marc
2010-12-01
Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors. The quality of nuclear research programs relies obviously on an excellent knowledge of their experimental environment which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains -brought for example by Generation IV programsnecessitates also major innovations for in-pile measurements of temperature, dimensions, pressure or chemical analysis in innovative mediums. At the same time, the recent arising of a European platform around the building of the Jules Horowitz Reactor offers new opportunities for research institutes and organizations to pool their resources in order to face these technical challenges. In this situation, CEA (French Nuclear Energy Commission) and SCK'CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory. Significant progresses have thus been obtained recently in the field of in-pile measurements, on one hand by improvement of existing measurement methods, and on the other hand by introduction in research reactors of original measurement techniques. This paper highlights the state-of-the-art and the main requirements regarding in-pile measurements, particularly for the needs of current and future irradiation programs performed in material testing reactors. Some of the main on-going developments performed in the framework of the Joint Instrumentation Laboratory are also described, such as: - a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing, - an optical system designed to perform in-pile dimensional measurements of material samples under irradiation, - an acoustical instrumentation allowing the online characterization of fission gas release in Pressurized Water Reactor fuel rods. For each example, the obtained results, expected impacts and development status are detailed.
NASA Technical Reports Server (NTRS)
Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.
1989-01-01
The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.
STS-105 Flight Control Team Photo
2001-07-31
JSC2001-02115 (31 July 2001) --- The flight controllers for the Ascent/Entry shift for the upcoming STS-105 mission pose with the assigned astronaut crew for a team portrait in the Shuttle Flight Control Room (WFCR) of Houston's Mission Control Center (MCC). Flight director John Shannon (left center) and STS-105 commander Scott J. Horowitz hold the mission logo. Also pictured on the front row are spacecraft communicator Kenneth D. Cockrell and STS-105 crew members Daniel T. Barry, Frederick W. (Rick) Sturckow and Patrick G. Forrester. The team had been participating in an integrated simulation for the scheduled August mission.
2001-08-09
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz suits up for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
Culbertson leads the way from the U.S. Laboratory into Node 1
2001-08-12
STS105-E-5108 (12 August 2001) --- Frank L. Culbertson, Jr., Expedition Three mission commander, leads cosmonaut Vladimir N. Dezhurov (back top), Expedition Three flight engineer, and Scott J. Horowitz, STS-105 commander, into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Culbertson and Dezhurov, accompanied by cosmonaut Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Pilot Scott “Doc” Horowitz is joined by his wife, Lisa, and daughter; Mission Specialist Susan J. Helms is at right. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Pilot Scott “Doc” Horowitz is joined by his wife, Lisa, and daughter; Mission Specialist Susan J. Helms is at right. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynard-Carette, C.; Lyoussi, A.
Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less
Chexal-Horowitz flow-accelerated corrosion model -- Parameters and influences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chexal, V.K.; Horowitz, J.S.
1995-12-01
Flow-accelerated corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Thinning caused by FAC has lead to many leaks and complete ruptures. These failures have required costly repairs and occasionally have caused lengthy shutdowns. To deal with FAC, utilities have instituted costly inspection and piping replacement programs. Typically, a nuclear unit will inspect about 100 large bore piping components plus additional small bore components during every refueling outage. To cope with FAC, there has been a great deal of research and development performed to obtain a greater understanding of the phenomenon. Currently, there is general agreement onmore » the mechanism of FAC. This understanding has lead to the development of computer based tools to assist utility engineers in dealing with this issue. In the United States, the most commonly used computer program to predict and control is CHECWORKS{trademark}. This paper presents a description of the mechanism of FAC, and introduces the predictive algorithms used in CHECWORKS{trademark}. The parametric effects of water chemistry, materials, flow and geometry as predicted by CHECWORKS{trademark} will then be discussed. These trends will be described and explained by reference to the corrosion mechanism. The remedial actions possible to reduce the rate of damage caused by FAC will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarchalski, M.; Pytel, K.; Wroblewska, M.
2015-07-01
Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less
Evolution of amino acid metabolism inferred through cladistic analysis.
Cunchillos, Chomin; Lecointre, Guillaume
2003-11-28
Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.
Andreev reflections and the quantum physics of black holes
NASA Astrophysics Data System (ADS)
Manikandan, Sreenath K.; Jordan, Andrew N.
2017-12-01
We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
SETI observational program in Argentina
NASA Astrophysics Data System (ADS)
Raúl Colomb, F.; Cristina Martín, M.; Lemarchand, Guillermo A.
Due to the scarce SETI research in the Southern Hemisphere, we decided to begin an observation of a series of southern stars at 21 cm and 18 cm, using the facilities of the Instituto Argentino de Radioastronomía (IAR). One of the two 30 m radiotelescopes was used since October 1986, for a search of narrow frequency (2.2 kHz resolution) band signal in the direction of nearby stars. We have selected for this plan 78 stars between -40° and -90° of declination and distances less than 50 l.y. In this paper we present the first results of this program at HI and OH line. We describe a 320 h parasitic program at OH line using the data of Comet Halley observations. Following a suggestion of Dr I. Almár we began in November 1987, a series of observations around the SETI Ellipsoid originated in the SN1987A at 18 cm. We describe the observations around the stars HD21899 and HD100623, following a suggestion of Alexei Arkhipov. We have initiated contacts with The Planetary Society to expand our SETI activities. It is our hope that at the time of this Symposium we can announce the details of this agreement, which could include the construction of a 8.4 million channel ultranarrowband spectrum analyzer, designed by Professor Paul Horowitz of Harvard University. This agreement was announced on 8 October 1988 at The Planetary Society Toronto SETI Conference. The 8.4 million channel spectrum analyzer called META II, was built during 1989, at Harvard University by J. C. Olalde and E. Hurrell, under the supervision of Professor Paul Horowitz. META II was officially dedicated on 12 October 1990 and is in operation with the antenna 2 of the Instituto Argentino de Radioastronomía.
STS-101: CAR / Flight Day 03 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the third day of the flight. On this day the shuttle rendezvoused and docked with the station. The videotape shows the rendezvous and the docking maneuver, and some of the crew activities in the shuttle.
2006-06-30
KENNEDY SPACE CENTER, FLA. - At a press conference at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated (left to right) are Dolores Beasley, with NASA Public Affairs; Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton
2006-06-30
KENNEDY SPACE CENTER, FLA. - At a press conference in at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated at the dais are (left to right) Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton
2001-08-05
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz arrives at KSC aboard a T-38 jet to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
View of Southern Cross, Alpha and Beta Centauri
1996-03-18
STS075-351-022 (22 Feb.- 9 March 1996) --- The space shuttle Columbia's vertical stabilizer appears to point to the four stars of the Southern Cross. The scene was captured with a 35mm camera just prior to a sunrise. The seven member crew was launched aboard the space shuttle Columbia on Feb. 22, 1996, and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).
Tethered Satellite System (TSS)-1R survey photography
1996-03-18
STS075-325-014 (25 Feb. 1996) --- The frayed end of the tether portion of the Tethered Satellite System (TSS) is seen at the end of the supportive boom. On February 25, 1996, the crew deployed the TSS, which later broke free. The seven member crew was launched aboard the Space Shuttle Columbia on February 22, 1996, and landed on March 9, 1996. Crewmembers were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier (ESA), all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).
2000-05-29
The STS-101 crew pose one more time before departing for Houston from Patrick Air Force Base. From left are Commander James D. Halsell Jr., Mission Specialists James S. Voss, Mary Ellen Weber, Susan J. Helms, Jeffrey N. Williams, Yury Usachev of Russia, and Pilot Scott “Doc” Horowitz. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
2000-05-29
The STS-101 crew pose one more time before departing for Houston from Patrick Air Force Base. From left are Commander James D. Halsell Jr., Mission Specialists James S. Voss, Mary Ellen Weber, Susan J. Helms, Jeffrey N. Williams, Yury Usachev of Russia, and Pilot Scott “Doc” Horowitz. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
The STS-101 crew exit the O&C on their way to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
(Nikon D1 Test) The STS-101 crew wave to onlookers as they leave the Operations and Checkout Building enroute for the second time to Launch Pad 39A and another attempt at liftoff of Space Shuttle Atlantis. In their orange launch and entry suits, they are (front line) Pilot Scott J. Horowitz and Commander James D. Halsell Jr.; (second line) Mission Specialists Mary Ellen Weber and Jeffrey N. Williams; and (third line) Mission Specialists Susan J. Helms, Yury Usachev of Russia and James S. Voss The first attempt on April 24 was scrubbed due to unfavorable weather conditions. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. Liftoff is targeted for 3:52 p.m. EDT. The mission is expected to last about 10 days, with Atlantis landing at KSC Saturday, May 6, about 11:53 a.m. EDT.
Needs of Accurate Prompt and Delayed γ-spectrum and Multiplicity for Nuclear Reactor Designs
NASA Astrophysics Data System (ADS)
Rimpault, G.; Bernard, D.; Blanchet, D.; Vaglio-Gaudard, C.; Ravaux, S.; Santamarina, A.
The local energy photon deposit must be accounted accurately for Gen-IV fast reactors, advanced light-water nuclear reactors (Gen-III+) and the new experimental Jules Horowitz Reactor (JHR). The γ energy accounts for about 10% of the total energy released in the core of a thermal or fast reactor. The γ-energy release is much greater in the core of the reactor than in its structural sub-assemblies (such as reflector, control rod followers, dummy sub-assemblies). However, because of the propagation of γ from the core regions to the neighboring fuel-free assemblies, the contribution of γ energy to the total heating can be dominant. For reasons related to their performance, power reactors require a 7.5% (1σ) uncertainty for the energy deposition in non-fuelled zones. For the JHR material-testing reactor, a 5% (1 s) uncertainty is required in experimental positions. In order to verify the adequacy of the calculation of γ-heating, TLD and γ-fission chambers were used to derive the experimental heating values. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), MINERVE and EOLE (for JHR and Gen-III+ reactors). The comparison of calculated and measured γ-heating values shows an underestimation in all experimental programs indicating that for the most γ-production data from 239Pu in current nuclear-data libraries is highly suspicious.The first evaluation priority is for prompt γ-multiplicity for U and Pu fission but similar values for otheractinides such as Pu and U are also required. The nuclear data library JEFF3.1.1 contains most of the photon production data. However, there are some nuclei for which there are missing or erroneous data which need to be completed or modified. A review of the data available shows a lack of measurements for conducting serious evaluation efforts. New measurements are needed to guide new evaluation efforts which benefit from consolidated modeling techniques.
The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 LAUNCH VIEW --- The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Visible at left is the White Room on the orbiter access arm through which the flight crew had entered the orbiter. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).
A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).
STS-101: Crew Activity Report/Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.
STS-101 crew members enjoy a snack before getting ready for launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.
View of the TSS-1R after the tether broke
1996-04-03
STS075-360-021 (22 Feb.- 9 March 1996) --- The loose tether forms a faint diagonal line in this scene recorded on a later fly-by. On Feb. 25, 1996, the crew deployed the Tethered Satellite System (TSS), which later broke free. The seven member crew was launched aboard the space shuttle Columbia on Feb. 22, 1996, and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).
Abu El-Reash, G M; El-Gammal, O A; Radwan, A H
2014-01-01
The chelating behavior of the ligand (H2APC) based on carbohydrazone core modified with pyridine end towards Cr(III), Mn(II) and Fe(III) ions have been examined. The (1)H NMR and IR data for H2APC revealed the presence of two stereoisomers syn and anti in both solid state and in solution in addition to the tautomeric versatility based on the flexible nature of the hydrazone linkage leading to varied coordination modes. The spectroscopic data confirmed that the ligand behaves as a monobasic tridentate in Cr(III) and Fe(III) complexes and as neutral tetradentate in Mn(II) complex. The electronic spectra as well as the magnetic measurements confirmed the octahedral geometry for all complexes. The bond length and angles were evaluated by DFT method using material studio program for all complexes. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and cytotoxic activities of the compounds have been screened. Cr(III) complex and H2APC showed the highest antioxidant activity using ABTS and DPPH methods. With respect to in vitro Ehrlich ascites assay, H2APC exhibited the potent activity followed by Fe(III) and Cr(III)complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourmentel, D.; Radulovic, V.; Barbot, L.
Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays. In this paper we describe experiments in each of the three reactors and how we estimate delayed gamma rays with MIC measurements. The results and perspectives are discussed. (authors)« less
STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing
NASA Technical Reports Server (NTRS)
2001-01-01
The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.
STS-82 Flight Day 01 Highlights
NASA Technical Reports Server (NTRS)
1997-01-01
The first day of the STS-82 mission begins with the crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley performing pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch, and arm retraction, launch activities are shown including the countdown, engine ignition, launch, shuttle roll maneuver, and then the separation of the Solid Rocket Boosters (SRB) from the shuttle. Once in orbit the cargo bay doors are seen opening.
Unified theory of effective interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp
2016-09-15
We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbativemore » and nonperturbative theories on the basis of the main frame expansion.« less
STS-101 crew members meet family and friends
NASA Technical Reports Server (NTRS)
2000-01-01
A light-hearted moment during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. From left, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber and Pilot Scott J. Horowitz. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.
Large-D gravity and low-D strings.
Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro
2013-06-21
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
2001-08-05
KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 crew greet the media. At the microphone is Commander Scott Horowitz. Behind him are the Expedition Three crew, Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9
2001-08-06
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz prepares to climb into the cockpit of a T-38 jet for a training flight from the Kennedy Space Center Shuttle Landing Facility. He and the rest of the crew are at Kennedy to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for Aug. 9, 2001
Further Evidence on the Effect of Acquisition Policy and Process on Cost Growth
2016-04-30
bust periods. A complete summary also would need to take into account parallel analyses for the boom periods and the comparisons of cost growth in...qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = Further Evidence on the Effect of Acquisition Policy and Process on Cost ...Goeller, Defense Acquisition Analyst, Institute for Defense Analyses Stanley Horowitz, Assistant Director, Cost Analysis and Research Division
STS-105, Expeditions Two and Three crew portrait in the ISS U.S. Laboratory/Destiny
2001-08-17
STS105-E-5326 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a press conference in the U.S. Laboratory. The Expedition Three crew members are, from front to back, Frank L. Culbertson, mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crewmembers are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crewmembers are, from front to back, cosmonaut Yury V. Usachev, mission commander, and James S. Voss and Susan J. Helms, flight engineers. This image was taken with a digital still camera.
Hartmann, Ellen; Benum, Kirsten
2017-12-13
This case study used test data from a patient with Dissociative Identity Disorder (DID; American Psychiatric Association, 2013 ) to illustrate how two main personality states of the patient ("Ann" and "Ben") seemed to function. The Rorschach Performance Assessment System (R-PAS; Meyer, Viglione, Mihura, Erard, & Erdberg, 2011 ) and the Inventory of Interpersonal Problems-Circumplex (IIP-64; Horowitz, Alden, Wiggins, & Pincus, 2000 ), administered to Ann and Ben in separate settings, exposed two diverse R-PAS and IIP-64 profiles. Ann's R-PAS profile suggested an intellectualized style of information processing with few indications of psychological problems. Ben's profile indicated severe perceptual, cognitive, and interpersonal difficulties combined with suspicion and anxiety. Ann's IIP-64 profile suggested minor interpersonal problems, whereas Ben's indicated serious relational difficulties. The findings were discussed in relation to the theory of trauma-related structural dissociation of the personality (van der Hart, Nijenhuis, & Steele, 2006 ), which implies an enduring split in the organization of the personality with more or less separate entities with their own sense of self, perception of the world, and ways of organizing emotional, cognitive, and social functions. The DID personality structure is seen as a defense strategy and as a pathway in the personality development producing serious psychological pain and symptoms.
NASA Astrophysics Data System (ADS)
Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco
2017-09-01
Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.
Novel humic acid-bonded magnetite nanoparticles for protein immobilization.
Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra
2014-09-01
The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
2001-08-10
KENNEDY SPACE CENTER, Fla. - Expedition Three crew member Vladimir Dezhurov (left) is ready for his first space flight, under the guidance of STS-105 Commander Scott Horowitz (center). Helping with flight equipment before launch is (right) USA Mechanical Technician Al Schmidt. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station
STS-82 Post Flight Presentation
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-82 crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley present a video and still picture overview of their mission. Included in the presentation are the following: the pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad, various panoramic views of the shuttle on the pad, the countdown, engine ignition, launch, shuttle roll maneuver, separation of the Solid Rocket Boosters (SRB) from the shuttle, survey of the payload bay with the Shuttle's 50-foot remote manipulator system (RMS), the successful retrieve of the Hubble Space Telescope (HST), EVAs to repair HST, release of HST, and the shuttle's landing.
Asymptotic behavior of exact exchange potential of slabs
NASA Astrophysics Data System (ADS)
Engel, E.
2014-06-01
In this contribution the exact exchange potential vx of density functional theory is examined for slabs such as graphene, for which one has a Bravais lattice in the x-y directions, while the electrons are confined to the finite region -L≤z≤L in the z direction. It is demonstrated analytically that the exact vx behaves as -e2/z for z ≫L. This result extends the corresponding statement of Horowitz, Proetto, and Rigamonti [Phys. Rev. Lett. 97, 026802 (2006), 10.1103/PhysRevLett.97.026802] for jellium slabs to slabs with arbitrary periodic density distributions. Application of the exact exchange to a Si(111) slab (within the Krieger-Li-Iafrate approximation) indicates that the corrugation of the exact vx is more pronounced than that of the local density approximation for vx.
STS-101 crew have a snack before getting ready for launch again
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the second time. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.
NASA Astrophysics Data System (ADS)
Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.
2018-05-01
Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.
Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynard-Carette, C.; Carette, M.; Aguir, K.
Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactionsmore » between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat source by the Joule Effect inside each calorimetric cell. The second one is a zero method consisting in cancelling the difference in cell responses with an additional energy into the reference cell. The last measurement method is based on current additions in the two calorimetric cells. However, one drawback of the existing differential calorimeter is the size of the sensor: a great length equal to 220 mm and a diameter equal to 18 mm. This current size leads to measurement limitations. This paper will begin with a presentation of these measurement limitations from a bibliographic state. Each limitation will be detailed and in particular in the case of a high nuclear heating level expected, for instance, inside the JHR's core at its highest nominal power. The second part of the paper will develop the scientific skills of each partner in heat sciences, micro technology and nuclear physics necessary to design a new calorimetric micro-system: the advantages of studied microelements such as micro-thermocouples, micro- fluxmeters and micro-heaters will be presented. The last part will discuss preliminary designs. (authors)« less
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Commander James Donald Halsell Jr., and Mission Specialist Mary Ellen Weber, (Ph.D.). Other crew members are Pilot Scott Horowitz, and Mission Specialists Edward Lu, Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-09
During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Mission Specialists Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Lu, and Jeffrey N. Williams, The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn how to manipulate the Russian crane Strela. At left is Yuri Malenchenko, who is with the Russian Space Agency (RSA); in the center is Edward Tsang Lu (Ph.D.); at right is Mission Specialist Jeffrey N. Williams. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov (RSA). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here checking out the SPACEHAB Logistics Double Module are (left) Mission Specialists Mary Ellen Weber (Ph.D.), and (right) Edward Tsang Lu (Ph.D.). Other members of the crew taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.) and Mary Ellen Weber (Ph.D.). Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, who is with the Russian Space Agency (RSA) check out part of the Russian crane Strela. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber, (Ph.D.) and Boris W. Morukov, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Mission Specialists Boris W. Morukov, who is with the Russian Space Agency (RSA), Jeffrey N. Williams, and Yuri Malenchenko, also with RSA. Other crew members are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.) and Edward Tsang Lu (Ph.D.). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Pilot Scott J. "Doc" Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Commander James Donald Halsell Jr., Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), Mary Ellen Weber (Ph.D.) and Boris W. Morukov, who is with the Russian Space Agency (RSA), stand inside the SPACEHAB Logistics Double Module, part of the payload for their mission. They and other crew members Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko (also with RSA), are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), at right, talks with workers about the SPACEHAB Logistics Double Module at left. The module is part of the payload for the mission. Lu and other crew members Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko , who are with the Russian Space Agency , are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Pilot Scott J. 'Doc' Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Commander James Donald Halsell Jr., Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, who is with the Russian Space Agency (RSA) check out part of the Russian crane Strela. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber, (Ph.D.) and Boris W. Morukov, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), Mary Ellen Weber (Ph.D.) and Boris W. Morukov, who is with the Russian Space Agency (RSA), stand inside the SPACEHAB Logistics Double Module, part of the payload for their mission. They and other crew members Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko (also with RSA), are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
NASA Astrophysics Data System (ADS)
El-Shwiniy, Walaa H.; Zordok, Wael A.
2018-06-01
The Zr(IV), Ce(IV) and U(VI) piroxicam anti-inflammatory drug complexes were prepared and characterized using elemental analyses, conductance, IR, UV-Vis, magnetic moment, IHNMR and thermal analysis. The ratio of metal: Pir is found to be 1:2 in all complexes estimated by using molar ratio method. The conductance data reveal that Zr(IV) and U(VI) chelates are non-electrolytes except Ce(IV) complex is electrolyte. Infrared spectroscopic confirm that the Pir behaves as a bidentate ligand co-ordinated to the metal ions via the oxygen and nitrogen atoms of ν(Cdbnd O)carbonyl and ν(Cdbnd N)pyridyl, respectively. The kinetic parameters of thermogravimetric and its differential, such as activation energy, entropy of activation, enthalpy of activation, and Gibbs free energy evaluated using Coats-Redfern and Horowitz-Metzger equations for Pir and complexes. The geometry of the piroxicam drug in the Free State differs significantly from that in the metal complex. In the time of metal ion-drug bond formation the drug switches-on from the closed structure (equilibrium geometry) to the open one. The antimicrobial tests were assessed towards some types of bacteria and fungi. The in vitro cell cytotoxicity of the complexes in comparison with Pir against colon carcinoma (HCT-116) cell line was measured. Optimized geometrical structure of piroxicam ligand by using DFT calculations.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn how to manipulate the Russian crane Strela. At left is Yuri Malenchenko, who is with the Russian Space Agency (RSA); in the center is Edward Tsang Lu (Ph.D.); at right is Mission Specialist Jeffrey N. Williams. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov (RSA). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Commander James Donald Halsell Jr., and Mission Specialist Mary Ellen Weber, (Ph.D.). Other crew members are Pilot Scott Horowitz, and Mission Specialists Edward Lu, Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Mission Specialists Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Lu, and Jeffrey N. Williams, The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
Altered auditory function in rats exposed to hypergravic fields
NASA Technical Reports Server (NTRS)
Jones, T. A.; Hoffman, L.; Horowitz, J. M.
1982-01-01
The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.
2001-08-10
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz sends a message home while preparing to enter Space Shuttle Discovery for launch. Assisting with flight equipment are (left) Orbiter Vehicle Closeout Chief Chris Meinert, (right) USA Mechanical Technician Al Schmidt and (behind) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station's cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station
STS-82 Flight Day 09 Highlights
NASA Technical Reports Server (NTRS)
1997-01-01
The ninth day of the STS-82 mission begins with the crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley placing the Hubble Space Telescope back into its own orbit to continue its investigation of the far reaches of the universe. At the time of deployment, the Shuttle was at an altitude of 334 nautical miles over the southwest coast of Africa. Hubble is now operating at the highest altitude it has ever flown, a 335 by 321 nautical mile orbit. A few hours after Hubble's deployment, the crew receives a congratulatory phone call from NASA Administrator Daniel Goldin. The four spacewalking crewmembers also answered questions from several news networks regarding their work over the past week to upgrade the telescope.
2001-08-05
KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 and Expedition Three crews greet the media. At the microphone is Commander Scott Horowitz. Behind him are (left to right) Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester, and the Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9
Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory
2001-08-17
ISS003-E-5169 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from front to back, Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from front to back, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.
Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory
2001-08-17
ISS003-E-5168 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from front to back, Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from front to back, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.
Expeditions Two, Three and STS-105 crewmembers in group portrait in U.S. Laboratory
2001-08-17
STS105-717-032 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for this in-flight group portrait in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from bottom to top, astronaut Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, from top left, Scott J. Horowitz, commander, Daniel T. Barry and Patrick G. Forrester (bottom left), both mission specialists, along with Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from bottom to top, are cosmonaut Yury V. Usachev, mission commander, and astronauts James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin, and Usachev represent Rosaviakosmos.
Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory
2001-08-17
ISS003-E-5171 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from bottom to top, cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov, both flight engineers, and Frank L. Culbertson, Jr., mission commander; STS-105 crew members are, front row, Daniel T. Barry, mission specialist, and Scott J. Horowitz, commander, back row, Frederick W. (Rick) Sturckow, pilot, and Patrick G. Forrester, mission specialist; Expedition Two crew members are, from top to bottom, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.
Abu El-Reash, G M; El-Gammal, O A; Ghazy, S E; Radwan, A H
2013-03-01
The chelating behavior of ligands based on carbohydrazone core modified with pyridine end towards Co(II), Ni(II) and Cu(II) ions have been examined. The ligands derived from the condensation of carbohydrazide with 2-acetylpyridine (H(2)APC) and 4-acetylpyridine (H(2)APEC). The (1)H NMR, IR data and the binding energy calculations of H(2)APC revealed the presence of two stereoisomers syn and anti in the solid state and in the solution. The (1)H NMR, IR data and the binding energy calculations confirmed the presence of H(2)APEC in one keto form only in the solid state and in the solution. The spectroscopic data confirmed that H(2)APC behaves as a monobasic pentadentate in Co(II) and Cu(II) complexes and as mononegative tetradentate in Ni(II) complex. On the other hand, H(2)APEC acts as a mononegative tridentate in Co(II) complex, neutral tridentate in Ni(II) complex and neutral bidentate in Cu(II) complex. The electronic spectra and the magnetic measurements of complexes as well as the ESR of the copper complexes suggested the octahedral geometry. The bond length and bond angles were evaluated by DFT method using material studio program. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and in vitro Ehrlich ascites of the compounds have been screened. Copyright © 2012 Elsevier B.V. All rights reserved.
Personality factors and posttraumatic stress: associations in civilians one year after air attacks.
Lecic-Tosevski, Dusica; Gavrilovic, Jelena; Knezevic, Goran; Priebe, Stefan
2003-12-01
There is an ongoing debate on which risk factors for developing posttraumatic stress symptoms are more important--personality traits reflecting vulnerability, previous stressful experiences or characteristics of the traumatic event. In this study, posttraumatic stress symptoms and their relationship with personality traits, previous stressful experiences and exposure to stressful events during air attacks in Yugoslavia were investigated. The Millon Clinical Multiaxial Inventory (MCMI; Millon, 1983), Impact of Events Scale (IES; Horowitz, Wilner, & Alvarez, 1979), Life Stressor Checklist Revised (LSCL-R; Wolfe & Kimerling, 1997), and List of Stressors were administered to a homogeneous group of medical students 1 year after the attacks. In multiple regression analyses, compulsive and passive-aggressive personality traits and a higher level of exposure to stressors during air attacks independently predicted the degree of intrusion symptoms. Avoidance symptoms were predicted by avoidant personality traits and a higher exposure to stressors both previously in life and during the attacks. In the next step, we tested in analyses of variance whether personality traits, previous stressful experiences, and stressful events during attacks as independent variables interact in predicting intrusion and avoidance symptoms. For this, students were clustered into three groups depending on their predominant personality traits. In addition to direct predictive effects, there were significant interaction effects in predicting both intrusion and avoidance. The findings suggest that each of the tested factors, i.e., personality traits, previous stressful experiences, and exposure to traumatic events may have an independent and direct influence on developing posttraumatic stress. However, the effect of these factors cannot just be added up. Rather, the factors interact in their impact on posttraumatic stress symptoms. Bigger samples and longitudinal designs will be required to understand precisely how different personality traits influence response to stressful events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vita, C.; Brun, J.; Reynard-Carette, C.
2015-07-01
At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less
Evaluating the interpersonal content of the MMPI-2-RF Interpersonal Scales.
Ayearst, Lindsay E; Sellbom, Martin; Trobst, Krista K; Bagby, R Michael
2013-01-01
Convergence between the MMPI-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) interpersonal scales and 2 interpersonal circumplex (IPC) measures was examined. University students (N = 405) completed the MMPI-2 and 2 IPC measures, the Interpersonal Adjectives Scales Revised Big Five Version (IASR-B5; Trapnell & Wiggins, 1990) and the Inventory of Interpersonal Problems Circumplex (IIP-C; Horowitz, Alden, Wiggins, & Pincus, 2000). Internal consistency was adequate for 3 of the 6 scales investigated. The majority of scales were located in their hypothesized locations, although magnitude of correlations was somewhat weaker than anticipated, partly owing to restricted range from using a healthy sample. The expected pattern of correlations that defines a circular matrix was demonstrated, lending support for the convergent and discriminant validity of the MMPI-2-RF interpersonal scales with respect to the assessment of interpersonal traits and problems.
[Developing the Japanese version of the Adult Attachment Style Scale (ECR)].
Nakao, Tatsuma; Kato, Kazuo
2004-06-01
This study attempted to adapt into Japanese the Adult Attachment Style Scale (ECR: Experiences in Close Relationships inventory) that was constructed by Brennan, Clark, and Shaver (1998), based on 14 existing scales. Of 387 respondents, 231 who reported having been or are currently involved in romantic relationships were employed for final analysis. We examined validities of the Japanese version of ECR in the two ways: (1) Examining the correlations between "Anxiety" and Self-esteem scale by Rosenberg (1965) which were theoretically related to Self-view, and the correlations between "Avoidance" and Other-view scale by Kato (1999b) which were theoretically related to Other-view; (2) whether or not ECR represents the features of four attachment styles as classified by Relationship Questionnaire (RQ; Bartholomew & Horowitz, 1991). The results supported our expectations. This Japanese version of ECR was demonstrated to have adequate psychometric properties in validity and reliability.
STS-101 crew members meet family and friends
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.
2001-08-05
KENNEDY SPACE CENTER, Fla. -- Two members of the Expedition Three crew arrive at Kennedy Space Center’s Shuttle Landing Facility to make final preparations before launch of STS-105. At left is Commander Frank Culbertson, who piloted the T-38 in the background with his passenger cosmonaut Mikhail Tyurin (right). The Shuttle crew comprises commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
Meal for Expedition Two, Three and STS-105 crews in the ISS Service Module/Zvezda
2001-08-15
STS105-E-5201 (15 August 2001) --- Part of the "dessert" course for one of the first meals shared by the STS-105 and Expedition Two crews was the issuance of mission shirts for the departing station occupants. Holding new jerseys in the Zvezda Service Module on the right side of the frame are astronauts Susan J. Helms and James S. Voss, departing flight engineers, and cosmonaut Yury V. Usachev, Expedition Two commander. Clockwise from the lower left corner are astronaut Frederick W. (Rick) Sturckow, cosmonauts Vladimir Dezhurov and Mikhail Tyurin, Helms, astronaut Frank L. Culbertson, Jr., Usachev, Voss and astronaut Patrick G. Forrester. Astronauts Daniel T. Barry and Scott J. Horowitz are out of frame. Usachev, Dezhurov and Tyurin all represent Rosaviakosmos. PLEASE NOTE: This event occurred on August 14, according to Central Daylight Time (CDT) but it was already the following day in Greenwich Mean Time (GMT).
Inhibition of return in static but not necessarily in dynamic search.
Wang, Zhiguo; Zhang, Kan; Klein, Raymond M
2010-01-01
If and when search involves the serial inspection of items by covert or overt attention, its efficiency would be enhanced by a mechanism that would discourage re-inspections of items or regions of the display that had already been examined. Klein (1988, 2000; Klein & Dukewich, 2006) proposed that inhibition of return (IOR) might be such a mechanism. The present experiments explored this proposal by combining a dynamic search task (Horowitz & Wolfe, 1998, 2003) with a probe-detection task. IOR was observed when search was most efficient (static and slower dynamic search). IOR was not observed when search performance was less efficient (fast dynamic search).These findings are consistent with the "foraging facilitator" proposal of IOR and are unpredicted by theories of search that assume parallel accumulation of information across the array (plus noise) as a general explanation for the effect of set size upon search performance.
STS-101 crew waves to media after arriving at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
Leising, Daniel; Rehbein, Diana; Sporberg, Doreen
2007-10-01
The Inventory of Interpersonal Problems (IIP-64; Horowitz, Alden, Wiggins, & Pincus, 2000) is a self-report measure of maladaptive relationship behavior. Ninety-five adult female participants completed the IIP-64 and then interacted with a same-sex confederate in three diagnostic role plays, designed to evoke assertive responses. After each role play, both the participant and the confederate judged how assertive the participant had been, using two subscales from the Interpersonal Adjective Scales (IAS; Wiggins, 1995). The participants' general self-images, assessed with the IIP-64, were quite congruent with how they judged their own assertiveness in the role plays. But when role-play assertiveness was judged by the confederate, the match with the participants' general self-images was considerably lower. Our results indicate that self-reported interpersonal problems do not converge well with external judgments of interpersonal behavior.
STS-101 crew sits for a snack before the third attempt at launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the third time. The previous two launch attempts were scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists James S. Voss, Susan J. Helms and Jeffrey N. Williams; Commander James D. Halsell Jr.; Pilot Scott J. Horowitz; and Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module. Also, the crew will conduct one space walk. This is the third assembly flight to the Space Station. After the 10-day mission, Atlantis is expected to land at KSC May 6 at about 12:03 p.m. EDT.
1999-12-09
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn about some of the cargo that will be on their mission. At left are Mission Specialists Jeffrey N. Williams and Edward Tsang Lu (Ph.D.); at right are Commander James Donald Halsell Jr., and Mission Specialist Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At left are Commander James Donald Halsell Jr. and Pilot Scott J. "Doc" Horowitz (Ph.D.); seated on the floor is Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At right is Mission Specialist Mary Ellen Weber (Ph.D.), who is assisted by a SPACEHAB worker. Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
1999-12-10
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Commander James Donald Halsell Jr., Mission Specialist Mary Ellen Weber, (Ph.D.), Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Mission Specialists Boris W. Morukov, who is with the Russian Space Agency (RSA), Jeffrey N. Williams, and Yuri Malenchenko, also with RSA. Other crew members are Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.) and Edward Tsang Lu (Ph.D.). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At right is Mission Specialist Mary Ellen Weber (Ph.D.), who is assisted by a SPACEHAB worker. Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Commander James Donald Halsell Jr., Mission Specialist Mary Ellen Weber, (Ph.D.), Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At left are Commander James Donald Halsell Jr. and Pilot Scott J. 'Doc' Horowitz (Ph.D.); seated on the floor is Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), at right, talks with workers about the SPACEHAB Logistics Double Module at left. The module is part of the payload for the mission. Lu and other crew members Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko , who are with the Russian Space Agency , are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
STS-101 crew take part in CEIT at SPACEHAB
NASA Technical Reports Server (NTRS)
1999-01-01
During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn about some of the cargo that will be on their mission. At left are Mission Specialists Jeffrey N. Williams and Edward Tsang Lu (Ph.D.); at right are Commander James Donald Halsell Jr., and Mission Specialist Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.
Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars
NASA Astrophysics Data System (ADS)
Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John
2016-10-01
The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328
NASA Astrophysics Data System (ADS)
Berdis, Jodi; Murphy, Jim; Wilson, Robert John
2017-10-01
Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.
NASA Astrophysics Data System (ADS)
Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.
2017-10-01
A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.
2010-09-01
Lomefloxacinate of Y(III), Zr(IV) and U(VI) were isolated as solids with the general formula; [Y(LFX) 2Cl 2]Cl·12H 2O, [ZrO(LFX) 2Cl]Cl·15H 2O and [UO 2(LFX) 3](NO 3) 2·4H 2O. The new synthesized complexes were characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopies) as well as thermal analyses. In these complexes lomefloxacin act as bidentate ligand bound to the metal ions through the pyridone oxygen and one carboxylate oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, activation energy, enthalpy of activation and Gibbs free energy evaluated by using Coats- Redfern and Horowitz- Metzger equations for free lomefloxacin and three complexes were carried out. The bond stretching force constant and length of the U dbnd O bond for the [UO 2(LFX) 3](NO 3) 2·4H 2O complex were calculated. The antimicrobial activity of lomefloxacin and its metal complexes was tested against different bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) as Gram-positive and Gram-negative bacterial species and also against two species of antifungal, penicillium ( P. rotatum) and trichoderma ( T. sp.). The three complexes are of a good action against three bacterial species but the Y(III) complex exhibit excellent activity against Pseudomonas aeruginosa ( P. aeruginosa), when compared to the free lomefloxacin.
NASA Astrophysics Data System (ADS)
Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.
2017-07-01
New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.
Semi- and thiosemicarbazide Mn(II) complexes: Characterization, DFT and biological studies
NASA Astrophysics Data System (ADS)
Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.
2016-09-01
One NO and two NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Mn (II) complexes were prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Mn(HPAPS)2], [Mn(HPAPT)Cl] and [Mn(HPABT)Cl(H2O)2], respectively. The IR study of ligands and their complexes shows that H2PAPS behaves as a mononegative tridentate via both CO of hydrazide moiety in keto and deprotonated enol form and CN (azomethine) due to enolization of CO cyanate moiety without deprotonation. H2PAPT behaves as mononegative tridentate via CO of hydrazide moiety, deprotonated thiol CS and NH group. Finally H2PABT behaves as mononegative tridentate via deprotonated enolized CO of hydrazide moiety, CO of benzoyl moiety and NH group. The IR spectra of ligands from DFT calculations are compared with those obtained experimentally. Also, HOMO, LUMO, the bond lengths, bond angles, and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. The binding energy values display the high stability of complexes. The kinetic and thermodynamic parameters were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. Finally, the antitumor activities of the Ligands and their Mn(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells.
PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2014)
NASA Astrophysics Data System (ADS)
Cleymans, Jean
2015-06-01
The third biannual conference on 'Discovery Physics at the LHC' was held on December 1-6 2014 at the Kruger Gate Hotel in South Africa. Over 100 participants attended from Austria, Australia, Belgium, Brazil, Canada, China, the Czech Republic, France, Germany, Italy, the Netherlands, Norway, Poland, South Africa, Switzerland, the UK and the USA. The latest results from the Large Hadron Collider as well the latest theoretical insights were presented. With the majestic Kruger National Park in the background this led to a very stimulating conference with many exchanges taking place. The proceedings reflect the high level of the conference. The financial contributions from the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba L.A.B.S. are gratefully acknowledged. Local Organizing Committee: Z. Buthelezi J. Cleymans (chair) S. H. Connell A. S. Cornell T. Dietel S. Förtsch N. Haasbroek A. Hamilton W. A. Horowitz B. Mellado Z. Z. Vilakazi S. Yacoob
Workforce planning-going beyond the count.
Sandy, Lewis G
2017-10-11
Every country struggles with how best to meet the demand for health care services with the available resources. This commentary offers a perspective on the Israeli physician workforce and the analyses of Horowitz et al., which found age and gender differences in physician productivity and career longevity, differences across specialties, and a sizeable fraction of licensed Israeli physicians living abroad. Workforce planning can be subject to data collection and statistical uncertainties, but even more important are the assumptions and forecasts related to demand for services and organizational arrangements for care delivery. Readers should be cautious in analyzing productivity just by counting hours or years worked, and comparisons across countries may not account for differences in the nature of physician work. The question of whether Israel has enough physicians for the future has to go "beyond the count" to looking at the roles of other health professionals, the use of new technologies and new team configurations, and the overall efficiency and effectiveness of health care delivery systems such as hospitals, ambulatory care clinics, and community-based care.
Reallocating attention during multiple object tracking.
Ericson, Justin M; Christensen, James C
2012-07-01
Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.
STS-101 Commander Halsell and crew after arriving for TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yuri Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
2000-04-05
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-04-05
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
STS-75 liftoff - left side view - closeup
NASA Technical Reports Server (NTRS)
1996-01-01
A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.
STS-75 liftoff - left side view from across marsh
NASA Technical Reports Server (NTRS)
1996-01-01
A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.
Phenomenological study of the ionisation density-dependence of TLD-100 peak 5a.
Brandan, Maria-Ester; Angeles, Oscar; Mercado-Uribe, Hilda
2006-01-01
Horowitz and collaborators have reported evidence on the structure of TLD-100 peak 5. A satellite peak, called 5a, has been singled out as arising from localised electron-hole recombination in a trap/luminescent centre, its emission mechanism would be geminate recombination and, therefore, its population would depend on incident radiation ionisation density. We report a phenomenological study of peak 4, 5a and 5 strengths for glow curves previously measured at UNAM for gammas, electrons and low-energy ions. The deconvolution procedure has followed strict rules to assure that the glow curve, where the presence of peak 5a is not visually noticeable, is decomposed in a consistent fashion, maintaining fixed widths and relative temperature difference between all the peaks. We find no improvement in the quality of the fit after inclusion of peak 5a. The relative contribution of peak 5a with respect to peak 5 does not seem to correlate with the radiation linear energy transfer.
[Bereavement and complicated grief: towards a definition of Prolonged Grief Disorder for DSM-5].
Lombardo, Luigi; Lai, Carlo; Luciani, Massimiliano; Morelli, Emanuela; Buttinelli, Elena; Aceto, Paola; Lai, Silvia; D'Onofrio, Marianna; Galli, Federico; Bellizzi, Fernando; Penco, Italo
2014-01-01
Mourning is a natural response to a loss and a condition which most people experience several times during their lives. Most individuals adjust adequately to the loss of a relative, neverthless, a small but noteworthy proportion of bereaved individuals experience a syndrome of prolonged psychological distress in relation to bereavement. Prolonged distress and disability in connection with bereavement has been termed Complicated Grief (CG) or Prolonged Grief Disorder (PGD). The purpose of this paper is to analyze the literature on loss and mourning making a review of the main studies published between 1993 and 2013, identified through a search conducted on Medline/PubMed, in order to describe the epidemiological and clinical aspects of "normal" grief and "complicated" grief, pointing out the path of the clinical definition of PGD and proposed diagnostic criteria for inclusion in the next edition of the Diagnostic and Statistic Manual of Mental Disorders, Fifth edition (DSM-5). The two main diagnostic systems proposed by Horowitz and Prigerson are also compared.
Golden-Kreutz, Deanna M.; Thornton, Lisa M.; Gregorio, Sharla Wells-Di; Frierson, Georita M.; Jim, Heather S.; Carpenter, Kristen M.; Shelby, Rebecca A.; Andersen, Barbara L.
2007-01-01
The authors investigated the relationship between stress at initial cancer diagnosis and treatment and subsequent quality of life (QoL). Women (n = 112) randomized to the assessment-only arm of a clinical trial were initially assessed after breast cancer diagnosis and surgery and then reassessed at 4 months (during adjuvant treatment) and 12 months (postadjuvant treatment). There were 3 types of stress measured: number of stressful life events (K. A. Matthews et al., 1997), cancer-related traumatic stress symptoms (M. J. Horowitz, N. Wilner, & W. Alvarez, 1979), and perceived global stress (S. Cohen, T. Kamarck, & R. Mermelstein, 1983). Using hierarchical multiple regressions, the authors found that stress predicted both psychological and physical QoL (J. E. Ware, K. K. Snow, & M. Kosinski, 2000) at the follow-ups (all ps < .03). These findings substantiate the relationship between initial stress and later QoL and underscore the need for timely psychological intervention. PMID:15898865
2001-08-09
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9. [Photo by Scott Andrews; Nikon D1 camera
2001-08-09
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew, to head for Launch Pad 39A and liftoff. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
STS-101: Crew Activity Report / Flight Day 5
NASA Technical Reports Server (NTRS)
2000-01-01
The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the fifth day of the mission. The day's activities started with the opening of the hatch to the space station. Helms and Usachev then opened the hatch to the station's Unity Connecting Module. The crew also placed ducting throughout the Zarya Control Module to improve air circulation and prevent problems with stale air. Helms and Usachev are shown replacing two of six batteries to be replaced in this mission in the Zarya module. The crew began moving supplies into the space station. There are several shots of the interior of the space station.
Independent component analysis for onset detection in piano trills
NASA Astrophysics Data System (ADS)
Brown, Judith C.; Todd, Jeremy G.; Smaragdis, Paris
2002-05-01
The detection of onsets in piano music is difficult due to the presence of many notes simultaneously and their long decay times from pedaling. This is even more difficult for trills where the rapid note changes make it difficult to observe a decrease in amplitude for individual notes in either the temporal wave form or the time dependent Fourier components. Occasionally one note of the trill has a much lower amplitude than the other making an unambiguous determination of its onset virtually impossible. We have analyzed a number of trills from CD's of performances by Horowitz, Ashkenazy, and Goode, choosing the same trill and different performances where possible. The Fourier transform was calculated as a function of time, and the magnitude coefficients served as input for a calculation using the method of independent component analysis. In most cases this gave a more definitive determination of the onset times, as can be demonstrated graphically. For comparison identical calculations have been carried out on recordings of midi generated performances on a Yamaha Disclavier piano.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Ibrahim, Omar B.; Saad, Hosam A.; Adam, Abdel Majid A.
2014-05-01
Recently, ephedrine (Eph) assessment in food products, pharmaceutical formulations, human fluids of athletes and detection of drug toxicity and abuse, has gained a growing interest. To provide basic data that can be used to assessment of Eph quantitatively based on charge-transfer (CT) complexation, the CT complexes of Eph with 7‧,8,8‧-tetracyanoquinodimethane (TCNQ), dichlorodicyanobenzoquinone (DDQ), 1,3-dinitrobenzene (DNB) or tetrabromothiophene (TBT) were synthesized and spectroscopically investigated. The newly synthesized complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. The formation constant (KCT), molar extinction coefficient (εCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermal decomposition behavior of these complexes was also studied, and their kinetic thermodynamic parameters were calculated with Coats-Redfern and Horowitz-Metzger equations.
Performance bounds for modal analysis using sparse linear arrays
NASA Astrophysics Data System (ADS)
Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie
2017-05-01
We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.
STS-101 crew returns from Launch Pad 39A after launch was scrubbed
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.
STS-101 crew gather for snack before launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Yury Usachev of Russia , Mary Ellen Weber and Jeffrey N. Williams; Commander James D. Halsell Jr.; Pilot Scott J. Horowitz; and Mission Specialists James S. Voss and Susan J. Helms. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. Liftoff of Space Shuttle Atlantis for the 10-day mission is scheduled for about 6:12 a.m. EDT from Launch Pad 39A. Landing is targeted for May 29 at 2:19 a.m. EDT.
STS-101: Crew Activity Report / Flight Day 6
NASA Technical Reports Server (NTRS)
2000-01-01
The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the sixth day of the flight. The videotape begins with a shot of the Space Station. The narrator remarks that the transfer of supplies and equipment is continuing and the videotape shows the replacing of fans and smoke detectors. There is a group picture on board the station, after which a few questions were asked. The quality of the air inside the station is remarked on as being good. The quality of the air being a concern and one of the reasons for the mission. One of the new batteries was shown being installed in the Zarya Control Module.
Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, J.; Reynard-Carette, C.; Tarchalski, M.
This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less
STS-101: Flight Day Highlights / CAR
NASA Technical Reports Server (NTRS)
2000-01-01
The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the launch of STS-101, beginning with the pre-flight breakfast and the crew's introduction. The videotape next shows a pre-dawn view of the orbiter waiting the crew's arrival. The crew is shown getting into their space suits and then climbing onboard the shuttle. In this videotape we are shown a few of the crew getting into their places onboard the shuttle. We are also shown the newly designed "glass cockpit", which gives the pilot and the commander better views and are told that this is the first flight of the shuttle with the new design. After the hatch is closed, we see the shuttle launch into the night, followed by the Solid Rocket Boosters (SRB) separation.
PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2012)
NASA Astrophysics Data System (ADS)
Cleymans, Jean
2013-08-01
The second conference on 'Discovery Physics at the LHC' was held on 3-7 December 2012 at the Kruger Gate Hotel in South Africa. In total there were 110 participants from Armenia, Belgium, Brazil, Canada, Czech Republic, France, Germany, Greece, Israel, Italy, Norway, Poland, USA, Russia, Slovakia, Spain, Sweden, United Kingdom, Switzerland and South Africa. The latest results from the Large Hadron Collider, Brookhaven National Laboratory, Jefferson Laboratory and BABAR experiments, as well as the latest theoretical insights were presented. Set against the backdrop of the majestic Kruger National Park a very stimulating conference with many exchanges took place. The proceedings reflect the high standard of the conference. The financial contributions from the National Institute for Theoretical Physics (NITHeP), the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba Labs—Laboratory for Accelerator Based Science are gratefully acknowledged. Jean Cleymans Chair of the Local Organizing Committee Local Organizing Committee Oana Boeriu Jean Cleymans Simon H Connell Alan S Cornell William A Horowitz Andre Peshier Trevor Vickey Zeblon Z Vilakazi Group picture
Kane, Michael J; Poole, Bradley J; Tuholski, Stephen W; Engle, Randall W
2006-07-01
The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual responses or constraint of conscious focus. To further specify the executive attention construct, the present experiments sought boundary conditions of the WMC-attention relation. Three experiments correlated individual differences in WMC, as measured by complex span tasks, and executive control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention processes, which poses problems for some general theories of WMC. Copyright 2006 APA, all rights reserved.
Clinical utility of the impact of event scale: psychometrics in the general population.
Briere, J; Elliott, D M
1998-06-01
The Impact of Event Scale (IES; Horowitz, Wilner, & Alvarez, 1979), Trauma Symptom Inventory (TSI; Briere, 1995), Los Angeles Symptom Checklist (LASC; Foy, Sipprelle, Rueger, & Carroll, 1984), and Traumatic Events Survey (TES; Elliott, 1992) were administered to a sample of 505 participants from the general population. In this application of the IES, participants reported on "an upsetting event," as opposed to a specific stressor. The IES was found to be reliable and to have concurrent validity with respect to the TSI and LASC. IES scores varied as a function of race, but this relationship disappeared once race differences in exposure to potentially traumatic events (PTEs) were taken into account. Although the IES was predictive of PTEs, the traumatic stress scales of the TSI had more predictive and incremental validity than the IES. The current data suggest that an "upsetting event" version of the IES may be useful as a brief screen for nonarousal-related posttraumatic stress, but that its potential limitations should be taken into account. Normative data on this version of the IES are presented.
STS-101 crew enroute to Launch Pad 39A for a second launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
Waving to onlookers, the STS-101 crew eagerly walk to the waiting Astrovan that will take them to Launch Pad 39A and the second attempt at liftoff of Space Shuttle Atlantis. In their orange launch and entry suits, they are (left to right) Mission Specialists Susan J. Helms, Yuri Usachev, James S. Voss, Mary Ellen Weber and Jeffrey N. Williams; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. The first launch attempt on April 24 was scrubbed due to unfavorable weather conditions. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. Liftoff is targeted for 3:52 p.m. EDT. The mission is expected to last about 10 days, with Atlantis landing at KSC Saturday, May 6, about 11:53 a.m. EDT.
Kernhof, Karin; Kaufhold, Johannes; Grabhorn, Ralph
2008-01-01
In this study, we examined how retrospective reports of experiencing traumatic sexual abuse in childhood relates to both the development of self-representations and object representations and the occurrence of interpersonal problems. A total of 30 psychosomatic female patients who reported sexual abuse in childhood were compared with a corresponding number of eating-disordered patients and a nonclinical control group. The object relations technique (ORT; Phillipson, 1955), evaluated using the Social Cognition and Object Relations Scale (SCORS; Westen, 1985, 1991b), and the Inventory of Interpersonal Problems (Horowitz, Rosenberg, Baer, & Ureno, 1988) were used to measure the groups. The patients reporting sexual abuse achieved significantly lower scores in the cognitive scales of the SCORS; in the affective scales, they differed from the control group but not from the patients with an eating disorder. Concerning interpersonal problems, the patients reporting childhood sexual abuse reported interpersonal conflicts more frequently. The results of the study support the influence of traumatic sexual abuse on the formation of self-representations and object representations and on the occurrence of interpersonal conflicts.
STS-101 Commander Halsell checks landing spot on runway
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Commander James D. Halsell Jr. gives a thumbs up after looking at the perfect wheel stop that straddles the center line on Runway 15 of KSC's Shuttle Landing Facility. The other crew members standing at left are Mission Specialists Jeffrey N. Williams, Susan J. Helms, Mary Ellen Weber; Pilot Scott 'Doc' Horowitz; and Mission Specialists James S. Voss and Yury Usachev. The STS-101 crew returned from the third flight to the International Space Station, providing maintenance and carrying supplies for future missions. Main gear touchdown was at 2:20:17 a.m. EDT May 29 , landing on orbit 155 of the mission. Nose gear touchdown was at 2:20:30 a.m. EDT, and wheel stop at 2:21:19 a.m. EDT. This was the 98th flight in the Space Shuttle program and the 21st for Atlantis, also marking the 51st landing at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.
Railway suicide: the psychological effects on drivers.
Farmer, R; Tranah, T; O'Donnell, I; Catalan, J
1992-05-01
People have jumped (or fallen) in front of trains on the London Underground system in increasing numbers throughout the twentieth century. During the past decade there have been about 100 such incidents each year, of which around 90 would involve the train driver witnessing his train strike the person on the track. Most are suicides or attempts at suicide. They represent major unexpected and violent events in the lives of the train drivers and it might be expected that some of them would respond by developing a post-traumatic stress reaction of the type identified by Horowitz (1976) or other adverse psychological reactions or both. The research reported in this paper was designed to characterize the range of responses of drivers to the experiences of killing or injuring members of the public during the course of their daily work. It was found that 16.3% of the drivers involved in incidents did develop post-traumatic stress disorder and that other diagnoses, e.g. depression and phobic states, were present in 39.5% of drivers when interviewed one month after the incident.
Methodology comparison for gamma-heating calculations in material-testing reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.
2015-07-01
The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physicalmore » models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear heating is represented by the physical quantity called absorbed dose (energy deposition induced by particle-matter interactions, divided by mass). Its calculation with Monte Carlo codes is possible but computationally expensive as it requires transport simulation of charged particles, along with neutrons and photons. For that reason, the calculation of another physical quantity, called KERMA, is often preferred, as KERMA calculation with Monte Carlo codes only requires transport of neutral particles. However, KERMA is only an estimator of the absorbed dose and many conditions must be fulfilled for KERMA to be equal to absorbed dose, including so-called condition of electronic equilibrium. Also, Monte Carlo computations of absorbed dose still present some physical approximations, even though there is only a limited number of them. Some of these approximations are linked to the way how Monte Carlo codes apprehend the transport simulation of charged particles and the productive and destructive interactions between photons, electrons and positrons. There exists a huge variety of electromagnetic shower models which tackle this topic. Differences in the implementation of these models can lead to discrepancies in calculated values of absorbed dose between different Monte Carlo codes. The magnitude of order of such potential discrepancies should be quantified for JHR gamma-heating calculations. We consequently present a two-pronged plan. In a first phase, we intend to perform compared absorbed dose / KERMA Monte Carlo calculations in the JHR. This way, we will study the presence or absence of electronic equilibrium in the different JHR structures and experimental devices and we will give recommendations for the choice of KERMA or absorbed dose when calculating gamma heating in the JHR. In a second phase, we intend to perform compared TRIPOLI4 / MCNP absorbed dose calculations in a simplified JHR-representative geometry. For this comparison, we will use the same nuclear data library for both codes (the European library JEFF3.1.1 and photon library EPDL97) so as to isolate the effects from electromagnetic shower models on absorbed dose calculation. This way, we hope to get insightful feedback on these models and their implementation in Monte Carlo codes. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amharrak, H.; Reynard-Carette, C.; Carette, M.
The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less
Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.
1976-01-01
Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Praeg, W.F.
1984-03-30
This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.
Time to Guide: Evidence for Delayed Attentional Guidance in Contextual Cueing
Kunar, Melina A.; Flusberg, Stephen J.; Wolfe, Jeremy M.
2008-01-01
Contextual cueing experiments show that, when displays are repeated, reaction times (RTs) to find a target decrease over time even when the observers are not aware of the repetition. Recent evidence suggests that this benefit in standard contextual cueing tasks is not likely to be due to an improvement in attentional guidance (Kunar, Flusberg, Horowitz & Wolfe, 2007). Nevertheless, we ask whether guidance can help participants find the target in a repeated display, if they are given sufficient time to encode the display. In Experiment 1 we increased the display complexity so that it took participants longer to find the target. Here we found a larger effect of guidance than in a condition with shorter RTs. Experiment 2 gave participants prior exposure to the display context. The data again showed that with more time participants could implement guidance to help find the target, provided that there was something in the search stimuli locations to guide attention to. The data suggest that although the benefit in a standard contextual cueing task is unlikely to be a result of guidance, guidance can play a role if it is given time to develop. PMID:18846248
Time to Guide: Evidence for Delayed Attentional Guidance in Contextual Cueing.
Kunar, Melina A; Flusberg, Stephen J; Wolfe, Jeremy M
2008-01-01
Contextual cueing experiments show that, when displays are repeated, reaction times (RTs) to find a target decrease over time even when the observers are not aware of the repetition. Recent evidence suggests that this benefit in standard contextual cueing tasks is not likely to be due to an improvement in attentional guidance (Kunar, Flusberg, Horowitz & Wolfe, 2007). Nevertheless, we ask whether guidance can help participants find the target in a repeated display, if they are given sufficient time to encode the display. In Experiment 1 we increased the display complexity so that it took participants longer to find the target. Here we found a larger effect of guidance than in a condition with shorter RTs. Experiment 2 gave participants prior exposure to the display context. The data again showed that with more time participants could implement guidance to help find the target, provided that there was something in the search stimuli locations to guide attention to. The data suggest that although the benefit in a standard contextual cueing task is unlikely to be a result of guidance, guidance can play a role if it is given time to develop.
Quinones, Gretchen; Srinivasan, Ashok
Absence of the common carotid artery (CCA) is a rare anomaly. In the few cases described in the literature, it has been typically associated with separate origins of the internal carotid artery (ICA) and external carotid artery (ECA) Fife (1921), Boyd (1934), Rossiti and Raininko (2001), Cerase et al. (2009), Drazin et al. (2010), Yim et al. (2009), Monaco et al. (2009), Jerius et al. (1995), Dahn et al. (1999), Cakirer et al. (2002), Choi et al. (2015), Bryan et al. (1978), Horowitz et al. (2003), Roberts and Gerald (1978), Rajeshwari (2013), Purkayastha et al. (2006), Maybody et al. (2003), Wood et al. (2011) . To the best of our knowledge, absence of the CCA without separate origins of the ECA and ICA has only been described five times before, one of them in conjunction with a persistent proatlantal intersegmental artery (PIA) Cao et al. (2011) and four with agenesis of the ICA Kobayashi et al. (2013), Kunishio et al. (1987), Chen et al. (2008), Xie et al. (2010) . We present a case of a previously undescribed variation of this rare vascular anomaly. Copyright © 2017 Elsevier Inc. All rights reserved.
STS-101 crew poses for a photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
During a break in Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew poses for a photo at Launch Pad 39A. They are at the 195-foot level of the Fixed Service Structure for emergency egress training. Standing, from left to right, are Mission Specialist James Voss, Commander James D. Halsell Jr., and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber and Yuri Usachev of Russia. Kneeling in front are Pilot Scott J. 'Doc' Horowitz and Mission Specialist Susan J. Helms. Behind them are the white solid rocket booster and orange external tank attached to Space Shuttle Atlantis. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
NASA Astrophysics Data System (ADS)
Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.
2015-03-01
The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.
Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend
NASA Astrophysics Data System (ADS)
Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.
2016-05-01
The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.
Bock, Astrid; Huber, Eva; Peham, Doris; Benecke, Cord
2015-01-01
The development (Study 1) and validation (Study 2) of a categorical system for the attribution of facial expressions of negative emotions to specific functions. The facial expressions observed inOPDinterviews (OPD-Task-Force 2009) are coded according to the Facial Action Coding System (FACS; Ekman et al. 2002) and attributed to categories of basic emotional displays using EmFACS (Friesen & Ekman 1984). In Study 1 we analyze a partial sample of 20 interviews and postulate 10 categories of functions that can be arranged into three main categories (interactive, self and object). In Study 2 we rate the facial expressions (n=2320) from the OPD interviews (10 minutes each interview) of 80 female subjects (16 healthy, 64 with DSM-IV diagnosis; age: 18-57 years) according to the categorical system and correlate them with problematic relationship experiences (measured with IIP,Horowitz et al. 2000). Functions of negative facial expressions can be attributed reliably and validly with the RFE-Coding System. The attribution of interactive, self-related and object-related functions allows for a deeper understanding of the emotional facial expressions of patients with mental disorders.
General Relativity and Gravitation
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
The aftermath of an industrial disaster.
Elklit, A
1997-01-01
An explosion in a Danish supertanker under construction in 1994 caused the death of six workers and injured 15. Six months later 270 workers took part in this study, which analyses the relationships between objective stressors, the workers' own feelings and the reactions of their families after the explosion together with training, attitude to the workplace, general out-look, and received crisis help. Traumatisation, coping style and crisis support was assessed via the Impact of Event Scale (IES), the Coping Styles Questionnaire (CSQ) and the Crisis Support Scale (CSS). Emotionally, workers and their families were strongly affected by the explosion. The IES-score was 17.6 and the invasion score 9.1. The degree of traumatisation was higher in the group who had an 'audience position' than in the group who was directly hit by the explosion. Training in rescue work did not protect against adverse effects. Rescue work had a strong impact on the involved. Social support was a significant factor, that seems to buffer negative effects. High level of social integration, effective leadership in the situation, and professional crisis intervention characterised the disaster situation. All the same, 41 per cent of the workers reached the caseness criteria by Horowitz (IES > or = 19).
The STS-105 crew exits the CTV after Discovery's landing at KSC
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. Members of the STS-105 crew exit the Crew Transfer Vehicle (CTV) following Discovery's landing on KSC's Shuttle Landing Facility runway 15 and are greeted by NASA Administrator Dan Goldin. From left are Mission Specialists Patrick Forrester and Daniel Barry, Pilot Frederick 'Rick' Sturckow, and Commander Scott 'Doc' Horowitz (shaking hands with Goldin). Looking on are, from left, Kathie Olsen, NASA Chief Scientist; Joe Rothenberg, Associate Administrator, Office of Space Flight; and Courtney Stadd, NASA Headquarters Chief of Staff. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
2001-08-10
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews give thumbs up on another opportunity to launch after a 24-hour weather delay. In red shirts, seated left to right, are STS-105 Mission Specialists Patrick Forrester and Daniel Barry, Pilot Rick Sturckow and Commander Scott Horowitz. In blue shirts are the Expedition Three crew, Commander Frank Culbertson, Vladimir Dezhurov and Mikhail Tyurin. Dezhurov and Tyurin are cosmonauts with the Russian Aviation and Space Agency. Highlighting the mission will be the rotation of the International Space Station crew, the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Included in the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS will be installed on the P6 truss, which holds the Station’s giant U.S. solar arrays, batteries and the cooling radiators. The EAS contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:15 p.m. EDT Aug. 10
Comment on "Measurements without probabilities in the final state proposal"
NASA Astrophysics Data System (ADS)
Cohen, Eliahu; Nowakowski, Marcin
2018-04-01
The final state proposal [G. T. Horowitz and J. M. Maldacena, J. High Energy Phys. 04 (2004) 008, 10.1088/1126-6708/2004/04/008] is an attempt to relax the apparent tension between string theory and semiclassical arguments regarding the unitarity of black hole evaporation. Authors Bousso and Stanford [Phys. Rev. D 89, 044038 (2014), 10.1103/PhysRevD.89.044038] analyze thought experiments where an infalling observer first verifies the entanglement between early and late Hawking modes and then verifies the interior purification of the same Hawking particle. They claim that "probabilities for outcomes of these measurements are not defined" and therefore suggest that "the final state proposal does not offer a consistent alternative to the firewall hypothesis." We show, in contrast, that one may define all the relevant probabilities based on the so-called ABL rule [Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev. 134, B1410 (1964), 10.1103/PhysRev.134.B1410], which is better suited for this task than the decoherence functional. We thus assert that the analysis of Bousso and Stanford cannot yet rule out the final state proposal.
Aggregation Properties and Liquid Crystal Phase of a Dye Based on Naphthalenetetracarboxylic Acid
NASA Astrophysics Data System (ADS)
Tomasik, Michelle; Collings, Peter
2007-03-01
R003 is a dye produced for thin film optical components by Optiva, Inc.^1 made from the sulfonation of the dibenzimidazole derivative of naphthalenetetracarboxylic acid. Its molecular structure is very different from the aggregating food dye previously investigated in our laboratory^2 and R003 forms a liquid crystal phase at significantly lower concentrations. We have performed polarizing microscopy, absorption spectroscopy, and x-ray diffraction experiments in order to determine the phase diagram and aggregate structure. In addition, we have included both translational and orientational entropy in the theoretical analysis of the aggregation process, and have used a more realistic lineshape in analyzing the absorption data. Our results indicate that the ``bond energy'' for molecules in an aggregate is even larger than for the previously studied dye and that the aggregate structure has a cross-sectional area equal to two or three molecular areas rather than one.^1Lazarev, P., N. Ovchinnikova, M. Paukshto, SID Int. Symp. Digest of Tech. Papers, San Jose, California, June XXXII, 571 (2001).^2V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, and P. J. Collings, Phys. Rev. E 72, 041710 (2005).
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Ibrahim, Mohamed M.; Moussa, Mohamed A. A.
2012-01-01
Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[( E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I{2/•-}] and [Schiff+, Br{2/•-}], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats-Redfern and Horowitz-Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.
Flash floods warning technique based on wireless communication networks data
NASA Astrophysics Data System (ADS)
David, Noam; Alpert, Pinhas; Messer, Hagit
2010-05-01
Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.
1997-02-21
The STS-82 crew stands in front of the Space Shuttle Discovery after landing at KSC's Shuttle Landing Facility on Runway 15 to conclude a 10-day mission to service the orbiting Hubble Space Telescope (HST). Crew members are (from left to right) Mission Specialist Steven A. Hawley, Mission Commander Kenneth D. Bowersox, Mission Specialist Joseph R. "Joe" Tanner, Pilot Scott J. "Doc" Horowitz, Mission Specialist Gregory J. Harbaugh, Payload Commander Mark C. Lee and Mission Specialist Steven L. Smith. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
Materials Compatibility Testing in Concentrated Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)
2000-01-01
Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.
Full-scale aircraft cabin flammability tests of improved fire-resistant materials
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Surpkis, D. E.; Price, L. J.
1974-01-01
Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.
System and method for measuring permeability of materials
Hallman, Jr., Russell Louis; Renner, Michael John
2013-07-09
Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Material permeance measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN
2012-05-08
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Code of Federal Regulations, 2011 CFR
2011-04-01
... container material. (a) The test. Bulk material shall be tested separately from final container material and material from each final container shall be tested in individual test vessels as follows: (1) Using Fluid Thioglycollate Medium—(i) Bulk and final container material. The volume of product, as required by paragraph (d...
Obtaining NASA Approval for use of Non-Metallic Materials in Manned Space Flight
NASA Technical Reports Server (NTRS)
Davis, Samuel E.; Wise, Harry L.
2003-01-01
Material manufacturers and suppliers are often surprised when a material commonly provided to industry is not approved for use on manned spacecraft. Often the reason is a lack of test data in environments that simulate those encountered in space applications, especially oxygen-enriched conditions, which significantly increase both the likelihood of material combustion and the propagation of a fire. This paper introduces the requirements for flight approval of non-metallic materials, focusing on material testing for human-rated space flight programs; it reviews the history of flight materials requirements and provides the rationale for such and introduces specific requirements related to testing and to good material engineering and design practices. After describing the procedure for submitting materials to be tested, the paper outlines options available if a material fails testing. In addition, this treatise introduces the National Aeronautics and Space Administration's (NASA's) Materials and Processes Technical Information System (MAPTIS), a database housing all test data produced in accordance with NASA-STD-6001, Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion.
Houle, Marie-Claude; Holness, D Linn; Dekoven, Joel; Skotnicki, Sandy
2012-01-01
Allergic contact dermatitis (ACD) to epoxy resins is one of the major causes of occupationally induced ACD. Testing of custom epoxy materials from the workplace is often performed to diagnose ACD. The objective of this study was to investigate the additive value of patch testing custom-made epoxy materials. We retrospectively analyzed outcomes of 24 patients who were tested to custom epoxy resin materials between January 2002 and July 2011. For 11 patients (46%), the testing of their materials from work had no additional value (negative results). For 13 patients (54%), there was an additional value of testing custom allergens. Of those, 7 patients (54%) had positive reactions to custom epoxy materials that reinforced the test results found with the commercially available allergens, and 6 (46%) patients had positive reactions only to custom epoxy materials. Therefore, for 6 patients (25%), there was a definite additive value of testing custom epoxy materials because the allergy was discovered with custom testing and not with the commercially available allergens. Because of the high percentage (54%) of patients with additive value of patch testing custom epoxy materials, we think that the inclusion of actual workplace epoxy materials should be strongly considered when patch testing patients with occupational epoxy exposure.
Yoshida, Yuriko; Churei, Hiroshi; Takeuchi, Yasuo; Wada, Takahiro; Uo, Motohiro; Izumi, Yuichi; Ueno, Toshiaki
2018-01-26
The purpose of the present study was to develop an antibacterial mouthguard (MG) material using a masterbatch of silvernanoparticle-embedded ethylene-vinyl acetate (EVA) copolymers. In order to verify that the testing material was clinically applicable as an antibacterial MG material, we conducted an antibacterial test, a shock absorption test, and analysis of in vitro silver release. The colony-forming activity of Streptococcus sobrinus, Porphyromonas gingivalis, and Escherichia coli were significantly inhibited on the testing materials compared with the commercial EVA sheet (p<0.05). The shock absorption capability of the testing material was not significantly different from that of the commercial EVA sheet. Cumulative silver release (in pure water) from the testing materials were infinitesimal after soaking for 20 days, which implied that there could be no harm in wearing the MG during exercise. These results showed that this testing material could be clinically applicable as an antibacterial MG material.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Laminated thermoplastic composite material from recycled high density polyethylene
NASA Technical Reports Server (NTRS)
Liu, Ping; Waskom, Tommy L.
1994-01-01
The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.
Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure
NASA Technical Reports Server (NTRS)
Schwinghamer, R. J.
1972-01-01
As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.
Long-term pavement performance project laboratory materials testing and handling guide
DOT National Transportation Integrated Search
2007-09-01
The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...
Method and apparatus for testing surface characteristics of a material
NASA Technical Reports Server (NTRS)
Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)
2006-01-01
A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.
Neutron dosimetric measurements in shuttle and MIR.
Reitz, G
2001-06-01
Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.
Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M
1999-05-14
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
Reaction propagation test. Evaluation of the behavior of nonmetallic materials in hydrogen
NASA Technical Reports Server (NTRS)
Smith, I. D.
1972-01-01
Results of tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The reaction propagation test simulates the conditions resulting from the interaction of an electrical wire in an overload condition in contract with a material in the test medium. The test is designed to evaluate the behavior of a material subjected to an energy input (usually heat) sufficient to cause a reaction which propagates to consume larger quantities of the material. Ten nonmetallic materials were evaluated to establish baseline data on the behavior of nonmetallic materials in hydrogen and to characterize, on an initial basis, one mode of material failure considered to be a factor pertinent to the safe use of a material in hydrogen.
ESP – Data from Restarted Life Tests of Various Silicon Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Jim
2010-10-06
Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.
Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials
NASA Technical Reports Server (NTRS)
Kessler, Jeff A.; Adams, Donald F.
1992-01-01
Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
Testing and Comparative Evaluation of Space Shuttle Main Engine Flowmeter Bearings
NASA Technical Reports Server (NTRS)
Hissam, Andy; Leberman, Mike; McLeroy, Rick
2005-01-01
This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
RUBBER BEARINGS FOR DOWN-HOLE PUMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bob Sullivan Mammoth Pacific, L.P.
2005-09-07
Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratorymore » was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.« less
Test device for measuring permeability of a barrier material
Reese, Matthew; Dameron, Arrelaine; Kempe, Michael
2014-03-04
A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.
NASA Technical Reports Server (NTRS)
Bullock, R. E.
1972-01-01
The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.
Thermal Protection System Aerothermal Screening Tests in HYMETS Facility
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy
2011-01-01
The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.
NASA Technical Reports Server (NTRS)
1998-01-01
This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.
National Transonic Facility Fan Blade prepreg material characterization tests
NASA Technical Reports Server (NTRS)
Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.
1981-01-01
The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.
NASA Technical Reports Server (NTRS)
Wilkinson, W. H.; Kirkhart, F. P.; Kistler, C. W.; Duckworth, W. H.; Ungar, E. W.; Foster, E. L.
1970-01-01
Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook.
Methods and instruments for materials testing
NASA Technical Reports Server (NTRS)
Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)
2011-01-01
Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.
The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.
NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.
Evaluation of elastomers as gasket materials in pneumatic and hydraulic systems
NASA Technical Reports Server (NTRS)
Bright, C. W.; Lockhart, B. J.
1972-01-01
In the search for superior materials from which to make gaskets for pneumatic and hydraulic systems, promising materials were selected and tested. The testing was conducted in two phases. Those materials that passed the tests of Phase 1 were tested in Phase 2, and categorized in the order of preference.
Trusted materials using orthogonal testing. 2015 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benthem, Mark
2015-09-01
The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.
Safer Aviation Materials Tested
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2001-01-01
A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.
NASA Technical Reports Server (NTRS)
Sepka, Steven; Gasch, Matthew; Beck, Robin A.; White, Susan
2012-01-01
The material testing results described in this paper were part of a material development program of vendor-supplied, proposed heat shield materials. The goal of this program was to develop low density, rigid material systems with an appreciable weight savings over phenolic-impregnated carbon ablator (PICA) while improving material response performance. New technologies, such as PICA-like materials in honeycomb or materials with variable density through-the-thickness were tested. The material testing took place at the Wright-Patterson Air Force Base Laser Hardened Materials Laboratory (LHMEL) using a 10.6 micron CO2 laser operating with the test articles immersed in a nitrogen-gas environment at 1 atmosphere pressure. Test measurements included thermocouple readings of in-depth temperatures, pyrometer readings of surface temperatures, weight scale readings of mass loss, and sectioned-sample readings of char depth. Two laser exposures were applied. The first exposure was at an irradiance of 450 W/cm2 for 50 or 60 seconds to simulate an aerocapture maneuver. The second laser exposure was at an irradiance of 115 W/cm2 for 100 seconds to simulate a planetary entry. Results from Rounds 1 and 2 of these screening tests are summarized.
Evaluation of heat- and blast-protection materials
NASA Technical Reports Server (NTRS)
Morrison, J. D.; Lockhart, B. J.
1971-01-01
A program was initiated at the Kennedy Space Center in December 1967 and conducted through December 1969 to evaluate the performance of heat- and blast-protection materials for ground support equipment used during the Apollo/Saturn launches. Materials believed to be generally suitable for heat and blast protection were subjected to launch-exposure tests. Tests were made during the Apollo/Saturn 502, 503, and 505 launches. Tests were also made in a local laboratory, as an alternative to the restrictive requirements of launch-exposure tests, to determine the effects of torch-flame exposure on ablative materials. Five materials were found to be satisfactory in all major test categories. It was determined that torch-flame tests can probably be utilized as an acceptable substitute for the booster-engine-exhaust exposure tests for basic screening of candidate materials.
The Behind-the-Knee test: an efficient model for evaluating mechanical and chemical irritation.
Farage, Miranda A
2006-05-01
The 'Behind-the-Knee' method (BTK test), using the popliteal fossa as a test site, evaluates both the inherent chemical irritation, and the potential for mechanical irritation of substrates and products. This approach eliminates some of the difficulties of in-use clinical test systems while still providing reliable results. In this publication, examples of the results of BTK tests on several materials are presented with direct comparisons, where possible, with results of in-use clinical testing conducted on the same materials. In in-use clinical tests, volunteer panelists were provided with catamenial products to use in place of their normal product. In the BTK test, samples were applied daily to the popliteal fossa using an elastic athletic band. In both studies, irritation reactions were scored visually. Levels of irritation in the BTK test are consistently higher than those of standard patch tests, illustrating the contribution of mechanical irritation to the overall irritant potential of materials and products. Repeated tests on identical test materials demonstrated that the BTK test results are reproducible. Side-by-side comparisons of the BTK test and in-use clinical tests demonstrated that the BTK test produces results of similar quality to the in-use clinical. By using several concurrent panels with a common test material, it is possible to compare the irritant properties of several materials at once. We have tested over 25 different materials in over 35 BTK studies. The test method has proven reliable and versatile in testing a wide variety of materials, including menstrual pads, topsheets, interlabial pads, pantiliners, tampons and lotion coatings on products. Unlike in-use clinicals, the BTK test allows the direct comparison of two products at one time on the same individual, and is easily adapted to investigative programs. It is subject to fewer confounding factors, is much easier to implement, has a shorter turnaround time, and is less expensive than in-use clinical testing. Importantly, unlike standard patch tests, the BTK test evaluates both the inherent chemical irritation associated with materials and the mechanical irritation owing to friction. Although the BTK test was developed using catamenial products, the test system provides a valuable alternative for evaluating any material where mechanical irritation may play a role, including textiles, facial tissues, baby and adult diapers, and laundry products that may leave residues on fabrics.
46 CFR 154.430 - Material test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...
46 CFR 154.430 - Material test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...
Test Methodology to Evaluate the Safety of Materials Using Spark Incendivity
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos; Clements, Sid; Ritz, Mindy; Starnes, Jeff
2007-01-01
For many years scientists and engineers have been searching for the proper test method to evaluate an electrostatic risk for materials used in hazardous environments. A new test standard created by the International Electrotechnical Commission is a promising addition to conventional test methods used throughout industry. The purpose of this paper is to incorporate this test into a proposed new methodology for the evaluation of materials exposed to flammable environments. However, initial testing using this new standard has uncovered some unconventional behavior in materials that conventional test methods were thought to have reconciled. For example some materials tested at higher humidities were more susceptible to incendive discharges than at lower humidity even though the surface resistivity was lower.
Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure
NASA Astrophysics Data System (ADS)
Talib, Z. A.
2018-04-01
The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material
Code of Federal Regulations, 2010 CFR
2010-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... materials, and finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written...
Testing methods and techniques: Strength of materials and components. A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
The methods, techniques, and devices used in testing the mechanical properties of various materials are presented. Although metals and metal alloys are featured prominently, some of the items describe tests on a variety of other materials, from concrete to plastics. Many of the tests described are modifications of standard testing procedures, intended either to adapt them to different materials and conditions, or to make them more rapid and accurate. In either case, the approaches presented can result in considerable cost savings and improved quality control. The compilation is presented in two sections. The first deals specifically with material strength testing; the second treats the special category of fracture and fatigue testing.
High Vacuum Creep Facility in the Materials Processing Laboratory
1973-01-21
Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.
NASA Technical Reports Server (NTRS)
Ho, T. L.; Peterson, M. B.
1974-01-01
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).
Partial Testing Can Potentiate Learning of Tested and Untested Material from Multimedia Lessons
ERIC Educational Resources Information Center
Yue, Carole L.; Soderstrom, Nicholas C.; Bjork, Elizabeth Ligon
2015-01-01
Test-potentiated learning occurs when testing renders a subsequent study period more effective than it would have been without an intervening test. We examined whether testing only a subset of material from a multimedia lesson would potentiate the restudy of both tested and untested material. In Experiments 1a and 1b, participants studied a…
Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.
2013-01-01
One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.
On relativistic spin network vertices
NASA Astrophysics Data System (ADS)
Reisenberger, Michael P.
1999-04-01
Barrett and Crane have proposed a model of simplicial Euclidean quantum gravity in which a central role is played by a class of Spin(4) spin networks called "relativistic spin networks" which satisfy a series of physically motivated constraints. Here a proof is presented that demonstrates that the intertwiner of a vertex of such a spin network is uniquely determined, up to normalization, by the representations on the incident edges and the constraints. Moreover, the constraints, which were formulated for four valent spin networks only, are extended to networks of arbitrary valence, and the generalized relativistic spin networks proposed by Yetter are shown to form the entire solution set (mod normalization) of the extended constraints. Finally, using the extended constraints, the Barrett-Crane model is generalized to arbitrary polyhedral complexes (instead of just simplicial complexes) representing space-time. It is explained how this model, like the Barret-Crane model can be derived from BF theory, a simple topological field theory [G. Horowitz, Commun. Math. Phys. 125, 417 (1989)], by restricting the sum over histories to ones in which the left-handed and right-handed areas of any 2-surface are equal. It is known that the solutions of classical Euclidean general relativity form a branch of the stationary points of the BF action with respect to variations preserving this condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haxton, Wick
2012-03-07
This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics that governs neutrino transport and neutrino energy deposition; the understanding of the associated nucleosynthesis, including the r-process and neutrino process; the investigation of the consequences of new neutrino phenomena, such as oscillations; and the characterization of the neutrino signal that might be recorded in terrestrial detectors. This was a collaborative effort with Oak Ridge National Laboratory, State University ofmore » New York at Stony Brook, University of Illinois at Urbana-Champaign, University of California at San Diego, University of Tennessee at Knoxville, Florida Atlantic University, North Carolina State University, and Clemson. The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include the further development of techniques to solve the Bloch-Horowitz equation for effective interactions and operators; collaborative efforts on developing a parallel Lanczos code; investigating the nuclear and neutrino physics governing the r-process and neutrino physics; and exploring the effects of new neutrino physics on the explosion mechanism, nucleosynthesis, and terrestrial supernova neutrino detection.« less
Performance assessment of imaging plates for the JHR transfer Neutron Imaging System
NASA Astrophysics Data System (ADS)
Simon, E.; Guimbal, P. AB(; )
2018-01-01
The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.
STS-82 Crew members pose in from of Discovery after Landing
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-82 crew stands in front of the Space Shuttle Discovery after landing at KSC's Shuttle Landing Facility on Runway 15 to conclude a 10-day mission to service the orbiting Hubble Space Telescope (HST). Crew members are (from left to right) Mission Specialist Steven A. Hawley, Mission Commander Kenneth D. Bowersox, Mission Specialist Joseph R. 'Joe' Tanner, Pilot Scott J. 'Doc' Horowitz, Mission Specialist Gregory J. Harbaugh, Payload Commander Mark C. Lee and Mission Specialist Steven L. Smith. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997.
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
An interpersonal approach to religiousness and spirituality: implications for health and well-being.
Jordan, Kevin D; Masters, Kevin S; Hooker, Stephanie A; Ruiz, John M; Smith, Timothy W
2014-10-01
The interpersonal tradition (Horowitz & Strack, 2011) provides a rich conceptual and methodological framework for theory-driven research on mechanisms linking religiousness and spirituality (R/S) with health and well-being. In three studies, we illustrate this approach to R/S. In Studies 1 and 2, undergraduates completed various self-report measures of R/S, interpersonal style, and other aspects of interpersonal functioning. In Study 3, a community sample completed a wide variety of R/S measures and a measure of interpersonal style. Many, but not all, aspects of religiousness (e.g., overall religiousness, intrinsic religiousness) were associated with a warm interpersonal style, and most aspects and measures of spirituality were associated with a warm and somewhat dominant style. Spirituality and related constructs (i.e., gratitude, compassion) were associated with interpersonal goals that emphasize positive relationships with others, and with beneficial interpersonal outcomes (i.e., higher social support, less loneliness, and less conflict). However, some aspects of R/S (e.g., extrinsic religiousness, belief in a punishing God) were associated with a hostile interpersonal style. R/S have interpersonal correlates that may enhance or undermine health and emotional adjustment. This interpersonal perspective could help clarify why some aspects of religiousness and spirituality are beneficial and others are not. © 2013 Wiley Periodicals, Inc.
Survey of psychotherapeutic approaches to narcissistic personality disorder.
Nurnberg, H G
1984-01-01
The spectrum of Narcissistic Personality Disorder extends from severe impairment to high levels of success, fame, power, and wealth. Several treatment frameworks are available. The therapist must be flexible to choose and shift between libidinal and narcissistic issues to those of ambivalence or ego syntonic character defenses or to focus on ego defense mechanisms or object relationships (Esmiol, 1974). A curative process requires enduring corrective structural changes within distorted intrapsychic configurations manifesting themselves as psychopathology (Horowitz, 1976). These structural changes come about by completion of the working through process. Recurrences will occur, even with insight, but self-mastery enables the patient to take on new functions formerly avoided. In Kohut's view, more cohesive reorganized personality is characterized by (Goldberg, 1973): increased empathy within interpersonal relationships and toward the self; previous rebuffs, failures, and separations of fragmenting consequences and turmoil are experienced with minimal reversible regression; object relations improvement without evidence of extreme narcissistic sensitivity; improved sense of humor indicating a capacity for flexible detachment and distance from the self; emergence and proliferation of satisfying creative talents; increased capacity to work alone and achieve personal gratification; capacity to give without contingencies of anticipated personal gain; and capacity to genuinely recognize and mourn the loss of an important real other.
Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purgert, Robert; Phillips, Jeffrey; Hendrix, Howard
The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C).more » These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO 2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of these components determining the optimum test location. The first step of the ComTest, the steam turbine test, was determined best suited for a site in Youngstown, Ohio. Efforts were also undertaken to identify and evaluate other potential sites for high pressure testing.« less
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.
1959-07-01
Nevada Test Site. ditions, available equipment and material , and late criteria changes requesifd by the partici- "The Nevada tests will e held during...by visory personnel. H&N Field Engineers or the H&N Material TestsResident Engineer. The majority of material tests consisted of 3. Reports and...procurement of material and hol, date of request, date rquired, work to be equipment to be used in the test facilities pro- performed, and site or station
Viscoelastic properties of elastomeric materials for O-ring applications
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1989-01-01
Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.
Measuring Thermal Conductivity at LH2 Temperatures
NASA Technical Reports Server (NTRS)
Selvidge, Shawn; Watwood, Michael C.
2004-01-01
For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.
A rare allergy to a polyether dental impression material.
Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried
2012-08-01
Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.
Testing of materials from the Minnesota Cold Regions pavement research test facility
DOT National Transportation Integrated Search
1996-09-01
The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...
Resilient modulus testing of materials from MN/Road : phase 1
DOT National Transportation Integrated Search
1996-09-01
The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted resilient modulus tests on materials from the MN/ROAD test site for the Minnesota Department of Transportation. Materials tested included samples of the lean clay subgra...
Corrosion testing using isotopes
Hohorst, Frederick A.
1995-12-05
A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.
LLNL Small-Scale Friction sensitivity (BAM) Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.R.; Foltz, M.F.
1996-06-01
Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less
Fissile interrogation using gamma rays from oxygen
Smith, Donald; Micklich, Bradley J.; Fessler, Andreas
2004-04-20
The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.
Compression Testing of Textile Composite Materials
NASA Technical Reports Server (NTRS)
Masters, John E.
1996-01-01
The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.
Flash fire propensity of materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
NASA Astrophysics Data System (ADS)
Kut, Stanislaw; Ryzinska, Grazyna; Niedzialek, Bernadetta
2016-01-01
The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.
Performance testing accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.
The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less
Elaborated Odor Test for Extended Exposure
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.
2016-01-01
Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Walker, Sandra P.
2009-01-01
The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
76 FR 47262 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... industry during the current reporting period. Pre-test and post- test results of trainees. Course... funding ends. 2. Agency creates training Increase number of Pre-test and post- materials and improves quality educational test results of the safety. materials developed. training materials. Provide quality...
75 FR 41531 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... stated goals and current reporting period. objectives for improving safety. Conduct and report pre-test and post- test results of trainees. Course evaluations of trainer and training materials. The extent... pre-test and post- and improves safety. educational materials test results of the training materials...
77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0045] Leakage Tests on Packages for Shipment of..., ``Leakage Tests on Packages for Radioactive Material.'' ADDRESSES: You can access publicly available... Materials--Leakage Tests on Packages for Shipment'' approved February 1998. The NRC staff developed and...
Fire tests for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1980-01-01
Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
Life and stability testing of packaged low-cost energy storage materials
NASA Astrophysics Data System (ADS)
Frysinger, G. R.
1980-07-01
A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.
Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Gary Robert; Broilo, Robert M.; Lopez-Pulliam, Ian Daniel
Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. Themore » proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a thermally robust igniter system.« less
Diffusion-controlled reference material for VOC emissions testing: proof of concept.
Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A
2010-10-01
Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.
Metals combustion in normal gravity and microgravity
NASA Technical Reports Server (NTRS)
Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.
1993-01-01
The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.
International Test Program for Synergistic Atomic Oxygen and VUV Exposure of Spacecraft Materials
NASA Technical Reports Server (NTRS)
Rutledge, Sharon; Banks, Bruce; Dever, Joyce; Savage, William
2000-01-01
Spacecraft in low Earth orbit (LEO) are subject to degradation in thermal and optical performance of components and materials through interaction with atomic oxygen and vacuum ultraviolet radiation which are predominant in LEO. Due to the importance of LEO durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests consisted of exposure of samples representing a variety of thermal control paints and multilayer insulation materials that have been used in space. Materials donated from various international sources were tested alongside a material whose performance is well known such as Teflon FEP or Kapton H for multilayer insulation, or Z-93-P for white thermal control paints. The optical, thermal or mass loss data generated during the test was then provided to the participating material supplier. Data was not published unless the participant donating the material consented to publication. This paper presents a description of the types of tests and facilities that have been used for the test program as well as some examples of data that have been generated. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects to enable improved prediction of spacecraft performance.
Electrical Arc Ignition Testing of Spacesuit Materials
NASA Technical Reports Server (NTRS)
Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold
2006-01-01
A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.
Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.
2009-01-01
The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.
NASA Astrophysics Data System (ADS)
DeStefano, Paul R.; Michaloski, Paul F.
1993-12-01
Building successive generations of state-of-the-art wide field, sub-micron microlithographic lens systems dictates ever-tightening material tolerances that challenge glass manufacturers. This paper discusses the optical material needs for microlithographic lens systems and Tropel's in-house material qualification program. Material qualification is divided into three successive stages: (1) fluorescence testing to qualitatively analyze color center characteristics of the material; (2) homogeneity testing to determine the relative volumetric variations in index; and (3) absolute index testing at multiple wavelengths to determine the material's dispersion characteristics.
Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products
Bernatchez, Stéphanie F.; Tucker, Joseph; Chiffoleau, Gwenael
2017-01-01
Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed. PMID:29098113
FLiNaK Compatability Studies with Inconel 600 and Silicon Carbide
Yoder, Jr, Graydon L.; Heatherly, Dennis Wayne; Wilson, Dane F.; ...
2016-07-26
A small liquid fluoride salt test apparatus has been constructed and testing conducted to examine the compatibility of SiC, Inconel 600, and a spiral wound gasket material in FLiNaK salt. These tests were conducted to test materials and sealing systems that would be used in a FLiNaK salt test loop. Three months of testing at 700oC was used to assure that these materials and seals would be acceptable operating under expected test loop conditions. The SiC specimens showed little or no change over the test period while the spiral wound gasket material showed no degradation, except for the possibility ofmore » salt seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 m in depth. Analysis indicated that the salt had leached chrome from the Inconel surface as was expected for this material. Because the test loop will have a limited working lifetime, it was concluded that these materials would be satisfactory for loop construction.« less
Materials screening tests for the krypton-85 storage development program
NASA Astrophysics Data System (ADS)
Nagata, P. K.
1981-04-01
The results of a materials testing program for krypton-85 storage techniques are reported. Corrosion and stress corrosion tests were performed on a variety of materials including AISI 4130, Type 316 SS, Type 304 SS, Type 310 SS, Nitronic 50, and alloy A286. Test environments were high-purity liquid rubidium, liquid rubidium contaminated with oxygen, and rubidium hydroxide. Oxygen and water contaminations in liquid rubidium were found to greatly increase both general and localized corrosion of the materials tested. Alloy A286, Type 304 SS, and AISI 4130 were eliminated as candidate materials due to their susceptibility to general corrosion and stress corrosion cracking.
Infrared Database for Process Support Materials
NASA Technical Reports Server (NTRS)
Bennett, K. E.; Boothe, R. E.; Burns, H. D.
2003-01-01
Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for both the dry transference and the extraction tests, the residue from each scan was interpreted.
Structural impact and crashworthiness. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, J.
1984-01-01
These papers here were given at a conference on materials testing. The topics covered are mathematical modelling of materials, impact tests on pipes, and drop tests on scale models of lead shielded containers for radioactive materials.
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2001-01-01
The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.
Deducing material quality in cast and hot-forged steels by new bending test
NASA Astrophysics Data System (ADS)
Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir
2017-10-01
A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.
Corrosion testing using isotopes
Hohorst, F.A.
1995-12-05
A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.
NASA Technical Reports Server (NTRS)
Glasgow, Shaun; Kittredge, Ken
2003-01-01
A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
46 CFR 154.430 - Material test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...
Training Teachers and Serving Students: Applying Usability Testing in Writing Programs
ERIC Educational Resources Information Center
McGovern, Heather
2007-01-01
Teachers often test course materials by using them in class. Usability testing provides an alternative: teachers receive student feedback and revise materials "before" teaching a class. Case studies based on interviews and observations with two teaching assistants who usability tested materials before teaching introductory technical writing…
16 CFR 1610.5 - Test apparatus and materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...
16 CFR 1610.5 - Test apparatus and materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...
46 CFR 164.009-15 - Test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Test procedure. 164.009-15 Section 164.009-15 Shipping...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-15 Test procedure. (a) General. Paragraphs (b) through (k) of this section contain the test procedures for each material...
Effects of long duration exposure to simulated space environment on nonmetallic materials properties
NASA Technical Reports Server (NTRS)
Peacock, C. L., Jr.; Whitaker, A. F.
1983-01-01
Nonmetallic materials specimens from the Viking program were tested in situ invacuo after continuous thermal vacuum exposure from 1971/1972 to the present. Eleven tests were done on appropriate specimens of 30 materials; however, no single material received all the tests. Some specimens also were exposed to 1 or 2.5 MeV electrons at differing fluences before testing. Baseline exposure data is reported for graphite/epoxy specimens that were exposed to vacuum since 1974. These materials were transferred to the thermal vacuum storage facility for future in situ testing and irradiation. Thin G/E specimens were tensile tested after thermal-vacuum cycling exposure. Photomicrographic examinations and SEM analyses were done on the failed specimens.
NASA Technical Reports Server (NTRS)
Dean, W. G.
1982-01-01
During prelaunch procedures at Kennedy Space Center some of the EPDM Thermal Protection System material was damaged on the Solid Rocket Booster stiffener stubs. The preferred solution was to patch the damaged areas with a cork-filled epoxy patching compound. Before this was done, however, it was requested that this patching technique be checked out by testing it in the MSFC Hot Gas Facility. Two tests were run in the HFG in 1980. The results showed the patch material to be adequate. Since that time, the formulation of the cork-filled epoxy material has been changed. It became necessary to retest this concept to be sure that the new material is as good as or better than the original material. In addition to the revised formulation material, tests were also made using K5NA as the patch material. The objectives of the tests reported herein were to: (1) compare the thermal performance of the original and the new cork-filled epoxy formulations, and (2) compare the K5NA closeout material to these epoxy materials. Material specifications are also discussed.
Nondestructive Evaluation of Airport Pavements. Volume I. Program References,
1979-09-01
greater than its original capacity (see test 13 on Fig. 2.5). During the material tests by Majidzadeh, the dynamic E-value of frozen subgrade soil was...Sample the base and subbase material by conventional spoon and identify the material by standard soil -aggregate classification and penetration...such as shaker table. The new testing specification is designed for all paving materials including subgrade soils . The specifications of material
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2018-03-01
Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.
Wimmer, Timea; Huffmann, Anne Mildred Sophie; Eichberger, Marlis; Schmidlin, Patrick R; Stawarczyk, Bogna
2016-06-01
To test and compare the two-body wear rate of three CAD/CAM polymer materials and the influence of specimen geometry, antagonist material and test set-up configuration. Three CAD/CAM polymeric materials were assessed: a thermoplastic polyetheretherketone (PEEK), an experimental nanohybrid composite (COMP) and a PMMA-based material (PMMA). Crown-shaped and flat specimens were prepared from each material. The specimens underwent thermo-mechanical loading (50N, 5/55°C; 600,000 chewing cycles) opposed to human enamel and stainless steel antagonists. Half of the specimens of each group were loaded with a sliding movement of 0.7mm, the remaining half without. Thereby, 24 different test set-ups were investigated (n=12). Wear of the materials and antagonists was evaluated with a match-3D procedure. The topography of all surfaces was examined with scanning electron microscopy (SEM). Data were statistically evaluated with four-/one-way ANOVA followed by Scheffé post hoc test and unpaired t-test (p<0.05). All PEEK specimens showed significantly less material loss than COMP and PMMA specimens when loaded laterally. Within the axial loaded groups this was only true for the flat specimens tested with enamel antagonists. Crown specimens of these groups exhibited lower loss values than flat ones. Lateral force application led mostly to significantly higher material loss than the axial load application. On the antagonist side, no impact of CAD/CAM polymer material, antagonist material, force application and specimen geometry was found. Wear of PEEK was lower than that of the resin-based materials when lateral forces were applied, but showed comparable antagonist wear rates at the same time. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials
NASA Technical Reports Server (NTRS)
Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.
2007-01-01
The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.
NASA Technical Reports Server (NTRS)
Glasgow, S. D.; Kittredge, K. B.
2003-01-01
A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.
2006-01-01
As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.
The Effect of Testing on the Retention of Coherent and Incoherent Text Material
ERIC Educational Resources Information Center
de Jonge, Mario; Tabbers, Huib K.; Rikers, Remy M. J. P.
2015-01-01
Research has shown that testing during learning can enhance the long-term retention of text material. In two experiments, we investigated the testing effect with a fill-in-the-blank test on the retention of text material. In Experiment 1, using a coherent text, we found no retention benefit of testing compared to a restudy (control) condition. In…
Erratum to: Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Woods, Brenton; Harper, Susana A.; Beeson, Harold D.; Perez, Horacio; Ryder, Valerie; Tapia, Alma S.; Pedley, Michael D.
2017-01-01
NASA-STD-6001B states "all nonmetals tested in accordance with NASA-STD-6001 should be retested every 10 years or as required by the responsible program/project." The retesting of materials helps ensure the most accurate data are used in material selection. Manufacturer formulas and processes can change over time, sometimes without an update to product number and material information. Material performance in certain NASA-STD-6001 tests can be particularly vulnerable to these changes, such as material offgas (Test 7). In addition, Test 7 analysis techniques at NASA White Sands Test Facility were dramatically enhanced in the early 1990s, resulting in improved detection capabilities. Low level formaldehyde identification was improved again in 2004. Understanding the limitations in offgas analysis data prior to 1990 puts into question the validity and current applicability of that data. Case studies on Super Koropon (Registered trademark) and Aeroglaze (Registered trademark) topcoat highlight the importance of material retesting.
Electrostatic Evaluation: SCAPE Suit Materials
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos
2005-01-01
The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.
Combinatorial synthesis of ceramic materials
Lauf, Robert J [Oak Ridge, TN; Walls, Claudia A [Oak Ridge, TN; Boatner, Lynn A [Oak Ridge, TN
2010-02-23
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
Combinatorial synthesis of ceramic materials
Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.
2006-11-14
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
Sound absorption of low-temperature reusable surface insulation candidate materials
NASA Technical Reports Server (NTRS)
Johnston, J. D.
1974-01-01
Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.
New Sentence Recognition Materials Developed Using a Basic Non-Native English Lexicon
ERIC Educational Resources Information Center
Calandruccio, Lauren; Smiljanic, Rajka
2012-01-01
Purpose: The objective of this project was to develop new sentence test materials drawing on a basic non-native English lexicon that could be used to test speech recognition for various listener populations. These materials have been designed to provide a test tool that is less linguistically biased, compared with materials that are currently…
Correlation between strength properties in standard test specimens and molded phenolic parts
NASA Technical Reports Server (NTRS)
Turner, P S; Thomason, R H
1946-01-01
This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.
Evaluation of Minimum Asphalt Concrete Thickness Criteria
2008-10-01
9 Figure 6. Dry density versus moisture content for CH material... density measurements. ............................ 24 Figure 18. EPC installation in a crushed gravel base course layer...Construction Materials Materials Characterization Laboratory Testing Field Testing Test Section Construction Hydrometer, Modified Proctor , Specific
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Casey, C. J.; Kourtides, D. A.; Parker, J. A.
1977-01-01
Approximately 300 materials were evaluated using a specific set of test conditions. Materials tested included wood, fibers, fabrics and synthetic polymers. Data obtained using 10 different sets of test conditions are presented.
NASA Technical Reports Server (NTRS)
Arnold, J.; Dodson, J.; Laub, B.
1979-01-01
Subscale solid motor nozzles containing a baseline material or low cost materials to be considered as potential replacements for the baseline material are designed and tested. Data are presented from tests of four identically designed 2.5 inch throat diameter nozzles and one 7 inch throat diameter nozzle. The screening of new candidate low cost materials, as well as their thermophysical and thermochemical characterization is also discussed.
Auto-ignition of hydrazine by engineering materials
NASA Technical Reports Server (NTRS)
Perkins, J. H.; Riehl, W. A.
1978-01-01
Hydrazine, being a monopropellant, can explode and/or detonate in contact with some materials. This has been generally recognized and minimized by testing the compatibility of engineering materials with hydrazine at ambient temperature. Very limited tests have been done at elevated temperatures. To assess the potential hazard of hydrazine leakage into a propulsion compartment (boattail), autoignition characteristics of hydrazine were tested on 18 engineering materials and coatings at temperatures of 120 C to over 330 C. Furthermore, since hydrazine can decompose violently in nitrogen or helium, common purging cannot assure safety. Therefore tests were also made in nitrogen. Detonations occurred on contact with five materials in air. Similar tests in nitrogen did not lead to ignition.
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.
2008-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.
NASA Astrophysics Data System (ADS)
Roebben, Gert; Kestens, Vikram; Varga, Zoltan; Charoud-Got, Jean; Ramaye, Yannic; Gollwitzer, Christian; Bartczak, Dorota; Geißler, Daniel; Noble, James; Mazoua, Stéphane; Meeus, Nele; Corbisier, Philippe; Palmai, Marcell; Mihály, Judith; Krumrey, Michael; Davies, Julie; Resch-Genger, Ute; Kumarswami, Neelam; Minelli, Caterina; Sikora, Aneta; Goenaga-Infante, Heidi
2015-10-01
This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterisation of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots. This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a 'reference material' (ISO Guide 30:2015) or rather those of the recently defined category of 'representative test material' (ISO TS 16195:2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to representative test material or reference material, and how this status depends on its intended use.
Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement
NASA Astrophysics Data System (ADS)
Van Winkle, Clinton Isaac
Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.
Frictional Ignition Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel
2006-01-01
The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.
Evaluation of multidensity orthotic materials used in footwear for patients with diabetes.
Foto, J G; Birke, J A
1998-12-01
Selected combinations of multidensity orthotic materials were tested under simulated walking conditions found in the forefoot of diabetic patients. Materials were compared for therapeutic effectiveness by their stress/strain properties and dynamic compression set. Results showed that all of the multidensity materials experienced losses in performance throughout the testing period of 100,000 cycles, with the greatest losses occurring within the first 10,000 cycles. Of the materials tested, Poron + Plastazote #2 and Spenco + Microcel Puff Lite had the highest dynamic material strain and the lowest dynamic compression set over 100,000 cycles. In comparison, these are better multidensity combinations than the others tested to use as therapeutic orthoses in footwear for diabetic patients.
High temperature material interactions of thermoelectric systems using silicon germanium.
NASA Technical Reports Server (NTRS)
Stapfer, G.; Truscello, V. C.
1973-01-01
The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.
Testing ocular irritancy in vitro with the silicon microphysiometer.
Bruner, L H; Miller, K R; Owicki, J C; Parce, J W; Muir, V C
1991-01-01
The silicon microphysiometer, an instrument based on the light-addressable potentiometric sensor, was evaluated as an in vitro alternative for assessing ocular irritancy potential. It indirectly and non-invasively measures cell metabolism by determining the rate of acid metabolite production from cells, in this case human epidermal keratinocytes, placed inside the microphysiometer chamber. The 17 materials used for the evaluation included bar soaps, a liquid hand soap, shampoos, dishwashing liquids, laundry detergents, a fabric softener and several single chemicals. All materials tested were in liquid form. The in vivo irritancy potential of the materials was obtained from historical data using the rabbit low-volume eye test. There was a positive correlation between the in vivo irritancy potential of the test materials and the concentration of test material that decreased the acidification rate of cells by 50% (MRD(50); r = 0.86, P < 0.0001). Preliminary studies suggest other endpoints obtainable from the system may also provide useful information for making ocular safety assessments. Because the method is non-invasive, it is possible to determine whether cells recover from a treatment with the test material. The metabolic rate of the cells also increases at sub-inhibitory concentrations of some of the test materials. Because of the good correlation between the in vivo and in vitro data, the ease with which test materials can be applied to the system, and the multiple endpoints available from the system, it holds great potential as a useful in vitro alternative for ocular safety testing.
NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation
NASA Technical Reports Server (NTRS)
Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.
2017-01-01
Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.
Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
Compatibility testing of vacuum seal materials
NASA Astrophysics Data System (ADS)
Foster, P. A.; Rodin, W. A.
1993-05-01
Small scale materials compatibility testing was conducted for three elastomers considered for use as vacuum seal materials: Adiprene MOCA-cured; Adiprene Cyanacured; and Sylgard silastic rubber. The tests were conducted using orthogonal array designed experiments for each of the elastomers placed in contact with three materials commonly used during weapon disassembly operations: Duxseal, Sylgard 186 grease, and 2-propyl alcohol. The test results indicated that only the 2-propyl alcohol had a significant effect on the elastomer hardness and physical properties. The alcohol had the largest effect on the two Adiprene materials, and the silastic rubber was the least affected.
Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M
2017-09-01
The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.
NASA Astrophysics Data System (ADS)
Beaumont, Robert
Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions about the relative ballistic performances. The tests showed that all of the composites would outperform the alumina materials. Further, all of the tests led to the prediction that AD995 would be better ballistically than Sintox FA, possibly up to a factor of two better. The predictions were in very good agreement with literature values for depth-of-penetration testing. The situation was more complex for the carbide materials, with different tests leading to slightly different predictions. However, the predictions from the ultrasonic tests were consistent with the available ballistic data. Indeed, the ultrasonic data proved to be the most consistent predictor of ballistic performance, supporting the view that the total defect population is more relevant than a ‘critical flaw’ concept. Thus, it can be concluded that with further development, and subject to validation across a wider spread of materials and microstructures, thermal shock testing coupled with ultrasonic measurements could form the basis of a future screening test for ceramics for armour applications.
Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Richardson, Erin; Davis, Eddie
2003-01-01
The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.
Ye, Xuan; Cui, Zhiguo; Fang, Huajun; Li, Xide
2017-01-01
We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented. PMID:28777341
Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.
Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O
2012-01-01
To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.
An in vitro investigation into the physical properties of irreversible hydrocolloid alternatives.
Patel, Rishi D; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S
2010-11-01
A number of manufacturers have introduced new products that are marketed as alternatives to irreversible hydrocolloid impression materials. However, there is a paucity of laboratory and clinical research on these products compared to traditional irreversible hydrocolloid. The purpose of this study was to evaluate the detail reproduction, gypsum compatibility, and linear dimensional change of 3 recently introduced impression materials designed as alternatives to irreversible hydrocolloid. The tested materials were Position Penta Quick, Silgimix, and AlgiNot. An irreversible hydrocolloid impression material, Jeltrate Plus Antimicrobial, served as the control. The parameters of detail reproduction, gypsum compatibility, and linear dimensional change were tested in accordance with ANSI/ADA Specifications No. 18 and 19. The gypsum compatibility was tested using a type III stone (Microstone Golden) and a type IV stone (Die-Keen Green). The data were analyzed using the Kruskal-Wallis rank test and the Mann-Whitney U test (α=.05). The test materials demonstrated significantly (P<.001) better detail reproduction than the control material. Silgimix exhibited the best compatibility with Microstone, whereas AlgiNot and Position Penta Quick exhibited the best gypsum compatibility with Die-Keen. An incompatibility was observed over time between the Jeltrate control material and the Microstone gypsum material. For linear dimensional change, the mean dimension of the control material most closely approximated the distance between the lines on the test die, but it exhibited the greatest variability in measurements. All of the test materials exhibited linear dimensional change within the ADA's accepted limit of 1.0%. The 3 new impression materials exhibited better detail reproduction and less variability in linear dimensional change than the irreversible hydrocolloid control. Gypsum compatibility varied with the brand of gypsum used, with an incompatibility identified between the control material (Jeltrate Plus Antimicrobial) and Microstone related to surface changes observed over time. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus
ERIC Educational Resources Information Center
Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.
2006-01-01
A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…
21 CFR 211.110 - Sampling and testing of in-process materials and drug products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...
21 CFR 211.110 - Sampling and testing of in-process materials and drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...
21 CFR 211.110 - Sampling and testing of in-process materials and drug products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...
21 CFR 211.110 - Sampling and testing of in-process materials and drug products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...
21 CFR 211.110 - Sampling and testing of in-process materials and drug products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...
Potential of Organic Matrix Composites for Liquid Oxygen Tank
NASA Technical Reports Server (NTRS)
Davis, Samuel E.; Herald, Stephen D.; Stolzfus, Joel M.; Engel, Carl D.; Bohlen, James W.; Palm, Tod; Robinson, Michael J.
2005-01-01
Composite materials are being considered for the tankage of cryogenic propellants in access to space because of potentially lower structural weights. A major hurdle for composites is an inherent concern about the safety of using flammable structural materials in contact with liquid and gaseous oxygen. A hazards analysis approach addresses a series of specific concerns that must be addressed based upon test data. Under the 2nd Generation Reusable Launch Vehicle contracts, testing was begun for a variety of organic matrix composite materials both to aid in the selection of materials and to provide needed test data to support hazards analyses. The work has continued at NASA MSFC and the NASA WSTF to provide information on the potential for using composite materials in oxygen systems. Appropriate methods for oxygen compatibility testing of structural materials and data for a range of composite materials from impact, friction, flammability and electrostatic discharge testing are presented. Remaining concerns and conclusions about composite tank structures, and recommendations for additional testing are discussed. Requirements for system specific hazards analysis are identified.
49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test
Code of Federal Regulations, 2010 CFR
2010-10-01
... Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR... Acceptance. (1) At least three specimens of the outer packaging materials must be tested; (2) Each test must...
NASA Technical Reports Server (NTRS)
Sandifer, J. P.
1983-01-01
Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.
Space simulation test for thermal control materials
NASA Technical Reports Server (NTRS)
Hardgrove, W. R.
1990-01-01
Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.
Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials
NASA Technical Reports Server (NTRS)
Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.
1977-01-01
The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.
Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1999-01-01
Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.
Jones, P A; King, A V
2003-01-01
Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity.
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2018-05-01
As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.
NASA Astrophysics Data System (ADS)
Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.
2014-05-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.
NASA Technical Reports Server (NTRS)
Smith, Sarah
2009-01-01
Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom
A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.
Oxygen Compatibility Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Watkins, Casey N.
2006-01-01
Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.
Quantification Of Fire Signatures For Practical Spacecraft Materials
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.
2003-01-01
The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.
LLNL small-scale static spark machine: static spark sensitivity test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, M F; Simpson, L R
1999-08-23
Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less
Physical and chemical test results of electrostatic safe flooring materials
NASA Technical Reports Server (NTRS)
Gompf, R. H.
1988-01-01
This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.
Laboratory test methods for evaluating the fire response of aerospace materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1979-01-01
The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.
NASA Technical Reports Server (NTRS)
Oslon, Sandra. L.; Ferkul, Paul
2012-01-01
Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.