Sample records for host

  1. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.

    PubMed

    De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H

    2016-06-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers.

  2. The path to host extinction can lead to loss of generalist parasites.

    PubMed

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  4. The role of body size in host specificity: reciprocal transfer experiments with feather lice.

    PubMed

    Bush, Sarah E; Clayton, Dale H

    2006-10-01

    Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.

  5. The scaling of total parasite biomass with host body mass.

    PubMed

    Poulin, Robert; George-Nascimento, Mario

    2007-03-01

    The selective pressure exerted by parasites on their hosts will to a large extent be influenced by the abundance or biomass of parasites supported by the hosts. Predicting how much parasite biomass can be supported by host individuals or populations should be straightforward: ultimately, parasite biomass must be controlled by resource supply, which is a direct function of host metabolism. Using comparative data sets on the biomass of metazoan parasites in vertebrate hosts, we determined how parasite biomass scales with host body mass. If the rate at which host resources are converted into parasite biomass is the same as that at which host resources are channelled toward host growth, then on a log-log plot parasite biomass should increase with host mass with a slope of 0.75 when corrected for operating temperature. Average parasite biomass per host scaled with host body mass at a lower rate than expected (across 131 vertebrate species, slope=0.54); this was true independently of phylogenetic influences and also within the major vertebrate groups separately. Since most host individuals in a population harbour a parasite load well below that allowed by their metabolic rate, because of the stochastic nature of infection, it is maximum parasite biomass, and not average biomass, that is predicted to scale with metabolic rate among host species. We found that maximum parasite biomass scaled isometrically (i.e., slope=1) with host body mass. Thus, larger host species can potentially support the same parasite biomass per gram of host tissues as small host species. The relationship found between maximum parasite biomass and host body mass, with its slope greater than 0.75, suggests that parasites are not like host tissues: they are able to appropriate more host resources than expected from metabolically derived host growth rates.

  6. Host age modulates within-host parasite competition

    PubMed Central

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-01-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010

  7. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    PubMed

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Novel application of species richness estimators to predict the host range of parasites.

    PubMed

    Watson, David M; Milner, Kirsty V; Leigh, Andrea

    2017-01-01

    Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies

    USGS Publications Warehouse

    Swink, William D.

    2003-01-01

    Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.

  10. Experience-induced habituation and preference towards non-host plant odors in ovipositing females of a moth.

    PubMed

    Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng

    2008-03-01

    In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.

  11. Host age modulates within-host parasite competition.

    PubMed

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Who benefits from reduced reproduction in parasitized hosts? An experimental test using the Pasteuria ramosa-Daphnia magna system.

    PubMed

    Mageroy, Jon H; Grepperud, Eldfrid J; Jensen, Knut Helge

    2011-12-01

    We investigated whether parasites or hosts benefit from reduced reproduction in infected hosts. When parasites castrate their hosts, the regain of host reproduction is necessary for castration to be a host adaptation. When infecting Daphnia magna with Pasteuria ramosa, in a lake water based medium, 49 2% of the castrated females regained reproduction. We investigated the relationship between castration level, and parasite and host fitness proxies to determine the adaptive value of host castration. Hosts which regained reproduction contained less spores and had a higher lifetime reproduction than permanently castrated hosts. We also found a negative correlation between parasite and host lifetime reproduction. For hosts which regained reproduction we found no optimal level of castration associated with lifetime reproduction. These results support the view that host castration only is adaptive to the parasite in this system. In addition, we suggest that permanent castration might not be the norm under natural conditions in this system. Finally, we argue that a reduction in host reproduction is more likely to evolve as a property favouring parasites rather than hosts. To our knowledge this is the only experimental study to investigate the adaptive value of reduced host reproduction when castrated hosts can regain reproduction.

  13. Host-to-host variation of ecological interactions in polymicrobial infections

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  14. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  15. Host specificity in bat ectoparasites: a natural experiment.

    PubMed

    Seneviratne, Sampath S; Fernando, H Chandrika; Udagama-Randeniya, Preethi V

    2009-07-15

    We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were "allopatric" roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were "sympatric" roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from chi(2)-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage of monoxeny.

  16. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis.

    PubMed

    Fürstenau, Benjamin; Hilker, Monika

    2017-09-01

    Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.

  17. Light emission mechanism of mixed host organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  18. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    PubMed

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    PubMed

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    PubMed Central

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  1. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.

    PubMed

    Lagrue, C; Güvenatam, A; Bollache, L

    2013-02-01

    Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.

  2. Host phylogeny determines viral persistence and replication in novel hosts.

    PubMed

    Longdon, Ben; Hadfield, Jarrod D; Webster, Claire L; Obbard, Darren J; Jiggins, Francis M

    2011-09-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  3. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  4. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    PubMed

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-08

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  5. System and method for introduction and stabilization of genes in Thermus sp.

    DOEpatents

    Kayser, Kevin J.; Park, Ho-Shin; Kilbane, II, John J.

    2005-03-01

    A method for introducing and stabilizing heterologous and recombinant genes in a thermophilic host in which a characteristic gene defining a detectable host characteristic is inactivated or deleted from the thermophilic host, resulting in a modified thermophilic host expressing an absence of the detectable host characteristic. A DNA fragment of interest is inserted into the modified thermophilic host together with an intact characteristic gene, whereby the detectable host characteristic is restored to the thermophilic host, thereby enabling detection and confirmation of successful transformation using plasmid vectors and integration of the DNA fragment into the chromosome of the thermophilic host.

  6. Brood parasitic cowbird nestlings use host young to procure resources.

    PubMed

    Kilner, Rebecca M; Madden, Joah R; Hauber, Mark E

    2004-08-06

    Young brood parasites that tolerate the company of host offspring challenge the existing evolutionary view of family life. In theory, all parasitic nestlings should be ruthlessly self-interested and should kill host offspring soon after hatching. Yet many species allow host young to live, even though they are rivals for host resources. Here we show that the tolerance of host nestlings by the parasitic brown-headed cowbird Molothrus ater is adaptive. Host young procure the cowbird a higher provisioning rate, so it grows more rapidly. The cowbird's unexpected altruism toward host offspring simply promotes its selfish interests in exploiting host parents.

  7. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  8. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    PubMed

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host specialization; rather they exhibit plasticity in utilizing several hosts. In this scenario, it is unlikely that host-associated A. gossypii populations would evolve into host-specific biotypes.

  9. Predictors of host specificity among behavior-manipulating parasites.

    PubMed

    Fredensborg, B L

    2014-07-01

    A trade-off between resource-specialization and the breadth of the ecological niche is one of the most fundamental biological characteristics. A true generalist (Jack-of-all-trades) displays a broad ecological niche with little resource specialization while the opposite is true for a resource-specialist that has a restricted ecological niche that it masters. Parasites that manipulate hosts' behavior are often thought to represent resource-specialists based on a few spectacular examples of manipulation of the host's behavior. However, the determinants of which, and how many, hosts a manipulating parasite can exploit (i.e., niche breadth) are basically unknown. Here, I present an analysis based on published records of the use of hosts by 67 species from 38 genera of helminths inducing parasite increased trophic transmission, a widespread strategy of parasites that has been reported from many taxa of parasites and hosts. Using individual and multivariate analyses, I examined the effect of the host's and parasite's taxonomy, location of the parasite in the host, type of behavioral change, and the effect of debilitation on host-specificity, measured as the mean taxonomic relatedness of hosts that a parasite can manipulate. Host-specificity varied substantially across taxa suggesting great variation in the level of resource-specialization among manipulating parasites. Location of the parasite, level of debilitation, and type of host were all significant predictors of host-specificity. More specifically, hosts' behavioral modification that involves interaction with the central nervous system presumably restricts parasites to more closely related hosts than does manipulation of the host's behavior via debilitation of the host's physiology. The results of the analysis suggest that phylogenetic relatedness of hosts is a useful measure of host-specificity in comparative studies of the complexity of interactions taking place between manipulating parasites and their hosts. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Host community heterogeneity and the expression of host specificity in avian haemosporidia in the Western Cape, South Africa.

    PubMed

    Jones, Sharon M; Cumming, Graeme S; Peters, Jeffrey L

    2018-05-16

    Similar patterns of parasite prevalence in animal communities may be driven by a range of different mechanisms. The influences of host heterogeneity and host-parasite interactions in host community assemblages are poorly understood. We sampled birds at 27 wetlands in South Africa to compare four hypotheses explaining how host community heterogeneity influences host specificity in avian haemosporidia communities: the host-neutral hypothesis, the super-spreader hypothesis, the host specialist hypothesis and the heterogeneity hypothesis. A total of 289 birds (29%) were infected with Plasmodium, Haemoproteus and/or Leucocytozoon lineages. Leucocytozoon was the most diverse and generalist parasite genus, and Plasmodium the most conservative. The host-neutral and host specialist hypotheses received the most support in explaining prevalence by lineage (Leucocytozoon) and genus (Plasmodium and Haemoproteus), respectively. We observed that haemosporidian prevalence was potentially amplified or reduced with variation in host and/or parasitic taxonomic levels of analysis. Our results show that Leucocytozoon host abundance and diversity was influential to parasite prevalence at varying taxonomic levels, particularly within heterogeneous host communities. Furthermore, we note that prevalent mechanisms of infection can potentially act as distinct roots for shaping communities of avian haemosporidia.

  11. Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle.

    PubMed

    Blair, Catherine P; Abrahamson, Warren G; Jackman, John A; Tyrrell, Lynn

    2005-02-01

    Host-race formation remains controversial as a source of herbivorous insect diversity, and examples of host races are still fairly scarce. In this study, analysis of five enzyme loci in the ostensibly generalist tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae) revealed hidden host-plant and plant-organ related genetic differentiation. Mordellistena convicta turned out to be a complex of cryptomorphic species, each with fewer hosts than the nominal species. These cryptic species, in turn, were divided into taxa that showed host-race characteristics: samples from different host plants and organs exhibited (1) genetic indications of partial reproductive isolation, (2) differences in size and emergence timing that suggested divergent host-related selection, and (3) among-host selective differences in mortality from parasitoids. Host-race formation in M. convicta, which has a somewhat different life history from the well-studied host races, enlarges the group of insects considered likely to undergo this process. The widespread sympatry of the M. convicta species complex, along with its spectrum of host-correlated genetic differentiation, suggests that these host specialist taxa developed in sympatry.

  12. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs

    NASA Astrophysics Data System (ADS)

    Médoc, Vincent; Rigaud, Thierry; Motreuil, Sébastien; Perrot-Minnot, Marie-Jeanne; Bollache, Loïc

    2011-10-01

    Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.

  13. Effects of Size and Age of the Host Musca domestica (Diptera: Muscidae) on Production of the Parasitoid Wasp Spalangia endius (Hymenoptera: Pteromalidae).

    PubMed

    Broski, Scott A; King, B H

    2017-02-01

    One method of control of house flies, Musca domestica L. (Diptera: Muscidae), and other filth flies is by repeated release of large numbers of pupal parasitoids such as Spalangia endius Walker. Rearing these parasitoids may be facilitated by understanding how host factors affect their production. Previous studies have examined the effects of host size and host age on parasitoid production, but have not examined the interaction between host size and host age or the effects with older females, which may be less capable of drilling tough hosts. Females were given hosts of a single size-age category (small young, small old, large young, or large old) for 2 wk. The effect of host size and of host age on parasitoid production depended on female age. On their first day of oviposition, females produced more offspring from large than from small hosts, but host age had no significant effect. The cumulative number of parasitoids produced in the first week was not significantly affected by host size or host age. However, the cumulative number of parasitoids produced over 2 wk was affected by both host size and host age, with the greatest number of parasitoids produced from small young hosts. Thus, not only are smaller hosts cheaper to produce, but these results suggest that their use may have no effect or a positive effect on the number of parasitoids that can be produced when females are ovipositing for a week or two. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    PubMed

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  15. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    PubMed

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  16. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.

    PubMed

    Gulbudak, Hayriye; Cannataro, Vincent L; Tuncer, Necibe; Martcheva, Maia

    2017-02-01

    Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs and evolution in vector-borne pathogen-host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the [Formula: see text] maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen [Formula: see text], but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.

  17. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    PubMed Central

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  18. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  19. Conflicts over host manipulation between different parasites and pathogens: Investigating the ecological and medical consequences

    PubMed Central

    2016-01-01

    When parasites have different interests in regard to how their host should behave this can result in a conflict over host manipulation, i.e. parasite induced changes in host behaviour that enhance parasite fitness. Such a conflict can result in the alteration, or even complete suppression, of one parasite's host manipulation. Many parasites, and probably also symbionts and commensals, have the ability to manipulate the behaviour of their host. Non‐manipulating parasites should also have an interest in host behaviour. Given the frequency of multiple parasite infections in nature, potential conflicts of interest over host behaviour and manipulation may be common. This review summarizes the evidence on how parasites can alter other parasite's host manipulation. Host manipulation can have important ecological and medical consequences. I speculate on how a conflict over host manipulation could alter these consequences and potentially offer a new avenue of research to ameliorate harmful consequences of host manipulation. PMID:27510821

  20. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation

    PubMed Central

    2008-01-01

    Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists) were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of each species was retained, cospeciation events were not more frequent than expected under a random distribution, and many host shifts were inferred. Current geographic distributions of host species seemed to be of little relevance for understanding the putative historical host shifts, because most fungal species had overlapping geographic ranges. We did detect some ecological similarities, including shared pollinators and habitat types, between host species that were diseased by closely related anther smut species. Overall, genetic similarity underlying the host-parasite interactions appeared to have the most important influence on specialization and host-shifts: generalist multi-host parasite species were found on closely related plant species, and related species in the Microbotryum phylogeny were associated with members of the same host clade. Conclusion We showed here that Microbotryum species have evolved through frequent host shifts to moderately distant hosts, and we show further that accurate delimitation of parasite species is essential for interpreting cophylogeny studies. PMID:18371215

  1. Visual mimicry of host nestlings by cuckoos

    PubMed Central

    Langmore, Naomi E.; Stevens, Martin; Maurer, Golo; Heinsohn, Robert; Hall, Michelle L.; Peters, Anne; Kilner, Rebecca M.

    2011-01-01

    Coevolution between antagonistic species has produced instances of exquisite mimicry. Among brood-parasitic cuckoos, host defences have driven the evolution of mimetic eggs, but the evolutionary arms race was believed to be constrained from progressing to the chick stage, with cuckoo nestlings generally looking unlike host young. However, recent studies on bronze-cuckoos have confounded theoretical expectations by demonstrating cuckoo nestling rejection by hosts. Coevolutionary theory predicts reciprocal selection for visual mimicry of host young by cuckoos, although this has not been demonstrated previously. Here we show that, in the eyes of hosts, nestlings of three bronze-cuckoo species are striking visual mimics of the young of their morphologically diverse hosts, providing the first evidence that coevolution can select for visual mimicry of hosts in cuckoo chicks. Bronze-cuckoos resemble their own hosts more closely than other host species, but the accuracy of mimicry varies according to the diversity of hosts they exploit. PMID:21227972

  2. Repeated targeting of the same hosts by a brood parasite compromises host egg rejection.

    PubMed

    Stevens, Martin; Troscianko, Jolyon; Spottiswoode, Claire N

    2013-01-01

    Cuckoo eggs famously mimic those of their foster parents to evade rejection from discriminating hosts. Here we test whether parasites benefit by repeatedly parasitizing the same host nest. This should make accurate rejection decisions harder, regardless of the mechanism that hosts use to identify foreign eggs. Here we find strong support for this prediction in the African tawny-flanked prinia (Prinia subflava), the most common host of the cuckoo finch (Anomalospiza imberbis). We show experimentally that hosts reject eggs that differ from an internal template, but crucially, as the proportion of foreign eggs increases, hosts are less likely to reject them and require greater differences in appearance to do so. Repeated parasitism by the same cuckoo finch female is common in host nests and likely to be an adaptation to increase the probability of host acceptance. Thus, repeated parasitism interacts with egg mimicry to exploit cognitive and sensory limitations in host defences.

  3. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    PubMed Central

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  4. Ancient host specificity within a single species of brood parasitic bird

    PubMed Central

    Spottiswoode, Claire N.; Stryjewski, Katherine Faust; Quader, Suhel; Colebrook-Robjent, John F. R.; Sorenson, Michael D.

    2011-01-01

    Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms. PMID:21949391

  5. The evolution of host specificity in dove body lice.

    PubMed

    Johnson, Kevin P; Weckstein, Jason D; Bush, Sarah E; Clayton, Dale H

    2011-11-01

    Conventional wisdom suggests that parasites evolve increased host specialization over time. Host specificity, which describes the number of host species parasitized, is one aspect of host specialization. Recent studies of vertebrate parasites indicate that highly host-specific parasite lineages are not, in fact, evolutionary dead ends; host generalists can evolve from host specialists. Using phylogenetic reconstruction methods, we evaluate these patterns in the body lice (Insecta: Phthiraptera) of pigeons and doves, which are permanent ectoparasites that complete their entire life cycle on the body of the host. We find that species of body lice that parasitize more than one species of host (generalists) are invariably derived from lice parasitizing only one species of host (specialists). A previous study of the wing lice of pigeons and doves also found that generalists were derived from specialists, and that these changes were correlated with the presence of a potentially competing species of wing louse on the same host. For body lice we did not find such a correlation with competition. Instead, the evolution of host generalists in body lice was correlated with host ecology. When we compared body lice that parasitize terrestrial versus arboreal hosts, we found that the evolution of host generalists was associated with terrestrial hosts. In contrast, wing lice showed no correlation between the evolution of generalists and host ecology. The correlation in body lice suggests that dispersal between host species may occur via the ground. This, in turn, suggests that body lice may fall to the ground more often than wing lice. To test this hypothesis, we conducted an experiment to compare the rate at which body and wing lice are dislodged from the bodies of preening pigeons. Interestingly, our results showed that body lice are dislodged four times more often than wing lice. Therefore, species of terrestrial doves are far more likely to encounter body lice than wing lice on the ground.

  6. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    PubMed

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  7. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    PubMed

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  8. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  9. Evolution of complex life cycles in trophically transmitted helminths. II. How do life-history stages adapt to their hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    We review how trophically transmitted helminths adapt to the special problems associated with successive hosts in complex cycles. In intermediate hosts, larvae typically show growth arrest at larval maturity (GALM). Theoretical models indicate that optimization of size at GALM requires larval mortality rate to increase with time between infection and GALM: low larval growth or paratenicity (no growth) arises from unfavourable growth and mortality rates in the intermediate host and low transmission rates to the definitive host. Reverse conditions favour high GALM size or continuous growth. Some support is found for these predictions. Intermediate host manipulation involves predation suppression (which decreases host vulnerability before the larva can establish in its next host) and predation enhancement (which increases host vulnerability after the larva can establish in its next host). Switches between suppression and enhancement suggest adaptive manipulation. Manipulation conflicts can occur between larvae of different ages/species a host individual. Larvae must usually develop to GALM before becoming infective to the next host, possibly due to trade-offs, e.g. between growth/survival in the present host and infection ability for the next host. In definitive hosts, if mortality rate is constant, optimal growth before switching to reproduction is set by the growth/morality rate ratio. Rarely, no growth occurs in definitive hosts, predicted (with empirical support) when larval size on infection exceeds growth/mortality rate. Tissue migration patterns and residence sites may be explained by variations in growth/mortality rates between host gut and soma, migration costs and benefits of releasing eggs in the gut. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Host generalists and specialists emerging side by side: an analysis of evolutionary patterns in the cosmopolitan chewing louse genus Menacanthus.

    PubMed

    Martinů, Jana; Sychra, Oldřich; Literák, Ivan; Čapek, Miroslav; Gustafsson, Daniel L; Štefka, Jan

    2015-01-01

    Parasites with wide host spectra provide opportunities to study the ecological parameters of speciation, as well as the process of the evolution of host specificity. The speciose and cosmopolitan louse genus Menacanthus comprises both multi-host and specialised species, allowing exploration of the ecological and historical factors affecting the evolution of parasites using a comparative approach. We used phylogenetic analysis to reconstruct evolutionary relationships in 14 species of Menacanthus based on the sequences of one mitochondrial and one nuclear gene. The results allowed us to validate species identification based on morphology, as well as to explore host distribution by assumed generalist and specialist species. Our analyses confirmed a narrow host use for several species, however in some cases, the supposed host specialists had a wider host spectrum than anticipated. In one case a host generalist (Menacanthus eurysternus) was clustered terminally on a clade almost exclusively containing host specialists. Such a clade topology indicates that the process of host specialisation may not be irreversible in parasite evolution. Finally, we compared patterns of population genetic structure, geographic distribution and host spectra between two selected species, M. eurysternus and Menacanthus camelinus, using haplotype networks. Menacanthus camelinus showed limited geographical distribution in combination with monoxenous host use, whereas M. eurysternus showed a global distribution and lack of host specificity. It is suggested that frequent host switching maintains gene flow between M. eurysternus populations on unrelated hosts in local populations. However, gene flow between geographically distant localities was restricted, suggesting that geography rather than host-specificity is the main factor defining the global genetic diversity of M. eurysternus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda

    PubMed Central

    Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931

  13. GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Japelj, J.; Vergani, S. D.; Savaglio, S.; Palazzi, E.; Covino, S.; Flores, H.; Goldoni, P.; Cupani, G.; Krühler, T.; Mannucci, F.; Onori, F.; Rossi, A.; D'Elia, V.; Pian, E.; D'Avanzo, P.; Gomboc, A.; Hammer, F.; Randich, S.; Fiore, F.; Stella, L.; Tagliaferri, G.

    2015-10-01

    Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognized that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained Very Large Telescope (VLT)/X-Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well-constrained information on their characteristics such as metallicity, dust extinction and star formation rate (SFR). We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, SFRs, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. SFRs and metallicities are measured for all the hosts analysed in this paper and metallicities are well determined for four hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star-forming galaxies.

  14. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

    PubMed

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew Ml; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A

    2016-03-01

    Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts 1 . Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis ( S . Enteritidis) infection covering 15 years in an interleukin (IL)-12 β-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.

  15. Alternative life-history and transmission strategies in a parasite: first come, first served?

    PubMed

    Poulin, R; Lefebvre, F

    2006-01-01

    Alternative transmission strategies are common in many parasitic organisms, often representing discrete phenotypes adopted in response to external cues. The facultative truncation of the normal 3-host life-cycle to a 2-host cycle in many trematodes provides an example: some individuals mature precociously, via progenesis, in their intermediate host and produce eggs without the need to reach a definitive host. The factors that determine how many and which individuals adopt the truncated life-cycle within a parasite population remain unknown. We investigated the occurrence of progenesis in the trematode Stegodexamene anguillae within its fish intermediate host. Location within the host was a key determinant of progenesis. Although the size and egg output of progenetic metacercariae encysted in host gonads did not differ from those of the few progenetic metacercariae in other host tissues, the likelihood of metacercariae becoming progenetic was much higher for those in the gonads than those elsewhere in the host. Progenetic parasites can only evacuate their eggs along with host eggs or sperm, providing a link between the parasite's transmission strategy and its location in the host. Host size and sex, and the presence of other parasite species in the host, did not affect the occurrence of progenesis in S. anguillae. However, the proportion of metacercariae in host gonads and the proportion of progenetic metacercariae both decreased with increasing numbers of S. anguillae per host. These results suggest that progenesis is adopted mostly by the parasites that successfully establish in host gonads. These are generally the first to infect a fish; subsequent arrivals settle in other tissues as the gonads quickly become saturated with parasites. In this system, the site of encystment within the fish host both promotes and constrains the adoption of a facultative, truncated life-cycle by the parasite.

  16. Host shifts result in parallel genetic changes when viruses evolve in closely related species

    PubMed Central

    Day, Jonathan P.; Smith, Sophia C. L.; Houslay, Thomas M.; Tagliaferri, Lucia

    2018-01-01

    Host shifts, where a pathogen invades and establishes in a new host species, are a major source of emerging infectious diseases. They frequently occur between related host species and often rely on the pathogen evolving adaptations that increase their fitness in the novel host species. To investigate genetic changes in novel hosts, we experimentally evolved replicate lineages of an RNA virus (Drosophila C Virus) in 19 different species of Drosophilidae and deep sequenced the viral genomes. We found a strong pattern of parallel evolution, where viral lineages from the same host were genetically more similar to each other than to lineages from other host species. When we compared viruses that had evolved in different host species, we found that parallel genetic changes were more likely to occur if the two host species were closely related. This suggests that when a virus adapts to one host it might also become better adapted to closely related host species. This may explain in part why host shifts tend to occur between related species, and may mean that when a new pathogen appears in a given species, closely related species may become vulnerable to the new disease. PMID:29649296

  17. Artificial neural networks in models of specialization, guild evolution and sympatric speciation.

    PubMed

    Holmgren, Noél M A; Norrström, Niclas; Getz, Wayne M

    2007-03-29

    Sympatric speciation can arise as a result of disruptive selection with assortative mating as a pleiotropic by-product. Studies on host choice, employing artificial neural networks as models for the host recognition system in exploiters, illustrate how disruptive selection on host choice coupled with assortative mating can arise as a consequence of selection for specialization. Our studies demonstrate that a generalist exploiter population can evolve into a guild of specialists with an 'ideal free' frequency distribution across hosts. The ideal free distribution arises from variability in host suitability and density-dependent exploiter fitness on different host species. Specialists are less subject to inter-phenotypic competition than generalists and to harmful mutations that are common in generalists exploiting multiple hosts. When host signals used as cues by exploiters coevolve with exploiter recognition systems, our studies show that evolutionary changes may be continuous and cyclic. Selection changes back and forth between specialization and generalization in the exploiters, and weak and strong mimicry in the hosts, where non-defended hosts use the host investing in defence as a model. Thus, host signals and exploiter responses are engaged in a red-queen mimicry process that is ultimately cyclic rather then directional. In one phase, evolving signals of exploitable hosts mimic those of hosts less suitable for exploitation (i.e. the model). Signals in the model hosts also evolve through selection to escape the mimic and its exploiters. Response saturation constraints in the model hosts lead to the mimic hosts finally perfecting its mimicry, after which specialization in the exploiter guild is lost. This loss of exploiter specialization provides an opportunity for the model hosts to escape their mimics. Therefore, this cycle then repeats. We suggest that a species can readily evolve sympatrically when disruptive selection for specialization on hosts is the first step. In a sexual reproduction setting, partial reproductive isolation may first evolve by mate choice being confined to individuals on the same host. Secondly, this disruptive selection will favour assortative mate choice on genotype, thereby leading to increased reproductive isolation.

  18. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens.

    PubMed

    Penley, McKenna J; Ha, Giang T; Morran, Levi T

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.

  19. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens

    PubMed Central

    Penley, McKenna J.; Ha, Giang T.; Morran, Levi T.

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations. PMID:28792961

  20. Innate Host Habitat Preference in the Parasitoid Diachasmimorpha longicaudata: Functional Significance and Modifications through Learning.

    PubMed

    Segura, Diego F; Nussenbaum, Ana L; Viscarret, Mariana M; Devescovi, Francisco; Bachmann, Guillermo E; Corley, Juan C; Ovruski, Sergio M; Cladera, Jorge L

    2016-01-01

    Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.

  1. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  2. Innate Host Habitat Preference in the Parasitoid Diachasmimorpha longicaudata: Functional Significance and Modifications through Learning

    PubMed Central

    Segura, Diego F.; Nussenbaum, Ana L.; Viscarret, Mariana M.; Devescovi, Francisco; Bachmann, Guillermo E.; Corley, Juan C.; Ovruski, Sergio M.; Cladera, Jorge L.

    2016-01-01

    Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging. PMID:27007298

  3. Does light influence the relationship between a native stem hemiparasite and a native or introduced host?

    PubMed Central

    Cirocco, Robert Michael; Facelli, José Maria; Watling, Jennifer Robyn

    2016-01-01

    Background and Aims There have been very few studies investigating the influence of light on the effects of hemiparasitic plants on their hosts, despite the fact that hemiparasites are capable of photosynthesis but also access carbon (C) from their host. In this study we manipulated light availability to limit photosynthesis in an established hemiparasite and its hosts, and determined whether this affected the parasite’s impact on growth and performance of two different hosts. We expected that limiting light and reducing autotrophic C gain in the parasite (and possibly increasing its heterotrophic C gain) would lead to an increased impact on host growth and/or host photosynthesis in plants grown in low (LL) relative to high light (HL). Methods The Australian native host Leptospermum myrsinoides and the introduced host Ulex europaeus were either infected or not infected with the native stem hemiparasite Cassytha pubescens and grown in either HL or LL. Photosynthetic performance, nitrogen status and growth of hosts and parasite were quantified. Host water potentials were also measured. Key Results In situ midday electron transport rates (ETRs) of C. pubescens on both hosts were significantly lower in LL compared with HL, enabling us to investigate the impact of the reduced level of parasite autotrophy on growth of hosts. Despite the lower levels of photosynthesis in the parasite, the relative impact of infection on host biomass was the same in both LL and HL. In fact, biomass of L. myrsinoides was unaffected by infection in either HL or LL, while biomass of U. europaeus was negatively affected by infection in both treatments. This suggests that although photosynthesis of the parasite was lower in LL, there was no additional impact on host biomass in LL. In addition, light did not affect the amount of parasite biomass supported per unit host biomass in either host, although this parameter was slightly lower in LL than HL for U. europaeus (P = 0·073). We also found no significant enhancement of host photosynthesis in response to infection in either host, regardless of light treatment. Conclusions Despite lower photosynthetic rates in LL, C. pubescens did not increase its dependency on host C to the point where it affected host growth or photosynthesis. The impact of C. pubescens on host growth would be similar in areas of high and low light availability in the field, but the introduced host is more negatively affected by infection. PMID:26832961

  4. Does light influence the relationship between a native stem hemiparasite and a native or introduced host?

    PubMed

    Cirocco, Robert Michael; Facelli, José Maria; Watling, Jennifer Robyn

    2016-03-01

    There have been very few studies investigating the influence of light on the effects of hemiparasitic plants on their hosts, despite the fact that hemiparasites are capable of photosynthesis but also access carbon (C) from their host. In this study we manipulated light availability to limit photosynthesis in an established hemiparasite and its hosts, and determined whether this affected the parasite's impact on growth and performance of two different hosts. We expected that limiting light and reducing autotrophic C gain in the parasite (and possibly increasing its heterotrophic C gain) would lead to an increased impact on host growth and/or host photosynthesis in plants grown in low (LL) relative to high light (HL). The Australian native host Leptospermum myrsinoides and the introduced host Ulex europaeus were either infected or not infected with the native stem hemiparasite Cassytha pubescens and grown in either HL or LL. Photosynthetic performance, nitrogen status and growth of hosts and parasite were quantified. Host water potentials were also measured. In situ midday electron transport rates (ETRs) of C. pubescens on both hosts were significantly lower in LL compared with HL, enabling us to investigate the impact of the reduced level of parasite autotrophy on growth of hosts. Despite the lower levels of photosynthesis in the parasite, the relative impact of infection on host biomass was the same in both LL and HL. In fact, biomass of L. myrsinoides was unaffected by infection in either HL or LL, while biomass of U. europaeus was negatively affected by infection in both treatments. This suggests that although photosynthesis of the parasite was lower in LL, there was no additional impact on host biomass in LL. In addition, light did not affect the amount of parasite biomass supported per unit host biomass in either host, although this parameter was slightly lower in LL than HL for U. europaeus (P = 0·073). We also found no significant enhancement of host photosynthesis in response to infection in either host, regardless of light treatment. Despite lower photosynthetic rates in LL, C. pubescens did not increase its dependency on host C to the point where it affected host growth or photosynthesis. The impact of C. pubescens on host growth would be similar in areas of high and low light availability in the field, but the introduced host is more negatively affected by infection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Mistletoe ecophysiology: Host-parasite interactions

    Treesearch

    G. Glatzel; B. W. Geils

    2009-01-01

    Mistletoes are highly specialized perennial flowering plants adapted to parasitic life on aerial parts of their hosts. In our discussion on the physiological interactions between parasite and host, we focus on water relations, mineral nutrition, and the effect of host vigour. When host photosynthesis is greatest, the xylem water potential of the host is most negative....

  6. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Treesearch

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  7. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species

    PubMed Central

    Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe

    2017-01-01

    The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity. PMID:28852588

  8. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  9. Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis.

    PubMed

    Ulloa, Armando; Arredondo-Jiménez, Juan I; Rodriguez, Mario H; Fernández-Salas, Ildefonso

    2002-03-01

    We present herein the results of a series of mark-recapture experiments with female Anopheles vestitipennis. Theses experiments used human and animal hosts to assess the degree of anthropophily of field-caught specimens, originally collected on either host, and of their offspring. Fidelity of mosquitoes to particular hosts was estimated by recapturing marked host-seeking mosquitoes returning for a 2nd blood meal. Results indicated that mosquitoes seeking animal hosts were more faithful (80.48%; 33 of 41) in returning to their original host than were those seeking human hosts (63%; 49 of 78).

  10. Host Jumps and Radiation, Not Co-Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae.

    PubMed

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups.

  11. Host Jumps and Radiation, Not Co‐Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae

    PubMed Central

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups. PMID:26230508

  12. Understanding Host-Switching by Ecological Fitting

    PubMed Central

    Araujo, Sabrina B. L.; Braga, Mariana Pires; Brooks, Daniel R.; Agosta, Salvatore J.; Hoberg, Eric P.; von Hartenthal, Francisco W.; Boeger, Walter A.

    2015-01-01

    Despite the fact that parasites are highly specialized with respect to their hosts, empirical evidence demonstrates that host switching rather than co-speciation is the dominant factor influencing the diversification of host-parasite associations. Ecological fitting in sloppy fitness space has been proposed as a mechanism allowing ecological specialists to host-switch readily. That proposal is tested herein using an individual-based model of host switching. The model considers a parasite species exposed to multiple host resources. Through time host range expansion can occur readily without the prior evolution of novel genetic capacities. It also produces non-linear variation in the size of the fitness space. The capacity for host colonization is strongly influenced by propagule pressure early in the process and by the size of the fitness space later. The simulations suggest that co-adaptation may be initiated by the temporary loss of less fit phenotypes. Further, parasites can persist for extended periods in sub-optimal hosts, and thus may colonize distantly related hosts by a "stepping-stone" process. PMID:26431199

  13. Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability.

    PubMed

    Wojdak, Jeremy M; Clay, Letitia; Moore, Sadé; Williams, Taylore; Belden, Lisa K

    2013-02-01

    Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma-ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.

  14. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  15. Sarcocystis jamaicensis, n. sp. from red-tailed hawks (Buteo jamaicensis) definitive host and IFN-Gamma gene knockout mice as experimental intermediate host

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis species have 2-host life cycles with the sexual cycle in the definitive hosts and an asexual cycle in the intermediate hosts. The common buzzard (Buteo buteo) is the definitive host for 2 species of Sarcocystis; Sarcocystis (Frenkelia) microti (forms macroscopic, lobulated sarcocysts) an...

  16. Influence of predation on community resilience to disease.

    PubMed

    Al-Shorbaji, Farah; Roche, Benjamin; Britton, Robert; Andreou, Demetra; Gozlan, Rodolphe

    2017-09-01

    Outbreaks of generalist pathogens are influenced by host community structure, including population density and species diversity. Within host communities predation can influence pathogen transmission rates, prevalence and impacts. However, the influence of predation on community resilience to outbreaks of generalist pathogens is not fully understood. The role of predation on host community resilience to disease was assessed using an epidemiological multi-host susceptible-exposed-infectious-recovered model. Sphaerothecum destruens, an emerging fungal-like generalist pathogen, was used as a model pathogen. Six cyprinid and salmonid fishes, including an asymptomatic carrier, were selected as model hosts that are known to be impacted by S. destruens, and they were used within a model host community. Pathogen release into the host community was via introduction of the asymptomatic carrier. Mortality from infection, pathogen incubation rate, and host recovery rate were set to a range of evidence-based values in each species and were varied in secondary consumers to predict top-down effects of infection on the resilience of a host community. Predation pressure within the fish community was varied to test its effects on infection prevalence and host survival in the community. Model predictions suggested that predation of the asymptomatic hosts by fishes in the host community was insufficient to eliminate S. destruens. Sphaerothecum destruens persisted in the community due to its rapid transmission from the asymptomatic host to susceptible host fishes. Following transmission, pathogen prevalence in the community was driven by transmission within and between susceptible host fishes, indicating low host community resilience. However, introducing low densities of a highly specific piscivorous fish into the community to pre-date asymptomatic hosts could limit pathogen prevalence in the host community, thus increasing resilience. The model predictions indicate that whilst resilience to this generalist pathogen in the host community was low, this could be increased using management interventions. The results suggest that this model has high utility for predicting community resilience to disease and thus can be applied to other generalist parasites to determine risks of disease emergence. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  17. Models of microbiome evolution incorporating host and microbial selection.

    PubMed

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.

  18. Insights to host discrimination and host acceptance behaviour in a parasitoid (Diptera: Asilidae): implications for fitness.

    PubMed

    Crespo, José E; Castelo, Marcela K

    2009-11-01

    The robber fly Mallophora ruficauda is one of the principal pests of apiculture in the Pampas region of Argentina. As adults they prey on honey bees and other insects, while as larvae they are solitary ectoparasitoids of third instar scarab beetle larvae. Females of M. ruficauda lay eggs away from the host in tall grasses. After being dispersed by the wind, larvae drop to the ground, where they dig in search of their hosts. It is known that second instar larvae of M. ruficauda exhibit active host searching behaviour towards its preferred host, third instar larva of Cyclocephala signaticollis. Although the means by which host location occurs has been studied and since superparasitism is a frequent scenario in the field, no information about host discrimination and host acceptance is available. We carried out studies in the field and behavioural experiments in the laboratory to determine if M. ruficauda is capable of quality host discrimination. We also studied if this parasitoid is capable of conspecific detection in order to avoid superparasitism. Finally, we analyzed the conditions under which superparasitism occurs in the field. We report here that the second instar larva of M. ruficauda is able to discriminate the parasitism status of the host by means of chemical cues, but is not capable of detecting conspecifics prior to attacking a host. We also found that the host cannot detect the presence of the parasitoid by means of chemical cues, so that no counter-defense against parasitism occurs. Furthermore, we determined that superparasitism occurs on the heavier hosts, i.e. those with more abundant resources which could harbor several parasitoid individuals. Finally, we discuss the possible implications of larval host location and host discrimination decisions on the fitness of this parasitoid.

  19. To eject or to abandon? Life history traits of hosts and parasites interact to influence the fitness payoffs of alternative anti-parasite strategies.

    PubMed

    Servedio, M R; Hauber, M E

    2006-09-01

    Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown-headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely- or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites' virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti-parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts' eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird- rather than a cuckoo-type brood parasite. We suggest that, in addition to evolutionary lag and gape-size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti-parasite rejection strategies between many cuckoo- and cowbird-hosts.

  20. Are adaptation costs necessary to build up a local adaptation pattern?

    PubMed

    Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle

    2009-08-03

    Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.

  1. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages.

    PubMed

    Bruns, Emily; Carson, Martin; May, Georgiana

    2012-08-02

    Adaptation of pathogens to their hosts depends critically on factors affecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the host are not well understood. Untangling these contributions allows us to identify traits with sufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa). We show that both pathogen and host genotype significantly affect total spore production but do so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity. In addition, host genotype affected the relationship between pathogen density and the later life-history traits of latent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions. Our results illustrate mechanisms by which variation in host populations will affect the evolution of pathogen life history. Results show that different pathogen life-history stages have the potential to respond differently to selection by host or pathogen genotype and suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt to host genotypes through increased infection efficiency while their plant hosts may adapt by limiting the later stages of pathogen growth and spore production within the host.

  2. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    PubMed

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  3. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    PubMed

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  4. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis

    PubMed Central

    Hurford, Amy; Ellison, Amy R.

    2017-01-01

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists—infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish–macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289257

  6. Selective predation and productivity jointly drive complex behavior in host-parasite systems.

    PubMed

    Hall, Spencer R; Duffy, Meghan A; Cáceres, Carla E

    2005-01-01

    Successful invasion of a parasite into a host population and resulting host-parasite dynamics can depend crucially on other members of a host's community such as predators. We do not fully understand how predation intensity and selectivity shape host-parasite dynamics because the interplay between predator density, predator foraging behavior, and ecosystem productivity remains incompletely explored. By modifying a standard susceptible-infected model, we show how productivity can modulate complex behavior induced by saturating and selective foraging behavior of predators in an otherwise stable host-parasite system. When predators strongly prefer parasitized hosts, the host-parasite system can oscillate, but predators can also create alternative stable states, Allee effects, and catastrophic extinction of parasites. In the latter three cases, parasites have difficulty invading and/or persisting in ecosystems. When predators are intermediately selective, these more complex behaviors become less important, but the host-parasite system can switch from stable to oscillating and then back to stable states along a gradient of predator control. Surprisingly, at higher productivity, predators that neutrally select or avoid parasitized hosts can catalyze extinction of both hosts and parasites. Thus, synergy between two enemies can end disastrously for the host. Such diverse outcomes underscore the crucial importance of the community and ecosystem context in which host-parasite interactions occur.

  7. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis.

    PubMed

    Walker, Josephine G; Hurford, Amy; Cable, Jo; Ellison, Amy R; Price, Stephen J; Cressler, Clayton E

    2017-05-05

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists-infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish-macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  8. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration

    PubMed Central

    Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng

    2016-01-01

    Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247

  9. Allee effect from parasite spill-back.

    PubMed

    Krkošek, Martin; Ashander, Jaime; Frazer, L Neil; Lewis, Mark A

    2013-11-01

    The exchange of native pathogens between wild and domesticated animals can lead to novel disease threats to wildlife. However, the dynamics of wild host-parasite systems exposed to a reservoir of domesticated hosts are not well understood. A simple mathematical model reveals that the spill-back of native parasites from domestic to wild hosts may cause a demographic Allee effect in the wild host population. A second model is tailored to the particulars of pink salmon (Oncorhynchus gorbuscha) and salmon lice (Lepeophtheirus salmonis), for which parasite spill-back is a conservation and fishery concern. In both models, parasite spill-back weakens the coupling of parasite and wild host abundance-particularly at low host abundance-causing parasites per host to increase as a wild host population declines. These findings show that parasites shared across host populations have effects analogous to those of generalist predators and can similarly cause an unstable equilibrium in a focal host population that separates persistence and extirpation. Allee effects in wildlife arising from parasite spill-back are likely to be most pronounced in systems where the magnitude of transmission from domestic to wild host populations is high because of high parasite abundance in domestic hosts, prolonged sympatry of domestic and wild hosts, a high transmission coefficient for parasites, long-lived parasite larvae, and proximity of domesticated populations to wildlife migration corridors.

  10. Competitive growth, energy allocation, and host modification in the acanthocephalan Acanthocephalus dirus: field data.

    PubMed

    Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C

    2017-01-01

    The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.

  11. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics.

    PubMed

    Vertacnik, Kim L; Linnen, Catherine R

    2017-02-01

    Adaptation to different host taxa is a key driver of insect diversification. Herbivorous insects are classic models for ecological and evolutionary research, but it is recent advances in sequencing, statistics, and molecular technologies that have cleared the way for investigations into the proximate genetic mechanisms underlying host shifts. In this review, we discuss how genome-scale data are revealing-at resolutions previously unimaginable-the genetic architecture of host-use traits, the causal loci underlying host shifts, and the predictability of host-use evolution. Collectively, these studies are providing novel insights into longstanding questions about host-use evolution. On the basis of this synthesis, we suggest that different host-use traits are likely to differ in their genetic architecture (number of causal loci and the nature of their genetic correlations) and genetic predictability (extent of gene or mutation reuse), indicating that any conclusions about the causes and consequences of host-use evolution will depend heavily on which host-use traits are investigated. To draw robust conclusions and identify general patterns in host-use evolution, we argue that investigation of diverse host-use traits and identification of causal genes and mutations should be the top priorities for future studies on the evolutionary genetics of host shifts. © 2017 New York Academy of Sciences.

  12. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. © 2015 The Author(s).

  13. Sex-specific effects of a parasite evolving in a female-biased host population

    PubMed Central

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  14. Sex-specific effects of a parasite evolving in a female-biased host population.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  15. Ecology of rodent-associated hantaviruses in the Southern Cone of South America: Argentina, Chile, Paraguay, and Uruguay.

    PubMed

    Palma, R Eduardo; Polop, Jaime J; Owen, Robert D; Mills, James N

    2012-04-01

    Thirteen hantavirus genotypes, associated with at least 12 sigmodontine reservoir rodents, have been recognized in the four countries that represent the Southern Cone of South America. Host-virus relationships are not as well defined as in North America; several Southern Cone hantaviruses appear to share a common host and some viruses do not occur throughout the range of their host. Although hantavirus-host relationships in the Southern Cone are less strictly concordant with the single-host-single-virus pattern reported elsewhere, recent studies suggest that much of the ambiguity may result from an incomplete understanding of host and hantavirus systematics. Although some Southern Cone host species are habitat generalists, some sympatric species are habitat specialists, helping to explain how some strict host-virus pairings may be maintained. In some cases, host population densities were higher in peridomestic habitats and prevalence of hantavirus infection was higher in host populations in peridomestic habitats. Seasonal and multiyear patterns in climate and human disturbance affect host population densities, prevalence of infection, and disease risk to humans. Unusually high hantavirus antibody prevalence in indigenous human populations may be associated with frequent and close contact with host rodents. Ongoing studies are improving our understanding of hantavirus-host ecology and providing tools that may predict human risk.

  16. Global Diversity and Distribution of Hantaviruses and Their Hosts.

    PubMed

    Milholland, Matthew T; Castro-Arellano, Iván; Suzán, Gerardo; Garcia-Peña, Gabriel E; Lee, Thomas E; Rohde, Rodney E; Alonso Aguirre, A; Mills, James N

    2018-04-30

    Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.

  17. Methods of expanding bacteriophage host-range and bacteriophage produced by the methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crown, Kevin K.; Santarpia, Joshua

    A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less

  18. The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Day, Jonathan P.; Smith, Sophia C. L.; McGonigle, John E.; Cogni, Rodrigo; Cao, Chuan; Jiggins, Francis M.

    2015-01-01

    Emerging infectious diseases are often the result of a host shift, where the pathogen originates from a different host species. Virulence—the harm a pathogen does to its host—can be extremely high following a host shift (for example Ebola, HIV, and SARs), while other host shifts may go undetected as they cause few symptoms in the new host. Here we examine how virulence varies across host species by carrying out a large cross infection experiment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic variation in virulence, with benign infections in some species and rapid death in others. The change in virulence was highly predictable from the host phylogeny, with hosts clustering together in distinct clades displaying high or low virulence. High levels of virulence are associated with high viral loads, and this may determine the transmission rate of the virus. PMID:25774803

  19. The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier.

    PubMed

    Clough, Barbara; Frickel, Eva-Maria

    2017-06-01

    The parasitophorous vacuole is a unique replicative niche for apicomplexan parasites, including Toxoplasma gondii. Derived from host plasma membrane, the vacuole is rendered nonfusogenic with the host endolysosomal system. Toxoplasma secretes numerous proteins to modify the forming vacuole, enable nutrient uptake, and set up mechanisms of host subversion. Here we describe the pathways of host-parasite interaction at the parasitophorous vacuole employed by Toxoplasma and host, leading to the intricate balance of host defence versus parasite survival. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    PubMed Central

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  1. Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants.

    PubMed

    Tjiurutue, Muvari Connie; Stevenson, Philip C; Adler, Lynn S

    2016-08-01

    As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here, we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids that act as defenses against herbivores that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses by using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels.

  2. Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...

  3. Sarcocystis strixi, n. sp. from barred owls (Strix varia) definitive hosts and gamma interferon gene knockout mice as experimental intermediate host

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis species have 2-host life cycles with the sexual cycle in the definitive hosts and an asexual cycle in the intermediate hosts. Raptors are definitive hosts for several species of Sarcocystis but intestinal infection with Sarcocystis has not been reported from Barred owls (Strix varia). He...

  4. Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins

    PubMed Central

    Khaperskyy, Denys A.

    2015-01-01

    Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff. PMID:25878098

  5. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates

    PubMed Central

    2011-01-01

    The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358

  6. Host social behavior and parasitic infection: A multifactorial approach

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  7. Host genetics affect microbial ecosystems via host immunity.

    PubMed

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  8. Characteristics determining host suitability for a generalist parasite.

    PubMed

    Stokke, Bård G; Ratikainen, Irja I; Moksnes, Arne; Røskaft, Eivin; Schulze-Hagen, Karl; Leech, David I; Møller, Anders Pape; Fossøy, Frode

    2018-04-19

    Host quality is critical for parasites. The common cuckoo Cuculus canorus is a generalist avian brood parasite, but individual females show strong preference for a specific host species. Here, we use three extensive datasets to investigate different host characteristics determining cuckoo host selection at the species level: (i) 1871 population-specific parasitism rates collected across Europe; (ii) 14 K cases of parasitism in the United Kingdom; and (iii) 16 K cases of parasitism in Germany, with data collected during the period 1735-2013. We find highly consistent effects of the different host species traits across our three datasets: the cuckoo prefers passerine host species of intermediate size that breed in grass- or shrubland and that feed their nestlings with insects, and avoids species that nest in cavities. Based on these results, we construct a novel host suitability index for all passerine species breeding in Europe, and show that host species known to have a corresponding cuckoo host race (gens) rank among the most suitable hosts in Europe. The distribution of our suitability index shows that host species cannot be classified as suitable or not but rather range within a continuum of suitability.

  9. Collective defence portfolios of ant hosts shift with social parasite pressure

    PubMed Central

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-01-01

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. PMID:25100690

  10. Inter- and intraspecific conflicts between parasites over host manipulation

    PubMed Central

    Hafer, Nina; Milinski, Manfred

    2016-01-01

    Host manipulation is a common strategy by which parasites alter the behaviour of their host to enhance their own fitness. In nature, hosts are usually infected by multiple parasites. This can result in a conflict over host manipulation. Studies of such a conflict in experimentally infected hosts are rare. The cestode Schistocephalus solidus (S) and the nematode Camallanus lacustris (C) use copepods as their first intermediate host. They need to grow for some time inside this host before they are infective and ready to be trophically transmitted to their subsequent fish host. Accordingly, not yet infective parasites manipulate to suppress predation. Infective ones manipulate to enhance predation. We experimentally infected laboratory-bred copepods in a manner that resulted in copepods harbouring (i) an infective C plus a not yet infective C or S, or (ii) an infective S plus a not yet infective C. An infective C completely sabotaged host manipulation by any not yet infective parasite. An infective S partially reduced host manipulation by a not yet infective C. We hence show experimentally that a parasite can reduce or even sabotage host manipulation exerted by a parasite from a different species. PMID:26842574

  11. Patterns of host specificity among the helminth parasite fauna of freshwater siluriforms: testing the biogeographical core parasite fauna hypothesis.

    PubMed

    Rosas-Valdez, Rogelio; de León, Gerardo Pérez-Ponce

    2011-04-01

    Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.

  12. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    PubMed

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.

  13. Testing Two Methods that Relate Herbivorous Insects to Host Plants

    PubMed Central

    White, Peter J. T.

    2013-01-01

    Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830

  14. Response of host plants to periodical cicada oviposition damage.

    PubMed

    Flory, S Luke; Mattingly, W Brett

    2008-06-01

    Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.

  15. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  16. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains

    USGS Publications Warehouse

    West, Daniel R.; Briggs, Jenny S.; Jacobi, William R.; Negron, Jose F.

    2016-01-01

    Recent evidence of range expansion and host transition by mountain pine beetle ( Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.

  17. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    PubMed Central

    Knudsen, Geir K.; Norli, Hans R.; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system. PMID:29312430

  18. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    PubMed

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.

  19. Macroparasite dynamics of migratory host populations.

    PubMed

    Peacock, Stephanie J; Bouhours, Juliette; Lewis, Mark A; Molnár, Péter K

    2018-03-01

    Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there are few spatially explicit models of host-macroparasite dynamics. This limits our understanding of parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper, we develop a model for host-macroparasite dynamics that considers the directional movement of host populations and their associated parasites. We include spatiotemporal changes in the mean and variance in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead to parasite-induced migratory stalling. This framework could help understand how global change might influence wildlife disease via changes to migratory patterns and parasite demographic rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Factors Influencing Host Plant Choice and Larval Performance in Bactericera cockerelli

    PubMed Central

    Prager, Sean M.; Esquivel, Isaac; Trumble, John T.

    2014-01-01

    Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins' host selection principle. PMID:24710468

  1. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    PubMed

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  2. Seasonal Alterations in Host Range and Fidelity in the Polyphagous Mirid Bug, Apolygus lucorum (Heteroptera: Miridae)

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Wyckhuys, Kris A. G.

    2015-01-01

    In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür) host plant use in successive spring, summer and winter seasons at one single location (Langfang, China). Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops. PMID:25692969

  3. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283

  4. Jack of all trades masters novel host plants: positive genetic correlations in specialist and generalist insect herbivores expanding their diets to novel hosts

    PubMed Central

    GARCÍA-ROBLEDO, CARLOS; HORVITZ, CAROL C.

    2011-01-01

    One explanation for the widespread host specialization of insect herbivores is the “Jack of all trades-master of none” principle, which states that genotypes with high performance on one host will perform poorly on other hosts. This principle predicts that cross-host correlation in performance of genotypes will be negative. In this study we experimentally explored cross-host correlations and performance among families in four species (two generalist and two specialist) of leaf beetles (Cephaloleia spp.) that are currently expanding their diets from native to exotic plants. All four species displayed similar responses in body size, developmental rates and mortality rates to experimentally controlled diets. When raised on novel hosts, body size of larvae, pupae and adults were reduced. Development times were longer and larval mortality was higher on novel hosts. Genotype × host plant interactions were not detected for most traits. All significant cross-host correlations were positive. These results indicate very different ecological and evolutionary dynamics than those predicted by the “Jack of all trades-master of none” principle. PMID:22022877

  5. Yersinia virulence factors - a sophisticated arsenal for combating host defences

    PubMed Central

    Atkinson, Steve; Williams, Paul

    2016-01-01

    The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390

  6. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.

    PubMed

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  7. Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands.

    PubMed

    Tomé, Beatriz; Pereira, Ana; Jorge, Fátima; Carretero, Miguel A; Harris, D James; Perera, Ana

    2018-03-19

    Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections. Our results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the Canary Islands in three colonization events with each host genus; and (iii) the high number of parasite haplotypes infecting Gallotia hosts and their restricted geographical distribution suggest co-diversification. These findings contrast with our expectations derived from results on other insular parasites, highlighting how host specificity depends on parasite characteristics and evolutionary history.

  8. Female biased sex-ratio in Schistosoma mansoni after exposure to an allopatric intermediate host strain of Biomphalaria glabrata.

    PubMed

    Lepesant, Julie M J; Boissier, Jérôme; Climent, Déborah; Cosseau, Céline; Grunau, Christoph

    2013-10-01

    For parasites that require multiple hosts to complete their development, the interaction with the intermediate host may have an impact on parasite transmission and development in the definitive host. The human parasite Schistosoma mansoni needs two different hosts to complete its life cycle: the freshwater snail Biomphalaria glabrata (in South America) as intermediate host and a human or rodents as final host. To investigate the influence of the host environment on life history traits in the absence of selection, we performed experimental infections of two B. glabrata strains of different geographic origin with the same clonal population of S. mansoni. One B. glabrata strain is the sympatric host and the other one the allopatric host. We measured prevalence in the snail, the cercarial infectivity, sex-ratio, immunopathology in the final host and microsatellite frequencies of individual larvae in three successive generations. We show that, even if the parasite population is clonal based on neutral markers, S. mansoni keeps the capacity of generating phenotypic plasticity and/or variability for different life history traits when confront to an unusual environment, in this study the intermediate host. The most dramatic change was observed in sex-ratio: in average 1.7 times more female cercariae were produced when the parasite developed in an allopatric intermediate host. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis.

    PubMed

    Roach, Dwayne R; Sjaarda, David R; Castle, Alan J; Svircev, Antonet M

    2013-05-01

    Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.

  10. Host Exopolysaccharide Quantity and Composition Impact Erwinia amylovora Bacteriophage Pathogenesis

    PubMed Central

    Roach, Dwayne R.; Sjaarda, David R.; Svircev, Antonet M.

    2013-01-01

    Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan. PMID:23503310

  11. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    PubMed

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  12. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.

    PubMed

    Bichara, Derdei; Iggidr, Abderrahman; Smith, Laura

    2018-04-25

    A class of models that describes the interactions between multiple host species and an arthropod vector is formulated and its dynamics investigated. A host-vector disease model where the host's infection is structured into n stages is formulated and a complete global dynamics analysis is provided. The basic reproduction number acts as a sharp threshold, that is, the disease-free equilibrium is globally asymptotically stable (GAS) whenever [Formula: see text] and that a unique interior endemic equilibrium exists and is GAS if [Formula: see text]. We proceed to extend this model with m host species, capturing a class of zoonoses where the cross-species bridge is an arthropod vector. The basic reproduction number of the multi-host-vector, [Formula: see text], is derived and shown to be the sum of basic reproduction numbers of the model when each host is isolated with an arthropod vector. It is shown that the disease will persist in all hosts as long as it persists in one host. Moreover, the overall basic reproduction number increases with respect to the host and that bringing the basic reproduction number of each isolated host below unity in each host is not sufficient to eradicate the disease in all hosts. This is a type of "amplification effect," that is, for the considered vector-borne zoonoses, the increase in host diversity increases the basic reproduction number and therefore the disease burden.

  13. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  14. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.

  15. Host specialization in ticks and transmission of tick-borne diseases: a review

    PubMed Central

    McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592

  16. Host specialization in ticks and transmission of tick-borne diseases: a review.

    PubMed

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  17. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    PubMed Central

    2017-01-01

    Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite interactions—and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics. PMID:28828270

  18. Trans-kingdom small RNA transfer during host-pathogen interactions: The case of P. falciparum and erythrocytes.

    PubMed

    Walzer, Katelyn A; Chi, Jen-Tsan

    2017-04-03

    This review focuses on the role of trans-kingdom movement of small RNA (sRNA) molecules between parasites, particularly Plasmodium falciparum, and their respective host cells. While the intercellular transfer of sRNAs within organisms is well recognized, recent studies illustrate many examples of trans-kingdom sRNA exchange within the context of host-parasite interactions. These interactions are predominantly found in the transfer of host sRNAs between erythrocytes and the invading P. falciparum, as well as other host cell types. In addition, parasite-encoded sRNAs can also be transferred to host cells to evade the immune system. The transport of these parasite sRNAs in the body fluids of the host may also offer means to detect and monitor the parasite infection. These isolated examples may only represent the tip of the iceberg in which the transfer of sRNA between host and parasites is a critical aspect of host-pathogen interactions. In addition, the levels of these sRNAs and their speed of transfer may vary dramatically under different contexts to push the biologic equilibrium toward the benefit of hosts vs. parasites. Therefore, these sRNA transfers may offer potential strategies to detect, prevent or treat parasite infections. Here, we review a brief history of the discovery of host erythrocyte sRNAs, their transfers and interactions in the context of P. falciparum infection. We also provide examples and discuss the functional significance of the reciprocal transfer of parasite-encoded sRNAs into hosts. These understandings of sRNA exchanges are put in the context of their implications for parasite pathogenesis, host defenses and the evolution of host polymorphisms driven by host interactions with these parasites.

  19. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    PubMed

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  20. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

    PubMed Central

    Herbert, Kristina M.; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  1. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    PubMed

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  4. Sequential radiation of unrelated organisms: the gall fly Eurosta solidaginis and the tumbling flower beetle Mordellistena convicta.

    PubMed

    Abrahamson, W G; Blair, C P; Eubanks, M D; Morehead, S A

    2003-09-01

    Host shifts and the formation of insect-host races are likely common processes in the speciation of herbivorous insects. The interactions of goldenrods Solidago (Compositae), the gall fly Eurosta solidaginis (Diptera: Tephritidae) and the beetle Mordellistena convicta (Coleoptera: Mordellidae) provide behavioural, ecological and genetic evidence of host races that may represent incipient species forming via sympatric speciation. We summarize evidence for Eurosta host races and show that M. convicta has radiated from goldenrod stems to Eurosta galls to form host-part races and, having exploited the galler's host shift, has begun to differentiate into host races within galls. Thus, host-race formation has occurred in two interacting, but unrelated organisms representing two trophic levels, resulting in 'sequential radiation' (escalation of biodiversity up the trophic system). Distributions of host races and their behavioural isolating mechanisms suggest sympatric differentiation. Such differentiation suggests host-race formation and subsequent speciation may be an important source of biodiversity.

  5. Cryptic gentes revealed in pallid cuckoos Cuculus pallidus using reflectance spectrophotometry

    PubMed Central

    Starling, M; Heinsohn, R; Cockburn, A; Langmore, N.E

    2006-01-01

    Many cuckoo species lay eggs that match those of their hosts, which can significantly reduce rejection of their eggs by the host species. However, egg mimicry is problematic for generalist cuckoos that parasitize several host species with different egg types. Some generalist cuckoos have overcome this problem by evolving several host-specific races (gentes), each with its own, host-specific egg type. It is unknown how generalist cuckoos lacking gentes are able to avoid egg rejection by hosts. Here we use reflectance spectrophotometry (300–700 nm) on museum egg collections to test for host-specific egg types in an Australian generalist cuckoo reported to have a single egg type. We show that the colour of pallid cuckoo (Cuculus pallidus) eggs differed between four host species, and that their eggs closely mimicked the eggs of the host they parasitized. These results reveal that pallid cuckoos have host-specific egg types that have not been detected by human observation, and indicate that gentes could be more common than previously realized. PMID:16822754

  6. Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?

    PubMed

    Koprivnikar, J; Randhawa, H S

    2013-04-01

    The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.

  7. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host.

    PubMed

    Ondracková, M; Simková, A; Gelnar, M; Jurajda, P

    2004-12-01

    Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.

  8. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    PubMed

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  9. Molecular biology of viroid-host interactions and disease control strategies.

    PubMed

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2014-11-01

    Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review. Published by Elsevier Ireland Ltd.

  10. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    PubMed Central

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  11. First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite protomognathus americanus.

    PubMed

    Achenbach, Alexandra; Foitzik, Susanne

    2009-04-01

    During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus. Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.

  12. Genetic co-structuring in host-parasite systems: Empirical data from raccoons and raccoon ticks

    DOE PAGES

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.; ...

    2016-03-31

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  13. Departure Mechanisms for Host Search on High-Density Patches by the Meteorus pulchricornis

    PubMed Central

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Abstract Less attention has been paid to the parasitoid–host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids–host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. PMID:25502040

  14. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species.

    PubMed

    Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter

    2014-02-01

    A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    PubMed

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  16. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants

    PubMed Central

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T.

    2017-01-01

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts. PMID:28739895

  17. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  18. Collective defence portfolios of ant hosts shift with social parasite pressure.

    PubMed

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-09-22

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE PAGES

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...

    2016-06-28

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  20. Parasite fitness traits under environmental variation: disentangling the roles of a chytrid's immediate host and external environment.

    PubMed

    Van den Wyngaert, Silke; Vanholsbeeck, Olivier; Spaak, Piet; Ibelings, Bas W

    2014-10-01

    Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.

  1. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    PubMed

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  2. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus.

    PubMed

    Nagy, Peter D; Pogany, Judit

    2010-01-01

    The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Getting there and around: Host range oscillations during colonization of the Canary Islands by the parasitic nematode Spauligodon.

    PubMed

    Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A

    2018-01-01

    Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.

  4. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii

    PubMed Central

    Romano, Julia D.

    2017-01-01

    Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. PMID:28570716

  6. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits

    PubMed Central

    Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh

    2017-01-01

    Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773

  7. The impact of parasitoid emergence time on host-parasitoid population dynamics.

    PubMed

    Cobbold, Christina A; Roland, Jens; Lewis, Mark A

    2009-01-01

    We investigate the effect of parasitoid phenology on host-parasitoid population cycles. Recent experimental research has shown that parasitized hosts can continue to interact with their unparasitized counterparts through competition. Parasitoid phenology, in particular the timing of emergence from the host, determines the duration of this competition. We construct a discrete-time host-parasitoid model in which within-generation dynamics associated with parasitoid timing is explicitly incorporated. We found that late-emerging parasitoids induce less severe, but more frequent, host outbreaks, independent of the choice of competition model. The competition experienced by the parasitized host reduces the parasitoids' numerical response to changes in host numbers, preventing the 'boom-bust' dynamics associated with more efficient parasitoids. We tested our findings against experimental data for the forest tent caterpillar (Malacosoma disstria Hübner) system, where a large number of consecutive years at a high host density is synonymous with severe forest damage.

  8. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    PubMed

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  10. Relationships between host viremia and vector susceptibility for arboviruses.

    PubMed

    Lord, Cynthia C; Rutledge, C Roxanne; Tabachnick, Walter J

    2006-05-01

    Using a threshold model where a minimum level of host viremia is necessary to infect vectors affects our assessment of the relative importance of different host species in the transmission and spread of these pathogens. Other models may be more accurate descriptions of the relationship between host viremia and vector infection. Under the threshold model, the intensity and duration of the viremia above the threshold level is critical in determining the potential numbers of infected mosquitoes. A probabilistic model relating host viremia to the probability distribution of virions in the mosquito bloodmeal shows that the threshold model will underestimate the significance of hosts with low viremias. A probabilistic model that includes avian mortality shows that the maximum number of mosquitoes is infected by feeding on hosts whose viremia peaks just below the lethal level. The relationship between host viremia and vector infection is complex, and there is little experimental information to determine the most accurate model for different arthropod-vector-host systems. Until there is more information, the ability to distinguish the relative importance of different hosts in infecting vectors will remain problematic. Relying on assumptions with little support may result in erroneous conclusions about the importance of different hosts.

  11. Relationships Between Host Viremia and Vector Susceptibility for Arboviruses

    PubMed Central

    Lord, Cynthia C.; Rutledge, C. Roxanne; Tabachnick, Walter J.

    2010-01-01

    Using a threshold model where a minimum level of host viremia is necessary to infect vectors affects our assessment of the relative importance of different host species in the transmission and spread of these pathogens. Other models may be more accurate descriptions of the relationship between host viremia and vector infection. Under the threshold model, the intensity and duration of the viremia above the threshold level is critical in determining the potential numbers of infected mosquitoes. A probabilistic model relating host viremia to the probability distribution of virions in the mosquito bloodmeal shows that the threshold model will underestimate the significance of hosts with low viremias. A probabilistic model that includes avian mortality shows that the maximum number of mosquitoes is infected by feeding on hosts whose viremia peaks just below the lethal level. The relationship between host viremia and vector infection is complex, and there is little experimental information to determine the most accurate model for different arthropod–vector–host systems. Until there is more information, the ability to distinguish the relative importance of different hosts in infecting vectors will remain problematic. Relying on assumptions with little support may result in erroneous conclusions about the importance of different hosts. PMID:16739425

  12. Adaptation to different host plant ages facilitates insect divergence without a host shift

    PubMed Central

    Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke

    2015-01-01

    Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220

  13. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  14. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  15. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  16. Evolutionary history of nematodes associated with sweat bees.

    PubMed

    McFrederick, Quinn S; Taylor, Douglas R

    2013-03-01

    Organisms that live in close association with other organisms make up a large part of the world's diversity. One driver of this diversity is the evolution of host-species specificity, which can occur via reproductive isolation following a host-switch or, given the correct circumstances, via cospeciation. In this study, we explored the diversity and evolutionary history of Acrostichus nematodes that are associated with halictid bees in North America. First, we conducted surveys of bees in Virginia, and found six halictid species that host Acrostichus. To test the hypothesis of cospeciation, we constructed phylogenetic hypotheses of Acrostichus based on three genes. We found Acrostichus puri and Acrostichus halicti to be species complexes comprising cryptic, host-specific species. Although several nodes in the host and symbiont phylogenies were congruent and tests for cospeciation were significant, the host's biogeography, the apparent patchiness of the association across the host's phylogeny, and the amount of evolution in the nematode sequence suggested a mixture of cospeciation, host switching, and extinction events instead of strict cospeciation. Cospeciation can explain the relationships between Ac. puri and its augochlorine hosts, but colonization of Halictus hosts is more likely than cospeciation. The nematodes are vertically transmitted, but sexual transmission is also likely. Both of these transmission modes may explain host-species specificity and congruent bee and nematode phylogenies. Additionally, all halictid hosts come from eusocial or socially polymorphic lineages, suggesting that sociality may be a factor in the suitability of hosts for Acrostichus. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  18. Has Sarcocystis neurona Dubey et al., 1991 (Sporozoa: Apicomplexa: Sarcocystidae) cospeciated with its intermediate hosts?

    PubMed

    Elsheikha, Hany M

    2009-08-26

    The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.

  19. Effects of Helicoverpa armigera (Noctuidae, Lepidoptera) host stages on some developmental parameters of the uniparental endoparasitoid Meteorus pulchricornis (Braconidae, Hymenoptera).

    PubMed

    Liu, Ya-Hui; Li, Bao-Ping

    2008-04-01

    A single choice test was performed to examine developmental strategies in the uniparental endoparasitoid Meteorus pulchricornis and its host, the cotton bollworm Helicoverpa armigera. The results support the dome-shaped model in which the fitness functions are 'dome-shaped' relative to size (and age) of host at parasitism. Older and, hence, larger host larvae were simply not better hosts for the developing parasitoids. Although parasitoid size (measured as cocoon weight and adult hind tibia length) was positively correlated with host instars at parasitism, parasitoids developing in larger hosts (L5 and L6) suffered much higher mortality than conspecifics developing in smaller hosts (L2-L4). Furthermore, egg-to-adult development time in M. pulchricornis was significantly longer in older host larvae (L4-L6) than in the younger. Performance of M. pulchricornis, as indicated by fitness-related traits, strongly suggests that the L3 host is the most suitable for survival, growth and development of the parasitoid, followed by both L2 and L4 hosts; whereas, L1, L5 and L6 are the least favourable hosts. The oviposition tendency of M. pulchricornis, represented by parasitism level, was not perfectly consistent with the performance of the offspring; L2-L4 hosts, although with the same parasitism level, had offspring parasitoids with differences in fitness-related performance. Larval development in Helicoverpa armigera was usually suspended, but occasionally advanced, in the final instar.

  20. Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions.

    PubMed

    Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E

    2017-02-01

    Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.

  1. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.

    PubMed

    Tsai, Yi-Hsin Erica; Manos, Paul S

    2010-09-28

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.

  2. Evolution of larval competitiveness and associated life-history traits in response to host shifts in a seed beetle.

    PubMed

    Fox, C W; Messina, F J

    2018-02-01

    Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life-history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co-occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition-related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness-related traits of insect populations. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  3. Unravelling mummies: cryptic diversity, host specificity, trophic and coevolutionary interactions in psyllid - parasitoid food webs.

    PubMed

    Hall, Aidan A G; Steinbauer, Martin J; Taylor, Gary S; Johnson, Scott N; Cook, James M; Riegler, Markus

    2017-06-06

    Parasitoids are hyperdiverse and can contain morphologically and functionally cryptic species, making them challenging to study. Parasitoid speciation can arise from specialisation on niches or diverging hosts. However, which process dominates is unclear because cospeciation across multiple parasitoid and host species has rarely been tested. Host specificity and trophic interactions of the parasitoids of psyllids (Hemiptera) remain mostly unknown, but these factors are fundamentally important for understanding of species diversity, and have important applied implications for biological control. We sampled diverse parasitoid communities from eight Eucalyptus-feeding psyllid species in the genera Cardiaspina and Spondyliaspis, and characterised their phylogenetic and trophic relationships using a novel approach that forensically linked emerging parasitoids with the presence of their DNA in post-emergence insect mummies. We also tested whether parasitoids have cospeciated with their psyllid hosts. The parasitoid communities included three Psyllaephagus morphospecies (two primary and, unexpectedly, one heteronomous hyperparasitoid that uses different host species for male and female development), and the hyperparasitoid, Coccidoctonus psyllae. However, the number of genetically delimited Psyllaephagus species was three times higher than the number of recognisable morphospecies, while the hyperparasitoid formed a single generalist species. In spite of this, cophylogenetic analysis revealed unprecedented codivergence of this hyperparasitoid with its primary parasitoid host, suggesting that this single hyperparasitoid species is possibly diverging into host-specific species. Overall, parasitoid and hyperparasitoid diversification was characterised by functional conservation of morphospecies, high host specificity and some host switching between sympatric psyllid hosts. We conclude that host specialisation, host codivergence and host switching are important factors driving the species diversity of endoparasitoid communities of specialist host herbivores. Specialisation in parasitoids can also result in heteronomous life histories that may be more common than appreciated. A host generalist strategy may be rare in endoparasitoids of specialist herbivores despite the high conservation of morphology and trophic roles, and endoparasitoid species richness is likely to be much higher than previously estimated. This also implies that the success of biological control requires detailed investigation to enable accurate identification of parasitoid-host interactions before candidate parasitoid species are selected as biological control agents for target pests.

  4. Egg shape mimicry in parasitic cuckoos.

    PubMed

    Attard, M R G; Medina, I; Langmore, N E; Sherratt, E

    2017-11-01

    Parasitic cuckoos lay their eggs in nests of host species. Rejection of cuckoo eggs by hosts has led to the evolution of egg mimicry by cuckoos, whereby their eggs mimic the colour and pattern of their host eggs to avoid egg recognition and rejection. There is also evidence of mimicry in egg size in some cuckoo-host systems, but currently it is unknown whether cuckoos can also mimic the egg shape of their hosts. In this study, we test whether there is evidence of mimicry in egg form (shape and size) in three species of Australian cuckoos: the fan-tailed cuckoo Cacomantis flabelliformis, which exploits dome nesting hosts, the brush cuckoo Cacomantis variolosus, which exploits both dome and cup nesting hosts, and the pallid cuckoo Cuculus pallidus, which exploits cup nesting hosts. We found evidence of size mimicry and, for the first time, evidence of egg shape mimicry in two Australian cuckoo species (pallid cuckoo and brush cuckoo). Moreover, cuckoo-host egg similarity was higher for hosts with open nests than for hosts with closed nests. This finding fits well with theory, as it has been suggested that hosts with closed nests have more difficulty recognizing parasitic eggs than open nests, have lower rejection rates and thus exert lower selection for mimicry in cuckoos. This is the first evidence of mimicry in egg shape in a cuckoo-host system, suggesting that mimicry at different levels (size, shape, colour pattern) is evolving in concert. We also confirm the existence of egg size mimicry in cuckoo-host systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae)

    PubMed Central

    Herbertz, Sina; Kroiss, Johannes; Strohm, Erhard; Baur, Hannes; Niehuis, Oliver; Schmitt, Thomas

    2015-01-01

    Cleptoparasitic wasps and bees smuggle their eggs into the nest of a host organism. Here the larvae of the cleptoparasite feed upon the food provision intended for the offspring of the host. As cleptoparasitism incurs a loss of fitness for the host organism (offspring of the host fail to develop), hosts of cleptoparasites are expected to exploit cues that alert them to potential cleptoparasite infestation. Cuticular hydrocarbons (CHCs) could serve as such cues, as insects inevitably leave traces of them behind when entering a nest. By mimicking the host's CHC profile, cleptoparasites can conceal their presence and evade detection by their host. Previous studies have provided evidence of cleptoparasites mimicking their host's CHC profile. However, the impact of this strategy on the evolution of the host's CHC profile has remained unexplored. Here, we present results from our investigation of a host–cleptoparasite system consisting of a single mason wasp species that serves syntopically as the host to three cuckoo wasp species. We found that the spiny mason wasp (Odynerus spinipes) is able to express two substantially different CHC profiles, each of which is seemingly mimicked by a cleptoparasitic cuckoo wasp (i.e. Chrysis mediata and Pseudospinolia neglecta). The CHC profile of the third cuckoo wasp (Chrysis viridula), a species not expected to benefit from mimicking its host's CHC profile because of its particular oviposition strategy, differs from the two CHC profiles of its host. Our results corroborate the idea that the similarity of the CHC profiles between cleptoparasitic cuckoo wasps and their hosts are the result of chemical mimicry. They further suggest that cleptoparasites may represent a hitherto unappreciated force that drives the evolution of their hosts' CHCs. PMID:26674944

  6. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia.

    PubMed

    Levine, Rebecca S; Hedeen, David L; Hedeen, Meghan W; Hamer, Gabriel L; Mead, Daniel G; Kitron, Uriel D

    2017-02-03

    The dilution effect is the reduction in vector-borne pathogen transmission associated with the presence of diverse potential host species, some of which are incompetent. It is popularized as the notion that increased biodiversity leads to decreased rates of disease. West Nile virus (WNV) is an endemic mosquito-borne virus in the United States that is maintained in a zoonotic cycle involving various avian host species. In Atlanta, Georgia, substantial WNV presence in the vector and host species has not translated into a high number of human cases. To determine whether a dilution effect was contributing to this reduced transmission, we characterized the host species community composition and performed WNV surveillance of hosts and vectors in urban Atlanta between 2010 and 2011. We tested the relationship between host diversity and both host seroprevalence and vector infection rates using a negative binomial generalized linear mixed model. Regardless of how we measured host diversity or whether we considered host seroprevalence and vector infection rates as predictor variables or outcome variables, we did not detect a dilution effect. Rather, we detected an amplification effect, in which increased host diversity resulted in increased seroprevalence or infection rates; this is the first empirical evidence for this effect in a mosquito-borne system. We suggest that this effect may be driven by an over-abundance of moderately- to poorly-competent host species, such as northern cardinals and members of the Mimid family, which cause optimal hosts to become rarer and present primarily in species-rich areas. Our results support the notion that dilution or amplification effects depend more on the identities of the species comprising the host community than on the absolute diversity of hosts.

  7. Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B

    2016-12-01

    A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.

  8. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.

    PubMed

    Janz, N; Nyblom, K; Nylin, S

    2001-04-01

    Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.

  9. Galactic satellite systems: radial distribution and environment dependence of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, Changbom; Choi, Yun-Young

    2008-09-01

    We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than Mr = -18.0 associated with 2254 hosts brighter than Mr = -19.0 from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology-radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.

  10. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    PubMed

    Bellamy, David E; Sisterson, Mark S; Walse, Spencer S

    2013-01-01

    Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI) was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1) model derivation; 2) influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice); and, 3) variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries) in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (mean)HPIvaried  = 301.9±8.39; rank 1 of 7) have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (mean)HPIvaried  = 232.4±3.21; rank 7 of 7) having the least potential.

  11. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    PubMed Central

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  12. Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.

    PubMed

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Less attention has been paid to the parasitoid-host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids-host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Quantifying Host Potentials: Indexing Postharvest Fresh Fruits for Spotted Wing Drosophila, Drosophila suzukii

    PubMed Central

    Bellamy, David E.; Sisterson, Mark S.; Walse, Spencer S.

    2013-01-01

    Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI) was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1) model derivation; 2) influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice); and, 3) variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), with seven “reported” hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries) in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries (meanHPIvaried = 301.9±8.39; rank 1 of 7) have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes (meanHPIvaried = 232.4±3.21; rank 7 of 7) having the least potential. PMID:23593439

  14. Diversity of helminth parasites in aquatic invertebrate hosts in Latin America: how much do we know?

    PubMed

    Aguirre-Macedo, M L; May-Tec, A L; Martínez-Aquino, A; Cremonte, F; Martorelli, S R

    2017-03-01

    Helminths in aquatic invertebrate hosts have been overlooked in comparison with vertebrate hosts. Therefore, the known diversity, ecology and distribution of these host-parasite systems are very limited in terms of their taxonomic diversity, habitat and geographic regions. In this study we examined the published literature on helminth parasites of aquatic invertebrates from Latin America and the Caribbean (LAC) to identify the state of the knowledge in the region and to identify patterns of helminth diversity. Results showed that 67% of the literature is from Argentina, Mexico and Brazil. We found records for 772 host-parasite associations. Most records relate to medically or economically important hosts. Molluscs were the most studied host group with 377 helminth records (80% trematodes). The lymnaeids and planorbids were the most studied molluscs across LAC. Arthropods were the second most studied host group with 78 helminth records (trematodes 38%, cestodes 24% and nematodes 20%), with shrimps and crabs being the most studied hosts. Host species with the largest number of helminth taxa were those with a larger sampling effort through time, usually in a small country region. No large geographical-scale studies were identified. In general, the knowledge is still too scarce to allow any zoogeographical or helminth diversity generalization, as most hosts have been studied locally and the studies on invertebrate hosts in LAC are substantially uneven among countries.

  15. The development of a host potential index and its postharvest application to the spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae)

    USDA-ARS?s Scientific Manuscript database

    Novel methodology is presented for indexing the relative potential of hosts to function as resources. Results from studies examining host selection, utilization, and physiological development of the organism resourcing the host were combined and quantitatively related via a Host Potential Index (HPI...

  16. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites.

    PubMed Central

    Ebert, D; Weisser, W W

    1997-01-01

    Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation. PMID:9263465

  17. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host

    PubMed Central

    2017-01-01

    Some parasites have an ability to fabricate the behavior of their host and impel the host to guard parasites' offspring, which is popularly called as bodyguard manipulation. Psalis pennatula larva parasitized by a braconid parasitoid wasp Microplitis pennatula exhibits some behavioral changes including the guarding of the parasitoid pupa from its natural enemies. We hypothesized that these behavioral change exhibited by the parasitized host larva are induced by the parasitoid and can be considered as an example of bodyguard manipulation. Even though hyperparasitoids are the more specialized natural enemy of parasitoids than predators, very few studies tested the success of guarding parasitoid pupa against hyperparasitoids. This study analyzed the success of guarding behavior of the parasitized host against hyperparasitoids. The onsets of parasite-induced phenotypic alterations (PIPAs) in the parasitized host were inspected to analyze whether these behavioral changes in the host larva manifests gradually or abruptly. The study concludes that parasitized host larva defends the parasitoid pupa from hyperparasitoids and the PIPAs in the parasitized host develops abruptly only after the egression of parasitoid prepupa. PMID:28636632

  18. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host.

    PubMed

    Mohan, Prabitha; Sinu, Palatty Allesh

    2017-01-01

    Some parasites have an ability to fabricate the behavior of their host and impel the host to guard parasites' offspring, which is popularly called as bodyguard manipulation. Psalis pennatula larva parasitized by a braconid parasitoid wasp Microplitis pennatula exhibits some behavioral changes including the guarding of the parasitoid pupa from its natural enemies. We hypothesized that these behavioral change exhibited by the parasitized host larva are induced by the parasitoid and can be considered as an example of bodyguard manipulation. Even though hyperparasitoids are the more specialized natural enemy of parasitoids than predators, very few studies tested the success of guarding parasitoid pupa against hyperparasitoids. This study analyzed the success of guarding behavior of the parasitized host against hyperparasitoids. The onsets of parasite-induced phenotypic alterations (PIPAs) in the parasitized host were inspected to analyze whether these behavioral changes in the host larva manifests gradually or abruptly. The study concludes that parasitized host larva defends the parasitoid pupa from hyperparasitoids and the PIPAs in the parasitized host develops abruptly only after the egression of parasitoid prepupa.

  19. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity

    PubMed Central

    Bashey, Farrah

    2015-01-01

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  20. Multiple host-plant use may arise from gender-specific fitness effects

    PubMed Central

    Gibbs, Melanie; Lace, Lesley A.; Jones, Martin J.; Moore, Allen J.

    2006-01-01

    Ovipositing females are predicted to select host-plants that will maximise offspring survival and fitness. Yet hosts often differ in the component of larval fitness affected so host-selection often involves a trade-off between short development times and large size and high fecundity of offspring. If host-species can directly affect development rates and body size, and if there are gender differences in resource allocation during development, there can be different sex-specific selection pressures associated with different hosts. Using a Madeiran population of the speckled wood butterfly Pararge aegeria (L.) as the model species gender differences in larval development and size were examined in response to the hosts Brachypodium sylvaticum, Holcus lanatus and Poa annua. It was observed that male and female P. aegeria larvae differed, with their responses dependent on the host species. These results would suggest that oviposition behavior is a complex process, and use of multiple hosts may have evolved to balance the conflicting needs of male and female larvae. Co-evolution of host selection and oviposition behaviors may help to balance the differing performance needs of offspring. PMID:19537967

  1. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    PubMed

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.

  2. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms.

    PubMed

    Bannister, L H

    1979-04-11

    Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the cell surface of digestive or other organs, but the intracellular habit appears to have arisen independently in several groups of Protista.

  3. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?

    PubMed

    Simková, Andrea; Dávidová, Martina; Papoušek, Ivo; Vetešník, Lukáš

    2013-04-12

    Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. This finding does not support strict co-adaptation between host and parasite genotypes resulting in narrow host specificity, and showed that hybrid genotypes are susceptible to parasites exhibiting host specificity. The immune mechanisms specific to parental species might represent potential mechanisms explaining the low abundance of parasites in C. gibelio x C. carpio hybrids.

  4. No evidence for host specialization or host-race formation in the European bitterling (Rhodeus amarus), a fish that parasitizes freshwater mussels.

    PubMed

    Reichard, M; Bryja, J; Polačik, M; Smith, C

    2011-09-01

    Coevolutionary relationships between parasites and hosts can elevate the rate of evolutionary changes owing to reciprocal adaptations between coevolving partners. Such relationships can result in the evolution of host specificity. Recent methodological advances have permitted the recognition of cryptic lineages, with important consequences for our understanding of biological diversity. We used the European bitterling (Rhodeus amarus), a freshwater fish that parasitizes unionid mussels, to investigate host specialization across regions of recent and ancient sympatry between coevolving partners. We combined genetic data (12 microsatellite and 2 mitochondrial markers) from five populations with experimental data for possible mechanisms of host species recognition (imprinting and conditioning). We found no strong evidence for the existence of cryptic lineages in R. amarus, though a small proportion of variation among individuals in an area of recent bitterling-mussel association was statistically significant in explaining host specificity. No other measures supported the existence of host-specific lineages. Behavioural data revealed a weak effect of conditioning that biased behavioural preferences towards specific host species. Host imprinting had no effect on oviposition behaviour. Overall, we established that populations of R. amarus show limited potential for specialization, manifested as weak effects of host conditioning and genetic within-population structure. Rhodeus amarus is the only species of mussel-parasitizing fish in Europe, which contrasts with the species-rich communities of bitterling in eastern Asia where several host-specific bitterling occur. We discuss costs and constraints on the evolution of host-specific lineages in our study system and more generally. © 2011 Blackwell Publishing Ltd.

  5. [Monoxenous and heteroxenous parasites of fish manipulate behavior of their hosts in different ways].

    PubMed

    Mikheev, V N

    2011-01-01

    Adaptive host manipulation hypothesis is usually supported by case studies on trophically transmitted heteroxenous endoparasites. Trematodes and cestodes are among efficient manipulators of fish, their common intermediate hosts. In this review paper, new data on modifications of host fish behavior caused by monoxenous ectoparasitic crustaceans are provided together with a review of effects caused by heteroxenous parasites. Differences in modifications of host behavior caused by heteroxenous and monoxenous parasites are discussed. Manipulation by heteroxenous parasites enhances availability of infected fish to predators--definitive hosts of the parasites. Fine-tuned synchronization of modified anti-predator behavior with a certain phase of the trematode Diplostomum spathaceum development in the eyes of fish, their second intermediate host, was shown. Modifications of behavior are habitat specific. When juvenile salmonids are in the open water, parasites impair their cooperative anti-predator behavior; in territorial bottom-dwelling salmonids, individual defense behavior such as sheltering is the main target of manipulation. It was shown that monoxenous ectoparasitic crustaceans Argulus spp. decreased motor activity, aggressiveness and increased shoal cohesiveness of infected fish. Such a behavior facilitates host and mate searching in these parasites, which often change their hosts, especially during reproduction. Reviewed experimental data suggest that heteroxenous parasites manipulate their host mainly through impaired defense behavior, e.g. impairing shoaling in fish. Alternatively, monoxenous parasites facilitate shoaling that is profitable for both parasites and hosts. Coordination of modified host behavior with the parasite life cycle, both temporal and spatial, is the most convincing criterion of the adaptive value of host manipulation.

  6. Host association influences variation at salivary protein genes in the bat ectoparasite Cimex adjunctus.

    PubMed

    Talbot, Benoit; Vonhof, Maarten J; Broders, Hugh G; Fenton, Brock; Keyghobadi, Nusha

    2018-05-01

    Parasite-host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host-parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood-feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood-feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  7. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    USGS Publications Warehouse

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  8. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    PubMed

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  9. Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect.

    PubMed

    Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou

    2011-01-01

    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls.

  10. Evolutionary history of aphid-plant associations and their role in aphid diversification.

    PubMed

    Peccoud, Jean; Simon, Jean-Christophe; von Dohlen, Carol; Coeur d'acier, Armelle; Plantegenest, Manuel; Vanlerberghe-Masutti, Flavie; Jousselin, Emmanuelle

    2010-01-01

    Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. The origin and genetic differentiation of the socially parasitic aphid Tamalia inquilinus.

    PubMed

    Miller, Donald G; Lawson, Sarah P; Rinker, David C; Estby, Heather; Abbot, Patrick

    2015-11-01

    Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum-likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host-associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall-forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host-plant-associated differentiation were greater in the non-gall-inducing parasites than in their gall-inducing hosts. RNA-seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host-plant relationships. Our results suggest a mode of speciation in which host plants drive within-guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids. © 2015 John Wiley & Sons Ltd.

  12. Interspecies hormonal control of host root morphology by parasitic plants

    PubMed Central

    Melnyk, Charles W.; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi

    2017-01-01

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana. Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant–host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants. PMID:28461500

  13. Interspecies hormonal control of host root morphology by parasitic plants.

    PubMed

    Spallek, Thomas; Melnyk, Charles W; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi; Shirasu, Ken

    2017-05-16

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum -induced host hypertrophy required cytokinin signaling genes ( AHK3,4 ) but not cytokinin biosynthesis genes ( IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.

  14. Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes

    NASA Astrophysics Data System (ADS)

    Fogelman, R. M.; Grutter, A. S.

    2008-09-01

    Juvenile parasitic cymothoid isopods (mancae) can injure or kill fishes, yet few studies have investigated their biology. While the definitive host of the adult cymothoids is usually a single host from a particular fish species, mancae may use so-called optional intermediate hosts before settling on the definitive host. Little, however, is known about these early interactions. The cymothoid isopod, Anilocra apogonae, infests the definitive host, Cheilodipterus quinquelineatus. This study examined their host preference among potential optional intermediate hosts. Their effect on the growth and mortality of the young of three apogonid fishes, including the definitive host, was investigated. The number of mancae produced per brood was positively correlated with female length. When given a choice of intermediate hosts, significantly more mancae attached to Apogon trimaculatus (Apogonidae) than to Apogon nigrofasciatus. When presented with Ap. trimaculatus and Pomacentrus amboinensis (Pomacentridae), mancae only attached to Ap. trimaculatus suggesting that mancae may show a taxonomic affiliation with preferred hosts. Mancae fed on all three apogonid species, with C. quinquelineatus being fed on earlier than Ap. trimaculatus and Ap. nigrofasciatus. Mancae feeding frequency, adjusted for fish survival, was lowest on C. quinquelineatus and highest on Ap. trimaculatus. Infested apogonids had reduced growth and increased mortality compared with uninfested fish. A. apogonae mancae can use several species of young apogonid fishes as optional intermediate hosts. Via reduced growth and increased mortality, mancae have the potential to negatively influence definitive host populations and also other young species of apogonid fishes.

  15. Prevalence and diversity of avian Haemosporida infecting songbirds in southwest Michigan.

    PubMed

    Smith, Jamie D; Gill, Sharon A; Baker, Kathleen M; Vonhof, Maarten J

    2018-02-01

    Avian blood parasites from the genera Plasmodium, Haemoproteus, and Leucocytozoon (Haemosporida) affect hosts in numerous ways. They influence species interactions, host behavior, reproductive success, and cause pathology and mortality in birds. The Great Lakes region of North America has extensive aquatic and wetland habitat and supports a diverse vector community. Here we describe the community of bird-infecting Haemosporida in southwest Michigan and their host associations by measuring parasite prevalence, diversity, and host breadth across a diverse community of avian hosts. Over 700 songbirds of 55 species were screened for Haemosporida infection across southwest Michigan, including 11 species that were targeted for larger sample sizes. In total, 71 parasite lineages infected over 40% of birds. Of these, 42 were novel, yet richness estimates suggest that approximately half of the actual parasite diversity in the host community was observed despite intensive sampling of multiple host species. Parasite prevalence varied among parasite genera (7-24%) and target host species (0-85%), and parasite diversity was consistently high across most target species. Host breadth varied widely across the most prevalent parasite lineages, and we detected around 60% of host species richness for these parasite lineages. We report many new lineages and novel host-parasite associations, but substantial parasite diversity remains undiscovered in the Midwest.

  16. Evolution of trophic transmission in parasites: Why add intermediate hosts?

    USGS Publications Warehouse

    Choisy, Marc; Brown, Sam P.; Lafferty, Kevin D.; Thomas, Frédéric

    2003-01-01

    Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a singleto a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy.

  17. Host-parasite coevolution beyond the nestling stage? Mimicry of host fledglings by the specialist screaming cowbird.

    PubMed

    De Mársico, María C; Gantchoff, Mariela G; Reboreda, Juan C

    2012-09-07

    Egg mimicry by obligate avian brood parasites and host rejection of non-mimetic eggs are well-known textbook examples of host-parasite coevolution. By contrast, reciprocal adaptations and counteradaptations beyond the egg stage in brood parasites and their hosts have received less attention. The screaming cowbird (Molothrus rufoaxillaris) is a specialist obligate brood parasite whose fledglings look identical to those of its primary host, the baywing (Agelaioides badius). Such a resemblance has been proposed as an adaptation in response to host discrimination against odd-looking young, but evidence supporting this idea is scarce. Here, we examined this hypothesis by comparing the survival rates of young screaming cowbirds and non-mimetic shiny cowbirds (Molothrus bonariensis) cross-fostered to baywing nests and quantifying the similarity in plumage colour and begging calls between host and cowbird fledglings. Shiny cowbirds suffered higher post-fledging mortality rates (83%) than screaming cowbirds (0%) owing to host rejection. Visual modelling revealed that screaming cowbirds, but not shiny cowbirds, were indistinguishable from host young in plumage colour. Similarly, screaming cowbirds matched baywings' begging calls more closely than shiny cowbirds. Our results strongly support the occurrence of host fledgling mimicry in screaming cowbirds and suggest a role of visual and vocal cues in fledgling discrimination by baywings.

  18. Avian vision and the evolution of egg color mimicry in the common cuckoo.

    PubMed

    Stoddard, Mary Caswell; Stevens, Martin

    2011-07-01

    Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision. Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection. We introduce a novel measure of color mimicry-"color overlap"-and show that cuckoo and host background colors increasingly overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human eye. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  19. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    PubMed

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  20. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  1. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.

    PubMed

    Hoberg, Eric P; Brooks, Daniel R

    2015-04-05

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Rate of novel host invasion affects adaptability of evolving RNA virus lineages.

    PubMed

    Morley, Valerie J; Mendiola, Sandra Y; Turner, Paul E

    2015-08-22

    Although differing rates of environmental turnover should be consequential for the dynamics of adaptive change, this idea has been rarely examined outside of theory. In particular, the importance of RNA viruses in disease emergence warrants experiments testing how differing rates of novel host invasion may impact the ability of viruses to adaptively shift onto a novel host. To test whether the rate of environmental turnover influences adaptation, we experimentally evolved 144 Sindbis virus lineages in replicated tissue-culture environments, which transitioned from being dominated by a permissive host cell type to a novel host cell type. The rate at which the novel host 'invaded' the environment varied by treatment. The fitness (growth rate) of evolved virus populations was measured on each host type, and molecular substitutions were mapped via whole genome consensus sequencing. Results showed that virus populations more consistently reached high fitness levels on the novel host when the novel host 'invaded' the environment more gradually, and gradual invasion resulted in less variable genomic outcomes. Moreover, virus populations that experienced a rapid shift onto the novel host converged upon different genotypes than populations that experienced a gradual shift onto the novel host, suggesting a strong effect of historical contingency. © 2015 The Author(s).

  4. Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host.

    PubMed

    Coors, Anja; De Meester, Luc

    2011-01-01

    Host-parasite interactions are shaped by the co-evolutionary arms race of parasite virulence, transmission success as well as host resistance and recovery. The virulence and fitness of parasites may depend on host condition, which is mediated, for instance, by host energy constraints. Here, we investigated to what extent stress imposed by predation threat and environmental pollutants influences host-parasite interactions. We challenged the crustacean host Daphnia magna with the sterilizing bacterial endoparasite Pasteuria ramosa and simultaneously exposed the host to fish kairomones, the pesticide carbaryl or both stressors. While parasite virulence, measured as impact on host mortality and sterilization, increased markedly after short-term pesticide exposure, it was not influenced by predation threat. Parasite fitness, measured in terms of produced transmission stages, decreased both in fish and pesticide treatments. This effect was much stronger under predation threat than carbaryl exposure, and was attributable to reduced somatic growth of the host, presumably resulting in fewer resources for parasite development. While the indirect impact of both stressors on spore loads provides evidence for host condition-dependent parasite fitness, the finding of increased virulence only under carbaryl exposure indicates a stronger physiological impact of the neurotoxic chemical compared with the effect of a non-toxic fish kairomone.

  5. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna.

    PubMed

    Hall, Matthew D; Ebert, Dieter

    2012-08-22

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.

  6. Host specificity in parasitic plants—perspectives from mistletoes

    PubMed Central

    Okubamichael, Desale Y.; Griffiths, Megan E.; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe–host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal–plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. PMID:27658817

  7. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    PubMed Central

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  8. Host and parasite morphology influence congruence between host and parasite phylogenies.

    PubMed

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Migratory behavior of birds affects their coevolutionary relationship with blood parasites.

    PubMed

    Jenkins, Tania; Thomas, Gavin H; Hellgren, Olof; Owens, Ian P F

    2012-03-01

    Host traits, such as migratory behavior, could facilitate the dispersal of disease-causing parasites, potentially leading to the transfer of infections both across geographic areas and between host species. There is, however, little quantitative information on whether variation in such host attributes does indeed affect the evolutionary outcome of host-parasite associations. Here, we employ Leucocytozoon blood parasites of birds, a group of parasites closely related to avian malaria, to study host-parasite coevolution in relation to host behavior using a phylogenetic comparative approach. We reconstruct the molecular phylogenies of both the hosts and parasites and use cophylogenetic tools to assess whether each host-parasite association contributes significantly to the overall congruence between the two phylogenies. We find evidence for a significant fit between host and parasite phylogenies in this system, but show that this is due only to associations between nonmigrant parasites and their hosts. We also show that migrant bird species harbor a greater genetic diversity of parasites compared with nonmigrant species. Taken together, these results suggest that the migratory habits of birds could influence their coevolutionary relationship with their parasites, and that consideration of host traits is important in predicting the outcome of coevolutionary interactions. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  10. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success

    PubMed Central

    Alacid, Elisabet; Park, Myung G.; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If, however, highly susceptible hosts are absent from the community, the parasitoid population could suffer a dilution effect maintaining a lower parasitoid density. Therefore, both host community structure and host susceptibility will determine infectivity in the field. PMID:27252688

  11. Effects of long non-coding RNA HOST2 on cell migration and invasion by regulating MicroRNA let-7b in breast cancer.

    PubMed

    Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting

    2018-06-01

    The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.

  12. Patient-reported outcomes and health status associated with chronic graft-versus-host disease.

    PubMed

    Lee, Stephanie J; Onstad, Lynn; Chow, Eric J; Shaw, Bronwen E; Jim, Heather S L; Syrjala, Karen L; Baker, K Scott; Buckley, Sarah; Flowers, Mary E

    2018-06-01

    Chronic graft-versus-host disease occurs in 20-50% of allogeneic hematopoietic cell transplantation survivors. We surveyed patients about their quality of life, symptoms, health status, comorbid conditions and medication. Instruments included the Short-Form-36 (SF-36), the Patient-Reported Outcomes Measurement Information System (PROMIS) Global and PROMIS-29 scales and the Lee Chronic Graft-versus-Host Disease Symptom Scale. Functional status was measured by self-reported Karnofsky and work status. Of 3027 surveys sent to recipients surviving one or more years after transplantation, 1377 (45%) were returned. Among these, patients reported their chronic graft-versus-host disease was mild (n=257, 18.7%), moderate (n=110, 8.0%) or severe (n=25, 1.8%). Another 377 (27.4%) never had chronic graft-versus-host disease and 280 (20.3%) had chronic graft-versus-host disease but it resolved. We excluded 328 (23.8%) who did not answer the questions about chronic graft-versus-host disease. Patients who reported moderate or severe chronic graft-versus-host disease reported worse quality of life, lower performance status, a higher symptom burden and were more likely to be taking prescription medications for pain, anxiety and depression compared to those with resolved chronic graft-versus-host disease. Self-reported measures were similar between patients with resolved chronic graft-versus-host disease and those who never had it. Our data suggest that the PROMIS measures may be able to replace the SF-36 in chronic graft-versus-host disease assessment. Between 26.7-39.4% of people with active chronic graft-versus-host disease were unable to work due to health reasons, compared with 12.1% whose chronic graft-versus-host disease had resolved and 15.4% who never had chronic graft-versus-host disease. Mouth, eye and nutrition symptoms persisted after resolution of chronic graft-versus-host disease. These results show that better prevention of and treatment for chronic graft-versus-host disease is needed to improve survivorship after allogeneic transplantation. Copyright © 2018, Ferrata Storti Foundation.

  13. Host-parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites.

    PubMed Central

    Sorci, G; Morand, S; Hugot, J P

    1997-01-01

    The environmental factors that drive the evolution of parasite life histories are mostly unknown. Given that hosts provide the principal environmental features parasites have to deal with, and given that these features (such as resource availability and immune responses) are well characterized by the life history of the host, we may expect natural selection to result in covariation between parasite and host life histories. Moreover, some parasites show a high degree of host specificity, and cladistic analyses have shown that host and parasite phylogenies can be highly congruent. These considerations suggest that parasite and host life histories may covary. The central argument in the theory of life history evolution concerns the existence of trade-offs between traits. For parasitic nematodes it has been shown that larger body sizes induce higher fecundity, but this is achieved at the expense of delayed maturity. As high adult mortality would select for reduced age at maturity, the selective benefit of increased fecundity is expressed only if adult mortality is low. Parasite adult mortality may depend on a number of factors, including host longevity. Here we tested the hypothesis concerning the positive covariation between parasite body size (which reflects parasite longevity) and host longevity. To achieve this goal, we used the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Oxyurids are highly host specific and are supposed to be involved in a coevolutionary process with their hosts. We found that female parasite body length was positively correlated with host longevity after correcting for phylogeny and host body mass. Conversely, male parasite body length and host longevity were not correlated. These results confirm that host longevity may represent a constraint on the evolution of body size in oxyurids, at least in females. The discrepancy between female and male oxyurids is likely to depend on the particular mode of reproduction of this taxon (haplodiploidy), which should result in weak (or even null) selection pressures to an increase of body size in males. PMID:9061975

  14. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins

    USDA-ARS?s Scientific Manuscript database

    Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...

  15. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics.

    PubMed

    Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn

    2018-02-01

    The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

  16. Gut Microbiota and IGF-1.

    PubMed

    Yan, Jing; Charles, Julia F

    2018-04-01

    Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.

  17. Prevalence of avian haemosporidian parasites is positively related to the abundance of host species at multiple sites within a region.

    PubMed

    Ellis, Vincenzo A; Medeiros, Matthew C I; Collins, Michael D; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2017-01-01

    Parasite prevalence is thought to be positively related to host population density owing to enhanced contagion. However, the relationship between prevalence and local abundance of multiple host species is underexplored. We surveyed birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) at multiple sites across eastern North America to test whether the prevalence of these parasites in a host species at a particular site is related to that host's local abundance. Prevalence was positively related to host abundance within most sites, although the effect was stronger and more consistent for Plasmodium than for Haemoproteus. In contrast, prevalence was not related to variation in the abundance of most individual host species among sites across the region. These results suggest that parasite prevalence partly reflects the relative abundances of host species in local assemblages. However, three nonnative host species had low prevalence despite being relatively abundant at one site, as predicted by the enemy release hypothesis.

  18. Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour

    PubMed Central

    Sato, Nozomu J.; Tokue, Kihoko; Noske, Richard A.; Mikami, Osamu K.; Ueda, Keisuke

    2010-01-01

    As avian brood parasitism usually reduces hosts' reproductive success, hosts often exhibit strong defence mechanisms. While such host defences at the egg stage (especially egg rejection) have been extensively studied, defence mechanisms at the nestling stage have been reported only recently. We found a previously unknown anti-parasitism behaviour in the large-billed Gerygone, which is a host species of the little bronze-cuckoo, a host-evicting brood parasite. The hosts forcibly pulled resisting nestlings out of their nests and dumped them. Although it has been suggested that defence mechanisms at the nestling stage may evolve when host defence at the egg stage is evaded by the parasite, the studied host seems to lack an anti-parasitism strategy at the egg stage. This suggests that the evolutionary pathway may be quite different from those of previously studied cuckoo–host systems. Future research on this unique system may give us new insights into the evolution of avian brood parasitism. PMID:19776068

  19. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  20. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  1. Stress responses in Streptococcus species and their effects on the host.

    PubMed

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  2. Habitat heterogeneity drives the host diversity-begets-parasite diversity relationship: evidence from experimental and field studies

    PubMed Central

    Johnson, Pieter T. J.; Wood, Chelsea L.; Joseph, Maxwell B.; Preston, Daniel L.; Haas, Sarah E.; Springer, Yuri P.

    2016-01-01

    Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8,100 amphibian hosts with an outdoor experiment that tested theory developed for free-living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e., host) heterogeneity, with secondary contributions from parasite colonization and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonization and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species-area curves: while host richness quickly saturated, parasite richness continued to increase with neighborhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi-scale disease research. PMID:27147106

  3. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    PubMed

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  4. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    PubMed

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Population abundance of Frankliniella occidentalis (Thysanoptera: Thripidae) and natural enemies on plant hosts in central Chile.

    PubMed

    Ripa, Renato; Funderburk, Joe; Rodriguez, Fernando; Espinoza, Fernanda; Mound, Laurence

    2009-04-01

    Populations of the invasive Frankliniella occidentalis (Pergande) are serious pests of agricultural crops in the Aconcagua Valley of central Chile. An extensive survey was conducted of 55 plant species in 24 families to identify plant hosts of F. occidentalis and to determine its relative abundance on each host during each season. A more intensive study was conducted on selected plant species serving as reproductive hosts to determine the population dynamics of F. occidentalis and to evaluate the potential importance of Orius species and other natural enemies for controlling F. occidentalis. Adults of F. occidentalis were active during each season of the year inhabiting the flowers of 91% of the sampled plant species in 22 families, and 86% of these plant species in 19 families served as reproductive hosts. The number of host plant species used was greatest in the spring and least in the winter. All of the hosts except Medicago sativa L. were used only when flowering. Populations of F. occidentalis were significantly aggregated in M. sativa in the terminal buds over the leaves when the host was not flowering, and in the flowers, followed by the terminal buds, followed by the leaves when the host was flowering. Larvae were 1.3-2.3 times more abundant on dates when M. sativa was flowering. There were no identifiable patterns in plant hosts based on endemicity or plant family. Most of the plant species used by F. occidentalis were inferior quality hosts where populations either declined or were stable. Populations of F. occidentalis on low-quality hosts generally escaped predation by Orius species and competition by other species of thrips. Only 25% of the food hosts and 28% of the reproductive hosts for F. occidentalis in the extensive survey, respectively, were host plants for Orius. Parasitoids and other predators were not found to be important in suppressing thrips on any of the plant hosts. Populations of F. occidentalis increased on only a few hosts, including M. sativa and Sisymbrium officinale L. Scop. These apparently are major sources of F. occidentalis adults invading crops. We conclude that F. occidentalis is established in central Chile and that it has replaced and possibly displaced the native Frankliniella australis (Morgan) as the most common thrips species.

  6. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology

    PubMed Central

    DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.

    2015-01-01

    ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. PMID:26656710

  7. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish.

    PubMed

    Barber, I; Scharsack, J P

    2010-03-01

    Plerocercoids of the pseudophyllidean cestode Schistocephalus solidus infect the three-spined stickleback Gasterosteus aculeatus, with important consequences for the biology of host fish. Techniques for culturing the parasite in vitro and generating infective stages that can be used to infect sticklebacks experimentally have been developed, and the system is increasingly used as a laboratory model for investigating aspects of host-parasite interactions. Recent experimental laboratory studies have focused on the immune responses of hosts to infection, the consequences of infection for the growth and reproductive development of host fish and the effects of infection on host behaviour. Here we introduce the host and the parasite, review the major findings of these recent experimental infection studies and identify further aspects of host parasite interactions that might be investigated using the system.

  8. The Drosophila melanogaster host model

    PubMed Central

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  9. The Drosophila melanogaster host model.

    PubMed

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  10. A history of studies that examine the interactions of Toxoplasma with its host cell: Emphasis on in vitro models.

    PubMed

    Boyle, Jon P; Radke, Jay R

    2009-07-01

    This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.

  11. A chemical arms race at sea mediates algal host-virus interactions.

    PubMed

    Bidle, Kay D; Vardi, Assaf

    2011-08-01

    Despite the critical importance of viruses in shaping marine microbial ecosystems and lubricating upper ocean biogeochemical cycles, relatively little is known about the molecular mechanisms mediating phytoplankton host-virus interactions. Recent work in algal host-virus systems has begun to shed novel insight into the elegant strategies of viral infection and subcellular regulation of cell fate, which not only reveal tantalizing aspects of viral replication and host resistance strategies but also provide new diagnostic tools toward elucidating the impact of virus-mediated processes in the ocean. Widespread lateral gene transfer between viruses and their hosts plays a prominent role in host-virus diversification and in the regulation of host-virus infection mechanisms by allowing viruses to manipulate and 'rewire' host metabolic pathways to facilitate infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Proteomic Characterization of Host Response to Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Perkins, J; Heidbrink, J

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less

  13. Effect of the digenean parasites of fish on the fauna of Mediterranean lagoons.

    PubMed

    Bartoli, P; Boudouresque, C F

    2007-09-01

    Attention is drawn to the effects of parasites on their hosts, taking as a model the digenean parasites of teleosts (hereafter: fish) from lagoons along the French Mediterranean coast. Because digeneans have a heteroxenic life cycle, their impact is not limited to the definitive host, which harbours the sexual adults, but is extended to the first host (mollusc) and to the second host ("invertebrate" or fish). Adult parasites, in order to ensure efficient sexual reproduction, never cause excessive damage to their definitive host, usually only exploiting the intestinal fluids; however, the host must intensify its search for prey, which results in a diminished fitness. Within the first host, 'larval' stages of digenean parasites invade the gonads, resulting in its castration, then exhaustion and eventually death. The diversion of energy from the second hosts towards the parasites forces them to intensify their search for food, resulting in decreased fitness and an increased risk of being eaten; in addition, manipulation of the host's behaviour by parasites drives this host into the food chain of the definitive host. In lagoons, many individuals of almost all species of fish and invertebrates act as first, second and/or definitive hosts for digeneans. Obviously, parasites have a severe impact on the population dynamics of key taxa, on the food web and therefore also on the functioning of the whole lagoon ecosystem. Yet this impact has been largely overlooked or underestimated in functioning models, by ecologists, who tend to prioritize more apparent trophic relationships.

  14. Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies.

    PubMed

    Zhu, Feng; Weldegergis, Berhane T; Lhie, Boris; Harvey, Jeffrey A; Dicke, Marcel; Poelman, Erik H

    2014-09-01

    Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a group of parasitoids that parasitize the larvae and pupae of other parasitoids, is more constrained. Their hosts do not feed on plants, and often are even concealed inside the body of the herbivore host. Hyperparasitoids recently have been found to use HIPVs of plants damaged by herbivore hosts in which the parasitoid larvae develop. However, hyperparasitoids that search for these parasitoid larvae may be confronted with healthy and parasitized caterpillars on the same plant, further complicating their host location. In this study, we addressed whether the primary hyperparasitoid Baryscapus galactopus uses caterpillar body odors to discriminate between unparasitized herbivores and herbivores carrying larvae of parasitoid hosts. We show that the hyperparasitoids made faster first contact and spent a longer mounting time with parasitized caterpillars. Moreover, although the three parasitoid hosts conferred different fitness values for the development of B. galactopus, the hyperparasitoids showed similar behavioral responses to caterpillar hosts carrying different primary parasitoid hosts. In addition, a two-chamber olfactometer assay revealed that volatiles emitted by parasitized caterpillars were more attractive to the hyperparasitoids than those emitted by unparasitized caterpillars. Analysis of volatiles revealed that body odors of parasitized caterpillars differ from unparasitized caterpillars, allowing the hyperparasitoids to detect their parasitoid host.

  15. Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    PubMed Central

    Sarmady, Mahdi; Dampier, William; Tozeren, Aydin

    2011-01-01

    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584

  16. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    USGS Publications Warehouse

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  17. Phylogenetics of Australasian gall flies (Diptera: Fergusoninidae): Evolutionary patterns of host-shifting and gall morphology.

    PubMed

    Scheffer, S J; Davies, K A; Taylor, G S; Thornhill, A H; Lewis, M L; Winkler, I S; Yeates, D K; Purcell, M F; Makinson, J; Giblin-Davis, R M

    2017-10-01

    This study investigated host-specificity and phylogenetic relationships in Australian galling flies, Fergusonina Malloch (Diptera: Fergusoninidae), in order to assess diversity and explore the evolutionary history of host plant affiliation and gall morphology. A DNA barcoding approach using COI data from 203 Fergusonina specimens from 5gall types on 56 host plant species indicated 85 presumptive fly species. These exhibited a high degree of host specificity; of the 40 species with multiple representatives, each fed only on a single host genus, 29 (72.5%) were strictly monophagous, and 11 (27.5%) were reared from multiple closely related hosts. COI variation within species was not correlated with either sample size or geographic distance. However variation was greater within oligophagous species, consistent with expectations of the initial stages of host-associated divergence during speciation. Phylogenetic analysis using both nuclear and mitochondrial genes revealed host genus-restricted clades but also clear evidence of multiple colonizations of both host plant genus and host species. With the exception of unilocular peagalls, evolution of gall type was somewhat constrained, but to a lesser degree than host plant association. Unilocular peagalls arose more often than any other gall type, were primarily located at the tips of the phylogeny, and did not form clades comprising more than a few species. For ecological reasons, species of this gall type are predicted to harbor substantially less genetic variation than others, possibly reducing evolutionary flexibility resulting in reduced diversification in unilocular gallers. Published by Elsevier Inc.

  18. Ionotropic receptors signal host recognition in the salmon louse (Lepeophtheirus salmonis, Copepoda).

    PubMed

    Komisarczuk, Anna Z; Grotmol, Sindre; Nilsen, Frank

    2017-01-01

    A remarkable feature of many parasites is a high degree of host specificity but the mechanisms behind are poorly understood. A major challenge for parasites is to identify and infect a suitable host. Many species show a high degree of host specificity, being able to survive only on one or a few related host species. To facilitate transmission, parasite's behavior and reproduction has been fine tuned to maximize the likelihood of infection of a suitable host. For some species chemical cues that trigger or attract the parasite in question have been identified but how metazoan parasites themselves receive these signals remains unknown. In the present study we show that ionotropic receptors (IRs) in the salmon louse are likely responsible for identification of a specific host. By using RNAi to knock down the expression level of different co-receptors, a significant change of infectivity and settlement of lice larvae was achieved on Atlantic salmon. More remarkably, knock down of the IRs changed the host specificity of the salmon louse and lice larvae settled at a significant rate on host that the wild type lice rejected within minutes. To our knowledge, this has never before been demonstrated for any metazoan parasite. Our results show that the parasites are able to identify the host quickly upon settlement, settle and initiate the parasitic life style if they are on the right host. This novel discovery opens up for utilizing the host recognition system for future parasite control.

  19. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest.

    PubMed

    Hrcek, Jan; Miller, Scott E; Whitfield, James B; Shima, Hiroshi; Novotny, Vojtech

    2013-10-01

    The processes maintaining the enormous diversity of herbivore-parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84% of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5%) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar-parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2%) as exposed caterpillars.

  20. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature.

    PubMed Central

    D'Ettorre, P; Mondy, N; Lenoir, A; Errard, C

    2002-01-01

    Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching. PMID:12350253

  1. Ionotropic receptors signal host recognition in the salmon louse (Lepeophtheirus salmonis, Copepoda)

    PubMed Central

    Grotmol, Sindre; Nilsen, Frank

    2017-01-01

    A remarkable feature of many parasites is a high degree of host specificity but the mechanisms behind are poorly understood. A major challenge for parasites is to identify and infect a suitable host. Many species show a high degree of host specificity, being able to survive only on one or a few related host species. To facilitate transmission, parasite’s behavior and reproduction has been fine tuned to maximize the likelihood of infection of a suitable host. For some species chemical cues that trigger or attract the parasite in question have been identified but how metazoan parasites themselves receive these signals remains unknown. In the present study we show that ionotropic receptors (IRs) in the salmon louse are likely responsible for identification of a specific host. By using RNAi to knock down the expression level of different co-receptors, a significant change of infectivity and settlement of lice larvae was achieved on Atlantic salmon. More remarkably, knock down of the IRs changed the host specificity of the salmon louse and lice larvae settled at a significant rate on host that the wild type lice rejected within minutes. To our knowledge, this has never before been demonstrated for any metazoan parasite. Our results show that the parasites are able to identify the host quickly upon settlement, settle and initiate the parasitic life style if they are on the right host. This novel discovery opens up for utilizing the host recognition system for future parasite control. PMID:28582411

  2. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation

    PubMed Central

    Fabrin, Thomaz M. C.; Gasques, Luciano S.; Prioli, Sônia M. A. P.; Balbuena, Juan A.; Prioli, Alberto J.; Takemoto, Ricardo M.

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species. PMID:29538463

  3. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation.

    PubMed

    da Graça, Rodrigo J; Fabrin, Thomaz M C; Gasques, Luciano S; Prioli, Sônia M A P; Balbuena, Juan A; Prioli, Alberto J; Takemoto, Ricardo M

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species.

  4. Species coextinctions and the biodiversity crisis.

    PubMed

    Koh, Lian Pin; Dunn, Robert R; Sodhi, Navjot S; Colwell, Robert K; Proctor, Heather C; Smith, Vincent S

    2004-09-10

    To assess the coextinction of species (the loss of a species upon the loss of another), we present a probabilistic model, scaled with empirical data. The model examines the relationship between coextinction levels (proportion of species extinct) of affiliates and their hosts across a wide range of coevolved interspecific systems: pollinating Ficus wasps and Ficus, parasites and their hosts, butterflies and their larval host plants, and ant butterflies and their host ants. Applying a nomographic method based on mean host specificity (number of host species per affiliate species), we estimate that 6300 affiliate species are "coendangered" with host species currently listed as endangered. Current extinction estimates need to be recalibrated by taking species coextinctions into account.

  5. The role of host abundance in regulating populations of freshwater mussels with parasitic larvae

    Treesearch

    Wendell R. Haag; James A. Stoeckel

    2015-01-01

    Host–parasite theory makes predictions about the influence of host abundance, competition for hosts, and parasite transmission on parasite population size, but many of these predictions are not well tested empirically. We experimentally examined these factors in ponds using two species of freshwater mussels with parasitic larvae that infect host fishes via different...

  6. A Study of Covert Communications in Space Platforms Hosting Government Payloads

    DTIC Science & Technology

    2015-02-01

    possible adversarial actions (e.g., malicious software co- resident on the commercial host). Threats to the commercial supply chain are just one... supply chain to either create or exploit channel vulnerabilities. For government hosted payload missions, the critical payload data are encrypted...access to space by hosting government- supplied payloads on commercial space platforms. These commercially hosted payloads require stringent

  7. Early Access Program Using Alpha 1 Antitrypsin Infusion for Patients With Steroid Refractory Acute GvHD After Hematopoietic Stem Cell Transplantation (HSCT)

    ClinicalTrials.gov

    2017-05-29

    SR aGvHD; Acute-graft-versus-host Disease; Steroid Refractory Acute Graft Versus Host Disease; Graft-versus-host-disease; Graft Vs Host Disease; Alpha 1-Antitrypsin Deficiency; Alpha-1 Proteinase Inhibitor; Alpha-1 Protease Inhibitor Deficiency; Acute Graft-Versus-Host Reaction Following Bone Marrow Transplant

  8. How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences.

    PubMed

    Spottiswoode, Claire N; Stevens, Martin

    2011-12-07

    Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories.

  9. Preferential host switching and its relation with Hantavirus diversification in South America.

    PubMed

    Rivera, Paula C; González-Ittig, Raul E; Gardenal, Cristina N

    2015-09-01

    In recent years, the notion of co-speciation between Hantavirus species and their hosts was discarded in favour of a more likely explanation: preferential host switching. However, the relative importance of this last process in shaping the evolutionary history of hantaviruses remains uncertain, given the present limited knowledge not only of virus-host relationships but also of the pathogen and reservoir phylogenies. In South America, more than 25 hantavirus genotypes were detected; several of them act as aetiological agents of hantavirus pulmonary syndrome (HPS). An understanding of the diversity of hantaviruses and of the processes underlying host switching is critical since human cases of HPS are almost exclusively the result of human-host interactions. In this study, we tested if preferential host switching is the main process driving hantavirus diversification in South America, by performing a co-phylogenetic analysis of the viruses and their primary hosts. We also suggest a new level of amino acid divergence to define virus species in the group. Our results indicate that preferential host switching would not be the main process driving virus diversification. The historical geographical proximity among rodent hosts emerges as an alternative hypothesis to be tested.

  10. Disassembly of synthetic Agrobacterium T-DNA–protein complexes via the host SCFVBF ubiquitin–ligase complex pathway

    PubMed Central

    Zaltsman, Adi; Lacroix, Benoît; Gafni, Yedidya; Citovsky, Vitaly

    2013-01-01

    One the most intriguing, yet least studied, aspects of the bacterium–host plant interaction is the role of the host ubiquitin/proteasome system (UPS) in the infection process. Increasing evidence indicates that pathogenic bacteria subvert the host UPS to facilitate infection. Although both mammalian and plant bacterial pathogens are known to use the host UPS, the first prokaryotic F-box protein, an essential component of UPS, was identified in Agrobacterium. During its infection, which culminates in genetic modification of the host cell, Agrobacterium transfers its T-DNA—as a complex (T-complex) with the bacterial VirE2 and host VIP1 proteins—into the host cell nucleus. There the T-DNA is uncoated from its protein components before undergoing integration into the host genome. It has been suggested that the host UPS mediates this uncoating process, but there is no evidence indicating that this activity can unmask the T-DNA molecule. Here we provide support for the idea that the plant UPS uncoats synthetic T-complexes via the Skp1/Cullin/F-box protein VBF pathway and exposes the T-DNA molecule to external enzymatic activity. PMID:23248273

  11. The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths

    PubMed Central

    Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A.

    2014-01-01

    Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. PMID:25209937

  12. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease

    PubMed Central

    Hoberg, Eric P.; Brooks, Daniel R.

    2015-01-01

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014

  13. Co-infection does not predict disease signs in Gopherus tortoises

    PubMed Central

    Gov, Ryan; Sandmeier, Franziska C.; Snyder, Sarah J.; Tracy, C. Richard

    2017-01-01

    In disease ecology, the host immune system interacts with environmental conditions and pathogen properties to affect the impact of disease on the host. Within the host, pathogens may interact to facilitate or inhibit each other's growth, and pathogens interact with different hosts differently. We investigated co-infection of two Mycoplasma and the association of infection with clinical signs of upper respiratory tract disease in four congeneric tortoise host species (Gopherus) in the United States to detect differences in infection risk and disease dynamics in these hosts. Mojave Desert tortoises had greater prevalence of Mycoplasma agassizii than Texas tortoises and gopher tortoises, while there were no differences in Mycoplasma testudineum prevalence among host species. In some host species, the presence of each pathogen influenced the infection intensity of the other; hence, these two mycoplasmas interact differently within different hosts, and our results may indicate facilitation of these bacteria. Neither infection nor co-infection was associated with clinical signs of disease, which tend to fluctuate across time. From M. agassizii DNA sequences, we detected no meaningful differentiation of haplotypes among hosts. Experimental inoculation studies and recurrent resampling of wild individuals could help to decipher the underlying mechanisms of disease dynamics in this system. PMID:29134096

  14. Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.

    PubMed

    Foitzik, S; DeHeer, C J; Hunjan, D N; Herbers, J M

    2001-06-07

    Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host.

  15. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host.

    PubMed

    Heuer, Holger; Fox, Randal E; Top, Eva M

    2007-03-01

    IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.

  16. The role of moulting in parasite defence

    PubMed Central

    Duneau, David; Ebert, Dieter

    2012-01-01

    Parasitic infections consist of a succession of steps during which hosts and parasites interact in specific manners. At each step, hosts can use diverse defence mechanisms to counteract the parasite's attempts to invade and exploit them. Of these steps, the penetration of parasites into the host is a key step for a successful infection and the epithelium is the first line of host defence. The shedding of this protective layer (moulting) is a crucial feature in the life cycle of several invertebrate and vertebrate taxa, and is generally considered to make hosts vulnerable to parasites and predators. Here, we used the crustacean Daphnia magna to test whether moulting influences the likelihood of infection by the castrating bacterium Pasteuria ramosa. This parasite is known to attach to the host cuticula before penetrating into its body. We found that the likelihood of successful parasite infection is greatly reduced if the host moults within 12 h after parasite exposure. Thus, moulting is beneficial for the host being exposed to this parasite. We further show that exposure to the parasite does not induce hosts to moult earlier. We discuss the implications of our findings for host and parasite evolution and epidemiology. PMID:22496187

  17. The role of moulting in parasite defence.

    PubMed

    Duneau, David; Ebert, Dieter

    2012-08-07

    Parasitic infections consist of a succession of steps during which hosts and parasites interact in specific manners. At each step, hosts can use diverse defence mechanisms to counteract the parasite's attempts to invade and exploit them. Of these steps, the penetration of parasites into the host is a key step for a successful infection and the epithelium is the first line of host defence. The shedding of this protective layer (moulting) is a crucial feature in the life cycle of several invertebrate and vertebrate taxa, and is generally considered to make hosts vulnerable to parasites and predators. Here, we used the crustacean Daphnia magna to test whether moulting influences the likelihood of infection by the castrating bacterium Pasteuria ramosa. This parasite is known to attach to the host cuticula before penetrating into its body. We found that the likelihood of successful parasite infection is greatly reduced if the host moults within 12 h after parasite exposure. Thus, moulting is beneficial for the host being exposed to this parasite. We further show that exposure to the parasite does not induce hosts to moult earlier. We discuss the implications of our findings for host and parasite evolution and epidemiology.

  18. Computational approaches to predict bacteriophage–host relationships

    PubMed Central

    Edwards, Robert A.; McNair, Katelyn; Faust, Karoline; Raes, Jeroen; Dutilh, Bas E.

    2015-01-01

    Metagenomics has changed the face of virus discovery by enabling the accurate identification of viral genome sequences without requiring isolation of the viruses. As a result, metagenomic virus discovery leaves the first and most fundamental question about any novel virus unanswered: What host does the virus infect? The diversity of the global virosphere and the volumes of data obtained in metagenomic sequencing projects demand computational tools for virus–host prediction. We focus on bacteriophages (phages, viruses that infect bacteria), the most abundant and diverse group of viruses found in environmental metagenomes. By analyzing 820 phages with annotated hosts, we review and assess the predictive power of in silico phage–host signals. Sequence homology approaches are the most effective at identifying known phage–host pairs. Compositional and abundance-based methods contain significant signal for phage–host classification, providing opportunities for analyzing the unknowns in viral metagenomes. Together, these computational approaches further our knowledge of the interactions between phages and their hosts. Importantly, we find that all reviewed signals significantly link phages to their hosts, illustrating how current knowledge and insights about the interaction mechanisms and ecology of coevolving phages and bacteria can be exploited to predict phage–host relationships, with potential relevance for medical and industrial applications. PMID:26657537

  19. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  20. Salmonella Typhimurium and Multidirectional Communication in the Gut

    PubMed Central

    Gart, Elena V.; Suchodolski, Jan S.; Welsh, Thomas H.; Alaniz, Robert C.; Randel, Ronald D.; Lawhon, Sara D.

    2016-01-01

    The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut. PMID:27920756

  1. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT,more » NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of action.« less

  2. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    PubMed Central

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  3. Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

    PubMed Central

    Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou

    2011-01-01

    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls. PMID:21858041

  4. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. PMID:25738731

  5. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms.

    PubMed

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-03-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread.

  6. Cell Cycle-Dependent Phosphorylation of Theileria annulata Schizont Surface Proteins

    PubMed Central

    von Schubert, Conrad; Wastling, Jonathan M.; Heussler, Volker T.; Woods, Kerry L.

    2014-01-01

    The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state. PMID:25077614

  7. [A new parasitological index for the estimation of peculiarities of the relationships between parasite and its host, and biotope of the host].

    PubMed

    Bogdanov, I I; Chachina, S B; Korallo, N P; Dmitriev, V V

    2006-01-01

    A new parasitological index (hostal-topical index) for the estimation of the degree of ectoparasite's relationship with its host and biotope of the host is proposed: [formula: see text], where [formula: see text]--hostal-topical index; n--amount of ectoparasites of the given species on the given host species in the biotope; N--amount of ectoparasites of all species from the given taxonomic group on the given host species in the biotope; n1--amount of hosts of the given species in the biotope; N1--amount of hosts of all species from the given taxonomic group in the biotope; n2--amount of ectoparasites of the given species in the biotope; N2--amount of ectoparasites of all species from the given taxonomic group in the biotope. Values [formula: see text] < 0.1 indicate that there is a distinct relationship with the biotope in spite of the host; values fallen into the range 0.1 < [formula: see text] < 0.5 indicate a moderate relationship with the biotope through the host; values [formula: see text] > 0.5 indicate a significant relationship with the host. By means of this index we have analyzed peculiarity of several parasitic species of fleas and gamasid mites to their hosts, biotopes, and biotope through the host. As it was found on the materials from different native zones and subzones of the Omsk Region (Western Siberia, Russia), values of the hostal-topical index for polyhostal parasitic species are lesser than those for oligohostal species. Values of this index can be different for the same species in the different native zones and subzones as well as in the different biotopes of the same native zone (subzone).

  8. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies.

    PubMed

    Ben-Ami, F; Rigaud, T; Ebert, D

    2011-06-01

    In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  9. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    PubMed

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  11. Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.

    2013-01-01

    The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009–2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management. PMID:23527069

  12. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein

    PubMed Central

    Larkins-Ford, Jonah; McCormick, Craig; Gaglia, Marta M.

    2016-01-01

    Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5’->3’-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3’ end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus. PMID:26849127

  13. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    PubMed

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Indication for Co-evolution of Lactobacillus johnsonii with its hosts

    PubMed Central

    2012-01-01

    Background The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. Results A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Conclusions Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria. PMID:22827843

  15. Indication for Co-evolution of Lactobacillus johnsonii with its hosts.

    PubMed

    Buhnik-Rosenblau, Keren; Matsko-Efimov, Vera; Jung, Minju; Shin, Heuynkil; Danin-Poleg, Yael; Kashi, Yechezkel

    2012-07-25

    The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria.

  16. Host-guest complexes of local anesthetics with cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state

    NASA Astrophysics Data System (ADS)

    Danylyuk, Oksana; Butkiewicz, Helena; Coleman, Anthony W.; Suwinska, Kinga

    2017-12-01

    Here we describe the host-guest inclusion complexes of local anesthetic drugs with two macrocyclic hosts cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state. The anesthetic agents used in the co-crystallization with the supramolecular hosts are lidocaine, procaine, procainamide, prilocaine and proparacaine. Both macrocycles encapsulate the alkylammonium moieties of anestetics guests into their cavities although the mechanism of complexation, host-guest stoichiometry and geometry differ depending on the nature of the supramolecular host.

  17. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector

    PubMed Central

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-01-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. PMID:25247065

  18. Generalists at the interface: Nematode transmission between wild and domestic ungulates.

    PubMed

    Walker, Josephine G; Morgan, Eric R

    2014-12-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host-parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this question.

  19. Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents

    PubMed Central

    Lei, Bonnie R.; Olival, Kevin J.

    2014-01-01

    Background Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using Bartonella spp. and Leptospira spp. as a model. Methodology/Principal Findings We used published genetic data for 51 Bartonella genotypes from 24 bat species, 129 Bartonella from 38 rodents, and 26 Leptospira from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane. Bartonella spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m2 global value = 7.3320, P≤0.0001). Bartonella spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m2 global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in Leptospira and bats (ParaFitGlobal = 0.0042, P = 0.84; m2 global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts. Leptospira and bats had the greatest number of host switches per parasite (0.731), while Bartonella and rodents had the fewest (0.264). Conclusions/Significance In both bat and rodent hosts, Bartonella exhibits significant coevolution with minimal host switching, while Leptospira in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and their hosts will allow better prediction of spillover between mammal reservoirs, and ultimately to humans. PMID:24651646

  20. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    PubMed

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host insects as well as O. sinensis.

  1. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector.

    PubMed

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-08-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.

  2. Diversifying selection and host adaptation in two endosymbiont genomes

    PubMed Central

    Brownlie, Jeremy C; Adamski, Marcin; Slatko, Barton; McGraw, Elizabeth A

    2007-01-01

    Background The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. Results The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. Conclusion Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as well as nematode Wolbachia may be providing substances to hosts. Selection on cell envelope synthesis, DNA replication and repair machinery, heat shock, and two component switching suggest strategies insect Wolbachia may employ to cope with diverse host and intra-host environments. PMID:17470297

  3. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago

    2018-05-05

    Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  4. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  5. The host immunological response to cancer therapy: An emerging concept in tumor biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less

  6. How a haemosporidian parasite of bats gets around: the genetic structure of a parasite, vector and host compared.

    PubMed

    Witsenburg, F; Clément, L; López-Baucells, A; Palmeirim, J; Pavlinić, I; Scaravelli, D; Ševčík, M; Dutoit, L; Salamin, N; Goudet, J; Christe, P

    2015-02-01

    Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns. © 2015 John Wiley & Sons Ltd.

  7. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  8. Host specificity in parasitic plants-perspectives from mistletoes.

    PubMed

    Okubamichael, Desale Y; Griffiths, Megan E; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    PubMed

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.

  10. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    PubMed

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  12. Differential survival of Ichthyophonus isolates indicates parasite adaptation to its host environment

    USGS Publications Warehouse

    Hershberger, P.K.; Pacheco, C.A.; Gregg, J.L.; Purcell, M.K.; LaPatra, S.E.

    2008-01-01

    In vitro viability of Ichthyophonus spp. spores in seawater and freshwater corresponded with the water type of the host from which the spores were isolated. Among Ichthyophonus spp. spores from both marine and freshwater fish hosts (Pacific herring, Clupea pallasii, and rainbow trout, Oncorhynchus mykiss, respectively), viability was significantly greater (P < 0.05) after incubation in seawater than in freshwater at all time points from 1 to 60 min after immersion; however, magnitude of the spore tolerances to water type differed with host origin. Ichthyophonus sp. adaptation to its host environment was indicated by greater seawater tolerance of spores from the marine host and greater freshwater tolerance of spores from the freshwater host. Prolonged aqueous survival of Ichthyophonus spp. spores in the absence of a host provides insight into routes of transmission, particularly among planktivorous fishes, and should be considered when designing strategies to dispose of infected fish carcasses and tissues.

  13. The activation and suppression of plant innate immunity by parasitic nematodes.

    PubMed

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  14. Drinking at College Parties: Examining the Influence of Student Host-Status and Party-Location

    PubMed Central

    Buettner, Cynthia K.; Khurana, Atika; Slesnick, Natasha

    2011-01-01

    The present research focuses on the party related drinking behaviors of college students and explores the differences in these behaviors based on students’ host status (i.e. party host vs. party attendee). Furthermore, we examine if the differences in party hosts and attendees’ drinking behaviors vary as a function of the party location (on-campus vs. off-campus). Multiple regression analyses were conducted using data from 3,796 undergraduates at a Midwestern University. Findings revealed a significant interaction between host status and party location, such that student party hosts reported significantly greater drink consumption and related consequences as compared to party attendees, only when the party was organized off-campus. For parties organized on-campus, student hosts reported lower drink consumption as compared to attendees. College-based preventive interventions should target students likely to host off-campus parties due to their high risk for involvement in heavy drinking. PMID:21862229

  15. Host fish suitability for glochidia of Ligumia recta

    USGS Publications Warehouse

    Khym, J.R.; Layzer, J.B.

    2000-01-01

    In the early 1900s several hosts were identified for the black sandshell Ligumia recta. Recent attempts to propagate juvenile L. recta with two of the reported hosts (bluegill Lepomis macrochirus and largemouth bass Micropterus salmoides) have produced inconsistent results and few juveniles. We conducted this study to determine which of the reported hosts or other fish hosts were the most suitable for glochidial metamorphosis. The duration of glochidial metamorphosis varied among seasons. Despite similar water temperatures, juveniles metamorphosed sooner and over a shorter period of time in the spring than early fall; the modal day of metamorphosis differed by 78 d. Relatively few juveniles were recovered from bluegill and largemouth bass in three trials. White crappie Pomoxis annularis and black crappie P. nigromaculatus were marginally suitable hosts. Although glochidia encysted on all hosts, >10x more juveniles metamorphosed on sauger Stizostedion canadense compared to other hosts tested.

  16. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1996-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  17. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1997-12-09

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  18. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1999-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  19. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1996-08-06

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  20. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1997-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  1. Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes

    PubMed Central

    Rivas, Hembly G.; Schmaling, Summer K.; Gaglia, Marta M.

    2016-01-01

    The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation. PMID:27092522

  2. Variation in partner benefits in a shrimp—sea anemone symbiosis

    PubMed Central

    O’Donnell, James L.

    2015-01-01

    Symbiotic interactions, where two species occur in close physical proximity for the majority of the participants’ lifespans, may constrain the fitness of one or both of the participants. Host choice could result in lineage divergence in symbionts if fitness benefits vary across the interaction with hosts. Symbiotic interactions are common in the marine environment, particularly in the most diverse marine ecosystems: coral reefs. However, the variation in symbiotic interactions that may drive diversification is poorly understood in marine systems. We measured the fecundity of the symbiotic shrimp Periclimenes yucatanicus on two anemone hosts on coral reefs in Panama, and found that while fecundity varies among host species, this variation is explained largely by host size, not species. This suggests that shrimp on larger hosts may have higher fitness regardless of host species, which in turn could drive selection for host choice, a proposed driver of diversification in this group. PMID:26618082

  3. Climate change, phenology, and butterfly host plant utilization.

    PubMed

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  4. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    PubMed Central

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  5. Chlamydia Infection Across Host Species Boundaries Promotes Distinct Sets of Transcribed Anti-Apoptotic Factors

    PubMed Central

    Messinger, Joshua E.; Nelton, Emmalin; Feeney, Colleen; Gondek, David C.

    2015-01-01

    Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis) and respiratory associated disease (C. pneumoniae). The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the “arms race” of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs) elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases. PMID:26779446

  6. Nuclear magnetic resonance microscopy of the development of the parasitoid wasp Venturia canescens within its host moth Plodia interpunctella.

    PubMed

    Chudek, J A; Crook, A M; Hubbard, S F; Hunter, G

    1996-01-01

    Nuclear magnetic resonance microscopy was used to image the parasitoid wasp Venturia canescens (Hymenoptera: Ichneumonidae) within larval and pupal instars of its host, the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). The images were obtained using gradient-echo and chemical shift selective pulse sequences and clearly showed the location and shapes of the parasitoid as it developed from the L1 larva to a pupal stage within the host. The digestive, nervous, and tracheal systems of the host were identified and changes were observed as the host underwent metamorphosis. Destruction of the host tissues by the parasitoid was visible. It was found that the parasitoid first ate the fat body and digestive system of the host, allowing the host to continue to grow, and only progressed to the vital organs when its own development had neared pupation.

  7. Modulation of host cell function by Legionella pneumophila type IV effectors.

    PubMed

    Hubber, Andree; Roy, Craig R

    2010-01-01

    Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.

  8. Host modulation therapy: An indispensable part of perioceutics

    PubMed Central

    Gulati, Minkle; Anand, Vishal; Govila, Vivek; Jain, Nikil

    2014-01-01

    Traditionally, only antimicrobials have been used as the chemotherapeutic modality for the treatment of periodontitis. Though bacteria are the primary etiologic factors of periodontal diseases, yet the extent and severity of tissue destruction seen in periodontitis is determined by the host immuno-inflammatory response to these bacteria. This increasing awareness and knowledge of the host-microbial interaction in periodontal pathogenesis has presented the opportunity for exploring new therapeutic strategies for periodontitis by means of targeting host response via host-modulating agents. This has lead to the emergence of the field of “Perioceutics” i.e. the use of parmacotherapeutic agents including antimicrobial therapy as well as host modulatory therapy for the management of periodontitis. These host-modulating agents used as an adjunct tip the balance between periodontal health and disease progression in the direction of a healing response. In this article the host-modulating role of various systemically and locally delivered perioceutic agents will be reviewed. PMID:25024538

  9. Social Hackers: Integration in the Host Chemical Recognition System by a Paper Wasp Social Parasite

    NASA Astrophysics Data System (ADS)

    Turillazzi, S.; Sledge, M. F.; Dani, F. R.; Cervo, R.; Massolo, A.; Fondelli, L.

    Obligate social parasites in the social insects have lost the worker caste and the ability to establish nests. As a result, parasites must usurp a host nest, overcome the host recognition system, and depend on the host workers to rear their offspring. We analysed cuticular hydrocarbon profiles of live parasite females of the paper wasp social parasite Polistes sulcifer before and after usurpation of host nests, using the non-destructive technique of solid-phase micro-extraction. Our results reveal that hydrocarbon profiles of parasites change after usurpation of host nests to match the cuticular profile of the host species. Chemical evidence further shows that the parasite queen changes the odour of the nest by the addition of a parasite-specific hydrocarbon. We discuss the possible role of this in the recognition and acceptance of the parasite and its offspring in the host colony.

  10. Social hackers: integration in the host chemical recognition system by a paper wasp social parasite.

    PubMed

    Turillazzi, S; Sledge, M F; Dani, F R; Cervo, R; Massolo, A; Fondelli, L

    2000-04-01

    Obligate social parasites in the social insects have lost the worker caste and the ability to establish nests. As a result, parasites must usurp a host nest, overcome the host recognition system, and depend on the host workers to rear their offspring. We analysed cuticular hydrocarbon profiles of live parasite females of the paper wasp social parasite Polistes sulcifer before and after usurpation of host nests, using the non-destructive technique of solid-phase micro-extraction. Our results reveal that hydrocarbon profiles of parasites change after usurpation of host nests to match the cuticular profile of the host species. Chemical evidence further shows that the parasite queen changes the odour of the nest by the addition of a parasite-specific hydrocarbon. We discuss the possible role of this in the recognition and acceptance of the parasite and its offspring in the host colony.

  11. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    PubMed

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found that viral genes not only participated in most microbial metabolic pathways but also formed branched pathways in microbial metabolisms. The metabolic compensation of hosts mediated by viruses may help hosts to adapt to extreme environments and may be essential for host survival. Copyright © 2017 He et al.

  12. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.

  13. Symbiont interactions with non-native hosts limit the formation of new symbioses.

    PubMed

    Niepoth, Natalie; Ellers, Jacintha; Henry, Lee M

    2018-03-12

    Facultative symbionts are common in eukaryotes and can provide their hosts with significant fitness benefits. Despite the advantage of carrying these microbes, they are typically only found in a fraction of the individuals within a population and are often non-randomly distributed among host populations. It is currently unclear why facultative symbionts are only found in certain host individuals and populations. Here we provide evidence for a mechanism to help explain this phenomenon: that when symbionts interact with non-native host genotypes it can limit the horizontal transfer of symbionts to particular host lineages and populations of related hosts. Using reciprocal transfections of the facultative symbiont Hamiltonella defensa into different pea aphid clones, we demonstrate that particular symbiont strains can cause high host mortality and inhibit offspring production when injected into aphid clones other than their native host lineage. However, once established, the symbiont's ability to protect against parasitoids was not influenced by its origin. We then demonstrate that H. defensa is also more likely to establish a symbiotic relationship with aphid clones from a plant-adapted population (biotype) that typically carry H. defensa in nature, compared to clones from a biotype that does not normally carry this symbiont. These results provide evidence that certain aphid lineages and populations of related hosts are predisposed to establishing a symbiotic relationship with H. defensa. Our results demonstrate that host-symbiont genotype interactions represent a potential barrier to horizontal transmission that can limit the spread of symbionts, and adaptive traits they carry, to certain host lineages.

  14. Shifts in Host Range of a Promiscuous Plasmid through Parallel Evolution of its Replication Initiation Protein

    PubMed Central

    Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.

    2011-01-01

    The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653

  15. What Is a Host? Incorporating the Microbiota into the Damage-Response Framework

    PubMed Central

    Pirofski, Liise-anne

    2014-01-01

    Since proof of the germ theory of disease in the late 19th century, a major focus of the fields of microbiology and infectious diseases has been to seek differences between pathogenic and nonpathogenic microbes and the role that the host plays in microbial pathogenesis. Remarkably, despite the increasing recognition that host immunity plays a role in microbial pathogenesis, there has been little discussion about what constitutes a host. Historically, hosts have been viewed in the context of their fitness or immunological status and characterized by adjectives such as immune, immunocompetent, immunosuppressed, immunocompromised, or immunologically impaired. However, in recent years it has become apparent that the microbiota has profound effects on host homeostasis and susceptibility to microbial diseases in addition to its effects on host immunity. This raises the question of how to incorporate the microbiota into defining a host. This definitional problem is further complicated because neither host nor microbial properties are adequate to predict the outcome of host-microbe interaction because this outcome exhibits emergent properties. In this essay, we revisit the damage-response framework (DRF) of microbial pathogenesis and demonstrate how it can incorporate the rapidly accumulating information being generated by the microbiome revolution. We use the tenets of the DRF to put forth the following definition of a host: a host is an entity that houses an associated microbiome/microbiota and interacts with microbes such that the outcome results in damage, benefit, or indifference, thus resulting in the states of symbiosis, colonization, commensalism, latency, and disease. PMID:25385796

  16. Evidence for passive chemical camouflage in the parasitic mite Varroa destructor.

    PubMed

    Kather, Ricarda; Drijfhout, Falko P; Shemilt, Sue; Martin, Stephen J

    2015-02-01

    Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite's odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9 h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.

  17. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution.

    PubMed

    Hayward, Alexander; Cornwallis, Charlie K; Jern, Patric

    2015-01-13

    Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host-retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host-virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host-viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host-virus coevolution better.

  18. Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus.

    PubMed

    Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M

    2010-03-09

    Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.

  19. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  20. Comparative Analysis of Drosophila melanogaster Gut Microbiota with Respect to Host Strain, Sex, and Age.

    PubMed

    Han, Gangsik; Lee, Hyo Jung; Jeong, Sang Eun; Jeon, Che Ok; Hyun, Seogang

    2017-07-01

    Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.

  1. Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil

    PubMed Central

    Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida e; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; dos Santos, Benedito Baptista

    2015-01-01

    Abstract Background Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. New information We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes. PMID:26696767

  2. Bacterial pathogen manipulation of host membrane trafficking.

    PubMed

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  3. New records with examples of potential host colonization events for hypopi (Acari: Hypoderatidae) from birds

    USGS Publications Warehouse

    Pence, Danny B.; Spalding, M.G.; Bergan, J.F.; Cole, Rebecca A.

    1997-01-01

    New host, geographic records, or both are established for 14 species of hypoderatid deutonymphs from 14 species of birds in North America. Ten of these records are regarded as examples of a potential host colonization event where these hypopi have become established in hosts other than those with which they are normally associated. Herein, potential host colonization events by hypoderatid deutonymphs are regarded as more of an ecologically determined than physiologically specific phenomenon, often specifically related to sharing of nesting sites in the same rookeries by different host taxa. Neottialges ibisicola Young & Pence is placed as a junior synonym of Neottialges plegadicola Fain. The taxonomic status of Hypodectes propus from columbid versus ardeid hosts needs further study.

  4. Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil.

    PubMed

    de Araújo, Walter Santos; Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida E; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; Dos Santos, Benedito Baptista

    2015-01-01

    Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes.

  5. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. PMID:28148785

  6. Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network

    PubMed Central

    Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.

    2013-01-01

    A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832

  7. Resource predictability and specialization in avian malaria parasites.

    PubMed

    Svensson-Coelho, Maria; Loiselle, Bette A; Blake, John G; Ricklefs, Robert E

    2016-09-01

    We tested the hypothesis that avian haemosporidian (malaria) parasites specialize on hosts that can be characterized as predictable resources at a site in Amazonian Ecuador. We incorporated host phylogenetic relationship and relative abundance in assessing parasite specialization, and we examined associations between parasite specialization and three host characteristics - abundance, mass and longevity - using quantile regression, phylogenetic logistic regression and t-tests. Hosts of specialist malaria parasite lineages were on average more abundant than hosts of generalist parasite lineages, but the relationship between host abundance and parasite specialization was not consistent across analyses. We also found support for a positive association between parasite specialization and host longevity, but this also was not consistent across analyses. Nonetheless, our findings suggest that the predictability of a host resource may play a role in the evolution of specialization. However, we also discuss two alternative explanations to the resource predictability hypothesis for specialization: (i) that interspecific interactions among the parasites themselves might constrain some parasites to a specialist strategy, and (ii) that frequent encounters with multiple host species, mediated by blood-sucking insects, might promote generalization within this system. © 2016 John Wiley & Sons Ltd.

  8. Applications of biological control in resistant host-pathogen systems.

    PubMed

    White, Steven M; White, K A Jane

    2005-09-01

    Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.

  9. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.

    PubMed

    Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R

    2016-10-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  10. Ecomorphology of parasite attachment: experiments with feather lice.

    PubMed

    Bush, Sarah E; Sohn, Edward; Clayton, Dale H

    2006-02-01

    The host specificity of some parasites can be reinforced by morphological specialization for attachment to mobile hosts. For example, ectoparasites with adaptations for attaching to hosts of a particular size might not be able to remain attached to larger or smaller hosts. This hypothesis is suggested by the positive correlation documented between the body sizes of many parasites and their hosts. We adopted an ecomorphological approach to test the attachment hypothesis. We tested the ability of host-specific feather lice (Phthiraptera: Ischnocera) to attach to 6 novel species of pigeons and doves that vary in size by nearly 2 orders of magnitude. Surprisingly, Rock Pigeon lice (Columbicola columbae) remained attached equally well to all 6 novel host species. We tested the relative importance of 3 factors that could facilitate louse attachment: whole-body insertion, tarsal claw use, and mandible use. Insertion, per se, was not necessary for attachment. However, insertion on coarse feathers of large hosts allowed lice to access feather barbules with their mandibles. Mandible use was a key component of attachment regardless of feather size. Attachment constraints do not appear to reinforce host specificity in this system.

  11. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Chen; Fang, Taotao; Wang, Junfeng

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright,more » optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.« less

  12. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.

    PubMed

    Pelosse, Perrine; Kribs-Zaleta, Christopher M

    2012-11-07

    Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector-host ratios and that the vector-host ratio is between the two saturation thresholds. Even if data on parasite strategies and demography of hosts and vectors in the field are crucially lacking to test to what extent the conditions needed for the vector-host ratio to influence evolution of transmission modes are plausible, our results open new perspectives for understanding the specialization of the two major T. cruzi strains occurring in the U.S. Our work also provides an original theoretical framework to investigate the evolution of alternative transmission modes in vector-borne diseases.

  13. Variation in a Host-Parasitoid Interaction across Independent Populations.

    PubMed

    van Nouhuys, Saskya; Niemikapee, Suvi; Hanski, Ilkka

    2012-12-05

    Antagonistic relationships between parasitoids and their insect hosts involve multiple traits and are shaped by their ecological and evolutionary context. The parasitoid wasp Cotesia melitaearum and its host butterfly Melitaea cinxia occur in several locations around the Baltic sea, with differences in landscape structure, population sizes and the histories of the populations. We compared the virulence of the parasitoid and the susceptibility of the host from five populations in a reciprocal transplant-style experiment using the progeny of five independent host and parasitoid individuals from each population. The host populations showed significant differences in the rate of encapsulation and parasitoid development rate. The parasitoid populations differed in brood size, development rate, pupal size and adult longevity. Some trait differences depended on specific host-parasitoid combinations, but neither species performed systematically better or worse in experiments involving local versus non-local populations of the other species. Furthermore, individuals from host populations with the most recent common ancestry did not perform alike, and there was no negative effect due to a history of inbreeding in the parasitoid. The complex pattern of variation in the traits related to the vulnerability of the host and the ability of the parasitoid to exploit the host may reflect multiple functions of the traits that would hinder simple local adaptation.

  14. The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths.

    PubMed

    Benesh, Daniel P; Chubb, James C; Parker, Geoff A

    2014-10-22

    Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi

    2016-01-01

    Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274

  16. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Transgenerational acclimatization in an herbivore–host plant relationship

    PubMed Central

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore–host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F1) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore–host plant interaction. PMID:23407834

  18. Host specificity of Argulus coregoni (Crustacea: Branchiura) increases at maturation.

    PubMed

    Mikheev, V N; Pasternak, A F; Valtonen, E T

    2007-11-01

    We tested the hypothesis that host specificity in ectoparasites does not depend exclusively on the features of the host but also on surrounding habitats, using 2 fish ectoparasites, Argulus coregoni and A. foliaceus (Crustacea: Branchiura), occurring sympatrically in Finnish lakes. Although these parasites are considered to be of low specificity, we found that the larger of the 2 species, A. coregoni developed a pronounced preference for salmonid hosts at the beginning of maturation (defined by the presence of copulating specimens). Argulus foliaceus infects a much wider range of fish hosts. We showed that specialization of A. coregoni on salmonids does not necessarily result from incompatibility with other fishes, but could instead reflect higher sensitivity of oxygen depletion compared with A. foliaceus. Adult A. coregoni may meet these demands by attaching to salmonids, the typical inhabitants of well-aerated waters. Young parasites of both species showed little host specificity and attached mainly to fishes with higher body reflectivity. In host choice experiments, A. coregoni of 4-5 mm length preferred salmonids (rainbow trout) to cyprinids (roach) irrespective of the type of fish host, on which it had been previously grown in the laboratory. We suggest that such an innate ontogenetic shift in host preference maintains the major part of the parasite population on its principal host, ensuring successful reproduction within suitable habitats.

  19. Molecular basis of recognition between phytophthora pathogens and their hosts.

    PubMed

    Tyler, Brett M

    2002-01-01

    Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.

  20. Host specificity, phenotype matching and the evolution of reproductive isolation in a coevolved plant-pollinator mutualism.

    PubMed

    Himler, Anna G; Machado, Carlos A

    2009-12-01

    Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant-pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant-pollinator mutualisms.

  1. Biogeographical region and host trophic level determine carnivore endoparasite richness in the Iberian Peninsula.

    PubMed

    Rosalino, L M; Santos, M J; Fernandes, C; Santos-Reis, M

    2011-05-01

    We address the question of whether host and/or environmental factors might affect endoparasite richness and distribution, using carnivores as a model. We reviewed studies published in international peer-reviewed journals (34 areas in the Iberian Peninsula), describing parasite prevalence and richness in carnivores, and collected information on site location, host bio-ecology, climate and detected taxa (Helminths, Protozoa and Mycobacterium spp.). Three hypotheses were tested (i) host based, (ii) environmentally based, and (iii) hybrid (combination of environmental and host). Multicollinearity reduced candidate variable number for modelling to 5: host weight, phylogenetic independent contrasts (host weight), mean annual temperature, host trophic level and biogeographical region. General Linear Mixed Modelling was used and the best model was a hybrid model that included biogeographical region and host trophic level. Results revealed that endoparasite richness is higher in Mediterranean areas, especially for the top predators. We suggest that the detected parasites may benefit from mild environmental conditions that occur in southern regions. Top predators have larger home ranges and are likely to be subjected to cascading effects throughout the food web, resulting in more infestation opportunities and potentially higher endoparasite richness. This study suggests that richness may be more affected by historical and regional processes (including climate) than by host ecological processes.

  2. Models for integrated pest control and their biological implications.

    PubMed

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  3. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinis, S.; Gezari, S.; Kumar, S.

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less

  4. Mixed infections reveal virulence differences between host-specific bee pathogens.

    PubMed

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  5. Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.

    PubMed Central

    Foitzik, S.; DeHeer, C. J.; Hunjan, D. N.; Herbers, J. M.

    2001-01-01

    Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host. PMID:11375101

  6. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  7. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts.

    PubMed

    Koyama, Akihiro; Pietrangelo, Olivia; Sanderson, Laura; Antunes, Pedro M

    2017-08-01

    Little is known about the adaptive capacity of arbuscular mycorrhizal (AM) fungi to novel hosts. Here we assessed the possibility of two heterospecific AM fungal isolates to adaptively change, in terms of host biomass response, as a function of host plant identity, over the course of a growing season. First, we produced pure inocula of Rhizophagus clarus and Rhizophagus intraradices, each starting from a single spore. Second, we "trained" each isolate individually in a community with two plants, sudangrass (Sorgum bicolour subsp. drummondii) and leek (Aliium ampeloprasum var. porrum), using a dual-compartment system to allow the establishment of a common mycorrhizal network between the two hosts. Third, we conducted a greenhouse experiment to reciprocally test each "trained" clone, obtained from each compartment, either with the same (home), or the other host (away) under two contrasting phosphorus levels. Overall, results did not support adaptive responses of the AM fungi to their hosts (i.e., greater host biomass under "home" relative to "away" conditions), but the opposite (i.e., greater host biomass under "away" relative to "home" conditions) was more frequently observed. These changes in AM fungal symbiotic functioning open the possibility for relatively rapid genetic change of arbuscular mycorrhizal fungi in response to new hosts, which represents one step forward from in vitro experiments.

  8. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  9. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  10. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  11. Intraspecific competition: the role of lags between attack and death in host-parasitoid interactions.

    PubMed

    Cameron, T C; Metcalfe, D; Beckerman, A P; Sait, S M

    2007-05-01

    Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics.

  12. Parasite transmission in a natural multihost–multiparasite community

    PubMed Central

    2017-01-01

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata. Both parasites were capable of transmission from the reservoir host (Daphnia dentifera) to the spillover host (Ceriodaphnia dubia), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289264

  13. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems.

    PubMed

    Bell, T L; Adams, M A

    2011-01-01

    This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.

  14. Evolution of Host Defense against Multiple Enemy Populations.

    PubMed

    Toor, Jaspreet; Best, Alex

    2016-03-01

    Natural and managed populations are embedded within complex ecological communities, where they face multiple enemies. Experimental studies have shown that the evolution of host defense mechanisms to a focal enemy is impacted by the surrounding enemy community. Theoretically, the evolution of host defenses against a single enemy population, typically parasites, has been widely studied, but only recently has the impact of community interactions on host-parasite evolution been looked at. In this article, we theoretically examine the evolutionary behavior of a host population that must allocate defenses between two enemy populations, parasites and predators, with defense against one enemy constraining defense against the other. We show that in simpler models the composition of the enemy community plays the key role in determining the defense strategy of the hosts, with the hosts building up defenses against the enemy population posing a larger threat. However, this simple driver is shown to break down when there is significant recovery and reproduction from infected hosts. Additionally, we find that most host diversity is likely to occur when there is a combined high risk of infection and predation, in common with experimental studies. Our results therefore provide vital insight into the ecological feedbacks that drive the evolution of host defense against multiple enemy populations.

  15. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  16. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  17. The importance of pollen chemistry in evolutionary host shifts of bees

    PubMed Central

    Vanderplanck, Maryse; Vereecken, Nicolas J.; Grumiau, Laurent; Esposito, Fabiana; Lognay, Georges; Wattiez, Ruddy; Michez, Denis

    2017-01-01

    Although bee-plant associations are generally maintained through speciation processes, host shifts have occurred during evolution. Understanding shifts between both phylogenetically and morphologically unrelated plants (i.e., host-saltation) is especially important since they could have been key processes in the origin and radiation of bees. Probably far from being a random process, such host-saltation might be driven by hidden constraints associated with plant traits. We selected two clades of oligolectic bees (i.e., Colletes succinctus group and Melitta leporina group) foraging on co-flowering but unrelated host-plants to test this hypothesis. We analyzed floral scent, floral color and chemical composition of pollen from host and non-host plants of these two clades. We did not find evidence for host-plant evolution in the Melitta leporina group driven by one of the assayed floral traits. On the contrary, hosts of the C. succinctus group display similar primary nutritive content of pollen (i.e., amino acids and sterols) but not similar floral scent or color, suggesting that shared pollen chemistry probably mediates saltation in this clade. Our study revealed that constraints shaping floral associations are diverse and clearly depend on species life-history traits, but evidence suggests that pollen chemistry may act as a major floral filter and guide evolutionary host-shifts. PMID:28216663

  18. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  19. Transgenerational acclimatization in an herbivore-host plant relationship.

    PubMed

    Cahenzli, Fabian; Erhardt, Andreas

    2013-04-07

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore-host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F(1)) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore-host plant interaction.

  20. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection.

    PubMed

    Chen, Si Min; Shen, Hui; Zhang, Teng; Huang, Xin; Liu, Xiao Qi; Guo, Shi Yu; Zhao, Jing Jun; Wang, Chun Fang; Yan, Lan; Xu, Guo Tong; Jiang, Yuan Ying; An, Mao Mao

    2017-11-17

    Candida glabrata is the second most common pathogen of severe candidiasis in immunocompromised hosts, following C. albicans. Although C. glabrata and C. albicans belong to the same genus, they are phylogenetically distinct. C-type lectin receptors (CLRs), acting as pattern-recognition receptors (PRRs), play critical roles in host defense against C. albicans infections. However, our understanding of the specific roles of CLRs in host defense against C. glabrata is limited. Here, we explored the potential roles of the C-type lectins Dectin-1 and Dectin-2 in host defense against C. glabrata. We found that both Dectin-1-deficient mice (Dectin-1 -/- ) and Dectin-2-deficient mice (Dectin-2 -/- ) are more susceptible to C. glabrata infection. Dectin-1confers host higher sensitivity for sensing C. glabrata infections, while the effect of Dectin-2 in the host defense against C. glabrata is infection dose dependent. Dectin-1 is required for host myeloid cells recognition, killing of C. glabrata, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Significantly impaired inflammatory responses such as inflammatory cells recruitment and cytokines release that were induced by C. glabrata were manifested in Dectin-1-deficient mice. Together, our study demonstrates that Dectin-1 plays an important role in host defense against systemic Candida glabrata infections, indicating a previous unknown control mechanism for this particular type of infection in host. Our study, therefore, provides new insights into the host defense against C. glabrata.

  1. Host genetic variation impacts microbiome composition across human body sites.

    PubMed

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  2. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association.

    PubMed

    Franke, Frederik; Armitage, Sophie A O; Kutzer, Megan A M; Kurtz, Joachim; Scharsack, Jörn P

    2017-06-02

    Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite's temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite's 'foreign' temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures.

  3. Resource-driven changes to host population stability alter the evolution of virulence and transmission.

    PubMed

    Hite, Jessica L; Cressler, Clayton E

    2018-05-05

    What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  4. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History

    PubMed Central

    Brooks, Andrew W.; Kohl, Kevin D.; Brucker, Robert M.; van Opstal, Edward J.; Bordenstein, Seth R.

    2016-01-01

    Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions. PMID:27861590

  5. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    PubMed

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  6. Parent–offspring conflicts, “optimal bad motherhood” and the “mother knows best” principles in insect herbivores colonizing novel host plants

    PubMed Central

    García-Robledo, Carlos; Horvitz, Carol C

    2012-01-01

    Specialization of insect herbivores to one or a few host plants stimulated the development of two hypotheses on how natural selection should shape oviposition preferences: The “mother knows best” principle suggests that females prefer to oviposit on hosts that increase offspring survival. The “optimal bad motherhood” principle predicts that females prefer to oviposit on hosts that increase their own longevity. In insects colonizing novel host plants, current theory predicts that initial preferences of insect herbivores should be maladaptive, leading to ecological traps. Ecological trap theory does not take into account the fact that insect lineages frequently switch hosts at both ecological and evolutionary time scales. Therefore, the behavior of insect herbivores facing novel hosts is also shaped by natural selection. Using a study system in which four Cephaloleia beetles are currently expanding their diets from native to exotic plants in the order Zingiberales, we determined if initial oviposition preferences are conservative, maladaptive, or follow the patterns predicted by the “mother knows best” or the “optimal bad motherhood” principles. Interactions with novel hosts generated parent–offspring conflicts. Larval survival was higher on native hosts. However, adult generally lived longer on novel hosts. In Cephaloleia beetles, oviposition preferences are usually associated with hosts that increase larval survival, female fecundity, and population growth. In most cases, Cephaloleia oviposition preferences follow the expectations of the “mothers knows best” principle. PMID:22957153

  7. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  8. Modeling Occupancy of Hosts by Mistletoe Seeds after Accounting for Imperfect Detectability

    PubMed Central

    Fadini, Rodrigo F.; Cintra, Renato

    2015-01-01

    The detection of an organism in a given site is widely used as a state variable in many metapopulation and epidemiological studies. However, failure to detect the species does not necessarily mean that it is absent. Assessing detectability is important for occupancy (presence—absence) surveys; and identifying the factors reducing detectability may help improve survey precision and efficiency. A method was used to estimate the occupancy status of host trees colonized by mistletoe seeds of Psittacanthus plagiophyllus as a function of host covariates: host size and presence of mistletoe infections on the same or on the nearest neighboring host (the cashew tree Anacardium occidentale). The technique also evaluated the effect of taking detectability into account for estimating host occupancy by mistletoe seeds. Individual host trees were surveyed for presence of mistletoe seeds with the aid of two or three observers to estimate detectability and occupancy. Detectability was, on average, 17% higher in focal-host trees with infected neighbors, while decreased about 23 to 50% from smallest to largest hosts. The presence of mistletoe plants in the sample tree had negligible effect on detectability. Failure to detect hosts as occupied decreased occupancy by 2.5% on average, with maximum of 10% for large and isolated hosts. The method presented in this study has potential for use with metapopulation studies of mistletoes, especially those focusing on the seed stage, but also as improvement of accuracy in occupancy models estimates often used for metapopulation dynamics of tree-dwelling plants in general. PMID:25973754

  9. Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region.

    PubMed

    Baia, Raimundo Rosemiro Jesus; Florentino, Alexandro Cezar; Silva, Luís Maurício Abdon; Tavares-Dias, Marcos

    2018-06-26

    This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus. A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.

  10. Mutual dilution of infection by an introduced parasite in native and invasive stream fishes across Hawaii.

    PubMed

    Gagne, Roderick B; Heins, David C; McIntyre, Peter B; Gilliam, James F; Blum, Michael J

    2016-10-01

    The presence of introduced hosts can increase or decrease infections of co-introduced parasites in native species of conservation concern. In this study, we compared parasite abundance, intensity, and prevalence between native Awaous stamineus and introduced poeciliid fishes by a co-introduced nematode parasite (Camallanus cotti) in 42 watersheds across the Hawaiian Islands. We found that parasite abundance, intensity and prevalence were greater in native than introduced hosts. Parasite abundance, intensity and prevalence within A. stamineus varied between years, which largely reflected a transient spike in infection in three remote watersheds on Molokai. At each site we measured host factors (length, density of native host, density of introduced host) and environmental factors (per cent agricultural and urban land use, water chemistry, watershed area and precipitation) hypothesized to influence C. cotti abundance, intensity and prevalence. Factors associated with parasitism differed between native and introduced hosts. Notably, parasitism of native hosts was higher in streams with lower water quality, whereas parasitism of introduced hosts was lower in streams with lower water quality. We also found that parasite burdens were lower in both native and introduced hosts when coincident. Evidence of a mutual dilution effect indicates that introduced hosts can ameliorate parasitism of native fishes by co-introduced parasites, which raises questions about the value of remediation actions, such as the removal of introduced hosts, in stemming the rise of infectious disease in species of conservation concern.

  11. Sarcocystosis of animals and humans

    USDA-ARS?s Scientific Manuscript database

    Species of Sarcocystosis, single-celled protozoan parasites in the Phylum Apicomplexa, are widespread in warm-blooded animals. Completion of the life cycle requires two host species: an intermediate (or prey) host and a definitive (or predator) host. Hosts can harbor more than one species of Sarcocy...

  12. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    PubMed

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Host and Parasite Evolution in a Tangled Bank.

    PubMed

    Betts, Alex; Rafaluk, Charlotte; King, Kayla C

    2016-11-01

    Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Triplet exciton confinement for enhanced fluorescent organic light-emitting diodes using a co-host system

    NASA Astrophysics Data System (ADS)

    Yoo, Han Kyu; Lee, Ho Won; Lee, Song Eun; Kim, Young Kwan; Kim, Se Hyun; Yoon, Seung Soo; Park, Jaehoon

    2016-05-01

    In this work, the co-host system within an emitting layer (EML) consists of the host and triplet managing (TM) host materials. A set of EML structures was fabricated with various concentrations of the TM host (0, 10, 30, 50, and 70%). The TM host triplet energy level is lower than the energy levels of the host and the guest, which leads to a reduction in the triplet exciton density and the singlet-triplet annihilation of the guest. Blue fluorescent organic light-emitting diodes exhibit a maximum luminous efficiency (LE) and an external quantum efficiency (EQE) of 9.74 cd/A and 4.92%, respectively. In addition, the efficiency roll-off ratios of the LE and the EQE are 14.25 and 13.16%, respectively.

  15. Effects of sex and locality on the abundance of lice on the wild rodent Oligoryzomys nigripes.

    PubMed

    Fernandes, Fernanda Rodrigues; Cruz, Leonardo Dominici; Linhares, Arício Xavier

    2012-10-01

    Various factors can affect the parasite distribution on a host. In this study, the influence of sex, body size, and locality of a rodent host, Oligoryzomys nigripes, on lice abundance was investigated. A generalized linear model indicated that the sex and locality of O. nigripes significantly contributed to the variation in lice abundance on the host. The male bias of lice parasitizing the rodent host O. nigripes may be associated with intersexual differences in physiology and behavior, while locality differences in lice abundance may be associated with differences in host density and diversity between the two localities sampled. Studies of host-parasite associations improve the understanding of the ecology of infectious diseases, as well as the evolution of these host-parasite interactions.

  16. How pathogens use linear motifs to perturb host cell networks.

    PubMed

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    PubMed

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation.

    PubMed

    Franceschi, Nathalie; Bauer, Alexandre; Bollache, Loïc; Rigaud, Thierry

    2008-08-01

    Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.

  19. Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae).

    PubMed

    Imo, Miriam; Maixner, Michael; Johannesen, Jes

    2013-04-01

    The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.

  20. Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat.

    PubMed

    Vorburger, C; Herzog, J; Rouchet, R

    2017-04-01

    Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade-offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host-adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. Tropical insect diversity: evidence of greater host specialization in seed-feeding weevils.

    PubMed

    Peguero, Guille; Bonal, Raúl; Sol, Daniel; Muñoz, Alberto; Sork, Victoria L; Espelta, Josep M

    2017-08-01

    Host specialization has long been hypothesized to explain the extraordinary diversity of phytophagous insects in the tropics. However, addressing this hypothesis has proved challenging because of the risk of over-looking rare interactions, and hence biasing specialization estimations, and the difficulties to separate the diversity component attributable to insect specialization from that related to host diversity. As a result, the host specialization hypothesis lacks empirical support for important phytophagous insect clades. Here, we test the hypothesis in a radiation of seed-feeding insects, acorn weevils (Curculio spp.), sampled in temperate and tropical regions (California and Nicaragua, respectively) with an equivalent pool of oak host species. Using DNA sequences from three low-copy genes, we delimited to species level 778 weevil larvae extracted from host seeds and assessed their phylogenetic relationships by Maximum Likelihood and Bayesian inference. We then reconstructed the oak-weevil food webs and examined differences in alpha, beta and gamma diversity using Hill numbers of effective species. We found a higher alpha, beta and gamma diversity of weevils in Nicaragua compared to California despite similar richness of host species at both local and regional level. By means of Bayesian mixed models, we also found that tropical weevil species were highly specialized both in terms of host range and interaction strength, whereas their temperate congeners had a broader taxonomic and phylogenetic host spectrum. Finally, in Nicaraguan species, larval body size was highly correlated with the size of the acorns infested, as would be expected by a greater host specialization, whereas in California this relationship was absent. Altogether, these lines of evidence support the host specialization hypothesis and suggest contrasting eco-evolutionary dynamics in tropical and temperate regions even in absence of differences in host diversity. © 2017 by the Ecological Society of America.

  2. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists.

    PubMed

    von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C

    2018-01-01

    Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.

  3. Tick salivary compounds: their role in modulation of host defences and pathogen transmission

    PubMed Central

    Kazimírová, Mária; Štibrániová, Iveta

    2013-01-01

    Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases. PMID:23971008

  4. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi.

    PubMed

    Gürtler, Ricardo E; Cardinal, M V

    2015-11-01

    We review the epidemiological role of domestic and commensal hosts of Trypanosoma cruzi using a quantitative approach, and compiled >400 reports on their natural infection. We link the theory underlying simple mathematical models of vector-borne parasite transmission to the types of evidence used for reservoir host identification: mean duration of infectious life; host infection and infectiousness; and host-vector contact. The infectiousness of dogs or cats most frequently exceeded that of humans. The host-feeding patterns of major vectors showed wide variability among and within triatomine species related to their opportunistic behavior and variable ecological, biological and social contexts. The evidence shows that dogs, cats, commensal rodents and domesticated guinea pigs are able to maintain T. cruzi in the absence of any other host species. They play key roles as amplifying hosts and sources of T. cruzi in many (peri)domestic transmission cycles covering a broad diversity of ecoregions, ecotopes and triatomine species: no other domestic animal plays that role. Dogs comply with the desirable attributes of natural sentinels and sometimes were a point of entry of sylvatic parasite strains. The controversies on the role of cats and other hosts illustrate the issues that hamper assessing the relative importance of reservoir hosts on the basis of fragmentary evidence. We provide various study cases of how eco-epidemiological and genetic-marker evidence helped to unravel transmission cycles and identify the implicated hosts. Keeping dogs, cats and rodents out of human sleeping quarters and reducing their exposure to triatomine bugs are predicted to strongly reduce transmission risks. Copyright © 2015. Published by Elsevier B.V.

  5. Amphixenosic Aspects of Staphylococcus aureus Infection in Man and Animals.

    PubMed

    Rossi, Giacomo; Cerquetella, Matteo; Attili, Anna Rita

    2017-01-01

    According to the mode of transmission, Staphylococcus aureus infection between hosts is classified as "direct zoonoses," or infection that is transmitted from an infected vertebrate host to a susceptible host (man) by direct contact, by contact with a fomite or by a mechanical vector. The agent itself undergoes little or no propagative or developmental changes during transmission. According to the reservoir host, staphylococcosis is most precisely defined as "zooanthroponoses" or infections transmitted from man to lower vertebrate animals (e.g., streptococci, diphtheria, Enterobacteriaceae, human tuberculosis in cattle and parrots), but also "anthropozoonoses" or infections transmitted to man from lower vertebrate animals. In particular, actually, the correct definition of S. aureus infections between humans and animals is "amphixenoses" or infections maintained in both man and lower vertebrate animals and transmitted in either direction. S. aureus exhibits tropisms to many distinct animal hosts. While spillover events can occur wherever there is an interface between host species, changes in host tropism only occur with the establishment of sustained transmission in the new host species, leading to clonal expansion. Although the genomic variation underpinning adaptation in S. aureus genotypes infecting bovids and poultry has been well characterized, the frequency of switches from one host to another remains obscure. In this review, we sought to identify the sustained switches in host tropism in the S. aureus population, both anthroponotic and zoonotic, and their distribution over the species phylogeny. S. aureus is an organism with the capacity to switch into and adapt to novel hosts, even after long periods of isolation in a single host species. Based on this evidence, animal-adapted S. aureus lineages exhibiting resistance to antibiotics must be considered a major threat to public health, as they can adapt to the human population.

  6. Hidden Population Structure and Cross-species Transmission of Whipworms (Trichuris sp.) in Humans and Non-human Primates in Uganda

    PubMed Central

    Ghai, Ria R.; Simons, Noah D.; Chapman, Colin A.; Omeja, Patrick A.; Davies, T. Jonathan; Ting, Nelson; Goldberg, Tony L.

    2014-01-01

    Background Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. Methods and Findings We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Conclusions and Significance Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health. PMID:25340752

  7. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda.

    PubMed

    Ghai, Ria R; Simons, Noah D; Chapman, Colin A; Omeja, Patrick A; Davies, T Jonathan; Ting, Nelson; Goldberg, Tony L

    2014-10-01

    Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.

  8. Ecology of larval trematodes in three marine gastropods.

    PubMed

    Curtis, Lawrence A

    2002-01-01

    To comprehend natural host-parasite systems, ecological knowledge of both hosts and parasites is critical. Here I present a view of marine systems based on the snail Ilyanassa obsoleta and its trematodes. This system is reviewed and two others, those of the snails Cerithidea californica and Littorina littorea, are then summarized and compared. Trematodes can profoundly affect the physiology, behaviour and spatial distribution of hosts. Studying these systems is challenging because trematodes are often embedded in host populations in unappreciated ways. Trematode prevalence is variable, but can be high in populations of all three hosts. Conditions under which single- and multiple-species infections can accumulate are considered. Adaptive relations between species are likely the most important and potentials for adaptation of parasites to hosts, hosts to parasites, and parasites to other parasites are also considered. Even if colonization rate is low, a snail population can develop high trematode prevalence, if infections persist long and the host is long-lived and abundant. Trematodes must be adapted to use their snail hosts. However, both I. obsoleta and L. littorea possess highly dispersed planktonic larvae and trematode prevalence is variable among snail populations. Host adaptation to specific infections, or even to trematodes in general, is unlikely because routine exposure to trematodes is improbable. Crawl-away juveniles of C. californica make adaptation to trematodes in that system a possibility. Trematode species in all three systems are not likely adapted to each other. Multiple-species infections are rare and definitive hosts scatter parasite eggs among snail populations with variable prevalences. Routine co-occurrence of trematodes in snails is thus unlikely. Adaptations of these larval trematodes to inhabit the snail host must, then, be the basis for what happens when they do co-occur.

  9. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    PubMed

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

  10. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    PubMed Central

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  11. Perspectives of host faculty and trainees on international visiting faculty to paediatric academic departments in East Africa

    PubMed Central

    Russ, Christiana M; Ganapathi, Lakshmi; Marangu, Diana; Silverman, Melanie; Kija, Edward; Bakeera-Kitaka, Sabrina; Laving, Ahmed

    2016-01-01

    Background Investments in faculty exchanges to build physician workforce capacity are increasing. Little attention has been paid to the expectations of host institution faculty and trainees. This prospective qualitative research study explored faculty and resident perspectives about guest faculty in paediatric departments in East Africa, asking (1) What are the benefits and challenges of hosting guest faculty, (2) What factors influence the effectiveness of faculty visits and (3) How do host institutions prepare for faculty visits? Methods We recruited 36 faculty members and residents from among four paediatric departments in East Africa to participate in semistructured interviews which were audio recorded and transcribed. Data were qualitatively analysed using principles of open coding and thematic analysis. We achieved saturation of themes. Results Benefits of faculty visits varied based on the size and needs of host institutions. Emergent themes included the importance of guest faculty time commitment, and mutual preparation to ensure that visit goals and scheduling met host needs. We documented conflicts that developed around guest emotional responses and ethical approaches to clinical resource limitations, which some hosts tried to prepare for and mitigate. Imbalance in resources led to power differentials; some hosts sought partnerships to re-establish control over the process of having guests. Conclusions We identified that guest faculty can assist paediatric institutions in building capacity; however, effective visits require: (1) mutually agreed on goals with appropriate scheduling, visit length and commitment to ensure that the visits meet the host's needs, (2) careful selection and preparation of guest faculty to meet the host's goals, (3) emotional preparation by prospective guests along with host orientation to clinical work in the host's setting and (4) attention to funding sources for the visit and mitigation of resulting power differentials. PMID:28588960

  12. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    PubMed

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  13. The Effects of Bean Leafroll Virus on Life History Traits and Host Selection Behavior of Specialized Pea Aphid (Acyrthosiphon pisum, Hemiptera: Aphididae) Genotypes.

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2017-02-01

    Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Commercially Hosted Government Payloads: Lessons from Recent Programs

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen

    2011-01-01

    In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future hosted payload programs, whether they are technology demonstrations, communications systems, or operational sensors. Additionally, we present a basic cost model for commercial access to space for hosted payloads as a function of payload mass

  15. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri

    PubMed Central

    Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored. PMID:26930355

  16. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    PubMed

    Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.

  17. Generalists at the interface: Nematode transmission between wild and domestic ungulates

    PubMed Central

    Walker, Josephine G.; Morgan, Eric R.

    2014-01-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host–parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this question. PMID:25426420

  18. Abundances and host relationships of chigger mites in Yunnan Province, China.

    PubMed

    Zhan, Y-Z; Guo, X-G; Speakman, J R; Zuo, X-H; Wu, D; Wang, Q-H; Yang, Z-H

    2013-06-01

    This paper reports on ectoparasitic chigger mites found on small mammals in Yunnan Province, southwest China. Data were accumulated from 19 investigation sites (counties) between 2001 and 2009. A total of 10 222 small mammal hosts were captured and identified; these represented 62 species, 34 genera and 11 families in five orders. From the body surfaces of these 10 222 hosts, a total of 92 990 chigger mites were collected and identified microscopically. These represented 224 species, 22 genera and three subfamilies in the family Trombiculidae (Trombidiformes). Small mammals were commonly found to be infested by chigger mites and most host species harboured several species of mite. The species diversity of chigger mites in Yunnan was much higher than diversities reported previously in other provinces of China and in other countries. A single species of rodent, Eothenomys miletus (Rodentia: Cricetidae), carried 111 species of chigger mite, thus demonstrating the highest species diversity and heaviest mite infestation of all recorded hosts. This diversity is exceptional compared with that of other ectoparasites. Of the total 224 mite species, 21 species accounted for 82.2% of all mites counted. Two species acting as major vectors for scrub typhus (tsutsugamushi disease), Leptotrombidium scutellare and Leptotrombidium deliense, were identified as the dominant mite species in this sample. In addition to these two major vectors, 12 potential or suspected vector species were found. Most species of chigger mite had a wide range of hosts and low host specificity. For example, L. scutellare parasitized 30 species of host. The low host specificity of chigger mites may increase their probability of encountering humans, as well as their transmission of scrub typhus among different hosts. Hierarchical clustering analysis showed that similarities between different chigger mite communities on the 18 main species of small mammal host did not accord with the taxonomic affinity of the hosts. This suggests that the distribution of chigger mites may be strongly influenced by the environment in which hosts live. © 2012 The Royal Entomological Society.

  19. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.

  20. Living off a fish: a trade-off between parasites and the immune system.

    PubMed

    Sitjà-Bobadilla, A

    2008-10-01

    Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.

  1. SELENIUM-DEFICIENCY MODIFIES INFLUENZA INFECTION OF DIFFERENTIATED HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The nutritional status of the host is important in the defense against invading pathogens. Many studies regarding the effects of host nutritional status on the immune response have demonstrated that suboptimal host nutrition results in impaired host immunity and increased suscept...

  2. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process.

    PubMed

    Forestier, Claire-Lise; Machu, Christophe; Loussert, Celine; Pescher, Pascale; Späth, Gerald F

    2011-04-21

    Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Drinking at college parties: examining the influence of student host-status and party-location.

    PubMed

    Buettner, Cynthia K; Khurana, Atika; Slesnick, Natasha

    2011-12-01

    The present research focuses on the party related drinking behaviors of college students and explores the differences in these behaviors based on students' host status (i.e. party host vs. party attendee). Furthermore, we examine if the differences in party hosts and attendees' drinking behaviors vary as a function of the party location (on-campus vs. off-campus). Multiple regression analyses were conducted using data from 3796 undergraduates at a Midwestern University. Findings revealed a significant interaction between host status and party location, such that student party hosts reported significantly greater drink consumption and related consequences as compared to party attendees, only when the party was organized off-campus. For parties organized on-campus, student hosts reported lower drink consumption as compared to attendees. College-based preventive interventions should target students likely to host off-campus parties due to their high risk for involvement in heavy drinking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Reproductive Parasitism: Maternally Inherited Symbionts in a Biparental World

    PubMed Central

    Hurst, Gregory D.D.; Frost, Crystal L.

    2015-01-01

    Most species of insect, and many other plants and animals, carry maternally heritable microorganisms—viruses, bacteria, unicellular eukaryotes, and fungi that pass from a female host to her progeny. Maternal inheritance establishes a correlation between the fitness of symbiont and host female, which can select for the symbiont to contribute to host fitness. Nevertheless, its lack of transmission through male hosts places the symbiont in conflict with biparentally inherited nuclear genes. In this review, we first examine how this conflict is manifest in selection to promote the production and survival of infected female hosts and gametes. We then examine how the distorted population sex ratios that they produce may affect host reproductive ecology, and thus the intensity of other conflicts associated with sexual reproduction. Finally, we examine evolved host responses to symbiont manipulation. We argue that the unusual intensity of symbiont–host conflict generates extreme selection pressures that can drive changes in sex-determination systems, the basic pathway through which males and females are constructed. PMID:25934011

  5. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host.

    PubMed

    Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro

    2015-03-01

    The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  7. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    PubMed Central

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  8. Host location by ichneumonid parasitoids is associated with nest dimensions of the host bee species.

    PubMed

    Flores-Prado, L; Niemeyer, H M

    2012-08-01

    Parasitoid fitness depends on the ability of females to locate a host. In some species of Ichneumonoidea, female parasitoids detect potential hosts through vibratory cues emanating from them or through vibrational sounding produced by antennal tapping on the substrate. In this study, we (1) describe host location behaviors in Grotea gayi Spinola (Hymenoptera: Ichneumonidae) and Labena sp. on nests of Manuelia postica Spinola (Hymenoptera: Apidae), (2) compare nest dimensions between parasitized and unparasitized nests, (3) correlate the length of M. postica nests with the number of immature individuals developing, and (4) establish the relative proportion of parasitized nests along the breeding period of M. postica. Based on our results, we propose that these parasitoids use vibrational sounding as a host location mechanism and that they are able to assess host nest dimensions and choose those which may provide them with a higher fitness. Finally, we discuss an ancestral host-parasitoid relationship between Manuelia and ichneumonid species.

  9. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    PubMed Central

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  10. Host cell processes that influence the intracellular survival of Legionella pneumophila.

    PubMed

    Shin, Sunny; Roy, Craig R

    2008-06-01

    Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.

  11. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

    PubMed Central

    Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.

    2016-01-01

    Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167

  12. Finding Cardinality Heavy-Hitters in Massive Traffic Data and Its Application to Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Ishibashi, Keisuke; Mori, Tatsuya; Kawahara, Ryoichi; Hirokawa, Yutaka; Kobayashi, Atsushi; Yamamoto, Kimihiro; Sakamoto, Hitoaki; Asano, Shoichiro

    We propose an algorithm for finding heavy hitters in terms of cardinality (the number of distinct items in a set) in massive traffic data using a small amount of memory. Examples of such cardinality heavy-hitters are hosts that send large numbers of flows, or hosts that communicate with large numbers of other hosts. Finding these hosts is crucial to the provision of good communication quality because they significantly affect the communications of other hosts via either malicious activities such as worm scans, spam distribution, or botnet control or normal activities such as being a member of a flash crowd or performing peer-to-peer (P2P) communication. To precisely determine the cardinality of a host we need tables of previously seen items for each host (e. g., flow tables for every host) and this may infeasible for a high-speed environment with a massive amount of traffic. In this paper, we use a cardinality estimation algorithm that does not require these tables but needs only a little information called the cardinality summary. This is made possible by relaxing the goal from exact counting to estimation of cardinality. In addition, we propose an algorithm that does not need to maintain the cardinality summary for each host, but only for partitioned addresses of a host. As a result, the required number of tables can be significantly decreased. We evaluated our algorithm using actual backbone traffic data to find the heavy-hitters in the number of flows and estimate the number of these flows. We found that while the accuracy degraded when estimating for hosts with few flows, the algorithm could accurately find the top-100 hosts in terms of the number of flows using a limited-sized memory. In addition, we found that the number of tables required to achieve a pre-defined accuracy increased logarithmically with respect to the total number of hosts, which indicates that our method is applicable for large traffic data for a very large number of hosts. We also introduce an application of our algorithm to anomaly detection. With actual traffic data, our method could successfully detect a sudden network scan.

  13. Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus.

    PubMed

    McClure, Melanie; Elias, Marianne

    2016-06-16

    Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.

  14. Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict?

    PubMed

    Poulin, Robert; Nichol, Katherine; Latham, A David M

    2003-04-01

    Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the other neurotransmitter investigated in this study. The relationship with serotonin appears due mainly to numbers of Profilicollis and Maritrema and not to nematodes. This is the first demonstration of a potentially synergistic manipulation of host behaviour by different helminth species, one that appears host-specific; our results also point toward the neurobiological mechanism underlying this phenomenon.

  15. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation. PMID:25558092

  16. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation.

  17. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  18. Proteomics in the investigation of HIV-1 interactions with host proteins.

    PubMed

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    PubMed

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  20. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster.

    PubMed

    Reynolds, K Tracy; Thomson, Linda J; Hoffmann, Ary A

    2003-07-01

    Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popcorn has a major fitness impact upon its hosts. The rapid proliferation of popcorn causes cells to rupture, resulting in the premature death of adult hosts. Apart from this effect, we found that popcorn delayed development time, and host background influenced both this trait and the rate of mortality associated with infection. Temperature influenced the impact of popcorn upon host mortality, with no reduction in life span occurring in flies reared at 19 degrees. No effect upon fecundity was found. Contrary to earlier reports, popcorn induced high levels of incompatibility when young males were used in tests, and CI levels declined rapidly with male age. The population dynamics of popcorn-type infections will therefore depend on environmental temperature, host background, and the age structure of the population.

  1. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    PubMed Central

    Krishnan, Manoj N.; Garcia-Blanco, Mariano A.

    2014-01-01

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970

  2. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    PubMed Central

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  3. Antennal responses of an oligolectic bee and its cleptoparasite to plant volatiles.

    PubMed

    Dötterl, Stefan

    2008-05-01

    Cleptoparasitic or cuckoo bees lay their eggs in nests of other bees, and the parasitic larvae feed the food that had been provided for the host larvae. Nothing is known about the specific signals used by the cuckoo bees for host nest finding, but previous studies have shown that olfactory cues originating from the host bee alone, or the host bee and the larval provision are essential. Here, I compared by using gas chromatography coupled to electroantennographic detection (GC-EAD) the antennal responses of the oligolectic oil-bee Macropis fulvipes and their cleptoparasite, Epeoloides coecutiens, to dynamic headspace scent samples of Lysimachia punctata, a pollen and oil host of Macropis. Both bee species respond to some scent compounds emitted by L. punctata, and two compounds, which were also found in scent samples collected from a Macropis nest entrance, elicited clear signals in the antennae of both species. These compounds may not only play a role for host plant detection by Macropis, but also for host nest detection by Epeoloides. I hypothesise that oligolectic bees and their cleptoparasites use the same compounds for host plant and host nest detection, respectively.

  4. Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae)

    PubMed Central

    Hojo, Masaru K.; Wada-Katsumata, Ayako; Akino, Toshiharu; Yamaguchi, Susumu; Ozaki, Mamiko; Yamaoka, Ryohei

    2008-01-01

    The exploitation of parental care is common in avian and insect ‘cuckoos’ and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N. fusca caterpillars chemically mimic host larvae, or some particular castes of the host ant, so that the caterpillars are accepted and cared for by the host workers. Behaviourally, it was observed that the host workers enthusiastically tended glass dummies coated with the cuticular chemicals of larvae or males and those of N. fusca caterpillars living together. Cuticular chemical analyses revealed that N. fusca caterpillars grown in a host ant nest acquired a colony-specific blend of cuticular hydrocarbons (CHCs). Furthermore, the CHC profiles of the N. fusca caterpillars were particularly close to those of the males rather than those of the host larvae and the others. We suggest that N. fusca caterpillars exploit worker care by matching their cuticular profile to that of the host males, since the males are fed by trophallaxis with workers in their natal nests for approximately ten months. PMID:18842547

  5. Evolutionary implications of the adaptation to different immune systems in a parasite with a complex life cycle

    PubMed Central

    Hammerschmidt, Katrin; Kurtz, Joachim

    2005-01-01

    Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977

  6. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion.

    PubMed

    Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J

    2007-03-01

    Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.

  7. Targeting host factors to treat West Nile and dengue viral infections.

    PubMed

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-10

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  8. A matching-allele model explains host resistance to parasites.

    PubMed

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Unique physiology of host-parasite interactions in microsporidia infections.

    PubMed

    Williams, Bryony A P

    2009-11-01

    Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.

  10. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite.

    PubMed

    Gehman, Alyssa-Lois M; Grabowski, Jonathan H; Hughes, A Randall; Kimbro, David L; Piehler, Michael F; Byers, James E

    2017-01-01

    Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.

  11. Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno, Matthew J.; Coogan, Kyle; Seuss, John

    Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that canmore » be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.« less

  12. Host ecology and variation in helminth community structure in Mastomys rodents from Senegal.

    PubMed

    Brouat, C; Kane, M; Diouf, M; Bâ, K; Sall-Dramé, R; Duplantier, J M

    2007-03-01

    We studied patterns of variation in parasite communities of 2 closely related species of Mastomys rodents. These 2 species live in sympatry in South-eastern Senegal, but differ drastically in their habitat choice. We asked (a) whether the host species have the same parasites; (b) whether there is any observable pattern relative to the host species/habitat type in the structure of parasite communities; (c) whether the variability in parasite community for each host species is related to habitat characteristics. We analysed 220 and 264 individuals of each host species, sampled respectively in 10 and 11 trap sites. Twenty parasite taxa were recorded, and the majority were nematodes. Between-host species comparisons showed that helminth communities were slightly more diversified in M. natalensis. Many parasite species were found in both Mastomys. However, various helminth taxa varied in frequency and abundance between host species. Within each host species, helminth diversity, prevalence and/or abundance of some parasites were correlated with habitat or host population factors that may influence parasite life-cycles, such as village structure, or the presence/absence of a pool. Our results suggest that habitat characteristics have a strong impact on helminth community structure.

  13. Assessing host-specificity of Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide polymorphisms in intergenic regions.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F

    2015-11-01

    Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil

    PubMed Central

    Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing

    2016-01-01

    ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp. PMID:27795313

  15. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    PubMed Central

    2011-01-01

    Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions. PMID:21342515

  16. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    PubMed

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally, yields precise predictions about expected levels of host male paternity. These predictions will enable a more rigorous assessment of field studies designed to test adaptive hypotheses of host-parasite cooperation.

  17. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  18. Identification of Bacterial Specialists in Hosts belonging to Aves, Mammalia, and Pisces

    EPA Science Inventory

    Only a portion of bacteria found in animal guts are able to establish specific associations within animal hosts. Taxa that have formed these specialized relationships may have played a prominent role in host evolution and may also contribute significantly to current host physiolo...

  19. Negative frequency-dependent selection between Pasteuria penetrans and its host Meloidogyne arenaria

    USDA-ARS?s Scientific Manuscript database

    In negative frequency-dependant selection (NFDS), parasite genotypes capable of infecting the numerically dominant host genotype are favored, while host genotypes resistant to the dominant parasite genotype are favored, creating a cyclical pattern of resistant genotypes in the host population and, a...

  20. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. Copyright © 2017 American Society for Microbiology.

  1. Porcine reproductive and respiratory syndrome virus infection induces both eIF2α-phosphorylation-dependent and -independent host translation shutoff.

    PubMed

    Li, Yang; Fang, Liurong; Zhou, Yanrong; Tao, Ran; Wang, Dang; Xiao, Shaobo

    2018-06-13

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. Nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest. IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by dephosphorylating eIF2α or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α-phosphorylation-dependent and -independent host translation shutoff. Copyright © 2018 American Society for Microbiology.

  2. Indicator Expansion with Analysis Pipeline

    DTIC Science & Technology

    2015-01-13

    INTERNAL FILTER trackInfectedHosts FILTER badTraffic SIP infectedHosts 1 DAY END INTERNAL FILTER 11 Step 3 watch where infected hosts go FILTER...nonWhiteListPostInfected SIP IN LIST infectedHosts DIP NOT IN LIST safePopularIPs.set END FILTER 12 Step 4 & 5: Count Hosts Per IP and Alert EVALUATION...CHECK THRESHOLD DISTINCT SIP > 50 TIME WINDOW 36 HOURS END CHECK END EVALUATION 13 Step 6: Report Expanded Indicators LIST CONFIGURATION secondLevelIPs

  3. Rate of resistance evolution and polymorphism in long- and short-lived hosts.

    PubMed

    Bruns, Emily; Hood, Michael E; Antonovics, Janis

    2015-02-01

    Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Behavioral evidence for host fidelity among populations of the parasitic wasp, Diachasma alloeum (Muesebeck)

    NASA Astrophysics Data System (ADS)

    Stelinski, L. L.; Liburd, O. E.

    2005-02-01

    The concept of “host fidelity,” where host-specific mating occurs in close proximity to the oviposition site and location of larval development, is thought to impart a pre-mating isolation mechanism for sympatric speciation (sensu members of the genus Rhagoletis). The apple maggot fly, Rhagoletis pomonella, and the blueberry maggot fly, R. mendax, are morphologically similar sibling species thought to have speciated in sympatry by divergence of host plant association. Both of these fly species are attacked by the specialist braconid parasitoid, Diachasma alloeum. The current study demonstrates that both male and female D. alloeum exhibit a behavioral preference for the odor of the fruit of their larval Rhagoletis host species. Specifically, those D. alloeum emerging from puparia of R. pomonella are preferentially attracted to hawthorn fruit and those emerging from puparia of R. mendax are preferentially attracted to blueberry fruit. However, male D. alloeum reared from either R. pomonella or R. mendax were equally attracted to females originating from both Rhagoletis species. We suggest that the data herein present evidence for “host fidelity,” where populations of D. alloeum exhibit a greater tendency to mate and reproduce among the host plants of their preferred Rhagoletis hosts. Furthermore, host fidelity may have resulted in the evolution of distinct host races of D. alloeum tracking the speciation of their larval Rhagoletis prey.

  5. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  6. Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡

    PubMed Central

    Ellis, Crystal N.; Cooper, Vaughn S.

    2010-01-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  7. Density-dependent topographical specialization in Gyrodactylus anisopharynx (Monogenoidea, Gyrodactylidae): boosting transmission or evading competition?

    PubMed

    Pie, Marcio R; Engers, Kerlen B; Boeger, Walter A

    2006-06-01

    Viviparous gyrodactylids are remarkable monogenoid ectoparasites, not only because of their speciousness, but also due to their unusually wide range of hosts. Although many factors have been proposed to determine the location where gyrodactylids attach to their hosts, little is known about how their preference for specific host body regions changes over the course of infection. In this study, we investigate the dynamics of topographical specialization of the parasite Gyrodactylus anisopharynx on 2 of its natural freshwater fish hosts (Corydoras paleatus and C. ehrhardti), as well as a naïve host (C. schwartzi). We recorded the spatial location of this parasite from the foundation of the infrapopulation to its extinction to assess how topographical specialization is affected by host species, the size and the age of the infrapopulation, and the possibility of transmission among hosts. Our results indicate that topographical specialization is negatively correlated with infrapopulation size and only marginally affected by infrapopulation age. Also, the degree of specialization was different among host species, but seemed unaffected by the possibility of transmission among hosts. Therefore, observed changes in spatial specialization of G. anisopharynx do not appear to represent adaptive responses to maximize their transmission. Rather, mechanisms such as increased competition and/ or local immune responses might cause parasites to occupy less favorable regions of the body of their hosts with increasing density.

  8. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host × genotype interaction.

    PubMed

    Herrera, Carlos M

    2014-05-01

    Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment

    PubMed Central

    Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András

    2017-01-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065

  10. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment.

    PubMed

    Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne

    2017-11-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.

  11. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    PubMed Central

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  12. Parasite transmission in a natural multihost-multiparasite community.

    PubMed

    Auld, Stuart K J R; Searle, Catherine L; Duffy, Meghan A

    2017-05-05

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata Both parasites were capable of transmission from the reservoir host ( Daphnia dentifera ) to the spillover host ( Ceriodaphnia dubia ), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  13. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems.

    PubMed

    Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A

    2017-01-19

    Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  14. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    PubMed

    Piñero, Jaime C; Souder, Steven K; Vargas, Roger I

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  15. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly

    PubMed Central

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069

  16. Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response.

    PubMed

    Banerjee, Soumya; Perelson, Alan S; Moses, Melanie

    2017-11-01

    Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially other zoonotic diseases. The major contribution of this work is a computational framework for infectious disease modelling at the within-host level that leverages data from multiple species. This is likely to be of interest to modellers of infectious diseases that jump species barriers and infect multiple species. Our method can be used to computationally determine the competency of a host to infect mosquitoes that will sustain WNV and other zoonotic diseases. We find that smaller passerine species are more competent in spreading the disease than larger non-passerine species. This suggests the role of host phylogeny as an important determinant of within-host pathogen replication. Ultimately, we view our work as an important step in linking within-host viral dynamics models to between-host models that determine spread of infectious disease between different hosts. © 2017 The Author(s).

  17. Fatal disease and demographic Allee effect: population persistence and extinction.

    PubMed

    Friedman, Avner; Yakubu, Abdul-Aziz

    2012-01-01

    If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible-infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.

  18. How to catch a parasite: Parasite Niche Modeler (PaNic) meets Fishbase

    USGS Publications Warehouse

    Strona, Giovanni; Lafferty, Kevin D.

    2012-01-01

    Parasite Niche Modeler (PaNic) is a free online software tool that suggests potential hosts for fish parasites. For a particular parasite species from the major helminth groups (Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda), PaNic takes data from known hosts (maximum body length, growth rate, life span, age at first maturity, trophic level, phylogeny, and biogeography) and hypothesizes similar fish species that might serve as hosts to that parasite. Users can give varying weights to host attributes and create custom models. In addition to suggesting plausible hosts (with varying degrees of confidence), the models indicate known host species that appear to be outliers in comparison to other known hosts. These unique features make PaNic an innovative tool for addressing both theoretical and applied questions in fish parasitology. PaNic can be accessed at .

  19. The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations

    DOE PAGES

    Hart-Cooper, William M.; Zhao, Chen; Triano, Rebecca M.; ...

    2014-11-28

    The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K 12Ga 4L 6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 10 5, which numbers among the largest magnitudesmore » of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity.« less

  20. Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs.

    PubMed

    Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan

    2016-09-01

    Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.

  1. Drivers of symbiont diversity in freshwater snails: a comparative analysis of resource availability, community heterogeneity, and colonization opportunities

    PubMed Central

    McCaffrey, Keegan; Johnson, Pieter T. J.

    2017-01-01

    Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528

  2. Contrasting patterns of structural host specificity of two species of Heligmosomoides nematodes in sympatric rodents.

    PubMed

    Clough, Dagmar; Råberg, Lars

    2014-12-01

    Host specificity is a fundamental property of parasites. Whereas most studies focus on measures of specificity on host range, only few studies have considered quantitative aspects such as infection intensity or prevalence. The relative importance of these quantitative aspects is still unclear, mainly because of methodological constraints, yet central to a precise assessment of host specificity. Here, we assessed simultaneously two quantitative measures of host specificity of Heligmosomoides glareoli and Heligmosomoides polygyrus polygyrus infections in sympatric rodent hosts. We used standard morphological techniques as well as real-time quantitative PCR and sequencing of the rDNA ITS2 fragment to analyse parasite infection via faecal sample remains. Although both parasite species are thought to be strictly species-specific, we found morphologically and molecularly validated co- and cross-infections. We also detected contrasting patterns within and between host species with regard to specificity for prevalence and intensity of infection. H. glareoli intensities were twofold higher in bank voles than in yellow-necked mice, but prevalence did not differ significantly between species (33 vs. 18%). We found the opposite pattern in H. polygyrus infections with similar intensity levels between host species but significantly higher prevalence in mouse hosts (56 vs. 10%). Detection rates were higher with molecular tools than morphological methods. Our results emphasize the necessity to consider quantitative aspects of specificity for a full view of a parasites' capacity to replicate and transmit in hosts and present a worked example of how modern molecular tools help to advance our understanding of selective forces in host-parasite ecology and evolution.

  3. Uncovering Wolbachia Diversity upon Artificial Host Transfer

    PubMed Central

    Schneider, Daniela I.; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J.

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system. PMID:24376534

  4. Uncovering Wolbachia diversity upon artificial host transfer.

    PubMed

    Schneider, Daniela I; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.

  5. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest

    PubMed Central

    Wang, Xixi; Long, Wenxing; Schamp, Brandon S.; Yang, Xiaobo; Kang, Yong; Xie, Zhixu; Xiong, Menghui

    2016-01-01

    Vascular epiphytes are important components of biological diversity in tropical forests. We measured the species richness and abundance of vascular epiphytes along four vertical crown zones and five horizontal orientations on 376 trees, as well as the diameter at breast height (DBH) of host trees in tropical cloud forests in Bawangling, Hainan, China. The relationship between vascular epiphyte species richness and host tree DBH was assessed using a generalized linear model. There were 1,453 vascular individual epiphytes attributed to 9 families, 24 genera and 35 species, with orchids and pteridophytes dominating. Both the species richness and abundance of epiphytes significantly differed among the four crown zones for all collections and each host tree, suggesting that vertical microhabitats contribute to the distribution of epiphytes on host trees. Neither epiphyte abundance nor species richness differed among the eastern, southern, western, and northern orientations for all host trees; however, both richness and abundance were significantly higher for epiphytes that encircled host tree trunks. This suggests that morphological and physiological characteristics of the tree, but not microclimates probably contribute to the distribution of epiphytes on host trees. Epiphyte species richness was positively correlated with tree DBH across the six host tree species studied, with increases in DBH among smaller trees resulting in larger increases in richness, while increases in DBH among larger host trees resulting in more modest increases in ephiphyte richness. Our findings contribute support for a positive relationship between epiphyte species richness and host tree DBH and provide important guidance for future surveys of epiphyte community development. PMID:27391217

  6. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    PubMed

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  7. Host plant choice in the comma butterfly-larval choosiness may ameliorate effects of indiscriminate oviposition.

    PubMed

    Gamberale-Stille, Gabriella; Söderlind, Lina; Janz, Niklas; Nylin, Sören

    2014-08-01

    In most phytophagous insects, the larval diet strongly affects future fitness and in species that do not feed on plant parts as adults, larval diet is the main source of nitrogen. In many of these insect-host plant systems, the immature larvae are considered to be fully dependent on the choice of the mothers, who, in turn, possess a highly developed host recognition system. This circumstance allows for a potential mother-offspring conflict, resulting in the female maximizing her fecundity at the expense of larval performance on suboptimal hosts. In two experiments, we aimed to investigate this relationship in the polyphagous comma butterfly, Polygonia c-album, by comparing the relative acceptance of low- and medium-ranked hosts between females and neonate larvae both within individuals between life stages, and between mothers and their offspring. The study shows a variation between females in oviposition acceptance of low-ranked hosts, and that the degree of acceptance in the mothers correlates with the probability of acceptance of the same host in the larvae. We also found a negative relationship between stages within individuals as there was a higher acceptance of lower ranked hosts in females who had abandoned said host as a larva. Notably, however, neonate larvae of the comma butterfly did not unconditionally accept to feed from the least favorable host species even when it was the only food source. Our results suggest the possibility that the disadvantages associated with a generalist oviposition strategy can be decreased by larval participation in host plant choice. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  8. Experimental evidence for chick discrimination without recognition in a brood parasite host.

    PubMed

    Grim, Tomás

    2007-02-07

    Recognition is considered a critical basis for discriminatory behaviours in animals. Theoretically, recognition and discrimination of parasitic chicks are not predicted to evolve in hosts of brood parasitic birds that evict nest-mates. Yet, an earlier study showed that host reed warblers (Acrocephalus scirpaceus) of an evicting parasite, the common cuckoo (Cuculus canorus), can avoid the costs of prolonged care for unrelated young by deserting the cuckoo chick before it fledges. Desertion was not based on specific recognition of the parasite because hosts accept any chick cross-fostered into their nests. Thus, the mechanism of this adaptive host response remains enigmatic. Here, I show experimentally that the cue triggering this 'discrimination without recognition' behaviour is the duration of parental care. Neither the intensity of brood care nor the presence of a single-chick in the nest could explain desertions. Hosts responded similarly to foreign chicks, whether heterospecific or experimental conspecifics. The proposed mechanism of discrimination strikingly differs from those found in other parasite-host systems because hosts do not need an internal recognition template of the parasite's appearance to effectively discriminate. Thus, host defences against parasitic chicks may be based upon mechanisms qualitatively different from those operating against parasitic eggs. I also demonstrate that this discriminatory mechanism is non-costly in terms of recognition errors. Comparative data strongly suggest that parasites cannot counter-evolve any adaptation to mitigate effects of this host defence. These findings have crucial implications for the process and end-result of host-parasite arms races and our understanding of the cognitive basis of discriminatory mechanisms in general.

  9. A comparative analysis of adult body size and its correlates in acanthocephalan parasites.

    PubMed

    Poulin, Robert; Wise, Megan; Moore, Janice

    2003-07-30

    Adult acanthocephalan body sizes vary interspecifically over more than two orders of magnitude; yet, despite its importance for our understanding of the coevolutionary links between hosts and parasites, this variation remains unexplained. Here, we used a comparative analysis to investigate how final adult sizes and relative increments in size following establishment in the definitive host are influenced by three potential determinants of acanthocephalan sizes: initial (cystacanth) size at infection, host body mass, and the thermal regime experienced during growth, i.e. whether the definitive host is an ectotherm or an endotherm. Relative growth from the cystacanth stage to the adult stage ranged from twofold to more than 10,000-fold across acanthocephalan species, averaging just over 100-fold. However, this relative increment in size did not correlate with host mass, and did not differ between acanthocephalan species using ectothermic hosts and those growing in endothermic hosts. In contrast, final acanthocephalan adult sizes correlated positively with host mass, and after correction for host mass, final adult sizes were higher in species parasitising endotherms than in those found in ectotherms. The relationship between host mass and acanthocephalan adult size practically disappears, however, once phylogenetic influences are taken into account. Positive relationships between adult acanthocephalan size, cystacanth size and egg size indicate that a given relative size is a feature of an acanthocephalan species at all stages of its life cycle. These relationships also suggest that adult size is to some extent determined by cystacanth size, and that the characteristics of the definitive host are not the sole determinants of parasite life history traits.

  10. Community interactions govern host-switching with implications for host–parasite coevolutionary history

    PubMed Central

    Harbison, Christopher W.; Clayton, Dale H.

    2011-01-01

    Reciprocal selective effects between coevolving species are often influenced by interactions with the broader ecological community. Community-level interactions may also influence macroevolutionary patterns of coevolution, such as cospeciation, but this hypothesis has received little attention. We studied two groups of ecologically similar feather lice (Phthiraptera: Ischnocera) that differ in their patterns of association with a single group of hosts. The two groups, “body lice” and “wing lice,” are both parasites of pigeons and doves (Columbiformes). Body lice are more host-specific and show greater population genetic structure than wing lice. The macroevolutionary history of body lice also parallels that of their columbiform hosts more closely than does the evolutionary history of wing lice. The closer association of body lice with hosts, compared with wing lice, can be explained if body lice are less capable of switching hosts than wing lice. Wing lice sometimes disperse phoretically on parasitic flies (Diptera: Hippoboscidae), but body lice seldom engage in this behavior. We tested the hypothesis that wing lice switch host species more often than body lice, and that the difference is governed by phoresis. Our results show that, where flies are present, wing lice switch to novel host species in sufficient numbers to establish viable populations on the new host. Body lice do not switch hosts, even where flies are present. Thus, differences in the coevolutionary history of wing and body lice can be explained by differences in host-switching, mediated by a member of the broader parasite community. PMID:21606369

  11. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation?

    PubMed

    Escudero, Marcial

    2015-07-01

    • Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.

  12. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    PubMed Central

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  13. Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation.

    PubMed

    McLeish, Michael J; Miller, Joseph T; Mound, Laurence A

    2013-09-09

    Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy. This results in a cumulation of lineages that each evolve host conservatism on different and potentially transient host-related traits, and facilitates both ecological and resource specialisation.

  14. Celticecis, a Genus of Gall Midges (Diptera: Cecidomyiidae), Newly Reported for the Western Palearctic Region

    Treesearch

    Raymond J. Gagné; John C. Moser

    1997-01-01

    Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...

  15. Host responses to historical climate change shape parasite communities in North America’s intermountain west

    USDA-ARS?s Scientific Manuscript database

    Host-parasite co-speciation, in which parasite divergence occurs in response to host divergence, is commonly proposed as a driver of parasite diversification, yet few empirical examples of strict co-speciation exist. Host-parasite co-evolutionary histories commonly reflect complex mosaics of co-spe...

  16. Ecology of whirling disease in arid lands with an emphasis on Tibufex tubifex

    Treesearch

    Robert James Du Bey

    2006-01-01

    The novel pathogen hypothesis describes host parasite relationships where a pathogen spreads into new geographical areas or into areas of previously unexposed "virgin" hosts. Often, measures of parasite virulence and host resistance are elucidated through pathogenic impacts on the "virgin" hosts. The myxosporean Myxobolus cerebralis...

  17. COMPARISON OF IN VITRO-CULTURED AND WILD-TYPE PERKINSUS MARINUS. II: DOSING METHODS AND HOST RESPONSE

    EPA Science Inventory

    Endoparasites must breach host barriers to establish infection and then must survive host internal defenses to cause disease. Such barriers may frustrate attempts to experimentally transmit parasites by ?natural' methods. In addition, the host's condition may affect a study's out...

  18. Novel collection method for volatile organic compounds (VOCs) from dogs

    USDA-ARS?s Scientific Manuscript database

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  19. So, You Want To Host an Online Conference....

    ERIC Educational Resources Information Center

    Boak, Cathy; Blackburn, Jean

    This guide is intended for individuals and organizations interested in hosting online conferences. For the purposes of this guide, a host is the administrator or manager of a conferencing system and of the conferences held on that system. Eight sections cover the following important processes for hosting online conferences: (1) determining…

  20. Host conservatism or host specialization? Patterns of fungal diversification are influenced by host specificity in Ophiognomonia (Gnomoniaceae, Diaporthales)

    USDA-ARS?s Scientific Manuscript database

    Species of Ophiognomonia (Gnomoniaceae) are perithecial fungi that occur as endophytes, pathogens, and latent saprobes on leaf and stem tissue of plants in the Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. In this study host plant patte...

Top