Science.gov

Sample records for host cell rna

  1. Variation in RNA Virus Mutation Rates across Host Cells

    PubMed Central

    Combe, Marine; Sanjuán, Rafael

    2014-01-01

    It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature. PMID:24465205

  2. RNA-Seq unveils new attributes of the heterogeneous Salmonella-host cell communication.

    PubMed

    García-Del Portillo, Francisco; Pucciarelli, M Graciela

    2017-01-03

    High-throughput RNA sequencing (RNA-Seq) has uncovered hundreds of small RNAs and complex modes of RNA regulation in every bacterium analyzed to date. This complexity agrees with the adaptability of most bacteria to varied environments including, in the case of pathogens, the new niches encountered in the host. Recent RNA-Seq studies have analyzed simultaneously gene expression in the intracellular pathogen Salmonella enterica and infected host cells at population and single-cell level. Distinct polarization states or interferon responses in the infected macrophage were linked to variable growth rates or activities of defined virulence regulators in intra-phagosomal bacteria. Intracellular Salmonella, however, exhibit disparate intracellular lifestyles depending the host cell, ranging from a hyper-replicative cytosolic state in epithelial cells to a non-replicative intra-phagosomal condition in varied host cell types. The basis of such diverse pathogen-host communications could be examined by RNA-Seq studies in single intracellular Salmonella cells, certainly a challenge for future investigations.

  3. Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells

    PubMed Central

    Zakrzewicz, Dariusz; Bergmann, Simone; Didiasova, Miroslava; Giaimo, Benedetto Daniele; Borggrefe, Tilman; Mieth, Maren; Hocke, Andreas C.; Lochnit, Guenter; Schaefer, Liliana; Hammerschmidt, Sven; Preissner, Klaus T.; Wygrecka, Malgorzata

    2016-01-01

    Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. The infection process involves bacterial cell surface receptors, which interact with host extracellular matrix components to facilitate colonization and dissemination of bacteria. Here, we investigated the role of host-derived extracellular RNA (eRNA) in the process of pneumococcal alveolar epithelial cell infection. Our study demonstrates that eRNA dose-dependently increased S. pneumoniae invasion of alveolar epithelial cells. Extracellular enolase (Eno), a plasminogen (Plg) receptor, was identified as a novel eRNA-binding protein on S. pneumoniae surface, and six Eno eRNA-binding sites including a C-terminal 15 amino acid motif containing lysine residue 434 were characterized. Although the substitution of lysine 434 for glycine (K434G) markedly diminished the binding of eRNA to Eno, the adherence to and internalization into alveolar epithelial cells of S. pneumoniae strain carrying the C-terminal lysine deletion and the mutation of internal Plg-binding motif were only marginally impaired. Accordingly, using a mass spectrometric approach, we identified seven novel eRNA-binding proteins in pneumococcal cell wall. Given the high number of eRNA-interacting proteins on pneumococci, treatment with RNase1 completely inhibited eRNA-mediated pneumococcal alveolar epithelial cell infection. Our data support further efforts to employ RNAse1 as an antimicrobial agent to combat pneumococcal infectious diseases. PMID:27892961

  4. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA

    PubMed Central

    Sugiyama, Kenji; Kawaguchi, Atsushi; Okuwaki, Mitsuru; Nagata, Kyosuke

    2015-01-01

    Replication of influenza viral genomic RNA (vRNA) is catalyzed by viral RNA-dependent RNA polymerase (vRdRP). Complementary RNA (cRNA) is first copied from vRNA, and progeny vRNAs are then amplified from the cRNA. Although vRdRP and viral RNA are minimal requirements, efficient cell-free replication could not be reproduced using only these viral factors. Using a biochemical complementation assay system, we found a novel activity in the nuclear extracts of uninfected cells, designated IREF-2, that allows robust unprimed vRNA synthesis from a cRNA template. IREF-2 was shown to consist of host-derived proteins, pp32 and APRIL. IREF-2 interacts with a free form of vRdRP and preferentially upregulates vRNA synthesis rather than cRNA synthesis. Knockdown experiments indicated that IREF-2 is involved in in vivo viral replication. On the basis of these results and those of previous studies, a plausible role(s) for IREF-2 during the initiation processes of vRNA replication is discussed. DOI: http://dx.doi.org/10.7554/eLife.08939.001 PMID:26512887

  5. Small nucleolar RNA host genes and long non-coding RNA responses in directly irradiated and bystander cells.

    PubMed

    Chaudhry, M Ahmad

    2014-04-01

    The irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon known as the bystander effect. The nature of the bystander signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes could lead to the identification of pathways underlying the bystander effect. Apart from microRNAs, little is known about the regulation of other non-coding RNAs (ncRNA) in irradiated or bystander cells. In this study we monitored the transcriptional changes of several small nucleolar RNAs (snoRNAs) host genes and long non-coding RNAs (lncRNAs) that are known to participate in a variety of cellular functions, in irradiated and bystander cells to gain insight into the molecular pathways affected in these cells. We used human lymphoblasts TK6 cells in a medium exchanged bystander effect model system to examine ncRNA expression alterations. The snoRNA host genes SNHG1 and SNHG4 were upregulated in irradiated TK6 cells but were repressed in bystander cells. The SNHG5 and SNHG11 were downregulated in irradiated and bystander cells and the expression levels of these ncRNA were significantly lower in bystander cells. The lncRNA MALAT1, MATR3, SRA1, and SOX2OT were induced in irradiated TK6 cells and their expression levels were repressed in bystander cells. The lncRNA RMST was induced in both irradiated and bystander cells. Taken together, these results indicate that expression levels of ncRNA are modulated in irradiated and bystander cells and these transcriptional changes could be associated with the bystander effect.

  6. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  7. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures.

    PubMed

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2013-11-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process.

  8. Affinity capture and identification of host cell factors associated with hepatitis C virus (+) strand subgenomic RNA.

    PubMed

    Upadhyay, Alok; Dixit, Updesh; Manvar, Dinesh; Chaturvedi, Nootan; Pandey, Virendra N

    2013-06-01

    Hepatitis C virus (HCV) infection leading to chronic hepatitis is a major factor in the causation of liver cirrhosis, hepatocellular carcinoma, and liver failure. This process may involve the interplay of various host cell factors, as well as the interaction of these factors with viral RNA and proteins. We report a novel strategy using a sequence-specific biotinylated peptide nucleic acid (PNA)-neamine conjugate targeted to HCV RNA for the in situ capture of subgenomic HCV (+) RNA, along with cellular and viral factors associated with it in MH14 host cells. Using this affinity capture system in conjunction with LC/MS/MS, we have identified 83 cellular factors and three viral proteins (NS5B, NS5A, and NS3-4a protease-helicase) associated with the viral genome. The capture was highly specific. These proteins were not scored with cured MH14 cells devoid of HCV replicons because of the absence of the target sequence in cells for the PNA-neamine probe and also because, unlike oligomeric DNA, cellular proteins have no affinity for PNA. The identified cellular factors belong to different functional groups, including signaling, oncogenic, chaperonin, transcriptional regulators, and RNA helicases as well as DEAD box proteins, ribosomal proteins, translational regulators/factors, and metabolic enzymes, that represent a diverse set of cellular factors associated with the HCV RNA genome. Small interfering RNA-mediated silencing of a diverse class of selected proteins in an HCV replicon cell line either enhanced or inhibited HCV replication/translation, suggesting that these cellular factors have regulatory roles in HCV replication.

  9. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases.

    PubMed

    Delgui, Laura R; Colombo, María I

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.

  10. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases

    PubMed Central

    Delgui, Laura R.; Colombo, María I.

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response. PMID:28164038

  11. Minor Contribution of Chimeric Host-HIV Readthrough Transcripts to the Level of HIV Cell-Associated gag RNA.

    PubMed

    Pasternak, Alexander O; DeMaster, Laura K; Kootstra, Neeltje A; Reiss, Peter; O'Doherty, Una; Berkhout, Ben

    2015-11-11

    Cell-associated HIV unspliced RNA is an important marker of the viral reservoir. HIV gag RNA-specific assays are frequently used to monitor reservoir activation. Because HIV preferentially integrates into actively transcribed genes, some of the transcripts detected by these assays may not represent genuine HIV RNA but rather chimeric host-HIV readthrough transcripts. Here, we demonstrate that in HIV-infected patients on suppressive combination antiretroviral therapy, such host-derived transcripts do not significantly contribute to the HIV gag RNA level.

  12. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells.

    PubMed

    Ruan, Wendong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Li, Yulin

    2016-03-01

    The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.

  13. Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721.

    PubMed

    Liu, Run-Tian; Cao, Jing-Lin; Yan, Chang-Qing; Wang, Yang; An, Cong-Jing; Lv, Hai-Tao

    2017-01-31

    This study explored the effect of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control group (NC, transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). qRT-PCR was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2 to 10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared to the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound-healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721.

  14. Using click chemistry to measure the effect of viral infection on host-cell RNA synthesis.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Head, Jennifer A; Ikegami, Tetsuro

    2013-08-09

    Many RNA viruses have evolved the ability to inhibit host cell transcription as a means to circumvent cellular defenses. For the study of these viruses, it is therefore important to have a quick and reliable way of measuring transcriptional activity in infected cells. Traditionally, transcription has been measured either by incorporation of radioactive nucleosides such as (3)H-uridine followed by detection via autoradiography or scintillation counting, or incorporation of halogenated uridine analogs such as 5-bromouridine (BrU) followed by detection via immunostaining. The use of radioactive isotopes, however, requires specialized equipment and is not feasible in a number of laboratory settings, while the detection of BrU can be cumbersome and may suffer from low sensitivity. The recently developed click chemistry, which involves a copper-catalyzed triazole formation from an azide and an alkyne, now provides a rapid and highly sensitive alternative to these two methods. Click chemistry is a two step process in which nascent RNA is first labeled by incorporation of the uridine analog 5-ethynyluridine (EU), followed by detection of the label with a fluorescent azide. These azides are available as several different fluorophores, allowing for a wide range of options for visualization. This protocol describes a method to measure transcriptional suppression in cells infected with the Rift Valley fever virus (RVFV) strain MP-12 using click chemistry. Concurrently, expression of viral proteins in these cells is determined by classical intracellular immunostaining. Steps 1 through 4 detail a method to visualize transcriptional suppression via fluorescence microscopy, while steps 5 through 8 detail a method to quantify transcriptional suppression via flow cytometry. This protocol is easily adaptable for use with other viruses.

  15. A small hairpin RNA targeting myeloid cell leukemia-1 enhances apoptosis in host macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Wang, Fei-yu; Zhang, Yu-qing; Wang, Xin-min; Wang, Chan; Wang, Xiao-fang; Wu, Jiang-dong; Wu, Fang; Zhang, Wan-jiang; Zhang, Le

    2016-04-01

    Myeloid cell leukemia-1 (Mcl-1) plays an important role in various cell survival pathways. Some studies indicated that the expression of Mcl-1 was upregulated in host cells during infection with the virulent Mycobacterium tuberculosis strain, H37Rv. The present study was designed to investigate the effect of inhibiting Mcl-1 expression both in vivo and in vitro on apoptosis of host macrophages infected with M. tuberculosis using a small hairpin (sh)RNA. Mcl-1 expression was detected by the real time-polymerase chain reaction, western blotting, and immunohistochemistry. Flow cytometry and transmission electron microscopy were used to measure host macrophage apoptosis. We found elevated Mcl-1 levels in host macrophages infected with M. tuberculosis H37Rv. The expression of Mcl-1 was downregulated efficiently in H37Rv-infected host macrophages using shRNA. Knockdown of Mcl-1 enhanced the extent of apoptosis in H37Rv-infected host macrophages significantly. The increased apoptosis correlated with a decrease in M. tuberculosis colony forming units recovered from H37Rv-infected cells that were treated with Mcl-1-shRNA. Reducing Mcl-1 accumulation by shRNA also reduced accumulation of the anti-apoptotic gene, Bcl-2, and increased expression of the pro-apoptotic gene, Bax, in H37Rv-infected host macrophages. Our results showed that specific knockdown of Mcl-1 expression increased apoptosis of host macrophages significantly and decreased the intracellular survival of a virulent strain of M. tuberculosis. These data indicate that interference with Mcl-1 expression may provide a new avenue for tuberculosis therapy.

  16. LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b.

    PubMed

    Gao, Yuan; Meng, Hao; Liu, Shupeng; Hu, Jingjing; Zhang, Yemin; Jiao, Tingting; Liu, Yujie; Ou, Jun; Wang, Dan; Yao, Lin; Liu, Shanrong; Hui, Ning

    2015-02-01

    Recently, a large number of long non-coding RNAs (lncRNAs) have been reported in mammalian genomes and are evolutionarily conserved and presumably function in many biological events, especially in the pathogenesis of diverse human cancers. A lncRNA, named HOST2 (human ovarian cancer-specific transcript 2), was once reported to specifically be expressed at high level in human ovarian cancer. However, how HOST2 acts to regulate gene functions in ovarian carcinogenesis has remained enigmatic. Here we report, for the first time, that HOST2 promotes tumor cell migration, invasion and proliferation in epithelial ovarian cancer by working in key aspects of biological behaviors. In the present study, bioinformatics analysis indicated that HOST2 binds with microRNA let-7b, a potent tumor suppressor, which was then verified to target HOST2. Our results showed that HOST2 harbors a let-7b binding site and modulates let-7b availability by acting as a molecular sponge. HOST2 inhibits let-7b functions, which post-transcriptionally suppress the expression of targets, including some oncogenes that regulate cell growth and motility. Additionally, understanding HOST2/let-7b-dependent regulation may lead to alternative approaches for the diagnosis and cure of this deadly disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses

    PubMed Central

    Panda, Debasis; Das, Anshuman; Dinh, Phat X.; Subramaniam, Sakthivel; Nayak, Debasis; Barrows, Nicholas J.; Pearson, James L.; Thompson, Jesse; Kelly, David L.; Ladunga, Istvan; Pattnaik, Asit K.

    2011-01-01

    Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process. PMID:22065774

  18. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    PubMed Central

    Alonso, Graciela; Alonso-Lobo, Juan Manuel; Rastrojo, Alberto; Fischer, Cornelius; Sauer, Sascha; Aguado, Begoña

    2017-01-01

    Vaccinia virus (VACV) encodes the soluble type I interferon (IFN) binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection. PMID:28280747

  19. Knockdown of Long Noncoding RNA Small Nucleolar RNA Host Gene 12 Inhibits Cell Growth and Induces Apoptosis by Upregulating miR-138 in Nonsmall Cell Lung Cancer.

    PubMed

    Wang, Xiaoyan; Qi, Guanbin; Zhang, Juanjuan; Wu, Jingcan; Zhou, Nannan; Li, Lei; Ma, Jing

    2017-09-05

    Small nucleolar RNA host gene 12 (SNHG12) is a novel long noncoding RNA identified to be upregulated and functions as an oncogene in several cancers. However, the function of SNHG12 and its target genes in modulating nonsmall cell lung cancer (NSCLC) development are rarely reported. In the present study, we validated that SNHG12 was overexpressed, while miR-138 was low-expressed, in NSCLC cells compared with normal human lung epithelial cells. SNHG12 harbored the binding site of miR-138 and inversely regulated the expression miR-138. Knockdown of SNHG12 inhibited proliferation and colony-forming ability, induced apoptosis, and increased caspase-3 activity of NSCLC cells, whereas miR-138 downregulation restored these effects. Furthermore, SNHG12 knockdown decreased volumes and weight of xenograft tumors in a NSCLC mouse model. Taken together, these findings suggested that knockdown of SNHG12 suppressed cell growth and induced apoptosis by upregulating miR-138 in NSCLC.

  20. Host cell mTORC1 is required for HCV RNA replication

    PubMed Central

    Stöhr, Stefanie; Costa, Rui; Sandmann, Lisa; Westhaus, Sandra; Pfaender, Stephanie; Anggakusuma; Dazert, Eva; Meuleman, Philip; Vondran, Florian W R; Manns, Michael P; Steinmann, Eike; von Hahn, Thomas; Ciesek, Sandra

    2016-01-01

    Objective Chronically HCV-infected orthotopic liver transplantation (OLT) recipients appear to have improved outcomes when their immunosuppressive regimen includes a mammalian target of rapamycin (mTOR) inhibitor. The mechanism underlying this observation is unknown. Design We used virological assays to investigate mTOR signalling on the HCV replication cycle. Furthermore, we analysed HCV RNA levels of 42 HCV-positive transplanted patients treated with an mTOR inhibitor as part of their immunosuppressive regimen. Results The mTOR inhibitor rapamycin was found to be a potent inhibitor for HCV RNA replication in Huh-7.5 cells as well as primary human hepatocytes. Half-maximal inhibition was observed at 0.01 µg/mL, a concentration that is in the range of serum levels seen in transplant recipients and does not affect cell proliferation. Early replication cycle steps such as cell entry and RNA translation were not affected. Knockdown of raptor, an essential component of mTORC1, but not rictor, an essential component of mTORC2, inhibited viral RNA replication. In addition, overexpression of raptor led to higher viral RNA replication, demonstrating that mTORC1, but not mTORC2, is required for HCV RNA replication. In 42 HCV-infected liver-transplanted or kidney-transplanted patients who were switched to an mTOR inhibitor, we could verify that mTOR inhibition decreased HCV RNA levels in vivo. Conclusions Our data identify mTORC1 as a novel HCV replication factor. These findings suggest an underlying mechanism for the observed benefits of mTOR inhibition in HCV-positive OLT recipients and potentiate further investigation of mTOR-containing regimens in HCV-positive recipients of solid organ transplants. PMID:26276683

  1. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    SciTech Connect

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.; Dasgupta, A.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.

  2. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    SciTech Connect

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M. . E-mail: w.j.m.spaan@lumc.nl

    2007-04-25

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.

  3. Solar and temperature treatments affect the ability of human rotavirus wa to bind to host cells and synthesize viral RNA.

    PubMed

    Romero-Maraccini, Ofelia C; Shisler, Joanna L; Nguyen, Thanh H

    2015-06-15

    Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation.

  4. Solar and Temperature Treatments Affect the Ability of Human Rotavirus Wa To Bind to Host Cells and Synthesize Viral RNA

    PubMed Central

    Shisler, Joanna L.

    2015-01-01

    Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation. PMID:25862222

  5. Infection by Herpes Simplex Virus 1 Causes Near-Complete Loss of RNA Polymerase II Occupancy on the Host Cell Genome.

    PubMed

    Abrisch, Robert G; Eidem, Tess M; Yakovchuk, Petro; Kugel, Jennifer F; Goodrich, James A

    2015-12-16

    Lytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes. We investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes

  6. Infection by Herpes Simplex Virus 1 Causes Near-Complete Loss of RNA Polymerase II Occupancy on the Host Cell Genome

    PubMed Central

    Abrisch, Robert G.; Eidem, Tess M.; Yakovchuk, Petro

    2015-01-01

    ABSTRACT Lytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes. IMPORTANCE We investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at

  7. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    PubMed

    Neuvonen, Maarit; Kazlauskas, Arunas; Martikainen, Miika; Hinkkanen, Ari; Ahola, Tero; Saksela, Kalle

    2011-11-01

    Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  8. 16S rRNA gene probe quantitates residual host cell DNA in pharmaceutical-grade plasmid DNA.

    PubMed

    Wang, Kai-Yu; Guo, Ying-Jun; Sun, Shu-Han; Shi, Ke; Zhang, Shu; Wang, Kai-Hui; Yi-Zhang; Chen, Zu-Huan

    2006-03-24

    The development and widespread use of DNA-based vaccination against infectious pathogens have been a great triumph of medical science. Quality control of DNA vaccines as biopharmaceutical productions is a problem to solve. Residual genomic DNA of engineering bacteria has been identified as a potential risk factor, so whose level must be controlled under the regulatory standards. We report a dot-blot hybridization method to detect residual host cell DNA in purified DNA vaccines. The assay utilizes PCR amplified and digoxigenin-labeled Escherichia coli 16S rRNA gene as probe. The sensitivity of the dot-blot hybridization assay with E. coli 16S rRNA gene probe was evaluated in comparison with single copy UidR gene probe. The optimized dot-blot hybridization assay had both low background and a suitable sensitivity, detecting 10 pg of residual E. coli DNA. The method is suitable in the routine use of measuring the levels of residual E. coli DNA in the pharmaceutical-grade DNA vaccine.

  9. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering.

  10. dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity.

    PubMed

    Wang, Yaming; Swiecki, Melissa; McCartney, Stephen A; Colonna, Marco

    2011-09-01

    The innate immune system detects viruses through molecular sensors that trigger the production of type I interferons (IFN-I) and inflammatory cytokines. As viruses vary tremendously in size, structure, genomic composition, and tissue tropism, multiple sensors are required to detect their presence in various cell types and tissues. In this review, we summarize current knowledge of the diversity, specificity, and signaling pathways downstream of viral sensors and ask whether two distinct sensors that recognize the same viral component are complementary, compensatory, or simply redundant. We also discuss why viral sensors are differentially distributed in distinct cell types and whether a particular cell type dominates the IFN-I response during viral infection. Finally, we review evidence suggesting that inappropriate signaling through viral sensors may induce autoimmunity. The picture emerging from these studies is that disparate viral sensors in different cell types form a dynamic and integrated molecular network that can be exploited for improving vaccination and therapeutic strategies for infectious and autoimmune diseases.

  11. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production.

    PubMed

    Naji, Souad; Ambrus, Géza; Cimermančič, Peter; Reyes, Jason R; Johnson, Jeffrey R; Filbrandt, Rebecca; Huber, Michael D; Vesely, Paul; Krogan, Nevan J; Yates, John R; Saphire, Andrew C; Gerace, Larry

    2012-04-01

    The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.

  12. Host Cell Interactome of HIV-1 Rev Includes RNA Helicases Involved in Multiple Facets of Virus Production*

    PubMed Central

    Naji, Souad; Ambrus, Géza; Cimermančič, Peter; Reyes, Jason R.; Johnson, Jeffrey R.; Filbrandt, Rebecca; Huber, Michael D.; Vesely, Paul; Krogan, Nevan J.; Yates, John R.; Saphire, Andrew C.; Gerace, Larry

    2012-01-01

    The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins. PMID:22174317

  13. Determination of host RNA helicases activity in viral replication

    PubMed Central

    Sharma, Amit; Boris-Lawrie, Kathleen

    2016-01-01

    RNA helicases are encoded by all eukaryotic and prokaryotic cells and a minority of viruses. Activity of RNA helicases is necessary for all steps in the expression of cells and viruses and the host innate response to virus infection. Their vast functional repertoire is attributable to the core ATPase-dependent helicase domain in conjunction with flanking domains that are interchangeable and engage viral and cellular cofactors. Here, we address the important issue of host RNA helicases that are necessary for replication of a virus. The chapter covers approaches to identification and characterization of candidate helicases and methods to define the biochemical and biophysical parameters of specificity and functional activity of the enzymes. We discuss the context of cellular RNA helicase activity and virion-associated RNA helicases. The methodology and choice of controls fosters the assessment of the virologic scope of RNA helicases across divergent cell lineages and viral replication cycles. PMID:22713331

  14. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    SciTech Connect

    Zhao, Hongxing; Chen, Maoshan; Lind, Sara Bergström; Pettersson, Ulf

    2016-05-15

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.

  15. MicroRNA Transcriptome of Poly I:C-Stimulated Peripheral Blood Mononuclear Cells Reveals Evidence for MicroRNAs in Regulating Host Response to RNA Viruses in Pigs.

    PubMed

    Wang, Jiying; Wang, Yanping; Wang, Haifei; Guo, Jianfeng; Wang, Huaizhong; Wu, Ying; Liu, Jianfeng

    2016-09-22

    MicroRNAs (miRNAs) are one family of small noncoding RNAs that function to modulate the activity of specific mRNA targets in animals. To understand the role of miRNAs in regulating genes involved in the host immune response to RNA viruses, we profiled and characterized the miRNAs of swine peripheral blood mononuclear cells (PBMC) stimulated with poly I:C, a synthetic dsRNA analog, by miRNA-sequencing (miRNA-seq). We identified a total of 905 miRNAs, of which 503 miRNAs were firstly exploited herein with no annotation in the latest miRBase 21.0. Expression analysis demonstrated that poly I:C stimulation can elicit significantly differentially expressed (DE) miRNAs in Dapulian (n = 20), one Chinese indigenous breed, as well as Landrace (n = 23). By integrating the mRNA expression profiles of the same sample with miRNA profiles, we carried out function analyses of the target genes of these DE miRNAs, with the results indicating that target genes were most enriched in some immune-related pathways and gene ontology (GO) terms, suggesting that DE miRNAs play an important role in the regulation of host to poly I:C stimulation. Furthermore, we also detected 43 and 61 significantly DE miRNAs between the two breeds in the control sample groups and poly I:C stimulation groups, respectively, which may be involved in regulation of the different characteristics of the two breeds. This study describes for the first time the PBMC miRNA transcriptomic response to poly I:C stimulation in pigs, which not only contributes to a broad view of the pig miRNAome but improves our understanding of miRNA function in regulating host immune response to RNA viruses.

  16. MicroRNA Transcriptome of Poly I:C-Stimulated Peripheral Blood Mononuclear Cells Reveals Evidence for MicroRNAs in Regulating Host Response to RNA Viruses in Pigs

    PubMed Central

    Wang, Jiying; Wang, Yanping; Wang, Haifei; Guo, Jianfeng; Wang, Huaizhong; Wu, Ying; Liu, Jianfeng

    2016-01-01

    MicroRNAs (miRNAs) are one family of small noncoding RNAs that function to modulate the activity of specific mRNA targets in animals. To understand the role of miRNAs in regulating genes involved in the host immune response to RNA viruses, we profiled and characterized the miRNAs of swine peripheral blood mononuclear cells (PBMC) stimulated with poly I:C, a synthetic dsRNA analog, by miRNA-sequencing (miRNA-seq). We identified a total of 905 miRNAs, of which 503 miRNAs were firstly exploited herein with no annotation in the latest miRBase 21.0. Expression analysis demonstrated that poly I:C stimulation can elicit significantly differentially expressed (DE) miRNAs in Dapulian (n = 20), one Chinese indigenous breed, as well as Landrace (n = 23). By integrating the mRNA expression profiles of the same sample with miRNA profiles, we carried out function analyses of the target genes of these DE miRNAs, with the results indicating that target genes were most enriched in some immune-related pathways and gene ontology (GO) terms, suggesting that DE miRNAs play an important role in the regulation of host to poly I:C stimulation. Furthermore, we also detected 43 and 61 significantly DE miRNAs between the two breeds in the control sample groups and poly I:C stimulation groups, respectively, which may be involved in regulation of the different characteristics of the two breeds. This study describes for the first time the PBMC miRNA transcriptomic response to poly I:C stimulation in pigs, which not only contributes to a broad view of the pig miRNAome but improves our understanding of miRNA function in regulating host immune response to RNA viruses. PMID:27669219

  17. DUSP11 - an RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells.

    PubMed

    Burke, James M; Sullivan, Christopher S

    2017-03-15

    Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiological activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our lab demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells.

  18. Root-Knot Nematode Parasitism Suppresses Host RNA Silencing.

    PubMed

    Walsh, E; Elmore, J M; Taylor, C G

    2017-04-12

    Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual "giant cells") is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host's RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.

  19. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion

    PubMed Central

    Andritschke, Daniel; Dilling, Sabrina; Emmenlauer, Mario; Welz, Tobias; Schmich, Fabian; Misselwitz, Benjamin; Rämö, Pauli; Rottner, Klemens; Kerkhoff, Eugen; Wada, Teiji; Penninger, Josef M.; Beerenwinkel, Niko; Horvath, Peter; Dehio, Christoph; Hardt, Wolf-Dietrich

    2016-01-01

    Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect. PMID:27627128

  20. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  1. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries.

    PubMed

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-11-23

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N⁶-methyladenosine (m⁶A), allowing the recruitment of YTH N⁶-methyladenosine RNA binding protein 2 (YTHDF2), an m⁶A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  2. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    PubMed

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality.

  3. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    PubMed

    Robertson, Kevin A; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J; Enright, Anton J; Yamamoto, Mami; Pradeepa, Madapura M; Lennox, Kimberly A; Behlke, Mark A; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-03-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  4. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line.

    PubMed

    Jiwaji, Meesbah; Short, James Roswell; Dorrington, Rosemary Ann

    2016-10-01

    Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.

  5. Within host RNA virus persistence: mechanisms and consequences.

    PubMed

    Randall, Richard E; Griffin, Diane E

    2017-04-01

    In a prototypical response to an acute viral infection it would be expected that the adaptive immune response would eliminate all virally infected cells within a few weeks of infection. However many (non-retrovirus) RNA viruses can establish 'within host' persistent infections that occasionally lead to chronic or reactivated disease. Despite the importance of 'within host' persistent RNA virus infections, much has still to be learnt about the molecular mechanisms by which RNA viruses establish persistent infections, why innate and adaptive immune responses fail to rapidly clear these infections, and the epidemiological and potential disease consequences of such infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Efficient Enrichment of Bacterial mRNA from Host-Bacteria Total RNA Samples

    PubMed Central

    Kumar, Nikhil; Lin, Mingqun; Zhao, Xuechu; Ott, Sandra; Santana-Cruz, Ivette; Daugherty, Sean; Rikihisa, Yasuko; Sadzewicz, Lisa; Tallon, Luke J.; Fraser, Claire M.; Dunning Hotopp, Julie C.

    2016-01-01

    Despite numerous advances in genomics and bioinformatics, technological hurdles remain to examine host-microbe transcriptomics. Sometimes the transcriptome of either or both can be ascertained merely by generating more sequencing reads. However, many cases exist where bacterial mRNA needs to be enriched further to enable cost-effective sequencing of the pathogen or endosymbiont. While a suitable method is commercially available for mammalian samples of this type, development of such methods has languished for invertebrate samples. Furthermore, a common method across multiple taxa would facilitate comparisons between bacteria in invertebrate vectors and their vertebrate hosts. Here, a method is described to concurrently remove polyadenylated transcripts, prokaryotic rRNA, and eukaryotic rRNA, including those with low amounts of starting material (e.g. 100 ng). In a Wolbachia-Drosophila system, this bacterial mRNA enrichment yielded a 3-fold increase in Wolbachia mRNA abundance and a concomitant 3.3-fold increase in the percentage of transcripts detected. More specifically, 70% of the genome could be recovered by transcriptome sequencing compared to 21% in the total RNA. Sequencing of similar bacterial mRNA-enriched samples generated from Ehrlichia-infected canine cells covers 93% of the Ehrlichia genome, suggesting ubiquitous transcription across the entire Ehrlichia chaffeensis genome. This technique can potentially be used to enrich bacterial mRNA in many studies of host-microbe interactions. PMID:27713560

  7. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting.

  8. MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma.

    PubMed

    Luedde, Tom

    2010-09-01

    Recurrent chromosomal aberrations are often observed in hepatocellular carcinoma (HCC), but little is known about the functional non-coding sequences, particularly microRNAs (miRNAs), at the chromosomal breakpoints in HCC. Here we show that 22 miRNAs are often amplified or deleted in HCC. MicroRNA-151 (miR-151), a frequently amplified miRNA on 8q24.3, is correlated with intrahepatic metastasis of HCC. We further show that miR-151, which is often expressed together with its host gene FAK, encoding focal adhesion kinase, significantly increases HCC cell migration and invasion in vitro and in vivo, mainly through miR-151-5p, but not through miR-151-3p. Moreover, miR-151 exerts this function by directly targeting RhoGDIA, a putative metastasis suppressor in HCC, thus leading to the activation of Rac1, Cdc42 and Rho GTPases. In addition, miR-151 can function synergistically with FAK to enhance HCC cell motility and spreading. Thus, our findings indicate that chromosome gain of miR-151 is a crucial stimulus for tumour invasion and metastasis of HCC.

  9. RNA binding protein CPEB1 remodels host and viral RNA landscapes

    PubMed Central

    Batra, Ranjan; Stark, Thomas J.; Clark, Elizabeth; Belzile, Jean-Philippe; Wheeler, Emily C.; Yee, Brian A.; Huang, Hui; Gelboin-Burkhart, Chelsea; Huelga, Stephanie C.; Aigner, Stefan; Roberts, Brett T.; Bos, Tomas J.; Sathe, Shashank; Donohue, John Paul; Rigo, Frank; Ares, Manuel; Spector, Deborah H.; Yeo, Gene W.

    2016-01-01

    Host and virus interactions at the post-transcriptional level are critical for infection but remain poorly understood. Human cytomegalovirus (HCMV) is a prevalent herpesvirus family member that causes severe complications in immunocompromised patients and newborns. Here, we perform comprehensive transcriptome-wide analyses revealing that HCMV infection results in widespread alternative splicing (AS), shorter 3′-untranslated regions (3′UTRs) and polyA tail lengthening in host genes. The host RNA binding protein cytoplasmic polyadenylation element binding protein 1 (CPEB1) is highly induced upon infection and ectopic expression of CPEB1 in non-infected cells recapitulates infection-related post-transcriptional changes. CPEB1 is also required for polyA-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reverses infection-related cytopathology and post-transcriptional changes, and decreases productive HCMV titers. Host RNA processing is also altered in herpes simplex virus-2 (HSV-2) infected cells, indicating a common theme among herpesvirus infections. Our work is a starting point for therapeutic targeting of host RNA binding proteins in herpesvirus infections. PMID:27775709

  10. RNA-binding protein CPEB1 remodels host and viral RNA landscapes.

    PubMed

    Batra, Ranjan; Stark, Thomas J; Clark, Elizabeth; Belzile, Jean-Philippe; Wheeler, Emily C; Yee, Brian A; Huang, Hui; Gelboin-Burkhart, Chelsea; Huelga, Stephanie C; Aigner, Stefan; Roberts, Brett T; Bos, Tomas J; Sathe, Shashank; Donohue, John Paul; Rigo, Frank; Ares, Manuel; Spector, Deborah H; Yeo, Gene W

    2016-12-01

    Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections.

  11. Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways

    PubMed Central

    Ullmer, Wendy; Semler, Bert L.

    2016-01-01

    To successfully replicate, viruses protect their genomic material from degradation by the host cell. RNA viruses must contend with numerous destabilizing host cell processes including mRNA decay pathways and viral RNA (vRNA) degradation resulting from the antiviral response. Members of the Picornaviridae family of small RNA viruses have evolved numerous diverse strategies to evade RNA decay, including incorporation of stabilizing elements into vRNA and re-purposing host stability factors. Viral proteins are deployed to disrupt and inhibit components of the decay machinery and to redirect decay machinery to the advantage of the virus. This review summarizes documented interactions of picornaviruses with cellular RNA decay pathways and processes. PMID:27999393

  12. Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways.

    PubMed

    Ullmer, Wendy; Semler, Bert L

    2016-12-20

    To successfully replicate, viruses protect their genomic material from degradation by the host cell. RNA viruses must contend with numerous destabilizing host cell processes including mRNA decay pathways and viral RNA (vRNA) degradation resulting from the antiviral response. Members of the Picornaviridae family of small RNA viruses have evolved numerous diverse strategies to evade RNA decay, including incorporation of stabilizing elements into vRNA and re-purposing host stability factors. Viral proteins are deployed to disrupt and inhibit components of the decay machinery and to redirect decay machinery to the advantage of the virus. This review summarizes documented interactions of picornaviruses with cellular RNA decay pathways and processes.

  13. Selective Packaging of Host tRNA's by Murine Leukemia Virus Particles Does Not Require Genomic RNA

    PubMed Central

    Levin, Judith G.; Seidman, J. G.

    1979-01-01

    The 4S RNA contained in RNA tumor virus particles consists of a selected population of host tRNA's. However, the mechanism by which virions select host tRNA's has not been elucidated. We have considered a model which specifies that 35S genomic RNA determines which tRNA's are to be encapsidated as well as the relative amounts of these tRNA's within the virion. The model was tested by comparing the free 4S RNA composition of normal murine leukemia virus (MuLV) particles and noninfectious virions from actinomycin D (ActD)-treated cells, which are deficient in genomic RNA (ActD virions). Viral 4S RNA was analyzed by two-dimensional polyacrylamide gel electrophoresis. Surprisingly, the patterns obtained for control and ActD 4S RNA were identical to each other and were clearly distinct from the cell 4S RNA pattern. The viral patterns had three prominent areas of radioactivity. One of the spots was identified on the basis of its oligonucleotide fingerprint as tRNA Pro, the primer for MuLV RNA-directed DNA synthesis. These results were obtained with two different MuLV strains, AKR and Moloney, each grown in SC-1 cells. The demonstration that ActD virions contain primer tRNA and in general exhibit the characteristic MuLV tRNA pattern rather than the complete representation of cell 4S RNA leads to the conclusion that genomic RNA is not the major determinant in selective packaging of host tRNA's. A possible role for one or more viral proteins, including reverse transcriptase, is suggested. Images PMID:219227

  14. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    SciTech Connect

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  15. The roles of host factors in tombusvirus RNA recombination.

    PubMed

    Nagy, Peter D

    2011-01-01

    RNA viruses are the champions of evolution due to high frequency mutations and genetic recombination occurring during virus replication. These genetic events are due to the error-prone nature of viral RNA-dependent RNA polymerases (RdRp). Recently emerging models on viral RNA recombination, however, also include key roles for host and environmental factors. Accordingly, genome-wide screens and global proteomics approaches with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have identified 38 host proteins affecting viral RNA recombination. Follow-up studies have identified key host proteins and cellular pathways involved in TBSV RNA recombination. In addition, environmental factors, such as salt stress, have been shown to affect TBSV recombination via influencing key host or viral factors involved in the recombination process. These advances will help build more accurate models on viral recombination, evolution, and adaptation.

  16. siRNA and shRNA screens advance key understanding of host factors required for HIV-1 replication.

    PubMed

    Kok, Kin-Hang; Lei, Ting; Jin, Dong-Yan

    2009-08-27

    A recent RNAi screen used a genome-wide shRNA library to search for cellular factors required for HIV-1 replication. This work complements three other siRNA-based screening studies and potentially opens the door to the discovery of factors that are important for HIV-1 replication in physiological host cells such as T lymphocytes. shRNA screens can be further improved, and they could promise to unravel new pathways and new facets of virus-cell interactions.

  17. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein

    PubMed Central

    Larkins-Ford, Jonah; McCormick, Craig; Gaglia, Marta M.

    2016-01-01

    Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5’->3’-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3’ end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus. PMID:26849127

  18. Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation.

    PubMed

    Gimondi, Silvia; Dugo, Matteo; Vendramin, Antonio; Bermema, Anisa; Biancon, Giulia; Cavané, Alessandra; Corradini, Paolo; Carniti, Cristiana

    2016-07-01

    Acute graft-versus-host disease (aGVHD) results in significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Noninvasive diagnostic and prognostic tests for aGVHD are currently lacking, but would be beneficial in predicting aGVHD and improving the safety of allo-HSCT. Circulating microRNAs exhibit marked stability and may serve as biomarkers in several clinical settings. Here, we evaluated the use of circulating microRNAs as predictive biomarkers of aGVHD in lymphoma patients after allo-HSCT from matched unrelated donors (MUDs). After receiving informed consent, we prospectively collected plasma samples from 24 lymphoma patients before and after unmanipulated MUD allo-HSCT; microRNAs were then isolated. Fourteen patients developed aGVHD symptoms at a median of 48 days (range: 32-90) post-transplantation. Two patients developed intestinal GVHD, eight cutaneous GVHD, and four multiorgan GVHD. The microRNA expression profile was examined using quantitative real-time polymerase chain reaction (qRT-PCR). MicroRNAs 194 and 518f were significantly upregulated in aGVHD samples compared with samples taken from non-aGVHD patients. Remarkably, these upregulated microRNAs could be detected before the onset of aGVHD. Pathway prediction analysis indicated that these microRNAs may regulate critical pathways involved in aGVHD pathogenesis. Considering the noninvasive characteristics of plasma sampling and the feasibility of detecting miRNAs after allo-HSCT using real-time polymerase chain reaction, our results indicate that circulating microRNAs have the potential to enable an earlier aGVHD diagnosis and might assist in individualizing therapeutic strategies after MUD allo-HSCT. Nevertheless, standardization of blood sampling and analysis protocols is mandatory for the introduction of miRNA profiling into routine clinical use. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All

  19. Importance of secreted bacterial RNA in bacterial-host interactions in the gut.

    PubMed

    Ghosal, Anubrata

    2017-03-01

    Bacteria are ubiquitous in nature and found to be associated with human. Humans are benefited significantly from these associated bacteria. Our understanding is quite limited about these beneficial associations and how bacteria communicate with the host. It is assumed that secreted bacterial products contribute in bacterial-host signaling. A few studies have shown that bacteria secrete RNA into their extracellular medium, and these secreted RNA are capable of altering the host immune response. Multiple studies in eukaryotes have confirmed that secreted RNA can influence the functioning of other cells and their role in the development of several diseases, although not much is known about the composition of secreted bacterial RNA, how they are trafficked and how they impact on the functioning of host cells. By uncovering the beneficial role of secreted bacterial RNA, it would be possible to improve the human health.

  20. Genetic variations in host IL28B links to the detection of peripheral blood mononuclear cells-associated hepatitis C virus RNA in chronically infected patients.

    PubMed

    Angulo, J; Pino, K; Pavez, C; Biel, F; Labbé, P; Miquel, J F; Soza, A; López-Lastra, M

    2013-04-01

    Hepatitis C virus (HCV) is mainly hepatotropic; however, several reports document the presence of genomic viral RNA in extrahepatic sites including peripheral blood mononuclear cells (PBMCs). In this study, the presence of HCV RNA was initially evaluated in the plasma and peripheral blood mononuclear cells (PBMCs) of 53 HCV-infected patients who were treated per protocol. PBMC-associated HCV RNA was detectable in 79% of patients. Early virological response to combined pegylated interferon-α (PegIFN) and ribavirin (RBV) therapy in patients with undetectable levels of PBMCs-associated HCV RNA was 100%, while it was 60% (P = 0.003) in those who had detectable levels of PBMC-associated HCV RNA. A sustained virological response was observed in 35% of patients with detectable PBMC-associated HCV RNA, but was 70% in patients with undetectable levels of PBMC-associated HCV RNA (P = 0.07). In a multivariate analysis incorporating parameters such as HCV genotype, viral load, presence of cirrhosis and absence of PBMC-associated HCV RNA, a significant relationship was observed between the detection of PBMC-associated HCV RNA and the sustained virological response (OR 19.4, 95% CI: 2.1-486.2, P = 0.0061). The association between single nucleotide polymorphism (SNP) in IL28B, known predictor of antiviral therapy outcome, and the occurrence of HCV RNA in PBMC in 84 chronically infected patients was then evaluated. Results suggest that the presence of a G allele in rs8099917, known to associate to a poor response to PegIFN/RBV therapy, also predicts an increased association of HCV RNA with PBMC (OR: 3.564; 95% CI: 1.114-11.40, P = 0.0437).

  1. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections.

    PubMed

    Ojha, Chet Raj; Rodriguez, Myosotys; Dever, Seth M; Mukhopadhyay, Rita; El-Hage, Nazira

    2016-10-26

    MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.

  2. Stimulation of host centriolar antigen in TC7 cells by simian virus 40: requirement for RNA and protein syntheses and an intact simian virus 40 small-t gene function.

    PubMed

    Shyamala, M; Atcheson, C L; Kasamatsu, H

    1982-08-01

    Simian virus 40 (SV 40) stimulated a host cell antigen in the centriolar region after infection of African green monkey kidney (AGMK) cells. The addition of puromycin and actinomycin D to cells infected with SV40 within 5 h after infection inhibited the stimulation of the host cell antigen, indicating that de novo protein and RNA syntheses that occurred within the first 5 h after infection were essential for the stimulation. Early viable deletion mutants of SV40 with deletions mapping between 0.54 and 0.59 map units on the SV40 genome, dl2000, dl2001, dl2003, dl2004, dl2005, dl2006, and dl2007, did not stimulate the centriolar antigen above the level of uninfected cells. This indicated that an intact, functional small-t protein was essential for the SV40-mediated stimulation of the host cell antigen. Our studies, using cells infected with nondefective adenovirus-SV40 hybrid viruses that lack the small-t gene region of SV40 (Ad2+ND1, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5), revealed that the lack of small-t gene function of SV40 could be complemented by a gene function of the adenovirus-SV40 hybrid viruses for the centriolar antigen stimulation. Thus, adenovirus 2 has a gene(s) that is analogous to the small-t gene of SV40 for the stimulation of the host cell antigen in AGMK cells.

  3. RNA-mediated communication between helminths and their hosts: The missing links.

    PubMed

    Claycomb, Julie; Abreu-Goodger, Cei; Buck, Amy H

    2017-01-26

    Small RNAs have been discovered in a wide variety of extracellular environments and are now thought to participate in communication between cells and even between different organisms and species. Helminths are parasitic worms that generally reside in extracellular niches in their hosts and can establish chronic infection through the release of immunomodulatory factors. Recent work has demonstrated that Extracellular RNA (exRNA) may be another class of immunomodulator secreted by helminths. Here we will detail what is known about small RNA pathways in helminth pathogens (focusing on nematodes) and mammalian hosts. We will then explore the computational challenges with identifying RNA-RNA interactions between 2 different species and the paradigm of RNA-RNA co-evolution that accompanies this. Finally we explore the lingering questions that require further investigation to understand the properties of exRNA that would enable it to function as an immunomodulator.

  4. Host membrane proteins involved in the replication of tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Miyashita, Shuhei; Katoh, Etsuko; Ishikawa, Masayuki

    2012-12-01

    Eukaryotic positive-strand RNA viruses replicate their genomes in membrane-bound replication complexes composed of viral replication proteins and negative-strand RNA templates. These replication proteins are programmed to exhibit RNA polymerase and other replication-related activities only in replication complexes to avoid inducing double-stranded RNA-mediated host defenses. Host membrane components (e.g. proteins and lipids) should play important roles in the activation of replication proteins. Two host membrane proteins are components of the replication complex and activate the replication proteins of tobamoviruses. Interaction analyses using deletion mutants constructed based on structural information suggest a conformational change in replication proteins during the formation of a protein complex with RNA 5'-capping activity.

  5. RNA virus harnesses microRNAs to seize host translation control.

    PubMed

    Abraham, Teresa M; Sarnow, Peter

    2011-01-20

    Picornaviruses have evolved elaborate strategies to subvert host translation. In this issue of Cell Host and Microbe, Ho et al. (2011) report that enterovirus infection induces the synthesis of a transcription factor that enhances the synthesis of microRNA-141, which suppresses translation of the cap-binding protein, eIF4E, mRNA to inhibit cap-dependent translation.

  6. Leishmania RNA virus: when the host pays the toll

    PubMed Central

    Hartley, Mary-Anne; Ronet, Catherine; Zangger, Haroun; Beverley, Stephen M.; Fasel, Nicolas

    2012-01-01

    The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic “metastatic factors” or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically

  7. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes

    PubMed Central

    Reid, Colleen R.; Airo, Adriana M.; Hobman, Tom C.

    2015-01-01

    Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs. PMID:26287230

  8. Cost of host radiation in an RNA virus.

    PubMed Central

    Turner, P E; Elena, S F

    2000-01-01

    Although host radiation allows a parasite to expand its ecological niche, traits governing the infection of multiple host types can decrease fitness in the original or alternate host environments. Reasons for this reduction in fitness include slower replication due to added genetic material or modifications, fitness trade-offs across host environments, and weaker selection resulting from simultaneous adaptation to multiple habitats. We examined the consequences of host radiation using vesicular stomatitis virus (VSV) and mammalian host cells in tissue culture. Replicate populations of VSV were allowed to evolve for 100 generations on the original host (BHK cells), on either of two novel hosts (HeLa and MDCK cells), or in environments where the availability of novel hosts fluctuated in a predictable or random way. As expected, each experimental population showed a substantial fitness gain in its own environment, but those evolved on new hosts (constant or fluctuating) suffered reduced competitiveness on the original host. However, whereas evolution on one novel host negatively correlated with performance on the unselected novel host, adaptation in fluctuating environments led to fitness improvements in both novel habitats. PMID:11102349

  9. Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells

    PubMed Central

    Bevilacqua, Valeria; Gioia, Ubaldo; Di Carlo, Valerio; Tortorelli, Anna F; Colombo, Teresa; Bozzoni, Irene; Laneve, Pietro; Caffarelli, Elisa

    2015-01-01

    The human genome contains some thousands of long non coding RNAs (lncRNAs). Many of these transcripts are presently considered crucial regulators of gene expression and functionally implicated in developmental processes in Eukaryotes. Notably, despite a huge number of lncRNAs are expressed in the Central Nervous System (CNS), only a few of them have been characterized in terms of molecular structure, gene expression regulation and function. In the present study, we identify linc-NeD125 as a novel cytoplasmic, neuronal-induced long intergenic non coding RNA (lincRNA). Linc-NeD125 represents the host gene for miR-125b-1, a microRNA with an established role as negative regulator of human neuroblastoma cell proliferation. Here, we demonstrate that these two overlapping non coding RNAs are coordinately induced during in vitro neuronal differentiation, and that their expression is regulated by different mechanisms. While the production of miR-125b-1 relies on transcriptional regulation, linc-NeD125 is controlled at the post-transcriptional level, through modulation of its stability. We also demonstrate that linc-NeD125 functions independently of the hosted microRNA, by reducing cell proliferation and activating the antiapoptotic factor BCL-2. PMID:26480000

  10. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts.

    PubMed

    Ye, Wenwu; Ma, Wenbo

    2016-08-01

    Filamentous eukaryotic pathogens including fungi and oomycetes are major threats of plant health. During the co-evolutionary arms race with the hosts, these pathogens have evolved a large repertoire of secreted virulence proteins, called effectors, to facilitate colonization and infection. Many effectors are believed to directly manipulate targeted processes inside the host cells; and a fundamental function of the effectors is to dampen immunity. Recent evidence suggests that the destructive oomycete pathogens in the genus Phytophthora encode RNA silencing suppressors. These effectors play an important virulence role during infection, likely through their inhibitory effect on host small RNA-mediated defense.

  11. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase.

    PubMed

    Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-08-21

    Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.

  12. Host cells and cell banking.

    PubMed

    Stacey, Glyn N; Merten, Otto-Wilhelm

    2011-01-01

    Gene therapy based on the use of viral vectors is entirely dependent on the use of animal cell lines, mainly of mammalian origin, but also of insect origin. As for any biotechnology product for clinical use, viral -vectors have to be produced with cells derived from an extensively characterized cell bank to maintain the appropriate standard for assuring the lowest risk for the patients to be treated. Although many different cell types and lines have been used for the production of viral vectors, HEK293 cells or their derivatives have been extensively used for production of different vector types: adenovirus, oncorectrovirus, lentivirus, and AAV vectors, because of their easy handling and the possibility to grow them adherently in serum-containing medium as well as in suspension in serum-free culture medium. Despite this, these cells are not necessarily the best for the production of a given viral vector, and there are many other cell lines with significant advantages including superior growth and/or production characteristics, which have been tested and also used for the production of clinical vector batches. This chapter presents basic -considerations concerning the characterization of cell banks, in the first part, and, in the second part, practically all cell lines (at least when public information was available) established and developed for the production of the most important viral vectors (adenoviral, oncoretroviral, lentiviral, AAV, baculovirus).

  13. Stimulation of host centriolar antigen in TC7 cells by simian virus 40: requirement for RNA and protein syntheses and an intact simian virus 40 small-t gene function.

    PubMed Central

    Shyamala, M; Atcheson, C L; Kasamatsu, H

    1982-01-01

    Simian virus 40 (SV 40) stimulated a host cell antigen in the centriolar region after infection of African green monkey kidney (AGMK) cells. The addition of puromycin and actinomycin D to cells infected with SV40 within 5 h after infection inhibited the stimulation of the host cell antigen, indicating that de novo protein and RNA syntheses that occurred within the first 5 h after infection were essential for the stimulation. Early viable deletion mutants of SV40 with deletions mapping between 0.54 and 0.59 map units on the SV40 genome, dl2000, dl2001, dl2003, dl2004, dl2005, dl2006, and dl2007, did not stimulate the centriolar antigen above the level of uninfected cells. This indicated that an intact, functional small-t protein was essential for the SV40-mediated stimulation of the host cell antigen. Our studies, using cells infected with nondefective adenovirus-SV40 hybrid viruses that lack the small-t gene region of SV40 (Ad2+ND1, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5), revealed that the lack of small-t gene function of SV40 could be complemented by a gene function of the adenovirus-SV40 hybrid viruses for the centriolar antigen stimulation. Thus, adenovirus 2 has a gene(s) that is analogous to the small-t gene of SV40 for the stimulation of the host cell antigen in AGMK cells. Images PMID:6180184

  14. The Host Shapes the Gut Microbiota via Fecal MicroRNA.

    PubMed

    Liu, Shirong; da Cunha, Andre Pires; Rezende, Rafael M; Cialic, Ron; Wei, Zhiyun; Bry, Lynn; Comstock, Laurie E; Gandhi, Roopali; Weiner, Howard L

    2016-01-13

    The host gut microbiota varies across species and individuals but is relatively stable over time within an individual. How the host selectively shapes the microbiota is largely unclear. Here, we show that fecal microRNA (miRNA)-mediated inter-species gene regulation facilitates host control of the gut microbiota. miRNAs are abundant in mouse and human fecal samples and present within extracellular vesicles. Cell-specific loss of the miRNA-processing enzyme, Dicer, identified intestinal epithelial cells (IEC) and Hopx-positive cells as predominant fecal miRNA sources. These miRNAs can enter bacteria, such as F. nucleatum and E. coli, specifically regulate bacterial gene transcripts, and affect bacterial growth. IEC-miRNA-deficient (Dicer1(ΔIEC)) mice exhibit uncontrolled gut microbiota and exacerbated colitis, and WT fecal miRNA transplantation restores fecal microbes and ameliorates colitis. These findings identify both a physiologic role by which fecal miRNA shapes the gut microbiota and a potential strategy for manipulating the microbiome.

  15. Viral Evasion and Manipulation of Host RNA Quality Control Pathways.

    PubMed

    Hogg, J Robert

    2016-08-15

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.

  16. Viral Evasion and Manipulation of Host RNA Quality Control Pathways

    PubMed Central

    2016-01-01

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. PMID:27226372

  17. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

    PubMed Central

    Spencer, C A; Dahmus, M E; Rice, S A

    1997-01-01

    Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II. PMID:9032335

  18. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase

    PubMed Central

    Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-01-01

    Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246–401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95–G96 and containing 5′-phosphomonoester and 3′-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively. PMID:22869737

  19. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  20. Rate of novel host invasion affects adaptability of evolving RNA virus lineages

    PubMed Central

    Morley, Valerie J.; Mendiola, Sandra Y.; Turner, Paul E.

    2015-01-01

    Although differing rates of environmental turnover should be consequential for the dynamics of adaptive change, this idea has been rarely examined outside of theory. In particular, the importance of RNA viruses in disease emergence warrants experiments testing how differing rates of novel host invasion may impact the ability of viruses to adaptively shift onto a novel host. To test whether the rate of environmental turnover influences adaptation, we experimentally evolved 144 Sindbis virus lineages in replicated tissue-culture environments, which transitioned from being dominated by a permissive host cell type to a novel host cell type. The rate at which the novel host ‘invaded’ the environment varied by treatment. The fitness (growth rate) of evolved virus populations was measured on each host type, and molecular substitutions were mapped via whole genome consensus sequencing. Results showed that virus populations more consistently reached high fitness levels on the novel host when the novel host ‘invaded’ the environment more gradually, and gradual invasion resulted in less variable genomic outcomes. Moreover, virus populations that experienced a rapid shift onto the novel host converged upon different genotypes than populations that experienced a gradual shift onto the novel host, suggesting a strong effect of historical contingency. PMID:26246544

  1. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles

    PubMed Central

    Koeppen, Katja; Hampton, Thomas H.; Jarek, Michael; Scharfe, Maren; Gerber, Scott A.; Mielcarz, Daniel W.; Demers, Elora G.; Dolben, Emily L.; Hammond, John H.; Hogan, Deborah A.; Stanton, Bruce A.

    2016-01-01

    Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response. PMID:27295279

  2. Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response

    PubMed Central

    Kouwaki, Takahisa; Okamoto, Masaaki; Tsukamoto, Hirotake; Fukushima, Yoshimi; Oshiumi, Hiroyuki

    2017-01-01

    The innate immune system plays a crucial role in controlling viral infection. Pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-I-like receptors, sense viral components called pathogen-associated molecular patterns (PAMPs) and trigger signals to induce innate immune responses. Extracellular vesicles (EVs), including exosomes and microvesicles, deliver functional RNA and mediate intercellular communications. Recent studies have revealed that EVs released from virus-infected cells deliver viral RNA to dendritic cells and macrophages, thereby activating PRRs in recipient cells, which results in the expression of type I interferon and pro-inflammatory cytokines. On the other hand, EVs transfer not only viral RNA but also host microRNAs to recipient cells. Recently, infection of hepatocytes with hepatitis B virus (HBV) was shown to affect microRNA levels in EVs released from virus-infected cells, leading to attenuation of host innate immune response. This suggests that the virus utilizes the EVs and host microRNAs to counteract the antiviral innate immune responses. In this review, we summarize recent findings related to the role of EVs in antiviral innate immune responses. PMID:28335522

  3. Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response.

    PubMed

    Kouwaki, Takahisa; Okamoto, Masaaki; Tsukamoto, Hirotake; Fukushima, Yoshimi; Oshiumi, Hiroyuki

    2017-03-20

    The innate immune system plays a crucial role in controlling viral infection. Pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-I-like receptors, sense viral components called pathogen-associated molecular patterns (PAMPs) and trigger signals to induce innate immune responses. Extracellular vesicles (EVs), including exosomes and microvesicles, deliver functional RNA and mediate intercellular communications. Recent studies have revealed that EVs released from virus-infected cells deliver viral RNA to dendritic cells and macrophages, thereby activating PRRs in recipient cells, which results in the expression of type I interferon and pro-inflammatory cytokines. On the other hand, EVs transfer not only viral RNA but also host microRNAs to recipient cells. Recently, infection of hepatocytes with hepatitis B virus (HBV) was shown to affect microRNA levels in EVs released from virus-infected cells, leading to attenuation of host innate immune response. This suggests that the virus utilizes the EVs and host microRNAs to counteract the antiviral innate immune responses. In this review, we summarize recent findings related to the role of EVs in antiviral innate immune responses.

  4. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  5. Host cell invasion by medically important fungi.

    PubMed

    Sheppard, Donald C; Filler, Scott G

    2014-11-03

    To infect the host and cause disease, many medically important fungi invade normally nonphagocytic host cells, such as endothelial cells and epithelial cells. Host cell invasion is a two-step process consisting of adherence followed by invasion. There are two general mechanisms of host cell invasion, induced endocytosis and active penetration. Furthermore, fungi can traverse epithelial or endothelial cell barriers either by proteolytic degradation of intercellular tight junctions or via a Trojan horse mechanism in which they are transported by leukocytes. Although these mechanisms of host cell invasion have been best studied using Candida albicans and Cryptococcus neoformans, it is probable that other invasive fungi also use one or more of these mechanisms to invade host cells. Identification of these invasion mechanisms holds promise to facilitate the development of new approaches to inhibit fungal invasion and thereby prevent disease. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Host Cell Invasion by Medically Important Fungi

    PubMed Central

    Sheppard, Donald C.; Filler, Scott G.

    2015-01-01

    To infect the host and cause disease, many medically important fungi invade normally nonphagocytic host cells, such as endothelial cells and epithelial cells. Host cell invasion is a two-step process consisting of adherence followed by invasion. There are two general mechanisms of host cell invasion, induced endocytosis and active penetration. Furthermore, fungi can traverse epithelial or endothelial cell barriers either by proteolytic degradation of intercellular tight junctions or via a Trojan horse mechanism in which they are transported by leukocytes. Although these mechanisms of host cell invasion have been best studied using Candida albicans and Cryptococcus neoformans, it is probable that other invasive fungi also use one or more of these mechanisms to invade host cells. Identification of these invasion mechanisms holds promise to facilitate the development of new approaches to inhibit fungal invasion and thereby prevent disease. PMID:25367974

  7. Virus-host interactions: new insights from the small RNA world

    PubMed Central

    Browne, Edward P; Li, Junjie; Chong, Mark; Littman, Dan R

    2005-01-01

    RNA silencing has a known role in the antiviral responses of plants and insects. Recent evidence, including the finding that the Tat protein of human immunodeficiency virus (HIV) can suppress the host's RNA-silencing pathway and may thus counteract host antiviral RNAs, suggests that RNA-silencing pathways could also have key roles in mammalian virus-host interactions. PMID:16277756

  8. Influenza Virus Infection Induces Host Pyruvate Kinase M Which Interacts with Viral RNA-Dependent RNA Polymerase.

    PubMed

    Miyake, Yukari; Ishii, Kosuke; Honda, Ayae

    2017-01-01

    Influenza virus RNA-dependent RNA polymerase (RdRp) is a heterotrimer of three viral proteins, PB1, PB2, and PA and is involved in both transcription and replication of the negative strand of the viral RNA (vRNA) genome. RdRp is multifunctional, possessing RNA polymerase, cap binding, and endonuclease activities. The enzyme synthesizes three different RNAs, complementary RNA (cRNA) and messenger RNA (mRNA) from vRNA, and vRNA from cRNA. To synthesize these three RNAs, RdRp requires conversion of its function by host factor. Here, we performed yeast two-hybrid screening to identify the relevant host factor, revealing that pyruvate kinase M2 (PKM2) interacted with the PA subunit of influenza virus RdRp. PKM2 is one of two enzymes (PKM1 and PKM2) produced by alternative splicing of the pyruvate kinase M (PKM) pre-mRNA. We determined the interacting regions in both PKM2 and PA, the expression level of PKM by western blotting at different time points after viral infection, and the effects of transfection of siRNA targeting PKM on influenza virus replication. The results demonstrated that the C-terminal region of PKM2 interacted with the C-terminus of the PA subunit, that the expression level of PKM2 increased with influenza virus infection time, and that this enzyme is essential for influenza virus multiplication. Moreover, isoelectric focusing of uninfected and influenza virus infected cell extracts, followed by gradient gel electrophoresis to separate the PKM1 and PKM2 isoforms and western blotting indicated that PKM2 became more acidic after influenza infection. The decreased pH of PKM2 may have been due to phosphorylation, and phosphorylated PKM2 is active as a pyruvate kinase and protein kinase; therefore, it is possible that PKM2 may transfer a phosphate group to PA and consequently transform the function of RdRp from transcriptase to replicase.

  9. Influenza Virus Infection Induces Host Pyruvate Kinase M Which Interacts with Viral RNA-Dependent RNA Polymerase

    PubMed Central

    Miyake, Yukari; Ishii, Kosuke; Honda, Ayae

    2017-01-01

    Influenza virus RNA-dependent RNA polymerase (RdRp) is a heterotrimer of three viral proteins, PB1, PB2, and PA and is involved in both transcription and replication of the negative strand of the viral RNA (vRNA) genome. RdRp is multifunctional, possessing RNA polymerase, cap binding, and endonuclease activities. The enzyme synthesizes three different RNAs, complementary RNA (cRNA) and messenger RNA (mRNA) from vRNA, and vRNA from cRNA. To synthesize these three RNAs, RdRp requires conversion of its function by host factor. Here, we performed yeast two-hybrid screening to identify the relevant host factor, revealing that pyruvate kinase M2 (PKM2) interacted with the PA subunit of influenza virus RdRp. PKM2 is one of two enzymes (PKM1 and PKM2) produced by alternative splicing of the pyruvate kinase M (PKM) pre-mRNA. We determined the interacting regions in both PKM2 and PA, the expression level of PKM by western blotting at different time points after viral infection, and the effects of transfection of siRNA targeting PKM on influenza virus replication. The results demonstrated that the C-terminal region of PKM2 interacted with the C-terminus of the PA subunit, that the expression level of PKM2 increased with influenza virus infection time, and that this enzyme is essential for influenza virus multiplication. Moreover, isoelectric focusing of uninfected and influenza virus infected cell extracts, followed by gradient gel electrophoresis to separate the PKM1 and PKM2 isoforms and western blotting indicated that PKM2 became more acidic after influenza infection. The decreased pH of PKM2 may have been due to phosphorylation, and phosphorylated PKM2 is active as a pyruvate kinase and protein kinase; therefore, it is possible that PKM2 may transfer a phosphate group to PA and consequently transform the function of RdRp from transcriptase to replicase. PMID:28232820

  10. Salmonella - at home in the host cell.

    PubMed

    Malik-Kale, Preeti; Jolly, Carrie E; Lathrop, Stephanie; Winfree, Seth; Luterbach, Courtney; Steele-Mortimer, Olivia

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic "trigger"-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.

  11. [Genome virology: the novel interaction of RNA viruses and host genomes].

    PubMed

    Tomonaga, Keizo

    2012-06-01

    The origin of virus-like organisms probably dates back to the earliest forms of cellular life. Such a long coexistence between viruses and ourselves suggests that viruses may have crucially influenced the evolution of our species and vice versa. Sequences derived from retroviruses and retrotransposons have been shown to make up a substantial part of the human genome, suggesting a direct role of virus infection as a source of new genetic information and genomic innovation of the host species. Until very recently, retroviruses were the only viruses known to generate such endogenous copies in vertebrate genomes. However, we and others have reported recently that non-retroviral RNA viruses, including bornaviruses and filoviruses, have been endogenized repeatedly during mammalian evolution. These endogenous elements of RNA viruses not only provide evidence of ancient viral infections in each animal species but also offer novel paradigms for the interaction between RNA viruses and their hosts. Based on the presentation of the plenary lecture at the XV International Congress of Virology 2011, I will review here our recent findings regarding the generation and functions of endogenous bornavirus-like N elements in mammalian genomes, in order to reveal the unknown dynamics of RNA viruses in eukaryotic cells, and also discuss the evolutionary interaction between RNA viruses and hosts.

  12. Adaptive changes in alphavirus mRNA translation allowed colonization of vertebrate hosts.

    PubMed

    Ventoso, Iván

    2012-09-01

    Members of the Alphavirus genus are arboviruses that alternate replication in mosquitoes and vertebrate hosts. In vertebrate cells, the alphavirus resists the activation of antiviral RNA-activated protein kinase (PKR) by the presence of a prominent RNA structure (downstream loop [DLP]) located in viral 26S transcripts, which allows an eIF2-independent translation initiation of these mRNAs. This article shows that DLP structure is essential for replication of Sindbis virus (SINV) in vertebrate cell lines and animals but is dispensable for replication in insect cells, where no ortholog of the vertebrate PKR gene has been found. Sequence comparisons and structural RNA analysis revealed the evolutionary conservation of DLP in SINV and predicted the existence of equivalent DLP structures in many members of the Alphavirus genus. A mutant SINV lacking the DLP structure evolved in murine cells to recover a wild-type phenotype by creating an alternative structure in the RNA that restored the translational independence for eIF2. Genetic, phylogenetic, and biochemical data presented here support an evolutionary scenario for the natural history of alphaviruses, in which the acquisition of DLP structure in their mRNAs probably allowed the colonization of vertebrate host and the consequent geographic expansion of some of these viruses worldwide.

  13. Adaptive Changes in Alphavirus mRNA Translation Allowed Colonization of Vertebrate Hosts

    PubMed Central

    2012-01-01

    Members of the Alphavirus genus are arboviruses that alternate replication in mosquitoes and vertebrate hosts. In vertebrate cells, the alphavirus resists the activation of antiviral RNA-activated protein kinase (PKR) by the presence of a prominent RNA structure (downstream loop [DLP]) located in viral 26S transcripts, which allows an eIF2-independent translation initiation of these mRNAs. This article shows that DLP structure is essential for replication of Sindbis virus (SINV) in vertebrate cell lines and animals but is dispensable for replication in insect cells, where no ortholog of the vertebrate PKR gene has been found. Sequence comparisons and structural RNA analysis revealed the evolutionary conservation of DLP in SINV and predicted the existence of equivalent DLP structures in many members of the Alphavirus genus. A mutant SINV lacking the DLP structure evolved in murine cells to recover a wild-type phenotype by creating an alternative structure in the RNA that restored the translational independence for eIF2. Genetic, phylogenetic, and biochemical data presented here support an evolutionary scenario for the natural history of alphaviruses, in which the acquisition of DLP structure in their mRNAs probably allowed the colonization of vertebrate host and the consequent geographic expansion of some of these viruses worldwide. PMID:22761388

  14. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus.

    PubMed

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-02-18

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126-LQxxLxxxGL-135. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export.

  15. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  16. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites

    PubMed Central

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A.; Li, Jianhui; Randall, Glenn; Belov, George A.; Wang, Xiaofeng

    2016-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  17. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability

    PubMed Central

    Moon, Stephanie L.; Anderson, John R.; Kumagai, Yutaro; Wilusz, Carol J.; Akira, Shizuo; Khromykh, Alexander A.; Wilusz, Jeffrey

    2012-01-01

    All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular 5′-to-3′ exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. PMID:23006624

  18. Host cell factors as antiviral targets in arenavirus infection.

    PubMed

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  19. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts.

    PubMed

    Kim, Gunjune; LeBlanc, Megan L; Wafula, Eric K; dePamphilis, Claude W; Westwood, James H

    2014-08-15

    Movement of RNAs between cells of a single plant is well documented, but cross-species RNA transfer is largely unexplored. Cuscuta pentagona (dodder) is a parasitic plant that forms symplastic connections with its hosts and takes up host messenger RNAs (mRNAs). We sequenced transcriptomes of Cuscuta growing on Arabidopsis and tomato hosts to characterize mRNA transfer between species and found that mRNAs move in high numbers and in a bidirectional manner. The mobile transcripts represented thousands of different genes, and nearly half the expressed transcriptome of Arabidopsis was identified in Cuscuta. These findings demonstrate that parasitic plants can exchange large proportions of their transcriptomes with hosts, providing potential mechanisms for RNA-based interactions between species and horizontal gene transfer. Copyright © 2014, American Association for the Advancement of Science.

  20. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.

  1. Similarity in viral and host promoters couples viral reactivation with host cell migration

    PubMed Central

    Bohn-Wippert, Kathrin; Tevonian, Erin N.; Megaridis, Melina R.; Dar, Roy D.

    2017-01-01

    Viral–host interactomes map the complex architecture of an evolved arms race during host cell invasion. mRNA and protein interactomes reveal elaborate targeting schemes, yet evidence is lacking for genetic coupling that results in the co-regulation of promoters. Here we compare viral and human promoter sequences and expression to test whether genetic coupling exists and investigate its phenotypic consequences. We show that viral–host co-evolution is imprinted within promoter gene sequences before transcript or protein interactions. Co-regulation of human immunodeficiency virus (HIV) and human C-X-C chemokine receptor-4 (CXCR4) facilitates migration of infected cells. Upon infection, HIV can actively replicate or remain dormant. Migrating infected cells reactivate from dormancy more than non-migrating cells and exhibit differential migration–reactivation responses to drugs. Cells producing virus pose a risk for reinitiating infection within niches inaccessible to drugs, and tuning viral control of migration and reactivation improves strategies to eliminate latent HIV. Viral–host genetic coupling establishes a mechanism for synchronizing transcription and guiding potential therapies. PMID:28462923

  2. Differential regulation of host mRNA translation during obligate pathogen-plant interactions

    USDA-ARS?s Scientific Manuscript database

    Virus infection reprograms the plant messenger RNA (mRNA) transcriptome by activating or interfering with a variety of signaling pathways, but the effects on host mRNA translation have not been explored on a genome-wide scale. To address this issue, Arabidopsis thaliana mRNA transcripts were quantif...

  3. Viral Proteins That Bind Double-Stranded RNA: Countermeasures Against Host Antiviral Responses

    PubMed Central

    2014-01-01

    Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins of influenza A virus and Ebola viruses (EBOVs). PMID:24905203

  4. Signatures of Host mRNA 5′ Terminus for Efficient Hantavirus Cap Snatching

    PubMed Central

    Cheng, Erdong

    2012-01-01

    Hantaviruses, similarly to other negative-strand segmented RNA viruses, initiate the synthesis of translation-competent capped mRNAs by a unique cap-snatching mechanism. Hantavirus nucleocapsid protein (N) binds to host mRNA caps and requires four nucleotides adjacent to the 5′ cap for high-affinity binding. N protects the 5′ caps of cellular transcripts from degradation by the cellular decapping machinery. The rescued 5′ capped mRNA fragments are stored in cellular P bodies by N, which are later efficiently used as primers by the hantaviral RNA-dependent RNA polymerase (RdRp) for transcription initiation. We showed that N also protects the host mRNA caps in P-body-deficient cells. However, the rescued caps were not effectively used by the hantavirus RdRp during transcription initiation, suggesting that caps stored in cellular P bodies by N are preferred for cap snatching. We examined the characteristics of the 5′ terminus of a capped test mRNA to delineate the minimum requirements for a capped transcript to serve as an efficient cap donor during hantavirus cap snatching. We showed that hantavirus RdRp preferentially snatches caps from the nonsense mRNAs compared to mRNAs engaged in translation. Hantavirus RdRp preferentially cleaves the cap donor mRNA at a G residue located 14 nucleotides downstream of the 5′ cap. The sequence complementarity between the 3′ terminus of viral genomic RNA and the nucleotides located in the vicinity of the cleavage site of the cap donor mRNA favors cap snatching. Our results show that hantavirus RdRp snatches caps from viral mRNAs. However, the negligible cap-donating efficiency of wild-type mRNAs in comparison to nonsense mRNAs suggests that viral mRNAs will not be efficiently used for cap snatching during viral infection due to their continuous engagement in protein synthesis. Our results suggest that efficiency of an mRNA to donate caps for viral mRNA synthesis is primarily regulated at the translational level. PMID

  5. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  6. Somatic Host Cell Alterations in HPV Carcinogenesis

    PubMed Central

    Litwin, Tamara R.; Clarke, Megan A.; Dean, Michael; Wentzensen, Nicolas

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions. PMID:28771191

  7. Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa

    PubMed Central

    Banwell, Claire M.; Chagaluka, George; Crampin, Amelia C.; Dockrell, Hazel M.; French, Neil; Hamilton, Melissa S.; Hibberd, Martin L.; Kern, Florian; Langford, Paul R.; Ling, Ling; Mlotha, Rachel; Ottenhoff, Tom H.M.; Pienaar, Sandy; Pillay, Vashini; Scott, J. Anthony G.; Twahir, Hemed; Wilkinson, Robert J.

    2014-01-01

    BACKGROUND Improved diagnostic tests for tuberculosis in children are needed. We hypothesized that transcriptional signatures of host blood could be used to distinguish tuberculosis from other diseases in African children who either were or were not infected with the human immunodeficiency virus (HIV). METHODS The study population comprised prospective cohorts of children who were undergoing evaluation for suspected tuberculosis in South Africa (655 children), Malawi (701 children), and Kenya (1599 children). Patients were assigned to groups according to whether the diagnosis was culture-confirmed tuberculosis, culture-negative tuberculosis, diseases other than tuberculosis, or latent tuberculosis infection. Diagnostic signatures distinguishing tuberculosis from other diseases and from latent tuberculosis infection were identified from genomewide analysis of RNA expression in host blood. RESULTS We identified a 51-transcript signature distinguishing tuberculosis from other diseases in the South African and Malawian children (the discovery cohort). In the Kenyan children (the validation cohort), a risk score based on the signature for tuberculosis and for diseases other than tuberculosis showed a sensitivity of 82.9% (95% confidence interval [CI], 68.6 to 94.3) and a specificity of 83.6% (95% CI, 74.6 to 92.7) for the diagnosis of culture-confirmed tuberculosis. Among patients with cultures negative for Mycobacterium tuberculosis who were treated for tuberculosis (those with highly probable, probable, or possible cases of tuberculosis), the estimated sensitivity was 62.5 to 82.3%, 42.1 to 80.8%, and 35.3 to 79.6%, respectively, for different estimates of actual tuberculosis in the groups. In comparison, the sensitivity of the Xpert MTB/RIF assay for molecular detection of M. tuberculosis DNA in cases of culture-confirmed tuberculosis was 54.3% (95% CI, 37.1 to 68.6), and the sensitivity in highly probable, probable, or possible cases was an estimated 25.0 to 35

  8. Contrasting Lifestyles Within the Host Cell

    PubMed Central

    Case, Elizabeth Di Russo; Samuel, James E.

    2015-01-01

    CHAPTER SUMMARY Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host, and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without its hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH, and contains degradative enzymes, and reactive oxygen species resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, like Shigella, Listeria, Francisella, and Rickettsia escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche. PMID:26999394

  9. Aquatic viruses induce host cell death pathways and its application.

    PubMed

    Reshi, Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-01-04

    Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication.

    PubMed

    Nishikiori, Masaki; Mori, Masashi; Dohi, Koji; Okamura, Hideyasu; Katoh, Etsuko; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-12-01

    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.

  11. Bartonella entry mechanisms into mammalian host cells.

    PubMed

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment.

  12. Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection.

    PubMed

    Flores, R; Minoia, S; Carbonell, A; Gisel, A; Delgado, S; López-Carrasco, A; Navarro, B; Di Serio, F

    2015-11-02

    The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication.

    PubMed

    Nasar, Farooq; Palacios, Gustavo; Gorchakov, Rodion V; Guzman, Hilda; Da Rosa, Amelia P Travassos; Savji, Nazir; Popov, Vsevolod L; Sherman, Michael B; Lipkin, W Ian; Tesh, Robert B; Weaver, Scott C

    2012-09-04

    Most alphaviruses and many other arboviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates including birds, rodents, equids, humans, and nonhuman primates. Consequently, they can be propagated in most vertebrate and insect cell cultures. This ability of arboviruses to infect arthropods and vertebrates is usually essential for their maintenance in nature. However, several flaviviruses have recently been described that infect mosquitoes but not vertebrates, although the mechanism of their host restriction has not been determined. Here we describe a unique alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani mosquitoes from the Negev desert of Israel. Phylogenetic analyses placed EILV as a sister to the Western equine encephalitis antigenic complex within the main clade of mosquito-borne alphaviruses. Electron microscopy revealed that, like other alphaviruses, EILV virions were spherical, 70 nm in diameter, and budded from the plasma membrane of mosquito cells in culture. EILV readily infected a variety of insect cells with little overt cytopathic effect. However, in contrast to typical mosquito-borne alphaviruses, EILV could not infect mammalian or avian cell lines, and viral as well as RNA replication could not be detected at 37 °C or 28 °C. Evolutionarily, these findings suggest that EILV lost its ability to infect vertebrate cells. Thus, EILV seems to be mosquito-specific and represents a previously undescribed complex within the genus Alphavirus. Reverse genetic studies of EILV may facilitate the discovery of determinants of alphavirus host range that mediate disease emergence.

  14. Alternative Polyadenylation Allows Differential Negative Feedback of Human miRNA miR-579 on Its Host Gene ZFR

    PubMed Central

    Hinske, Ludwig Christian; Galante, Pedro A. F.; Limbeck, Elisabeth; Möhnle, Patrick; Parmigiani, Raphael B.; Ohno-Machado, Lucila; Camargo, Anamaria A.; Kreth, Simone

    2015-01-01

    About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization. PMID:25799583

  15. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    PubMed

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  16. Allogeneic T cell responses are regulated by a specific miRNA-mRNA network

    PubMed Central

    Sun, Yaping; Tawara, Isao; Zhao, Meng; Qin, Zhaohui S.; Toubai, Tomomi; Mathewson, Nathan; Tamaki, Hiroya; Nieves, Evelyn; Chinnaiyan, Arul M.; Reddy, Pavan

    2013-01-01

    Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses. PMID:24216511

  17. Host control of insect endogenous retroviruses: small RNA silencing and immune response.

    PubMed

    Fablet, Marie

    2014-11-18

    Endogenous retroviruses are relics of ancient infections from retroviruses that managed to integrate into the genome of germline cells and remained vertically transmitted from parent to progeny. Subsequent to the endogenization process, these sequences can move and multiply in the host genome, which can have deleterious consequences and disturb genomic stability. Natural selection favored the establishment of silencing pathways that protect host genomes from the activity of endogenous retroviruses. RNA silencing mechanisms are involved, which utilize piRNAs. The response to exogenous viral infections uses siRNAs, a class of small RNAs that are generated via a distinct biogenesis pathway from piRNAs. However, interplay between both pathways has been identified, and interactions with anti-bacterial and anti-fungal immune responses are also suspected. This review focuses on Diptera (Arthropods) and intends to compile pieces of evidence showing that the RNA silencing pathway of endogenous retrovirus regulation is not independent from immunity and the response to infections. This review will consider the mechanisms that allow the lasting coexistence of viral sequences and host genomes from an evolutionary perspective.

  18. Host Control of Insect Endogenous Retroviruses: Small RNA Silencing and Immune Response

    PubMed Central

    Fablet, Marie

    2014-01-01

    Endogenous retroviruses are relics of ancient infections from retroviruses that managed to integrate into the genome of germline cells and remained vertically transmitted from parent to progeny. Subsequent to the endogenization process, these sequences can move and multiply in the host genome, which can have deleterious consequences and disturb genomic stability. Natural selection favored the establishment of silencing pathways that protect host genomes from the activity of endogenous retroviruses. RNA silencing mechanisms are involved, which utilize piRNAs. The response to exogenous viral infections uses siRNAs, a class of small RNAs that are generated via a distinct biogenesis pathway from piRNAs. However, interplay between both pathways has been identified, and interactions with anti-bacterial and anti-fungal immune responses are also suspected. This review focuses on Diptera (Arthropods) and intends to compile pieces of evidence showing that the RNA silencing pathway of endogenous retrovirus regulation is not independent from immunity and the response to infections. This review will consider the mechanisms that allow the lasting coexistence of viral sequences and host genomes from an evolutionary perspective. PMID:25412365

  19. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions

    PubMed Central

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  20. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

    PubMed

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.

  1. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    PubMed Central

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  2. Th17 cells and Mucosal Host Defense

    PubMed Central

    Aujla, Shean J.; Dubin, Patricia J.; Kolls, Jay K.

    2008-01-01

    Th17 cells are a new lineage of T-cells that are controlled by the transcription factor RORγt and develop independent of GATA-3, T-bet, Stat 4 and Stat 6. Novel effector molecules produced by these cells include IL-17A, IL-17F, IL-22, and IL-26. IL-17RA binds IL-17A and IL-17F and is critical for host defense against extracellular planktonic bacteria by regulating chemokine gradients for neutrophil emigration into infected tissue sites as well as host granulopoiesis. Moreover IL-17 and IL-22 regulate the production of antimicrobial proteins in mucosal epithelium. Although TGF-β1 and IL-6 have been shown to be critical for development of Th17 cells from naïve precursors, IL-23 is also important in regulating IL-17 release in mucosal tissues in response to infectious stimuli. Compared to Th1 cells, IL-23 and IL-17 show limited roles in controlling host defense against primary infections with intracellular bacteria such as Mycobacterium tuberculosis suggesting a predominate role of the Th17 lineage in host defense against extracellular pathogens. However in the setting of chronic biofilm infections, as that occurs with Cystic Fibrosis or bronchetctasis, Th17 cells may be key contributors of tissue injury. PMID:18054248

  3. Complexity of Host Micro-RNA Response to Cytomegalovirus Reactivation After Organ Transplantation.

    PubMed

    Egli, A; Lisboa, L F; O'Shea, D; Asberg, A; Mueller, T; Emery, V; Kumar, D; Humar, A

    2016-02-01

    Human (Homo sapiens) micro-RNAs (hsa-miRNAs) regulate virus and host-gene translation, but the biological impact in patients with human cytomegalovirus (hCMV) infection is not well defined in a clinically relevant model. First, we compared hsa-miRNA expression profiles in peripheral blood mononuclear cells from 35 transplant recipients with and without CMV viremia by using a microarray chip covering 847 hsa-miRNAs. This approach demonstrated a set of 142 differentially expressed hsa-miRNAs. Next, we examined the effect of each of these miRNAs on viral growth by using human fibroblasts (human foreskin fibroblast-1) infected with the hCMV Towne strain, identifying a subset of proviral and antiviral hsa-miRNAs. miRNA-target prediction software indicated potential binding sites within the hCMV genome (e.g., hCMV-UL52 and -UL100 [UL = unique long]) and host-genes (e.g., interleukin-1 receptor, IRF1). Luciferase-expressing plasmid constructs and immunoblotting confirmed several predicted miRNA targets. Finally, we determined the expression of selected proviral and antiviral hsa-miRNAs in 242 transplant recipients with hCMV-viremia. We measured hsa-miRNAs before and after antiviral therapy and correlated hsa-miRNA expression levels to hCMV-replication dynamics. One of six antiviral hsa-miRNAs showed a significant increase during treatment, concurrent with viral decline. In contrast, six of eight proviral hsa-miRNAs showed a decrease during viral decline. Our results indicate that a complex and multitargeted hsa-miRNA response occurs during CMV replication in immunosuppressed patients. This study provides mechanistic insight and potential novel biomarkers for CMV replication.

  4. Interactions between Bdellovibrio and its host cell.

    PubMed

    Stolp, H

    1979-04-11

    The bdellovibrios are extremely small bacteria with the unique property of being parasites of other (gram-negative) bacteria. In the presence of viable and susceptible bacteria a Bdellovibrio cell physically 'attacks' an individual host cell, attaches to its surface, penetrates the cell wall, and multiples within the periplasmic (intramural) space of its prey. The invading Bdellovibrio and its progeny degrade and consume the cellular constituents of the invaded host bacterium. This process finally results in complete lysis of the host cell and release of the Bdellovibrio progeny. From a population of parasitic bdellovibrios, derivatives can be selected that grow on complex nutrient media. Currently, none of the different nutritional types can be propagated in a fully defined synthetic medium. By degradation of the cellular constituents of the host the Bdellovibrio cell in its periplasmic space has available all the monomeric subunits needed to synthesis of the macromolecules. Peculiarities of Bdellovibrio metabolism with respect to uptake of preformed molecules and energy efficiency are discussed.

  5. A short treatment of cells with the lanthanide ions La3+, Ce3+, Pr3+ or Nd3+ changes the cellular chemistry into a state in which RNA replication of flaviviruses is specifically blocked without interference with host-cell multiplication

    PubMed Central

    Wengler, Gerd; Wengler, Gisela; Koschinski, Andreas

    2007-01-01

    Alpha- and flaviviruses contain class II fusion proteins, which form ion-permeable pores in the target membrane during virus entry. The pores generated during entry of the alphavirus Semliki Forest virus have been shown previously to be blocked by lanthanide ions. Here, analyses of the influence of rare earth ions on the entry of the flaviviruses West Nile virus and Uganda S virus revealed an unexpected effect of lanthanide ions. The results showed that a 30 s treatment of cells with an appropriate lanthanide ion changed the cellular chemistry into a state in which the cells no longer supported the multiplication of flaviviruses. This change occurred in cells treated before, during or after infection, did not inhibit multiplication of Semliki Forest virus and did not interfere with host-cell multiplication. The change was generated in vertebrate and insect cells, and was elicited in the presence of actinomycin D. In vertebrate cells, the change was elicited specifically by La3+, Ce3+, Pr3+ and Nd3+. In insect cells, additional lanthanide ions had this activity. Further analyses showed that lanthanide ion treatment blocked the ability of the host cell to support the replication of flavivirus RNA. These results open two areas of research: the study of molecular alterations induced by lanthanide ion treatment in uninfected cells and the analysis of the resulting modifications of the flavivirus RNA replicase complex. The findings possibly open the way for the development of a general chemotherapy against flavivirus diseases such as Dengue fever, Japanese encephalitis, West Nile fever and yellow fever. PMID:17947525

  6. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication.

    PubMed

    Zhang, Ran; Liu, Chuangang; Cao, Yunzi; Jamal, Muhammad; Chen, Xi; Zheng, Jinfang; Li, Liang; You, Jing; Zhu, Qi; Liu, Shiyong; Dai, Jinxia; Cui, Min; Fu, Zhen F; Cao, Gang

    2017-03-23

    Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.

  7. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis.

    PubMed

    Martín-Hernández, Raquel; Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host's cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite's survival within the cell.

  8. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  9. Production of Viral mRNA in Adenovirus-Transformed Cells by the Post-Transcriptional Processing of Heterogeneous Nuclear RNA Containing Viral and Cell Sequences

    PubMed Central

    Wall, R.; Weber, J.; Gage, Z.; Darnell, J. E.

    1973-01-01

    Adenovirus 2-transformed cells contain virus-specific sequences which are covalently linked to cell-specific RNA sequences in heterogeneous nuclear RNA (HnRNA) molecules larger than 45S. Virus sequences are identified by hybridization to viral DNA, and the cell sequences are detected by hybridization to cellular DNA under conditions where hybridization only occurs to reiterated sites in cell DNA. Such large composite viral-cell HnRNA molecules presumably arise through the uninterrupted transcription of host sequences and integrated viral DNA. Adenovirus-specific polysomal RNA from these cells sediments as three discrete species at 16, 20, and 26S. These specific classes of viral mRNA do not contain rapidly hybridizing host-specific RNA sequences. Both virus-specific HnRNA and mRNA contain polyadenylic acid sequences since they bind to polyU columns at levels characteristics of other polyA-terminated HnRNA and mRNA. Thus, the discrete species of virus-specific mRNA in adenovirus 2 transformed cells appear to be derived from high-molecular-weight virus-specific HnRNA through a series of post-transcriptional modifications involving polyA addition. Subsequently the HnRNA is cleaved so that the cell-specific RNA sequences that originate from the reiterated sites in cell DNA do not accompany the adenovirus mRNA to the cytoplasm. These events for the adenovirus-specific mRNA appear, therefore, to be similar to the stages in the biogenesis of the majority of mRNA in eukaryotic cells. PMID:4736534

  10. A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference

    PubMed Central

    Gonzalez, Orland; Haga, Ismar R.; Pechenick Jowers, Tali; Reynolds, Danielle K.; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

    2014-01-01

    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics. PMID:24901222

  11. HIV-Induced Epigenetic Alterations in Host Cells.

    PubMed

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI).

  12. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA

    PubMed Central

    Lee, Nara; Moss, Walter N.; Yario, Therese A.; Steitz, Joan A.

    2015-01-01

    Summary EBER2 is an abundant nuclear noncoding RNA expressed by Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2’s presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B-cell transcription factor PAX5. EBER2 interacts with and is required for PAX5 localization to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA. PMID:25662012

  13. Novel HIV-1 Therapeutics through Targeting Altered Host Cell Pathways

    PubMed Central

    Coley, William; Kehn-Hall, Kylene; Van Duyne, Rachel; Kashanchi, Fatah

    2009-01-01

    The emergence of drug-resistant human immunodeficiency virus type I (HIV-1) strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse-transcriptase, viral protease, or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we will discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host’s proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be performed to better design therapeutics against HIV-1. PMID:19732026

  14. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    PubMed Central

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  15. Influenza Virus mRNA Trafficking Through Host Nuclear Speckles

    PubMed Central

    Mor, Amir; White, Alexander; Zhang, Ke; Thompson, Matthew; Esparza, Matthew; Muñoz-Moreno, Raquel; Koide, Kazunori; Lynch, Kristen W.; García-Sastre, Adolfo; Fontoura, Beatriz M.A.

    2016-01-01

    Influenza A virus is a human pathogen whose genome is comprised of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that influenza virus utilizes nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies, and exports the spliced M2 mRNA from the nucleus. Since nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression. PMID:27347430

  16. Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease.

    PubMed

    Xiao, Bin; Wang, Yu; Li, Wei; Baker, Megan; Guo, Jian; Corbet, Kelly; Tsalik, Ephraim L; Li, Qi-Jing; Palmer, Scott M; Woods, Christopher W; Li, Zhiguo; Chao, Nelson J; He, You-Wen

    2013-11-07

    Acute graft-versus-host disease (aGVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). Approximately 35% to 50% of HCT recipients develop aGVHD; however, there are no validated diagnostic and predictive blood biomarkers for aGVHD in clinical use. Here, we show that plasma samples from aGVHD patients have a distinct microRNA (miRNA) expression profile. We found that 6 miRNAs (miR-423, miR-199a-3p, miR-93*, miR-377, miR-155, and miR-30a) were significantly upregulated in the plasma of aGVHD patients (n = 116) when compared with non-GVHD patients (n = 52) in training and validation phases. We have developed a model including 4 miRNAs (miR-423, miR-199a-3p, miR-93*, and miR-377) that can predict the probability of aGVHD with an area under the curve of 0.80. Moreover, these elevated miRNAs were detected before the onset of aGVHD (median = 16 days before diagnosis). In addition, the levels of these miRNAs were positively associated with aGVHD severity, and high expression of the miRNA panel was associated with poor overall survival. Furthermore, the miRNA signature for aGVHD was not detected in the plasma of lung transplant or nontransplant sepsis patients. Our results have identified a specific plasma miRNA signature that may serve as an independent biomarker for the prediction, diagnosis, and prognosis of aGVHD.

  17. Elevated level of HSPA1L mRNA correlates with graft-versus-host disease.

    PubMed

    Atarod, Sadaf; Turner, Brie; Pearce, Kim Frances; Ahmed, Shaheda S; Norden, Jean; Bogunia-Kubik, Katarzyna; Wang, Xiao-nong; Collin, Matthew; Dickinson, Anne Mary

    2015-06-01

    Graft-versus-host disease (GVHD) can be a fatal complication of allogeneic stem cell transplantation (allo-HSCT). GVHD can be classified as acute (aGVHD: up to 100 days) or chronic (cGVHD: after 100 days) based on the time-point of disease occurrence. At present there are a limited number of biomarkers available for use in the clinic. Thus, the aim of this research was to evaluate the biomarker potential of the extensively studied Heat Shock Protein 70 family members (HSPA1A/HSPA1B and HSPA1L) at the messenger RNA (mRNA) level in acute and cGVHD patient cohorts. In the skin biopsies, HSPA1L mRNA expression was lower in patients with severe aGVHD (grades II-III) when compared to those with none or low grade aGVHD (grades 0-I) and normal controls. In whole blood, HSPA1L mRNA expression level was significantly (p = 0.008) up-regulated at 28 days post-transplant in cGVHD patients with a significant area under the curve (AUC = 0.773). In addition, HSPA1B expression in whole blood was significantly higher at 3 months post-transplant in both the aGVHD grade II-III (p = 0.012) and cGVHD (p = 0.027) patients. Our initial results in this small cohort show that quantifying HSPA1L mRNA expression in the whole blood of allo-HSCT patients at day 28 post-allo-HSCT may be a useful predictive biomarker for cGVHD.

  18. Mutation of Host Δ9 Fatty Acid Desaturase Inhibits Brome Mosaic Virus RNA Replication between Template Recognition and RNA Synthesis

    PubMed Central

    Lee, Wai-Ming; Ishikawa, Masayuki; Ahlquist, Paul

    2001-01-01

    All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding Δ9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis. OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy. PMID:11160714

  19. Pathogen Cell-to-cell Variability Drives Heterogeneity In Host Immune Responses

    PubMed Central

    Avraham, Roi; Haseley, Nathan; Brown, Douglas; Penaranda, Cristina; Jijon, Humberto B; Trombetta, John J; Satija, Rahul; Shalek, Alex K; Xavier, Ramnik; Regev, Aviv; Hung, Deborah T

    2015-01-01

    Summary Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize gene expression variation that underlies distinct infection outcomes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers, monitoring infection phenotypes. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host Type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo. PMID:26343579

  20. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response.

    PubMed

    Schnitger, Anna K D; Machova, Alzbeta; Mueller, Roman Ulrich; Androulidaki, Ariadne; Schermer, Bernhard; Pasparakis, Manolis; Krönke, Martin; Papadopoulou, Nikoletta

    2011-01-01

    Listeria monocytogenes is a gram-positive facultative intracellular pathogen, causing serious illness in immunocompromised individuals and pregnant women. Upon detection by macrophages, which are key players of the innate immune response against infection, L. monocytogenes induces specific host cell responses which need to be tightly controlled at transcriptional and post-transcriptional levels. Here, we ask whether and how host miRNAs, which represent an important mechanism of post-transcriptional regulation in a wide array of biological processes, are altered by a model pathogen upon live infection of murine bone marrow derived macrophages. We first report that L. monocytogenes subverts the host genome-wide miRNA profile of macrophages in vitro. Specifically, we show that miR-155, miR-146a, miR-125a-3p/5p and miR-149 were amongst the most significantly regulated miRNAs in infected macrophages. Strikingly, these miRNAs were highly upregulated upon infection with the Listeriolysin-deficient L. monocytogenes mutant Δhly, that cannot escape from the phagosome thus representing a vacuolar-contained infection. The vacuolar miRNA response was significantly reduced in macrophages deficient for MyD88. In addition, miR-146a and miR-125a-3p/5p were regulated at transcriptional levels upon infection, and miR-125a-3p/5p were found to be TLR2 responsive. Furthermore, miR-155 transactivation in infection was regulated by NF-κB p65, while miR-146a and miR-125a-3p/5p expression was unaffected in p65-deficient primary macrophages upon L. monocytogenes infection. Our results demonstrate that L. monocytogenes promotes significant changes in the miRNA expression profile in macrophages, and reveal a vacuolar-dependent miRNA signature, listeriolysin-independent and MyD88-dependent. These miRNAs are predicted to target immune genes and are therefore most likely involved in regulation of the macrophage innate immune response against infection at post-transcriptional levels.

  1. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA

    PubMed Central

    Vincenti, Sara; Chiara, Valentina De; Bozzoni, Irene; Presutti, Carlo

    2007-01-01

    Genomic location of sequences encoding small nucleolar RNAs (snoRNAs) is peculiar in all eukaryotes from yeast to mammals: most of them are encoded within the introns of host genes. In Saccharomyces cerevisiae, seven snoRNAs show this location. In this work we demonstrate that the position of snoRNA-coding regions with respect to splicing consensus sequences is critical: yeast strains expressing mutant constructs containing shorter or longer spacers (the regions between snoRNA ends and intron splice sites) show a drop in accumulation of U24 and U18 snoRNAs. Further mutational analysis demonstrates that altering the distance between the 3′ end of the snoRNA and the branch point is the most important constraint for snoRNA biosynthesis, and that stable external stems, which are sometimes present in introns containing snoRNAs, can overcome the positional effect. Surprisingly enough, splicing of the host introns is clearly affected in most of these constructs indicating that, at least in S. cerevisiae, an incorrect location of snoRNA-coding sequences within the host intron is detrimental to the splicing process. This is different with respect to what was demonstrated in mammals, where the activity of the splicing machinery seems to be dominant with respect to the assembly of snoRNPs, and it is not affected by the location of snoRNA sequences. We also show that intronic box C/D snoRNA recognition and assembly of snoRNPs occur during transcription when splicing sequences are recognized. PMID:17135484

  2. Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    PubMed Central

    Nielsen, Judith N.; Charlier, Caroline; Baltes, Nicholas J.; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, Kirsten

    2010-01-01

    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection. PMID:20585559

  3. When your cap matters: structural insights into self vs non-self recognition of 5' RNA by immunomodulatory host proteins

    SciTech Connect

    Leung, Daisy W.; Amarasinghe, Gaya K.

    2016-02-23

    Cytosolic recognition of viral RNA is important for host innate immune responses. Differential recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may trigger aberrant immune responses. Recent work identified the composition of the RNA 5', including the 5' cap and its methylation state, as an important determinant of recognition by the host. Recent studies have advanced our understanding of the modified 5' RNA recognition and viral antagonism of RNA receptors. Here, we will discuss RIG-I and IFIT proteins as examples of host proteins that detect dsRNA and ssRNA, respectively.

  4. Interaction between viral RNA silencing suppressors and host factors in plant immunity.

    PubMed

    Nakahara, Kenji S; Masuta, Chikara

    2014-08-01

    To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Concepts of papillomavirus entry into host cells.

    PubMed

    Day, Patricia M; Schelhaas, Mario

    2014-02-01

    Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results.

  6. Plant cell proliferation inside an inorganic host.

    PubMed

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  7. MicroRNA target prediction by expression analysis of host genes

    PubMed Central

    Gennarino, Vincenzo Alessandro; Sardiello, Marco; Avellino, Raffaella; Meola, Nicola; Maselli, Vincenza; Anand, Santosh; Cutillo, Luisa; Ballabio, Andrea; Banfi, Sandro

    2009-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression by inducing RNA cleavage or translational inhibition. Most human miRNAs are intragenic and are transcribed as part of their hosting transcription units. We hypothesized that the expression profiles of miRNA host genes and of their targets are inversely correlated and devised a novel procedure, HOCTAR (host gene oppositely correlated targets), which ranks predicted miRNA target genes based on their anti-correlated expression behavior relative to their respective miRNA host genes. HOCTAR is the first tool for systematic miRNA target prediction that utilizes the same set of microarray experiments to monitor the expression of both miRNAs (through their host genes) and candidate targets. We applied the procedure to 178 human intragenic miRNAs and found that it performs better than currently available prediction softwares in pinpointing previously validated miRNA targets. The high-scoring HOCTAR predicted targets were enriched in Gene Ontology categories, which were consistent with previously published data, as in the case of miR-106b and miR-93. By means of overexpression and loss-of-function assays, we also demonstrated that HOCTAR is efficient in predicting novel miRNA targets and we identified, by microarray and qRT-PCR procedures, 34 and 28 novel targets for miR-26b and miR-98, respectively. Overall, we believe that the use of HOCTAR significantly reduces the number of candidate miRNA targets to be tested compared to the procedures based solely on target sequence recognition. Finally, our data further confirm that miRNAs have a significant impact on the mRNA levels of most of their targets. PMID:19088304

  8. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  9. Movement of regulatory RNA between animal cells

    PubMed Central

    Jose, Antony M.

    2015-01-01

    Summary Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. PMID:26138457

  10. Polyethyleneimine (PEI) Mediated siRNA Gene Silencing in the Schistosoma mansoni Snail Host, Biomphalaria glabrata

    PubMed Central

    Knight, Matty; Miller, Andre; Liu, Yijia; Scaria, Puthupparampil; Woodle, Martin; Ittiprasert, Wannaporn

    2011-01-01

    An in vivo, non-invasive technique for gene silencing by RNA interference (RNAi) in the snail, Biomphalaria glabrata, has been developed using cationic polymer polyethyleneimine (PEI) mediated delivery of long double-stranded (ds) and small interfering (si) RNA. Cellular delivery was evaluated and optimized by using a ‘mock’ fluorescent siRNA. Subsequently, we used the method to suppress expression of Cathepsin B (CathB) with either the corresponding siRNA or dsRNA of this transcript. In addition, the knockdown of peroxiredoxin (Prx) at both RNA and protein levels was achieved with the PEI-mediated soaking method. B. glabrata is an important snail host for the transmission of the parasitic digenean platyhelminth, Schistosoma mansoni that causes schistosomiasis in the neotropics. Progress is being made to realize the genome sequence of the snail and to uncover gene expression profiles and cellular pathways that enable the snail to either prevent or sustain an infection. Using PEI complexes, a convenient soaking method has been developed, enabling functional gene knockdown studies with either dsRNA or siRNA. The protocol developed offers a first whole organism method for host-parasite gene function studies needed to identify key mechanisms required for parasite development in the snail host, which ultimately are needed as points for disrupting this parasite mediated disease. PMID:21765961

  11. RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib

    PubMed Central

    Bradford, James R.; Farren, Matthew; Powell, Steve J.; Runswick, Sarah; Weston, Susie L.; Brown, Helen; Delpuech, Oona; Wappett, Mark; Smith, Neil R.; Carr, T. Hedley; Dry, Jonathan R.; Gibson, Neil J.; Barry, Simon T.

    2013-01-01

    Pre-clinical models of tumour biology often rely on propagating human tumour cells in a mouse. In order to gain insight into the alignment of these models to human disease segments or investigate the effects of different therapeutics, approaches such as PCR or array based expression profiling are often employed despite suffering from biased transcript coverage, and a requirement for specialist experimental protocols to separate tumour and host signals. Here, we describe a computational strategy to profile transcript expression in both the tumour and host compartments of pre-clinical xenograft models from the same RNA sample using RNA-Seq. Key to this strategy is a species-specific mapping approach that removes the need for manipulation of the RNA population, customised sequencing protocols, or prior knowledge of the species component ratio. The method demonstrates comparable performance to species-specific RT-qPCR and a standard microarray platform, and allowed us to quantify gene expression changes in both the tumour and host tissue following treatment with cediranib, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor, including the reduction of multiple murine transcripts associated with endothelium or vessels, and an increase in genes associated with the inflammatory response in response to cediranib. In the human compartment, we observed a robust induction of hypoxia genes and a reduction in cell cycle associated transcripts. In conclusion, the study establishes that RNA-Seq can be applied to pre-clinical models to gain deeper understanding of model characteristics and compound mechanism of action, and to identify both tumour and host biomarkers. PMID:23840389

  12. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation

    PubMed Central

    Kieft, Jeffrey S; Rabe, Jennifer L; Chapman, Erich G

    2015-01-01

    Arthropod-borne flaviviruses (FVs) are a growing world-wide health threat whose incidence and range are increasing. The pathogenicity and cytopathicity of these single-stranded RNA viruses are influenced by viral subgenomic non-protein-coding RNAs (sfRNAs) that the viruses produce to high levels during infection. To generate sfRNAs the virus co-opts the action of the abundant cellular exonuclease Xrn1, which is part of the cell's normal RNA turnover machinery. This exploitation of the cellular machinery is enabled by discrete, highly structured, Xrn1-resistant RNA elements (xrRNAs) in the 3′UTR that interact with Xrn1 to halt processive 5′ to 3′ decay of the viral genomic RNA. We recently solved the crystal structure of a functional xrRNA, revealing a novel fold that provides a mechanistic model for Xrn1 resistance. Continued analysis and interpretation of the structure reveals that the tertiary contacts that knit the xrRNA fold together are shared by a wide variety of arthropod-borne FVs, conferring robust Xrn1 resistance in all tested. However, there is some variability in the structures that correlates with unexplained patterns in the viral 3′ UTRs. Finally, examination of these structures and their behavior in the context of viral infection leads to a new hypothesis linking RNA tertiary structure, overall 3′ UTR architecture, sfRNA production, and host adaptation. PMID:26399159

  13. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    PubMed

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  14. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways

    PubMed Central

    McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A.; Jiggins, Francis M.; Kohl, Alain

    2016-01-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3´ open reading frame than the 5´ non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia’s antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  15. Thiouracil cross-linking mass spectrometry: a cell-based method to identify host factors involved in viral amplification.

    PubMed

    Lenarcic, Erik M; Landry, Dori M; Greco, Todd M; Cristea, Ileana M; Thompson, Sunnie R

    2013-08-01

    Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses.

  16. Thiouracil Cross-Linking Mass Spectrometry: a Cell-Based Method To Identify Host Factors Involved in Viral Amplification

    PubMed Central

    Lenarcic, Erik M.; Landry, Dori M.; Greco, Todd M.; Cristea, Ileana M.

    2013-01-01

    Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses. PMID:23740976

  17. Counting Legionella cells within single amoeba host cells

    EPA Science Inventory

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  18. Counting Legionella cells within single amoeba host cells

    EPA Science Inventory

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  19. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

    PubMed Central

    Herbert, Kristina M.; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  20. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell.

    PubMed

    Herbert, Kristina M; Nag, Anita

    2016-06-02

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.

  1. Current techniques for visualizing RNA in cells

    PubMed Central

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  2. Neurons Are Host Cells for Mycobacterium tuberculosis

    PubMed Central

    Randall, Philippa J.; Hsu, Nai-Jen; Lang, Dirk; Cooper, Susan; Sebesho, Boipelo; Allie, Nasiema; Keeton, Roanne; Francisco, Ngiambudulu M.; Salie, Sumayah; Labuschagné, Antoinette; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston

    2014-01-01

    Mycobacterium tuberculosis infection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions of M. tuberculosis with neurons in vitro and in vivo were investigated. The data obtained demonstrate that neurons can act as host cells for M. tuberculosis. M. tuberculosis bacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization of M. tuberculosis bacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalize M. tuberculosis. Internalized M. tuberculosis bacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h. M. tuberculosis bacillus infection of neurons was confirmed in vivo in the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells for M. tuberculosis within the central nervous system. PMID:24566619

  3. Neurons are host cells for Mycobacterium tuberculosis.

    PubMed

    Randall, Philippa J; Hsu, Nai-Jen; Lang, Dirk; Cooper, Susan; Sebesho, Boipelo; Allie, Nasiema; Keeton, Roanne; Francisco, Ngiambudulu M; Salie, Sumayah; Labuschagné, Antoinette; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston; Jacobs, Muazzam

    2014-05-01

    Mycobacterium tuberculosis infection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions of M. tuberculosis with neurons in vitro and in vivo were investigated. The data obtained demonstrate that neurons can act as host cells for M. tuberculosis. M. tuberculosis bacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization of M. tuberculosis bacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalize M. tuberculosis. Internalized M. tuberculosis bacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h. M. tuberculosis bacillus infection of neurons was confirmed in vivo in the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells for M. tuberculosis within the central nervous system.

  4. Early Bunyavirus-Host Cell Interactions.

    PubMed

    Albornoz, Amelina; Hoffmann, Anja B; Lozach, Pierre-Yves; Tischler, Nicole D

    2016-05-24

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.

  5. Early Bunyavirus-Host Cell Interactions

    PubMed Central

    Albornoz, Amelina; Hoffmann, Anja B.; Lozach, Pierre-Yves; Tischler, Nicole D.

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  6. Translational control by negative-strand RNA viruses: methods for the study of a crucial virus/host interaction.

    PubMed

    Hodges, Erin N; Connor, John H

    2013-02-01

    Protein synthesis is a vital step in the successful replication of negative-strand RNA viruses. Protein synthesis is also a critical step in the development of a successful antiviral response from the host. This makes understanding the interplay between host and viral translation an important aspect of defining the virus/host interaction. For the negative-strand RNA viruses there are disparate mechanism of how viruses interact with the host protein synthesis apparatus, ranging from the complete takeover of all protein synthesis to the subtle insertion of viral mRNAs into an otherwise unchanged protein synthesis pattern. In this article, we discuss different ways to investigate protein synthesis in virus-infected cells, ranging from the use of metabolic labeling for the study of general translation changes to using fluorescence-coupled labeling techniques that allow the pinpointing of any subcellular localization of protein synthesis during virus replication. We also discuss methods for analyzing the translation initiation factors that are frequently modified in virus-infected cells.

  7. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3.

    PubMed

    Au Yeung, Chi Lam; Tsang, Tsun Yee; Yau, Pak Lun; Kwok, Tim Tak

    2017-01-06

    Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.

  8. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing

    PubMed Central

    Lee, Hyunah; Patschull, Anathe O.M.; Bagnéris, Claire; Ryan, Hannah; Sanderson, Christopher M.; Ebrahimi, Bahram; Nobeli, Irene

    2017-01-01

    Abstract Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated. PMID:28132029

  9. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes.

    PubMed

    Lykke-Andersen, Søren; Chen, Yun; Ardal, Britt R; Lilje, Berit; Waage, Johannes; Sandelin, Albin; Jensen, Torben Heick

    2014-11-15

    Eukaryotic RNAs with premature termination codons (PTCs) are eliminated by nonsense-mediated decay (NMD). While human nonsense RNA degradation can be initiated either by an endonucleolytic cleavage event near the PTC or through decapping, the individual contribution of these activities on endogenous substrates has remained unresolved. Here we used concurrent transcriptome-wide identification of NMD substrates and their 5'-3' decay intermediates to establish that SMG6-catalyzed endonucleolysis widely initiates the degradation of human nonsense RNAs, whereas decapping is used to a lesser extent. We also show that a large proportion of genes hosting snoRNAs in their introns produce considerable amounts of NMD-sensitive splice variants, indicating that these RNAs are merely by-products of a primary snoRNA production process. Additionally, transcripts from genes encoding multiple snoRNAs often yield alternative transcript isoforms that allow for differential expression of individual coencoded snoRNAs. Based on our findings, we hypothesize that snoRNA host genes need to be highly transcribed to accommodate high levels of snoRNA production and that the expression of individual snoRNAs and their cognate spliced RNA can be uncoupled via alternative splicing and NMD. © 2014 Lykke-Andersen et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes

    PubMed Central

    Lykke-Andersen, Søren; Chen, Yun; Ardal, Britt R.; Lilje, Berit; Waage, Johannes; Sandelin, Albin; Jensen, Torben Heick

    2014-01-01

    Eukaryotic RNAs with premature termination codons (PTCs) are eliminated by nonsense-mediated decay (NMD). While human nonsense RNA degradation can be initiated either by an endonucleolytic cleavage event near the PTC or through decapping, the individual contribution of these activities on endogenous substrates has remained unresolved. Here we used concurrent transcriptome-wide identification of NMD substrates and their 5′–3′ decay intermediates to establish that SMG6-catalyzed endonucleolysis widely initiates the degradation of human nonsense RNAs, whereas decapping is used to a lesser extent. We also show that a large proportion of genes hosting snoRNAs in their introns produce considerable amounts of NMD-sensitive splice variants, indicating that these RNAs are merely by-products of a primary snoRNA production process. Additionally, transcripts from genes encoding multiple snoRNAs often yield alternative transcript isoforms that allow for differential expression of individual coencoded snoRNAs. Based on our findings, we hypothesize that snoRNA host genes need to be highly transcribed to accommodate high levels of snoRNA production and that the expression of individual snoRNAs and their cognate spliced RNA can be uncoupled via alternative splicing and NMD. PMID:25403180

  11. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone.IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  12. Epstein-Barr Virus (EBV)-BamHI-A Rightward Transcript (BART)-6 and Cellular MicroRNA-142 Synergistically Compromise Immune Defense of Host Cells in EBV-Positive Burkitt Lymphoma

    PubMed Central

    Zhou, Ling; Bu, Yunwen; Liang, Yanyan; Zhang, Fang; Zhang, Haiguo; Li, Shumei

    2016-01-01

    Background This study was designed to explore the molecular mechanism underlying the effect of cellular miRNAs and EBV miRNA upon the expression of targets such as PTEN, and their involvement in the pathogenesis of Burkitt lymphoma. Material/Methods In this study, we examined several differentially expressed cellular miRNAs in EBV-positive versus EBV-negative Burkett lymphoma tissue samples, and confirmed PTEN as targets of cellular miR-142 by using a bioinformatics tool, luciferase reporter system, oligo transfection, real-time PCR, and Western blot analysis. Results We further confirmed the binding site of miR-142 in the 3′UTR of the target genes, and established the negative regulatory relationship between miRNA and mRNAs with luciferase activity assay. To verify the regulatory relationship between the miRNAs and PTEN, we evaluated the expression of PTEN in the tissue samples, and found that PTEN was downregulated in EBV- positive Burkett lymphoma. Additionally, lymphoma cells were transfected with EBV-BART-6-3p and miR-142 and we found that EBV-BART-6-3p and miR-142 synergistically reduced expression of IL-6R and PTEN. Furthermore, we also examined viability of the cells in each treatment group, and showed that EBV-BART-6-3p and miR-142 synergistically promoted proliferation of the cells. Conclusions These findings improve our knowledge about the role of miR-142/EBV-BART-6-3p and their target, PTEN, in the development of Burkett lymphoma; they could be novel therapeutic targets for the treatment of EBV-positive Burkett lymphoma. PMID:27796281

  13. MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.

    PubMed

    Mun, James; Tam, Connie; Chan, Gary; Kim, Jong Hun; Evans, David; Fleiszig, Suzanne

    2013-01-01

    Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ∼ 3-fold in tear-antigen exposed cells. Without tears or antigens, an antagomir reduced miR-762 expression relative to scrambled controls by ∼50%, increased expression of genes encoding RNase7 (∼80 %), ST2 (∼58%) and Rab5a (∼75%), without affecting P. aeruginosa internalization. However, P. aeruginosa invasion was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ∼ 4-fold, which was reduced by the miR-762 antagomir. Combination of tear fluid and miR-762 antagomir increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization.

  14. Dual RNA-seq of the plant pathogen phytophthora ramorum and its tanoak host

    Treesearch

    Katherine J. Hayden; Matteo Garbelotto; Brian J. Knaus; Richard C. Cronn; Hardeep Rai; Jessica W. Wright

    2014-01-01

    Emergent diseases are an ever-increasing threat to forests and forest ecosystems and necessitate the development of research tools for species that often may have few preexisting resources. We sequenced the mRNA expressed by the sudden oak death pathogen Phytophthora ramorum and its most susceptible forest host, tanoak, within the same tissue at two time points after...

  15. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Lokugamage, Nandadeva; Head, Jennifer A; Ikegami, Tetsuro

    2013-01-20

    Rift Valley fever virus (RVFV) encodes one major virulence factor, the NSs protein. NSs suppresses host general transcription, including interferon (IFN)-β mRNA synthesis, and promotes degradation of the dsRNA-dependent protein kinase (PKR). We generated a novel RVFV mutant (rMP12-NSsR173A) specifically lacking the function to promote PKR degradation. rMP12-NSsR173A infection induces early phosphorylation of eIF2α through PKR activation, while retaining the function to inhibit host general transcription including IFN-β gene inhibition. MP-12 NSs but not R173A NSs binds to wt PKR. R173A NSs formed filamentous structure in nucleus in a mosaic pattern, which was distinct from MP-12 NSs filament pattern. Due to early phosphorylation of eIF2α, rMP12-NSsR173A could not efficiently accumulate viral proteins. Our results suggest that NSs-mediated host general transcription suppression occurs independently of PKR degradation, while the PKR degradation is important to inhibit the phosphorylation of eIF2α in infected cells undergoing host general transcription suppression.

  16. Detecting RNA viruses in living mammalian cells by fluorescence microscopy.

    PubMed

    Sivaraman, Divya; Biswas, Payal; Cella, Lakshmi N; Yates, Marylynn V; Chen, Wilfred

    2011-07-01

    Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Eimeria bovis: an update on parasite-host cell interactions.

    PubMed

    Hermosilla, Carlos; Ruiz, Antonio; Taubert, Anja

    2012-10-01

    Apicomplexan parasites are obligate intracellular protozoans and are well recognized modulators of the host cell machinery on varying levels such as host cell metabolism, MHC expression, cell cycle, or apoptosis in order to guarantee their intracellular development and survival. One of the most thoroughly examined apicomplexan pathogens demonstrating a potent manipulative capacity with respect to various host cell functions is Toxoplasma gondii, a protozoon exhibiting rapid intracellular development with small meronts in any nucleated cell, almost irrespective of the cell type or host origin. In contrast, Eimeria bovis merogony I is host- and cell type-restricted and occurs exclusively in bovine endothelial host cells. Furthermore, as a peculiarity, intracellular E. bovis meront I development is a long-lasting process (up to 3 weeks), leading to the formation of huge macromeronts of up to 300 μm in size, containing up to 120,000 merozoites I as offspring. In consequence, the necessity for intense host cell modulation to support this particular development appears even more pressing than in other apicomplexan parasite cases. Here we review the data currently available on E. bovis-host cell interactions, indicating the intriguing capacity of this protozoan to exploit and utilize its host cell for its own benefit.

  18. Influenza A virus coding regions exhibit host-specific global ordered RNA structure.

    PubMed

    Priore, Salvatore F; Moss, Walter N; Turner, Douglas H

    2012-01-01

    Influenza A is a significant public health threat, partially because of its capacity to readily exchange gene segments between different host species to form novel pandemic strains. An understanding of the fundamental factors providing species barriers between different influenza hosts would facilitate identification of strains capable of leading to pandemic outbreaks and could also inform vaccine development. Here, we describe the difference in predicted RNA secondary structure stability that exists between avian, swine and human coding regions. The results predict that global ordered RNA structure exists in influenza A segments 1, 5, 7 and 8, and that ranges of free energies for secondary structure formation differ between host strains. The predicted free energy distributions for strains from avian, swine, and human species suggest criteria for segment reassortment and strains that might be ideal candidates for viral attenuation and vaccine development.

  19. Novel MicroRNA Involved in Host Response to Avian Pathogenic Escherichia coli Identified by Deep Sequencing and Integration Analysis

    PubMed Central

    Jia, Xinzheng; Zhang, Xiquan; Nolan, Lisa K.

    2016-01-01

    ABSTRACT Avian pathogenic Escherichia coli (APEC) causes one of the most common bacterial diseases of poultry worldwide. Effective control methods are therefore desirable and will be facilitated by a better understanding of the host response to the pathogen. Currently, microRNAs (miRNAs) involved in host resistance to APEC are unknown. Here, we applied RNA sequencing to explore the changed miRNAs and deregulated genes in the spleen of three groups of broilers: nonchallenged (NC), APEC-challenged with mild pathology (CM), and APEC-challenged with severe pathology (CS). Twenty-seven differentially expressed miRNAs (fold change >1.5; P value <0.01) were identified, including 13 miRNAs between the NC and CM, 17 between the NC and CS, and 14 between the CM and CS groups. Through functional analysis of these miRNA targets, 12 immune-related biological processes were found to be significantly enriched. Based on combined analyses of differentially expressed miRNAs and mRNAs within each of the three groups, 43 miRNA-mRNA pairs displayed significantly negative correlations (r < −0.8). Notably, gga-miR-429 was greatly increased in the CS group compared to levels in both the CM and NC groups. In vitro, gga-miR-429 directly repressed luciferase reporter gene activity via binding to 3′ untranslated regions of TMEFF2, NTRK2, and SHISA2. Overexpression of gga-miR-429 in the HD11 macrophage cell line significantly inhibited TMEFF2 and SHISA2 expression, which are involved in the lipopolysaccharide-induced platelet-derived growth factor (PDGF) and Wnt signaling pathways. In summary, we provide the first report characterizing the miRNA changes during APEC infection, which may help to shed light on the roles of these recently identified genetic elements in the mechanisms of host resistance and susceptibility to APEC. PMID:27795362

  20. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  1. Systematic MicroRNA Analysis Identifies ATP6V0C as an Essential Host Factor for Human Cytomegalovirus Replication

    PubMed Central

    Pavelin, Jon; Reynolds, Natalie; Chiweshe, Stephen; Wu, Guanming; Tiribassi, Rebecca; Grey, Finn

    2013-01-01

    Recent advances in microRNA target identification have greatly increased the number of putative targets of viral microRNAs. However, it is still unclear whether all targets identified are biologically relevant. Here, we use a combined approach of RISC immunoprecipitation and focused siRNA screening to identify targets of HCMV encoded human cytomegalovirus that play an important role in the biology of the virus. Using both a laboratory and clinical strain of human cytomegalovirus, we identify over 200 putative targets of human cytomegalovirus microRNAs following infection of fibroblast cells. By comparing RISC-IP profiles of miRNA knockout viruses, we have resolved specific interactions between human cytomegalovirus miRNAs and the top candidate target transcripts and validated regulation by western blot analysis and luciferase assay. Crucially we demonstrate that miRNA target genes play important roles in the biology of human cytomegalovirus as siRNA knockdown results in marked effects on virus replication. The most striking phenotype followed knockdown of the top target ATP6V0C, which is required for endosomal acidification. siRNA knockdown of ATP6V0C resulted in almost complete loss of infectious virus production, suggesting that an HCMV microRNA targets a crucial cellular factor required for virus replication. This study greatly increases the number of identified targets of human cytomegalovirus microRNAs and demonstrates the effective use of combined miRNA target identification and focused siRNA screening for identifying novel host virus interactions. PMID:24385903

  2. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells.

    PubMed

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Wood, Owen; Ragupathy, Viswanath; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2.

  3. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells

    PubMed Central

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Wood, Owen; Ragupathy, Viswanath; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2. PMID:26821323

  4. RNA CoMPASS: A Dual Approach for Pathogen and Host Transcriptome Analysis of RNA-Seq Datasets

    PubMed Central

    Lacey, Michelle R.; Baribault, Carl; Flemington, Erik K.; Taylor, Christopher M.

    2014-01-01

    High-throughput RNA sequencing (RNA-seq) has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS) analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs) generated by the infection of naïve B-cells with the Epstein Barr virus (EBV), while another 23 samples were derived from Burkitt's lymphomas (BL), some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype) from the LCLs (which have a blast-like phenotype) with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely available at

  5. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.

    PubMed

    Xu, Guorong; Strong, Michael J; Lacey, Michelle R; Baribault, Carl; Flemington, Erik K; Taylor, Christopher M

    2014-01-01

    High-throughput RNA sequencing (RNA-seq) has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS) analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs) generated by the infection of naïve B-cells with the Epstein Barr virus (EBV), while another 23 samples were derived from Burkitt's lymphomas (BL), some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype) from the LCLs (which have a blast-like phenotype) with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely available at

  6. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    PubMed Central

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  7. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  8. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses.

    PubMed

    Roby, Justin A; Pijlman, Gorben P; Wilusz, Jeffrey; Khromykh, Alexander A

    2014-01-27

    Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR). sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'-3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.

  9. The Type III Secretion Translocation Pore Senses Host Cell Contact

    PubMed Central

    Armentrout, Erin I.; Rietsch, Arne

    2016-01-01

    Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip. PMID:27022930

  10. MicroRNA regulation of natural killer cells

    PubMed Central

    Sullivan, Ryan P.; Leong, Jeffrey W.; Fehniger, Todd A.

    2013-01-01

    Natural killer (NK) cells are innate immune lymphocytes critical for host defense against viral infection and surveillance against malignant transformation. MicroRNAs (miRNAs) are a family of small, non-coding RNAs that regulate a wide variety of cellular processes. Recent advances have highlighted the importance of miRNA-mediated post-transcriptional regulation in NK cell development, maturation, and function. This review focuses on several facets of this regulatory mechanism in NK cells: (1) the expressed NK cell miRNA transcriptome; (2) the impact of total miRNA deficiency on NK cells; (3) the role of specific miRNAs regulating NK cell development, survival, and maturation; (4) the intrinsic role of miRNAs regulating NK cell function, including cytokine production, proliferation, and cytotoxicity; and (5) the role of NK cell miRNAs in disease. Currently our knowledge of how miRNAs regulate NK cell biology is limited, and thus we also explore key open questions in the field, as well as approaches and techniques to ascertain the role of individual miRNAs as important molecular regulators. PMID:23450173

  11. Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo.

    PubMed

    Van Slyke, Greta A; Ciota, Alexander T; Willsey, Graham G; Jaeger, Joachim; Shi, Pei-Yong; Kramer, Laura D

    2012-05-25

    The West Nile virus (WNV) genome contains a single RNA-dependent RNA polymerase (RdRp) gene, which is responsible for replication of the viral genome and, as such, is an important target for antiviral therapy. Viral RdRps are known to lack proofreading capabilities and as a result viruses such as WNV exist as a mixture of viral genotypes within an infection, enabling the virus to readily emerge and adapt to new host environments. To test the consequences of subtle structural alterations remote from the RdRp active-site, the following single point mutations were engineered in the WNV NS5 RdRp coding region: T363N, A365N, and T537I; these mutations were selected in an effort to stabilize the secondary structural elements near the rNTP binding pocket of the RdRp. Mutant viruses were tested in vitro on Vero, C6/36, Culex tarsalis and DF-1 cell types and in vivo in one day old chickens and Culex pipiens mosquitoes. Plaque morphology was affected by each mutation and growth and RNA replication kinetics were altered as well. Our results demonstrate that subtle alteration of the RdRp protein away from the active site can have a significant overall biological effect on WNV fitness, and that this effect can be host-dependent.

  12. 5' sequences of rubella virus RNA stimulate translation of chimeric RNAs and specifically interact with two host-encoded proteins.

    PubMed Central

    Pogue, G P; Cao, X Q; Singh, N K; Nakhasi, H L

    1993-01-01

    Sequences at the 5' and 3' ends of the rubella virus (RV) genomic RNA can potentially form stable stem-loop (SL) structures that are postulated to be involved in virus replication. We have analyzed the function of these putative SL structures in RNA translation by constructing chimeric chloramphenicol acetyltransferase (CAT) RNAs, flanked either by both 5'- and 3'-terminal sequence domains from the RV genome or several deletion derivatives of the same sequences. After in vitro transcription of chimeric RNAs, the translational efficiencies of these RNAs were compared by the rabbit reticulocyte lysate translation system. For in vivo translation studies, the level of CAT activity was measured for chimeric RV/CAT RNAs expressed in transfected cells by the adenovirus major late promoter. Both in vivo and in vitro translation activities of the chimeric RNAs revealed that the presence of 5' and 3' SL sequences of RV RNA, in correct (+) orientation and context [5'(+)SL and 3'(+)SL, respectively] was necessary for efficient translation of chimeric RV/CAT RNAs. The presence of the RV 5'(+)SL sequence had the primary enhancing effect on translation. To identify host proteins which interact with the 5'(+)SL which may be involved in RV RNA translation, RNA gel-shift and UV cross-linking assays were employed. Two host proteins 59 and 52 kDa in size, present in cytosolic extracts from both uninfected and RV-infected cells, specifically interacted with the RV 5'(+)SL RNA. Direct binding comparisons between wild-type and mutant 5'(+)SL RNAs demonstrated that sequences in and around the bulge region of the terminal stem domain of this structure constituted a protein binding determinant. Human serum, qualified for anti-Ro/SS-A antigen specificity, immunoprecipitated 59- and 52-kDa protein-RNA complexes containing the RV 5'(+)SL RNA. However, poly- and monoclonal antisera raised against the recombinant 60- and 52-kDa Ro proteins failed to precipitate complexes containing the 5'(+)SL

  13. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    PubMed

    Diaz, Arturo; Zhang, Jiantao; Ollwerther, Abigail; Wang, Xiaofeng; Ahlquist, Paul

    2015-03-01

    Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  14. Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis

    PubMed Central

    2013-01-01

    Background Xylose-based ethanol production by recombinant S. cerevisiae is of great interest to basic and applied bioenergy research. By expressing three different fungal pathways in two S. cerevisiae hosts respectively, we found that the xylose utilization efficiency by recombinant S. cerevisiae depends not only on the choice of xylose pathway but also on the choice of host, exhibiting an obvious host or context dependence. To investigate molecular mechanisms of this context dependence, we applied RNA-seq analysis in this study for a systematic characterization of the xylose utilization via different pathways in different S. cerevisiae hosts. Results Based on the RNA-seq analysis, the transcripts that were regulated during xylose utilization have been identified. Three transcription factors involved in regulation of amino acid metabolism, responses to oxidative stresses, and degradation of aggregated proteins, respectively, were found to participate in xylose metabolism regulation regardless of which pathway was expressed and which host the xylose pathway was expressed in. Nine transcription factors, involved in homeostasis, regulation of amino acid metabolism, and stress responses, were identified as the key modules responsible for the host-specific responses to the same xylose pathway. In addition, the transcriptional regulations of xylose utilization in different yeast hosts were compared to two reference regulation patterns, which indicated that diverse regulation strategies were adopted by different hosts for improved xylose utilization. Conclusions This study provides the first transcriptomic study of the host dependence of xylose utilization in S. cerevisiae. Both the conserved regulatory modules for xylose metabolism and the key modules responsible for host dependence were identified. As indicated by the functions of the conserved transcription factors involved in xylose metabolism regulation, the xylose utilization in recombinant S. cerevisiae may be

  15. NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes

    PubMed Central

    Veesenmeyer, Jeff L.; Andersen, Aaron W.; Lu, Xiaojun; Hussa, Elizabeth A.; Murfin, Kristen E.; Chaston, John M.; Dillman, Adler R.; Wassarman, Karen M.; Sternberg, Paul W.; Goodrich-Blair, Heidi

    2014-01-01

    Summary The bacterium Xenorhabdus nematophila is a mutualist of entomopathogenic Steinernema carpocapsae nematodes and facilitates infection of insect hosts. X. nematophila colonizes the intestine of S. carpocapsae which carries it between insects. In the X. nematophila colonization-defective mutant nilD6::Tn5, the transposon is inserted in a region lacking obvious coding potential. We demonstrate that the transposon disrupts expression of a single CRISPR RNA, NilD RNA. A variant NilD RNA also is expressed by X. nematophila strains from S. anatoliense and S. websteri nematodes. Only nilD from the S. carpocapsae strain of X. nematophila rescued the colonization defect of the nilD6::Tn5 mutant, and this mutant was defective in colonizing all three nematode host species. NilD expression depends on the presence of the associated Cas6e but not Cas3, components of the Type I-E CRISPR-associated machinery. While cas6e deletion in the complemented strain abolished nematode colonization, its disruption in the wild-type parent did not. Likewise, nilD deletion in the parental strain did not impact colonization of the nematode, revealing that the requirement for NilD is evident only in certain genetic backgrounds. Our data demonstrate that NilD RNA is conditionally necessary for mutualistic host colonization and suggest that it functions to regulate endogenous gene expression. PMID:25041533

  16. Messenger RNA Degradation in Bacterial Cells

    PubMed Central

    Hui, Monica P.; Foley, Patricia L.; Belasco, Joel G.

    2015-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. They function with the assistance of ancillary enzymes that covalently modify the 5’ or 3’ end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5’ terminus or an internal site, mRNA decay occurs at diverse rates that are transcript-specific and governed by features such as RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins. PMID:25292357

  17. Messenger RNA degradation in bacterial cells.

    PubMed

    Hui, Monica P; Foley, Patricia L; Belasco, Joel G

    2014-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.

  18. Tissue-Specific Expression Patterns of MicroRNA during Acute Graft-versus-Host Disease in the Rat

    PubMed Central

    Jalapothu, Dasaradha; Boieri, Margherita; Crossland, Rachel E.; Shah, Pranali; Butt, Isha A.; Norden, Jean; Dressel, Ralf; Dickinson, Anne M.; Inngjerdingen, Marit

    2016-01-01

    MicroRNAs (miRNA) have emerged as central regulators of diverse biological processes and contribute to driving pathology in several diseases. Acute graft-versus-host disease (aGvHD) represents a major complication after allogeneic hematopoietic stem cell transplantation, caused by alloreactive donor T cells attacking host tissues leading to inflammation and tissue destruction. Changes in miRNA expression patterns occur during aGvHD, and we hypothesized that we could identify miRNA signatures in target tissues of aGvHD that may potentially help understand the underlying molecular pathology of the disease. We utilized a rat model of aGvHD with transplantation of fully MHC-mismatched T cell depleted bone marrow, followed by infusion of donor T cells. The expression pattern of 423 rat miRNAs was investigated in skin, gut, and lung tissues and intestinal T cells with the NanoString hybridization platform, in combination with validation by quantitative PCR. MHC-matched transplanted rats were included as controls. In the skin, upregulation of miR-34b and downregulation of miR-326 was observed, while in the intestines, we detected downregulation of miR-743b and a trend toward downregulation of miR-345-5p. Thus, tissue-specific expression patterns of miRNAs were observed. Neither miR-326 nor miR-743b has previously been associated with aGvHD. Moreover, we identified upregulation of miR-146a and miR-155 in skin tissue of rats suffering from aGvHD. Analysis of intestinal T cells indicated 23 miRNAs differentially regulated between aGvHD and controls. Two of these miRNAs were differentially expressed either in skin (miR-326) or in intestinal (miR-345-5p) tissue. Comparison of intestinal and peripheral blood T cells indicated common dysregulated expression of miR-99a, miR-223, miR-326, and miR-345-5p. Analysis of predicted gene targets for these miRNAs indicated potential targeting of an inflammatory network both in skin and in the intestines that may further regulate

  19. Host cell protein dynamics in recombinant CHO cells: impacts from harvest to purification and beyond.

    PubMed

    Hogwood, Catherine Em; Bracewell, Daniel G; Smales, C Mark

    2013-01-01

    During the production of recombinant protein products, such as monoclonal antibodies, manufacturers must demonstrate clearance of host cell impurities and contaminants to appropriate levels prior to use in the clinic. These include host cell DNA and RNA, product related contaminants such as aggregates, and importantly host cell proteins (HCPs). Despite the importance of HCP removal, the identity and dynamics of these proteins during cell culture and downstream processing (DSP) are largely unknown. Improvements in technologies such as SELDI-TOF mass spectrometry alongside the gold standard technique of ELISA has allowed semi-quantification of the total HCPs present. However, only recently have techniques been utilized in order to identify those HCPs present and align this with the development of approaches to monitor the dynamics of HCPs during both fermentation and downstream processing. In order to enable knowledge based decisions with regards to improving HCP clearance it is vital to identify potential problematic HCPs on a cell line and product specific basis. Understanding the HCP dynamics will in the future help provide a platform to rationally manipulate and engineer and/or select suitable recombinant CHO cell lines and downstream processing steps to limit problematic HCPs.

  20. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.

    PubMed

    Fischer, Annette; Rudel, Thomas

    2016-05-13

    Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.

  1. Expression of Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) Exacerbates Hepatocellular Carcinoma Through Suppressing miR-195

    PubMed Central

    Zhang, Hui; Zhou, Dong; Ying, Mingang; Chen, Minyong; Chen, Peng; Chen, Zhaoshuo; Zhang, Fan

    2016-01-01

    Background Aberrant expression of lncRNA has been suggested to have an association with tumorigenesis. Our study was designed to reveal the underlying connection between lncRNA SNHG1 and hepatocellular carcinoma (HCC) pathogenesis. Material/Methods A total of 122 pairs of HCC tissues (case group) and matched adjacent non-tumor liver tissues (control group) were collected for this study. RT-PCR and in situ hybridization were conducted to investigate differences in lncRNA SNHG1 expression between the case and control group. The expression levels of lncRNA SNHG1 and miR-195 in HepG2 cells transfected with SNHG1-mimic and SNHG1-inhibitor were measured by RT-PCR. The proliferation, invasion, and migration status of HepG2 cells after transfection were assessed through MTT assay, wound healing assay, and Transwell assay, respectively. Whether miR-195 is a direct downstream target of lncRNA SNHG1 was verified by both bioinformatics target gene prediction and dual-luciferase report assay. Results The expression level of lncRNA SNHG1 was remarkably upregulated in HCC tissues and cell lines compared with normal tissues and cell lines. High expression of lncRNA SNHG1 contributed to the downregulation of miR-195 in HepG2 cells. Also, lncRNA SNHG1 exacerbated HCC cell proliferation, invasion, and migration in vitro through the inhibition of miR-195. This suggests that miR-195 is a direct downstream target of lncRNA SNHG1. Conclusions lncRNA SNHG1 may contribute to the aggravation of HCC through the inhibition of miR-195. PMID:27932778

  2. Proteome-Wide Overexpression of Host Proteins for Identification of Factors Affecting Tombusvirus RNA Replication: an Inhibitory Role of Protein Kinase C

    PubMed Central

    Shah Nawaz-ul-Rehman, Muhammad; Martinez-Ochoa, Natalia; Pascal, Helene; Sasvari, Zsuzsanna; Herbst, Christin; Xu, Kai; Baker, Jannine; Sharma, Monika; Herbst, Alan

    2012-01-01

    To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts. PMID:22718827

  3. Interaction of chlamydiae and host cells in vitro.

    PubMed Central

    Moulder, J W

    1991-01-01

    The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models. PMID:2030670

  4. Knockdown of ERM family member moesin in host cells increases HIV type 1 replication.

    PubMed

    Capalbo, Gianni; Mueller-Kuller, Thea; Markovic, Sandra; Klein, Stefan A; Dietrich, Ursula; Hoelzer, Dieter; Ottmann, Oliver G; Scheuring, Urban J

    2011-12-01

    Moesin is a member of the ERM (ezrin, radixin, moesin) family of cytoskeleton/membrane structure organizing and signal transduction proteins. Previously, we found an increased expression of moesin during HIV-1 infection. Moesin was also reported to be incorporated into HIV-1 virions. To analyze whether moesin is a host factor affecting the replication cycle of human immunodeficiency virus type 1 (HIV-1), we used small interfering RNAs (siRNAs) to evaluate the effect of moesin knockdown on HIV-1 replication in P4-CCR5 cells. Moesin's knockdown did not affect the cell viability or cell phenotype. Interestingly, we observed a marked increase in viral replication, as demonstrated by enhanced HIV-1 RNA, p24 antigen, and ß-galactosidase reporter expression. Moesin-dependent enhancement of HIV-1 replication was confirmed in lymphocytic host cells (Jurkat). These results suggest an overall rather restrictive role of moesin for HIV-1 replication in host cells in vitro.

  5. Computational Prediction of Intronic microRNA Targets using Host Gene Expression Reveals Novel Regulatory Mechanisms

    PubMed Central

    Radfar, M. Hossein; Wong, Willy; Morris, Quaid

    2011-01-01

    Approximately half of known human miRNAs are located in the introns of protein coding genes. Some of these intronic miRNAs are only expressed when their host gene is and, as such, their steady state expression levels are highly correlated with those of the host gene's mRNA. Recently host gene expression levels have been used to predict the targets of intronic miRNAs by identifying other mRNAs that they have consistent negative correlation with. This is a potentially powerful approach because it allows a large number of expression profiling studies to be used but needs refinement because mRNAs can be targeted by multiple miRNAs and not all intronic miRNAs are co-expressed with their host genes. Here we introduce InMiR, a new computational method that uses a linear-Gaussian model to predict the targets of intronic miRNAs based on the expression profiles of their host genes across a large number of datasets. Our method recovers nearly twice as many true positives at the same fixed false positive rate as a comparable method that only considers correlations. Through an analysis of 140 Affymetrix datasets from Gene Expression Omnibus, we build a network of 19,926 interactions among 57 intronic miRNAs and 3,864 targets. InMiR can also predict which host genes have expression profiles that are good surrogates for those of their intronic miRNAs. Host genes that InMiR predicts are bad surrogates contain significantly more miRNA target sites in their 3′ UTRs and are significantly more likely to have predicted Pol II and Pol III promoters in their introns. We provide a dataset of 1,935 predicted mRNA targets for 22 intronic miRNAs. These prediction are supported both by sequence features and expression. By combining our results with previous reports, we distinguish three classes of intronic miRNAs: Those that are tightly regulated with their host gene; those that are likely to be expressed from the same promoter but whose host gene is highly regulated by miRNAs; and those

  6. Methods for production of proteins in host cells

    DOEpatents

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  7. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  8. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  9. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens.

    PubMed

    Colonne, Punsiri M; Winchell, Caylin G; Voth, Daniel E

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  10. Immune inhibition of virus release from human and nonhuman cells by antibody to viral and host cell determinants.

    PubMed

    Shariff, D M; Davies, J; Desperbasques, M; Billstrom, M; Geerligs, H J; Welling, G W; Welling-Wester, S; Buchan, A; Skinner, G R

    1991-01-01

    Immune inhibition of release of the DNA viruses, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and surprisingly two herpes viruses, bovine mamillitis and equine abortion, were not inhibited by either anti-viral or anti-host sera. Using the herpes simplex virus model, inhibition of virus release was detected in different cells of human and nonhuman origin with cross-inhibition between cell lines of different origin; thus, this form of immunotherapy may not require antibody to be tissue or organ specific. Evidence of inhibition of virus release from neoplastic and leukemic cell lines suggests possible application of this approach to control of virus-mediated leukoproliferative pathology (e.g. Burkitt's lymphoma or adult T cell leukemia).

  11. Detection of Persistent West Nile Virus RNA in Experimentally and Naturally Infected Avian Hosts

    PubMed Central

    Wheeler, Sarah S.; Langevin, Stanley A.; Brault, Aaron C.; Woods, Leslie; Carroll, Brian D.; Reisen, William K.

    2012-01-01

    To determine whether West Nile virus (WNV) persistent infection in avian hosts may potentially serve as an overwintering mechanism, House Sparrows and House Finches, experimentally and naturally infected with several strains of WNV, and two naturally infected Western Scrub-Jays were held in mosquito-proof outdoor aviaries from 2007–March 2008. Overall, 94% (n = 36) of House Sparrows, 100% (n = 14) of House Finches and 2 Western Scrub-Jays remained WNV antibody positive. When combined by species, 37% of the House Sparrows, 50% of the House Finches, and 2 Western Scrub-Jays were WNV RNA positive at necropsy, up to 36 weeks post-infection. Infectious WNV was not detected. Our study supports the hypothesis that some avian hosts support the long-term persistence of WNV RNA, but it remains unresolved whether these infections relapse to restart an avian-arthropod transmission cycle and thereby serve as an overwintering mechanism for WNV. PMID:22826479

  12. Inhibition of Plasmodium sporozoites infection by targeting the host cell

    PubMed Central

    Leitao, Ricardo; Rodriguez, Ana

    2010-01-01

    There is a great need of new drugs against malaria because of the increasing spread of parasite resistance against the most commonly used drugs in the field. We found that monensin, a common veterinary antibiotic, has a strong inhibitory effect in Plasmodium berghei and P. yoelii sporozoites hepatocyte infection in vitro. Infection of host cells by another apicomplexan parasite with a similar mechanism of host cell invasion, Toxoplasma tachyzoites, was also inhibited. Treatment of mice with monensin abrogates liver infection with P. berghei sporozoites in vivo. We also found that at low concentrations monensin inhibits the infection of Plasmodium sporozoites by rendering host cells resistant to infection, rather than having a direct effect on sporozoites. Monensin effect is targeted to the initial stages of parasite invasion of the host cell with little or no effect on development, suggesting that this antibiotic affects an essential host cell component that is required for Plasmodium sporozoite invasion. PMID:20493847

  13. Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function.

    PubMed Central

    Lam, Q; Smibert, C A; Koop, K E; Lavery, C; Capone, J P; Weinheimer, S P; Smiley, J R

    1996-01-01

    Herpes simplex virus (HSV) virions contain two regulatory proteins that facilitate the onset of the lytic cycle: VP16 activates transcription of the viral immediate-early genes, and vhs triggers shutoff of host protein synthesis and accelerated turnover of cellular and viral mRNAs. VP16 and vhs form a complex in infected cells, raising the possibility of a regulatory link between them. Here we show that viral protein synthesis and mRNA levels undergo a severe decline at intermediate times after infection with a VP16 null mutant, culminating in virtually complete translational arrest. This phenotype was rescued by a transcriptionally incompetent derivative of VP16 that retains vhs binding activity, and was eliminated by inactivating the vhs gene. These results indicate that VP16 dampens vhs activity, allowing HSV mRNAs to persist in infected cells. Further evidence supporting this hypothesis came from the demonstration that a stably transfected cell line expressing VP16 was resistant to host shutoff induced by superinfecting HSV virions. Thus, in addition to its well known function as a transcriptional activator, VP16 stimulates viral gene expression at a post-transcriptional level, by sparing viral mRNAs from degradation by one of the virus-induced host shutoff mechanisms. Images PMID:8665865

  14. RNA transport during TMV cell-to-cell movement

    PubMed Central

    Peña, Eduardo J.; Heinlein, Manfred

    2012-01-01

    Studies during the last 25 years have provided increasing evidence for the ability of plants to support the cell-to-cell and systemic transport of RNA molecules and that this process plays a role in plant development and in the systemic orchestration of cellular responses against pathogens and other environmental challenges. Since RNA viruses exploit the cellular RNA transport machineries for spreading their genomes between cells they represent convenient models to investigate the underlying mechanisms. In this regard, the intercellular spread of Tobacco mosaic virus (TMV) has been studied for many years. The RNA of TMV moves cell-to-cell in a non-encapsidated form in a process depending on virus-encoded movement protein (MP). Here, we discuss the current state of the art in studies using TMV and its MP as a model for RNA transport. While the ability of plants to transport viral and cellular RNA molecules is consistent with RNA transport phenomena in other systems, further studies are needed to increase our ability to visualize viral RNA (vRNA) in vivo and to distinguish RNA-transport related processes from those involved in antiviral defense. PMID:22973280

  15. RNA transport during TMV cell-to-cell movement.

    PubMed

    Peña, Eduardo J; Heinlein, Manfred

    2012-01-01

    Studies during the last 25 years have provided increasing evidence for the ability of plants to support the cell-to-cell and systemic transport of RNA molecules and that this process plays a role in plant development and in the systemic orchestration of cellular responses against pathogens and other environmental challenges. Since RNA viruses exploit the cellular RNA transport machineries for spreading their genomes between cells they represent convenient models to investigate the underlying mechanisms. In this regard, the intercellular spread of Tobacco mosaic virus (TMV) has been studied for many years. The RNA of TMV moves cell-to-cell in a non-encapsidated form in a process depending on virus-encoded movement protein (MP). Here, we discuss the current state of the art in studies using TMV and its MP as a model for RNA transport. While the ability of plants to transport viral and cellular RNA molecules is consistent with RNA transport phenomena in other systems, further studies are needed to increase our ability to visualize viral RNA (vRNA) in vivo and to distinguish RNA-transport related processes from those involved in antiviral defense.

  16. If it transcribes, we can sequence it: mining the complexities of host-pathogen-environment interactions using RNA-seq.

    PubMed

    Colgan, Aoife M; Cameron, Andrew Ds; Kröger, Carsten

    2017-04-01

    Host-pathogen interactions are exceedingly complex because they involve multiple host tissues, often occur in the context of normal microflora, and can span diverse microenvironments. Although decades of gene expression studies have provided detailed insights into infection processes, technical challenges have restricted experiments to single pathogenic species or host tissues. RNA-sequencing (RNA-seq) has revolutionized the study of gene expression because in addition to quantifying transcriptional output, it allows detection and characterization of all transcripts in a genome. Here, we review how refined approaches to RNA-seq are used to map the transcriptional networks that control host-pathogen interactions. These enhanced techniques include dRNA-seq and term-seq for the fine-scale mapping of transcriptional start and termination sites, and dual RNA-seq for simultaneous sequencing of host and bacterial pathogen transcriptomes. Dual RNA-seq experiments are currently limited to in vitro infection systems that do not fully reflect the complexities of the in vivo environment, thus a challenge is to develop in vivo model systems and experimental approaches that address the biological heterogeneity of host environments, followed by the integration of RNA-seq with other genome-scale datasets to identify the transcriptional networks that mediate host-pathogen interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1).

    PubMed

    Gupta, Ankit; Nagilla, Pruthvi; Le, Hai-Son; Bunney, Coulton; Zych, Courtney; Thalamuthu, Anbupalam; Bar-Joseph, Ziv; Mathavan, Sinnakaruppan; Ayyavoo, Velpandi

    2011-01-01

    Host cells respond to exogenous infectious agents such as viruses, including HIV-1. Studies have evaluated the changes associated with virus infection at the transcriptional and translational levels of the cellular genes involved in specific pathways. While this approach is useful, in our view it provides only a partial view of genome-wide changes. Recently, technological advances in the expression profiling at the microRNA (miRNA) and mRNA levels have made it possible to evaluate the changes in the components of multiple pathways. To understand the role of miRNA and its interplay with host cellular gene expression (mRNA) during HIV-1 infection, we performed a comparative global miRNA and mRNA microarray using human PBMCs infected with HIV-1. The PBMCs were derived from multiple donors and were infected with virus generated from the molecular clone pNL4-3. The results showed that HIV-1 infection led to altered regulation of 21 miRNAs and 444 mRNA more than 2-fold, with a statistical significance of p<0.05. Furthermore, the differentially regulated miRNA and mRNA were shown to be associated with host cellular pathways involved in cell cycle/proliferation, apoptosis, T-cell signaling, and immune activation. We also observed a number of inverse correlations of miRNA and mRNA expression in infected PBMCs, further confirming the interrelationship between miRNA and mRNA regulation during HIV-1 infection. These results for the first time provide evidence that the miRNA profile could be an early indicator of host cellular dysfunction induced by HIV-1.

  18. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen.

    PubMed

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J; Schembri, Mark A; Sweet, Matthew J

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  19. Cold-Sensitive Pseudomonas RNA Polymerase I. Characterization of the Host Dependent Cold-Sensitive Restriction of Phage CB3

    PubMed Central

    Sobieski, Rodney J.; Olsen, Ronald H.

    1973-01-01

    Analysis of bacteriophage CB3 infection of Pseudomonas aeruginosa strain PAT2 establishes that phage induced changes in net macromolecular synthesis are absent at nonpermissive phage growth temperatures (32 C). Alterations which are evident in the PAT2 strain at 37 C or in the fully permissive strain, PAO1C, at either warm or cold temperatures do not occur in PAT2 at low temperatures. CB3 DNA synthesis and the degradation of host DNA to approximately 78S components occur at 37 C, but are absent in PAT2 at 20 C. Nevertheless, attachment of phage DNA to host cytoplasmic material occurs under permissive and nonpermissive conditions. This binding of phage DNA at 20 C is identical in nature to phage DNA bound at 37 C. Thus, the conditional cold-sensitive PAT2 host function in the growth of CB3 is expressed subsequent to membrane binding of the infecting genomes but prior to the onset of the initiation of CB3 DNA synthesis, the inhibition of host DNA synthesis, and the transient depression in RNA synthesis which occurs in permissive cells. PMID:4202617

  20. Host-Associated Metagenomics: A Guide to Generating Infectious RNA Viromes

    PubMed Central

    Robert, Catherine; Pascalis, Hervé; Michelle, Caroline; Jardot, Priscilla; Charrel, Rémi; Raoult, Didier; Desnues, Christelle

    2015-01-01

    Background Metagenomic analyses have been widely used in the last decade to describe viral communities in various environments or to identify the etiology of human, animal, and plant pathologies. Here, we present a simple and standardized protocol that allows for the purification and sequencing of RNA viromes from complex biological samples with an important reduction of host DNA and RNA contaminants, while preserving the infectivity of viral particles. Principal Findings We evaluated different viral purification steps, random reverse transcriptions and sequence-independent amplifications of a pool of representative RNA viruses. Viruses remained infectious after the purification process. We then validated the protocol by sequencing the RNA virome of human body lice engorged in vitro with artificially contaminated human blood. The full genomes of the most abundant viruses absorbed by the lice during the blood meal were successfully sequenced. Interestingly, random amplifications differed in the genome coverage of segmented RNA viruses. Moreover, the majority of reads were taxonomically identified, and only 7–15% of all reads were classified as “unknown”, depending on the random amplification method. Conclusion The protocol reported here could easily be applied to generate RNA viral metagenomes from complex biological samples of different origins. Our protocol allows further virological characterizations of the described viral communities because it preserves the infectivity of viral particles and allows for the isolation of viruses. PMID:26431175

  1. Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2.

    PubMed

    George, Cyril X; Samuel, Charles E

    2011-08-01

    Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.

  2. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability.

    PubMed

    Vytvytska, O; Jakobsen, J S; Balcunaite, G; Andersen, J S; Baccarini, M; von Gabain, A

    1998-11-24

    The stability of the ompA mRNA depends on the bacterial growth rate. The 5' untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5' untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qbeta replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.

  3. Plant subviral RNAs as a long noncoding RNA (lncRNA): Analogy with animal lncRNAs in host-virus interactions.

    PubMed

    Shimura, Hanako; Masuta, Chikara

    2016-01-02

    Satellite RNAs (satRNAs) and viroids belong to the group called subviral agents and are the smallest pathogens of plants. In general, small satRNAs and viroids are 300-400 nt in size and do not encode any functional proteins; they are thus regarded as so-called long noncoding RNAs (lncRNAs). These lncRNAs are receiving great attention as a new RNA class involved in gene regulation to control important biological processes such as gene transcription and epigenetic regulation. A substantial number of lncRNAs in animal cells have been found to play important roles in the interactions between a virus and its host. We here discuss the pathogenicity of subviral RNAs (especially satRNAs) in plant cells and their functions as lncRNAs associated with viral diseases, using animal lncRNAs as an analogy. Because, unlike animal lncRNAs, plant subviral RNAs can replicate and accumulate at very high levels in infected cells, we here considered the unique possibility that the RNA silencing machinery of plants, an important defense mechanism against virus infection, may have brought about the replication ability of subviral molecules. In addition, we also discuss the possibility that satRNAs may have arisen from plant-virus interactions in virus-infected cells. Understanding the molecular functions of these unique lncRNAs in plants will enable us to reveal the most plausible origins of these subviral RNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. RNA interference targets arbovirus replication in Culicoides cells.

    PubMed

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2013-03-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.

  5. RNA Interference Targets Arbovirus Replication in Culicoides Cells

    PubMed Central

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E.; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M.; Palmarini, Massimo

    2013-01-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses. PMID:23269795

  6. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  7. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  8. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns.

    PubMed

    Atherly, Todd; Ziemer, Cherie J

    2014-04-01

    One-hundred-and-three isolates of Bacteroides ovatus, B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    PubMed

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.

  10. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model.

    PubMed

    Brady, Rebecca A; Bruno, Vincent M; Burns, Drusilla L

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  11. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model

    PubMed Central

    Brady, Rebecca A.; Bruno, Vincent M.; Burns, Drusilla L.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  12. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  13. Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are important regulators of gene expression and play key roles in several biological processes. However, little is known about the role of miRNAs in regulating genes involved in host response to bacterial infection. Here, we present a systematic study of miRNA and mRNA profiles fr...

  14. A virus-encoded inhibitor that blocks RNA interference in mammalian cells.

    PubMed

    Sullivan, Christopher S; Ganem, Don

    2005-06-01

    Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.

  15. Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells.

    PubMed

    Mann, Krin S; Johnson, Karyn N; Dietzgen, Ralf G

    2015-02-01

    RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.

  16. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces.

    PubMed

    Alderete, J F; Garza, G E

    1985-12-01

    The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface

  17. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces.

    PubMed Central

    Alderete, J F; Garza, G E

    1985-01-01

    The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface

  18. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.

    PubMed

    Mehlitz, Adrian; Eylert, Eva; Huber, Claudia; Lindner, Buko; Vollmuth, Nadine; Karunakaran, Karthika; Goebel, Werner; Eisenreich, Wolfgang; Rudel, Thomas

    2017-03-01

    Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco-2 cells with (13) C-marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC-MS-based isotopologue analysis of protein-derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT-ICR-MS analyses also demonstrated that label from exogenous (13) C-glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6-phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous (13) C-malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co-substrate usage of intracellular C. trachomatis in a stream-lined bipartite metabolism with host cell-supplied amino acids for protein biosynthesis, host cell-provided glucose 6-phosphate for cell wall biosynthesis, and, to some extent, one or more host cell-derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso-2,6-diaminopimelate required for the formation of chlamydial peptidoglycan.

  19. A long noncoding RNA positively regulates CD56 in human natural killer cells

    PubMed Central

    Fu, Binqing; Wu, Yang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2016-01-01

    Natural killer (NK) cells are innate immune lymphocytes that play critical roles in host defense against viral infection and surveillance against malignant transformation. Long noncoding RNAs (lncRNAs) are important immune system regulators. Here, we analyzed human primary lymphocyte lncRNA expression profiles to identify NK-lncRNA signatures. We detected numerous novel NK-specific lncRNAs with potential roles in regulating human NK cell differentiation and function. Expression of lnc-CD56, an NK-specific lncRNA, was positively correlated with that of CD56, a classical human NK cell surface marker. We showed that lnc-CD56 may function as a positive regulator of CD56 in primary human NK cells and differentiated NK cells from human CD34+ hematopoietic progenitor cells. Our data provide an annotated human NK cell lncRNA expression catalog and demonstrate a key role for lncRNAs in NK cell biology. PMID:27713137

  20. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication.

    PubMed

    Yang, Jian; Zhang, Fen; Cai, Nian-Jun; Wu, Ne; Chen, Xuan; Li, Jing; Meng, Xiang-Feng; Zhu, Tong-Quan; Chen, Jian-Ping; Zhang, Heng-Mu

    2017-04-03

    Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167-333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones.

  1. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication

    PubMed Central

    Yang, Jian; Zhang, Fen; Cai, Nian-Jun; Wu, Ne; Chen, Xuan; Li, Jing; Meng, Xiang-Feng; Zhu, Tong-Quan; Chen, Jian-Ping; Zhang, Heng-Mu

    2017-01-01

    Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167–333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones. PMID:28367995

  2. Inhibition of host cell apoptosis by Eimeria bovis sporozoites.

    PubMed

    Lang, Mirjam; Kann, Michael; Zahner, Horst; Taubert, Anja; Hermosilla, Carlos

    2009-03-09

    Sophisticated evasion strategies of obligate intracellular parasites, in particular prevention of host cell apoptosis, are necessary to ensure successful replication. To study the ability of Eimeria bovis in this regard, in vitro experiments were performed applying bovine foetal gastrointestinal cells (BFGC), bovine umbilical vein endothelial cells (BUVEC) and African green monkey kidney cells (VERO) as host cells. BUVEC and BFGC allow maturation of sporozoites to macromeronts, in VERO cells sporozoites survive for weeks without showing further development. In highly infected BUVEC monolayers, infected cells survived until merozoite release whereas uninfected cells underwent apoptosis. Light microscopy and TUNEL assays performed 3-10 days p.i. showed that, within infected BFGC and VERO cell monolayers, uninfected cells underwent programmed cell death after application of various inducers of apoptosis, whereas infected cells survived. Incidentally, the anti-apoptotic efficacies in infected cells were independent of the drugs and the host cell type. We could not demonstrate significant differences between infected and uninfected cells after colchicin treatment in terms of translation of phosphatidylserines to the host cell surface, caspase 3 activity and cytochrome c release, probably since obtainable infection rates were too low. However, we could show by laser scanning confocal microscopy on single cell levels that the expression of the anti-apoptotic factors cellular Flice inhibitory protein (c-FLIP) and cellular inhibition of apoptosis protein 1 (c-IAP1) were enhanced in E. bovis infected cells after application of colchicin, in the latter case also in non-infected cells directly neighbouring infected ones. Our data show that E. bovis protects its host cell from apoptosis by increasing expression of c-IAP1 and c-FLIP.

  3. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host

    PubMed Central

    Wang, Beibei; Yan, Zhichao; Hong, Jian; Werren, John H.; Song, Qisheng

    2017-01-01

    Parasitoid wasps are important natural enemies of arthropod hosts in natural and agricultural ecosystems and are often associated with viruses or virion-like particles. Here, we report a novel negative-stranded RNA virus from a parasitoid wasp (Pteromalus puparum). The complete viral genome is 12,230 nucleotides in length, containing five non-overlapping, linearly arranged open reading frames. Phylogenetically, the virus clusters with and is a novel member of the mononegaviral family Nyamiviridae, here designated as Pteromalus puparum negative-strand RNA virus 1 (PpNSRV-1). PpNSRV-1 is present in various tissues and life stages of the parasitoid wasp, and is transmitted vertically through infected females and males. Virus infections in field populations of P. puparum wasps ranged from 16.7 to 37.5%, without linearly correlating with temperature. PpNSRV-1 increased adult longevity and impaired several fitness parameters of the wasp, but had no influence on successful parasitism. Strikingly, PpNSRV-1 mediated the offspring sex ratio by decreasing female offspring numbers. RNA interference knockdown of virus open reading frame I eliminated these PpNSRV-1-induced effects. Thus, we infer that PpNSRV-1 has complex effects on its insect host including sex ratio distortion towards males, as well as possible mutualistic benefits through increasing wasp longevity. PMID:28278298

  4. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host.

    PubMed

    Wang, Fei; Fang, Qi; Wang, Beibei; Yan, Zhichao; Hong, Jian; Bao, Yiming; Kuhn, Jens H; Werren, John H; Song, Qisheng; Ye, Gongyin

    2017-03-01

    Parasitoid wasps are important natural enemies of arthropod hosts in natural and agricultural ecosystems and are often associated with viruses or virion-like particles. Here, we report a novel negative-stranded RNA virus from a parasitoid wasp (Pteromalus puparum). The complete viral genome is 12,230 nucleotides in length, containing five non-overlapping, linearly arranged open reading frames. Phylogenetically, the virus clusters with and is a novel member of the mononegaviral family Nyamiviridae, here designated as Pteromalus puparum negative-strand RNA virus 1 (PpNSRV-1). PpNSRV-1 is present in various tissues and life stages of the parasitoid wasp, and is transmitted vertically through infected females and males. Virus infections in field populations of P. puparum wasps ranged from 16.7 to 37.5%, without linearly correlating with temperature. PpNSRV-1 increased adult longevity and impaired several fitness parameters of the wasp, but had no influence on successful parasitism. Strikingly, PpNSRV-1 mediated the offspring sex ratio by decreasing female offspring numbers. RNA interference knockdown of virus open reading frame I eliminated these PpNSRV-1-induced effects. Thus, we infer that PpNSRV-1 has complex effects on its insect host including sex ratio distortion towards males, as well as possible mutualistic benefits through increasing wasp longevity.

  5. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry.

    PubMed

    Schmid, Maximilian; Dufner, Bianca; Dürk, Julius; Bedal, Konstanze; Stricker, Kristina; Prokoph, Lukas Ali; Koch, Christoph; Wege, Anja K; Zirpel, Henner; van Zandbergen, Ger; Ecker, Rupert; Boghiu, Bogdan; Ritter, Uwe

    2015-01-01

    Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.

  6. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis

    PubMed Central

    Barott, Katie L.; Venn, Alexander A.; Perez, Sidney O.; Tambutté, Sylvie; Tresguerres, Martin

    2015-01-01

    Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H+-ATPase (VHA), which acidifies the symbiosome space down to pH ∼4. Inhibition of VHA results in a significant decrease in average H+ activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts. PMID:25548188

  7. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis.

    PubMed

    Barott, Katie L; Venn, Alexander A; Perez, Sidney O; Tambutté, Sylvie; Tresguerres, Martin

    2015-01-13

    Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H(+)-ATPase (VHA), which acidifies the symbiosome space down to pH ∼ 4. Inhibition of VHA results in a significant decrease in average H(+) activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts.

  8. Capacitive immunosensor for the detection of host cell proteins.

    PubMed

    Teeparuksapun, Kosin; Hedström, Martin; Kanatharana, Proespichaya; Thavarungkul, Panote; Mattiasson, Bo

    2012-01-01

    A new analysis for monitoring host cell proteins in preparations of transgenically produced protein pharmaceuticals is described. A capacitive biosensor with a very high sensitivity is used to monitor trace amounts of host cell proteins. The sensor consists of a gold electrode, the surface of which is well insulated and on which a preparation of a population of polyclonal antibodies raised against the complete protein set-up of the host cell are immobilized. Host cell proteins are present at very low concentrations during the production of a transgenic protein. The system studied here is a model system with an enzyme expressed in Escherichia coli (E. coli). Due to the high sensitivity, it may even be possible to dilute the samples to be analyzed, thereby reducing a negative influence from non-specific binding to the sensor surface.

  9. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency.

    PubMed

    Pan, Dongli; Flores, Omar; Umbach, Jennifer L; Pesola, Jean M; Bentley, Peris; Rosato, Pamela C; Leib, David A; Cullen, Bryan R; Coen, Donald M

    2014-04-09

    After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.

  10. Fungal Invasion of Normally Non-Phagocytic Host Cells

    PubMed Central

    Filler, Scott G; Sheppard, Donald C

    2006-01-01

    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research. PMID:17196036

  11. Fungal invasion of normally non-phagocytic host cells.

    PubMed

    Filler, Scott G; Sheppard, Donald C

    2006-12-01

    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  12. [Synthesis in E. coli cells of short RNA encoded in plasmids].

    PubMed

    Dontsova, O A; Bogdanova, S L; Kopylov, A M

    1989-05-01

    The synthesis of 5S rRNA and 4.5S RNA in E. coli HB 101 cells harbouring plasmids pKK 5-1 and pKK 247-2 was studied. The plasmids were derived from pBK 322 and contained genes coding for 5S rRNA and 4.5S RNA with regulatory elements of an rRNA transcription operon rrn B. When the cells were grown on enriched or minimal media (2 and 0.3 duplications per hour), the synthesis of both 5S rRNA and 4.5S RNA was proportional to the gene dosage and was greater in the plasmid than in the host strain. Such RNA accumulation did not change the cell growth parameters and was thus not toxic for the cells. At high growth rates, the RNA synthesis in the cells became excessive, and the processing system was upset with the accumulation of RNA precursors. The fact confirms the hypothesis, according to which the whole rRNA operon is essential for its own feedback regulation.

  13. Feature selection methods for identifying genetic determinants of host species in RNA viruses.

    PubMed

    Aguas, Ricardo; Ferguson, Neil M

    2013-01-01

    Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case study given their mutation rates are orders of magnitude higher than any other pathogen--as reflected by the recent emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data. The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers.

  14. Host cells and methods for producing isoprenyl alkanoates

    SciTech Connect

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  15. Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA*

    PubMed Central

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-01-01

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS. PMID:23661700

  16. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA.

    PubMed

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-07-05

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.

  17. Epistasis between mutations is host-dependent for an RNA virus.

    PubMed

    Lalić, Jasna; Elena, Santiago F

    2013-02-23

    How, and to what extent, does the environment influence the way mutations interact? Do environmental changes affect both the sign and the magnitude of epistasis? Are there any correlations between environments in the variability, sign or magnitude of epistasis? Very few studies have tackled these questions. Here, we addressed them in the context of viral emergence. Most emerging viruses are RNA viruses with small genomes, overlapping reading frames and multifunctional proteins for which epistasis is abundant. Understanding the effect of host species in the sign and magnitude of epistasis will provide insights into the evolutionary ecology of infectious diseases and the predictability of viral emergence.

  18. Epistasis between mutations is host-dependent for an RNA virus

    PubMed Central

    Lalić, Jasna; Elena, Santiago F.

    2013-01-01

    How, and to what extent, does the environment influence the way mutations interact? Do environmental changes affect both the sign and the magnitude of epistasis? Are there any correlations between environments in the variability, sign or magnitude of epistasis? Very few studies have tackled these questions. Here, we addressed them in the context of viral emergence. Most emerging viruses are RNA viruses with small genomes, overlapping reading frames and multifunctional proteins for which epistasis is abundant. Understanding the effect of host species in the sign and magnitude of epistasis will provide insights into the evolutionary ecology of infectious diseases and the predictability of viral emergence. PMID:22809724

  19. High-throughput RNA interference screens integrative analysis: Towards a comprehensive understanding of the virus-host interplay

    PubMed Central

    Amberkar, Sandeep; Kiani, Narsis A; Bartenschlager, Ralf; Alvisi, Gualtiero; Kaderali, Lars

    2013-01-01

    Viruses are extremely heterogeneous entities; the size and the nature of their genetic information, as well as the strategies employed to amplify and propagate their genomes, are highly variable. However, as obligatory intracellular parasites, replication of all viruses relies on the host cell. Having co-evolved with their host for several million years, viruses have developed very sophisticated strategies to hijack cellular factors that promote virus uptake, replication, and spread. Identification of host cell factors (HCFs) required for these processes is a major challenge for researchers, but it enables the identification of new, highly selective targets for anti viral therapeutics. To this end, the establishment of platforms enabling genome-wide high-throughput RNA interference (HT-RNAi) screens has led to the identification of several key factors involved in the viral life cycle. A number of genome-wide HT-RNAi screens have been performed for major human pathogens. These studies enable first inter-viral comparisons related to HCF requirements. Although several cellular functions appear to be uniformly required for the life cycle of most viruses tested (such as the proteasome and the Golgi-mediated secretory pathways), some factors, like the lipid kinase Phosphatidylinositol 4-kinase IIIα in the case of hepatitis C virus, are selectively required for individual viruses. However, despite the amount of data available, we are still far away from a comprehensive understanding of the interplay between viruses and host factors. Major limitations towards this goal are the low sensitivity and specificity of such screens, resulting in limited overlap between different screens performed with the same virus. This review focuses on how statistical and bioinformatic analysis methods applied to HT-RNAi screens can help overcoming these issues thus increasing the reliability and impact of such studies. PMID:24175227

  20. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus.

    PubMed

    Hyodo, Kiwamu; Hashimoto, Kenji; Kuchitsu, Kazuyuki; Suzuki, Nobuhiro; Okuno, Tetsuro

    2017-02-14

    As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant-virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication.

  1. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus

    PubMed Central

    Hashimoto, Kenji; Kuchitsu, Kazuyuki; Suzuki, Nobuhiro; Okuno, Tetsuro

    2017-01-01

    As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant–virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication. PMID:28154139

  2. Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion

    PubMed Central

    Ehsani, Soudeh; Santos, José Carlos; Rodrigues, Cristina D.; Henriques, Ricardo; Audry, Laurent; Zimmer, Christophe; Sansonetti, Philippe; Tran Van Nhieu, Guy

    2012-01-01

    Shigella flexneri, the causative agent of bacillary dysentery, induces massive cytoskeletal rearrangement, resulting in its entry into nonphagocytic epithelial cells. The bacterium-engulfing membrane ruffles are formed by polymerizing actin, a process activated through injected bacterial effectors that target host small GTPases and tyrosine kinases. Once inside the host cell, S. flexneri escapes from the endocytic vacuole within minutes to move intra- and intercellularly. We quantified the fluorescence signals from fluorescently tagged host factors that are recruited to the site of pathogen entry and vacuolar escape. Quantitative time lapse fluorescence imaging revealed simultaneous recruitment of polymerizing actin, small GTPases of the Rho family, and tyrosine kinases. In contrast, we found that actin surrounding the vacuole containing bacteria dispersed first from the disassembling membranes, whereas other host factors remained colocalized with the membrane remnants. Furthermore, we found that the disassembly of the membrane remnants took place rapidly, within minutes after bacterial release into the cytoplasm. Superresolution visualization of galectin 3 through photoactivated localization microscopy characterized these remnants as small, specular, patchy structures between 30 and 300 nm in diameter. Using our experimental setup to track the time course of infection, we identified the S. flexneri effector IpgB1 as an accelerator of the infection pace, specifically targeting the entry step, but not vacuolar progression or escape. Together, our studies show that bacterial entry into host cells follows precise kinetics and that this time course can be targeted by the pathogen. PMID:22526677

  3. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection

    PubMed Central

    Leitão, Elsa; Costa, Ana Catarina; Brito, Cláudia; Costa, Lionel; Pombinho, Rita; Cabanes, Didier; Sousa, Sandra

    2014-01-01

    Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation. PMID:24552813

  4. Characterization of the mutant spectra of a fish RNA virus within individual hosts during natural infections

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Troyer, Ryan M.; Kurath, Gael

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an RNA virus that causes significant mortalities of salmonids in the Pacific Northwest of North America. RNA virus populations typically contain genetic variants that form a heterogeneous virus pool, referred to as a quasispecies or mutant spectrum. This study characterized the mutant spectra of IHNV populations within individual fish reared in different environmental settings by RT–PCR of genomic viral RNA and determination of partial glycoprotein gene sequences of molecular clones. The diversity of the mutant spectra from ten in vivo populations was low and the average mutation frequencies of duplicate populations did not significantly exceed the background mutation level expected from the methodology. In contrast, two in vitro populations contained variants with an identical mutational hot spot. These results indicated that the mutant spectra of natural IHNV populations is very homogeneous, and does not explain the different magnitudes of genetic diversity observed between the different IHNV genogroups. Overall the mutant frequency of IHNV within its host is one of the lowest reported for RNA viruses.

  5. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles

    PubMed Central

    Sayour, Elias J.; Pham, Christina; Grippin, Adam; Kemeny, Hanna; Chua, Joshua; Sampson, John H.; Sanchez-Perez, Luis; Flores, Catherine; Mitchell, Duane A.

    2017-01-01

    ABSTRACT While RNA-pulsed dendritic cell (DC) vaccines have shown promise, the advancement of cellular therapeutics is fraught with developmental challenges. To circumvent the challenges of cellular immunotherapeutics, we developed clinically translatable nanoliposomes that can be combined with tumor-derived RNA to generate personalized tumor RNA-nanoparticles (NPs) with considerable scale-up capacity. RNA-NPs bypass MHC restriction, are amenable to central distribution, and can provide near immediate immune induction. We screened commercially available nanoliposomal preparations and identified the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as an efficient mRNA courier to antigen-presenting cells (APCs). When administered intravenously, RNA-NPs mediate systemic activation of APCs in reticuloendothelial organs such as the spleen, liver, and bone marrow. RNA-NPs increase percent expression of MHC class I/II, B7 co-stimulatory molecules, and maturation markers on APCs (all vital for T-cell activation). RNA-NPs also increase activation markers on tumor APCs and elicit potent expansion of antigen-specific T-cells superior to peptide vaccines formulated in complete Freund's adjuvant. We demonstrate that both model antigen-encoding and physiologically-relevant tumor-derived RNA-NPs expand potent antitumor T-cell immunity. RNA-NPs were shown to induce antitumor efficacy in a vaccine model and functioned as a suitable alternative to DCs in a stringent cellular immunotherapy model for a radiation/temozolomide resistant invasive murine high-grade glioma. Although cancer vaccines have suffered from weak immunogenicity, we have advanced a RNA-NP formulation that systemically activates host APCs precipitating activated T-cell frequencies necessary to engender antitumor efficacy. RNA-NPs can thus be harnessed as a more feasible and effective immunotherapy to re-program host-immunity. PMID:28197373

  6. MicroRNA-mediated somatic cell reprogramming.

    PubMed

    Kuo, Chih-Hao; Ying, Shao-Yao

    2013-02-01

    Since the first report of induced pluripotent stem cells (iPSCs) using somatic cell nuclear transfer (SCNT), much focus has been placed on iPSCs due to their great therapeutic potential for diseases such as abnormal development, degenerative disorders, and even cancers. Subsequently, Takahashi and Yamanaka took a novel approach by using four defined transcription factors to generate iPSCs in mice and human fibroblast cells. Scientists have since been trying to refine or develop better approaches to reprogramming, either by using different combinations of transcription factors or delivery methods. However, recent reports showed that the microRNA expression pattern plays a crucial role in somatic cell reprogramming and ectopic introduction of embryonic stem cell-specific microRNAs revert cells back to an ESC-like state, although, the exact mechanism underlying this effect remains unclear. This review describes recent work that has focused on microRNA-mediated approaches to somatic cell reprogramming as well as some of the pros and cons to these approaches and a possible mechanism of action. Based on the pivotal role of microRNAs in embryogenesis and somatic cell reprogramming, studies in this area must continue in order to gain a better understanding of the role of microRNAs in stem cells regulation and activity. Copyright © 2012 Wiley Periodicals, Inc.

  7. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination.

    PubMed

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-09-22

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription.

  8. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    PubMed Central

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription.

  9. Host Cell Factors in Filovirus Entry: Novel Players, New Insights

    PubMed Central

    Hofmann-Winkler, Heike; Kaup, Franziska; Pöhlmann, Stefan

    2012-01-01

    Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism. PMID:23342362

  10. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts.

    PubMed

    Kolondam, Beivy; Rao, Parth; Sztuba-Solinska, Joanna; Weber, Philipp H; Dzianott, Aleksandra; Johns, Mitrick A; Bujarski, Jozef J

    2015-01-01

    We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.

  11. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Voth, Daniel E.

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions. PMID:27713866

  12. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival.

    PubMed

    Verbeke, Philippe; Welter-Stahl, Lynn; Ying, Songmin; Hansen, Jon; Häcker, Georg; Darville, Toni; Ojcius, David M

    2006-05-01

    Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3beta can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3beta co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3beta does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3beta to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.

  13. When your cap matters: Structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins

    PubMed Central

    Leung, Daisy W.; Amarasinghe, Gaya K.

    2016-01-01

    Cytosolic recognition of viral RNA is important for host innate immune responses. Differential recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may trigger aberrant immune responses. Recent work identified the composition of the RNA 5′, including the 5′ cap and its methylation state, as an important determinant of recognition by the host. Recent studies have advanced our understanding of the modified 5′ RNA recognition and viral antagonism of RNA receptors. Here, we will discuss RIG-I and IFIT proteins as examples of host proteins that detect dsRNA and ssRNA, respectively. PMID:26916433

  14. A Novel High Throughput Invasion Screen Identifies Host Actin Regulators Required for Efficient Cell Entry by Toxoplasma gondii

    PubMed Central

    Gaji, Rajshekhar Y.; Huynh, My-Hang; Carruthers, Vern B.

    2013-01-01

    Toxoplasma gondii critically relies on cell invasion as a survival strategy to evade immune clearance during infection. Although it was widely thought that Toxoplasma entry is parasite directed and that the host cell is largely a passive victim, recent studies have suggested that host components such as microfilaments and microtubules indeed contribute to entry. Hence to identify additional host factors, we performed a high-throughput siRNA screen of a human siRNA library targeting druggable proteins using a novel inducible luciferase based invasion assay. The top 100 hits from the primary screen that showed the strongest decreases in invasion were subjected to confirmation by secondary screening, revealing 24 proteins that are potentially involved in Toxoplasma entry into host cells. Interestingly, 6 of the hits appear to affect parasite invasion by modifying host cell actin dynamics, resulting in increased deposition of F-actin at the periphery of the cell. These findings support the emerging notion that host actin dynamics are important for Toxoplasma invasion along with identifying several novel host factors that potentially participate in parasite entry. PMID:23741372

  15. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    PubMed Central

    Shrestha, Archana; Hendricks, Matthew R.; Bomberger, Jennifer M.

    2016-01-01

    ABSTRACT Clostridium perfringens enterotoxin (CPE) binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s) from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s) in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease. PMID:27965452

  16. Alterations of host cell ubiquitination machinery by pathogenic bacteria.

    PubMed

    Alomairi, Jaafar; Bonacci, Thomas; Ghigo, Eric; Soubeyran, Philippe

    2015-01-01

    Response of immune and non-immune cells to pathogens infections is a very dynamic process. It involves the activation/modulation of many pathways leading to actin remodeling, membrane engulfing, phagocytosis, vesicle trafficking, phagolysosome formation, aiming at the destruction of the intruder. These sophisticated and rapid mechanisms rely on post-translational modifications (PTMs) of key host cells' factors, and bacteria have developed various strategies to manipulate them to favor their survival. Among these important PTMs, ubiquitination has emerged as a major mediator/modulator/regulator of host cells response to infections that pathogens have also learned to use for their own benefit. In this mini-review, we summarize our current knowledge about the normal functions of ubiquitination during host cell infection, and we detail its hijacking by model pathogens to escape clearance and to proliferate.

  17. Viroporins Customize Host Cells for Efficient Viral Propagation

    PubMed Central

    Giorda, Kristina M.

    2013-01-01

    Viruses are intracellular parasites that must access the host cell machinery to propagate. Viruses hijack the host cell machinery to help with entry, replication, packaging, and release of progeny to infect new cells. To carry out these diverse functions, viruses often transform the cellular environment using viroporins, a growing class of viral-encoded membrane proteins that promote viral proliferation. Viroporins modify the integrity of host membranes, thereby stimulating the maturation of viral infection, and are critical for virus production and dissemination. Significant advances in molecular and cell biological approaches have helped to uncover some of the roles that viroporins serve in the various stages of the viral life cycle. In this study, the ability of viroporins to modify the cellular environment will be discussed, with particular emphasis on their role in the stepwise progression of the viral life cycle. PMID:23945006

  18. Impact of RNA virus infection on plant cell function and evolution.

    PubMed

    Niehl, Annette; Heinlein, Manfred

    2009-10-01

    Viruses are obligate symbionts that tightly interact with their hosts to complete their life cycle. Each infected cell is confronted with the accumulation of viral products and activities that have evolved to support the replication and spread of the virus in the context of host cell functions and defense responses. Tobacco mosaic virus encodes replicase proteins and coat protein, to replicate and protect the RNA genome, and a movement protein (MP) that binds viral RNA and manipulates the size exclusion limit of plasmodesmata to facilitate the spread of the viral genomic RNA (vRNA). The MP and replicase also interfere with the cellular RNA silencing machinery that influences plant gene expression and development. Moreover, virus-infected cells stimulate the production of a systemic signal ahead of the virus front that triggers genomic recombination leading to heritable genetic changes. Thus viruses can interact with their hosts through diverse molecular interactions. Given the high mutation rate of viruses, these interactions have implications for evolutionary processes and adaptations at the virus-host interface that may contribute to eukaryotic evolution.

  19. Host epithelial geometry regulates breast cancer cell invasiveness.

    PubMed

    Boghaert, Eline; Gleghorn, Jason P; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C; Nelson, Celeste M

    2012-11-27

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment.

  20. A Molecular Approach Designed to Limit the Replication of Mature DENV2 in Host Cells.

    PubMed

    Raheel, Ummar; Jamal, Muhsin; Zaidi, Najam Us Sahar Sadaf

    2015-09-01

    Dengue virus (DENV) is an arthropod-borne virus, which belongs to the Flaviviridae family, and completes its life cycle in two hosts: humans and mosquitoes. For DENV maturation, the surface pre-membrane (prM) protein is cleaved to form a mature membrane protein (M) by furin, which is a cellular enzyme subsequently releasing the mature virus from the host dendritic cell. The objective of the current study was to inhibit mature DENV isotype 2 (DENV2) by RNA-interference in a Vero-81 cell line. Mature DENV2 was propagated in and isolated from U937 cells expressing dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin. Maturation of DENV2 was confirmed by Western blot analysis, where virus stock lacking prM was considered mature. Inhibition studies were carried out by transfection of Vero-81 cells with six synthetic siRNAs along with a control siRNA. Reduction in cellular DENV2 was observed also by focus-reduction assay, immunofluorescence assay (IFA), and real-time quantitative polymerase chain reaction (RT-qPCR). Cells transfected with DENV2SsiRNA2, which was targeting the structural region M of mature DENV2, was able to reduce DENV2 titer by up to 85% in focus reduction assays. A significant reduction in mature DENV2 RNA load was observed by RT-qPCR, confirming the previous findings. IFA also revealed reduced levels of cellular DENV2. These results demonstrated that mature DENV2 can be effectively inhibited by synthetic siRNA targeting the structural region of the genome. Mature DENV2 can be successfully inhibited by siRNAs, and specifically high knock-down efficiency is observed by siRNAs against M region of mature DENV2. This study shows that M represents a potential target for RNAi based inhibitory approaches.

  1. Molecular mechanisms of host cell traversal by malaria sporozoites.

    PubMed

    Yang, Annie S P; Boddey, Justin A

    2017-02-01

    Malaria is a pernicious infectious disease caused by apicomplexan parasites of the genus Plasmodium. Each year, malaria afflicts over 200million people, causing considerable morbidity, loss to gross domestic product of endemic countries, and more than 420,000 deaths. A central feature of the virulence of malaria parasites is the ability of sporozoite forms injected by a mosquito to navigate from the inoculation site in the skin through host tissues to infect the liver. The ability for sporozoites to traverse through different host cell types is very important for the successful development of parasites within the mammalian host. Over the past decade, our understanding of the role of host cell traversal has become clearer through important studies with rodent models of malaria. However, we still do not understand the stepwise process of host cell entry and exit or know the molecular mechanisms governing each step. We know even less about cell traversal by malaria parasite species that infect humans. Here, we review current knowledge regarding the role and molecular mechanisms of sporozoite cell traversal and highlight recent advances that prompt new ways of thinking about this important process. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  2. Invasion of Host Cells and Tissues by Uropathogenic Bacteria

    PubMed Central

    Lewis, Adam J.; Richards, Amanda C.; Mulvey, Matthew A.

    2016-01-01

    Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of UPEC and other uropathogenic bacteria. PMID:28087946

  3. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection

    PubMed Central

    Flobinus, Alyssa; Hleibieh, Kamal; Klein, Elodie; Ratti, Claudio; Bouzoubaa, Salah; Gilmer, David

    2016-01-01

    Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3. PMID:27782046

  4. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection.

    PubMed

    Flobinus, Alyssa; Hleibieh, Kamal; Klein, Elodie; Ratti, Claudio; Bouzoubaa, Salah; Gilmer, David

    2016-10-04

    Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3.

  5. Bacterial Suppression of RNA Polymerase II-Dependent Host Gene Expression

    PubMed Central

    Ambite, Ines; Lutay, Nataliya; Stork, Christoph; Dobrindt, Ulrich; Wullt, Björn; Svanborg, Catharina

    2016-01-01

    Asymptomatic bacteriuria (ABU) is a bacterial carrier state in the urinary tract that resembles commensalism at other mucosal sites. ABU strains often lack the virulence factors that characterize uropathogenic Escherichia coli (E. coli) strains and therefore elicit weak innate immune responses in the urinary tract. In addition, ABU strains are active modifiers of the host environment, which they influence by suppressing RNA polymerase II (Pol II)-dependent host gene expression. In patients inoculated with the ABU strain E. coli 83972, gene expression was markedly reduced after 24 h (>60% of all regulated genes). Specific repressors and activators of Pol II-dependent transcription were modified, and Pol II Serine 2 phosphorylation was significantly inhibited, indicating reduced activity of the polymerase. This active inhibition included disease–associated innate immune response pathways, defined by TLR4, IRF-3 and IRF-7, suggesting that ABU strains persist in human hosts by active suppression of the antibacterial defense. In a search for the mechanism of inhibition, we compared the whole genome sequences of E. coli 83972 and the uropathogenic strain E. coli CFT073. In addition to the known loss of virulence genes, we observed that the ABU strain has acquired several phages and identified the lytic Prophage 3 as a candidate Pol II inhibitor. Intact phage particles were released by ABU during in vitro growth in human urine. To address if Prophage 3 affects Pol II activity, we constructed a Prophage 3 negative deletion mutant in E. coli 83972 and compared the effect on Pol II phosphorylation between the mutant and the E. coli 83972 wild type (WT) strains. No difference was detected, suggesting that the Pol II inhibitor is not encoded by the phage. The review summarizes the evidence that the ABU strain E. coli 83972 modifies host gene expression by inhibition of Pol II phosphorylation, and discusses the ability of ABU strains to actively create an environment that

  6. Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection.

    PubMed

    Ferraris, Pauline; Beaumont, Elodie; Uzbekov, Rustem; Brand, Denys; Gaillard, Julien; Blanchard, Emmanuelle; Roingeard, Philippe

    2013-04-01

    Like most positive-strand RNA viruses, hepatitis C virus (HCV) forms a membrane-associated replication complex consisting of replicating RNA, viral and host proteins anchored to altered cell membranes. We used a combination of qualitative and quantitative electron microscopy (EM), immuno-EM, and the 3D reconstruction of serial EM sections to analyze the host cell membrane alterations induced by HCV. Three different types of membrane alteration were observed: vesicles in clusters (ViCs), contiguous vesicles (CVs), and double-membrane vesicles (DMVs). The main ultrastructural change observed early in infection was the formation of a network of CVs surrounding the lipid droplets. Later stages in the infectious cycle were characterized by a large increase in the number of DMVs, which may be derived from the CVs. These DMVs are thought to constitute the membranous structures harboring the viral replication complexes in which viral replication is firmly and permanently established and to protect the virus against double-stranded RNA-triggered host antiviral responses.

  7. Concentrations of individual RNA sequences in polyadenylated nuclear and cytoplasmic RNA populations of Drosophila cells.

    PubMed Central

    Biessmann, H

    1980-01-01

    Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations. Images PMID:6162158

  8. Signalome-wide assessment of host cell response to hepatitis C virus.

    PubMed

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J; Daly, Roger J; Netter, Hans J; Baumert, Thomas F; Doerig, Christian

    2017-05-08

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen.

  9. Signalome-wide assessment of host cell response to hepatitis C virus

    PubMed Central

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. PMID:28480889

  10. The Plant Host Can Affect the Encapsidation of Brome Mosaic Virus (BMV) RNA; BMV Virions Are Surprisingly Heterogeneous

    PubMed Central

    Ni, Peng; Vaughan, Robert C.; Tragesser, Brady; Hoover, Haley; Kao, C. Cheng

    2013-01-01

    Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3′ untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses. PMID:24036424

  11. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation.

    PubMed

    Pillai, Asha B; George, Tracy I; Dutt, Suparna; Teo, Pearline; Strober, Samuel

    2007-05-15

    Allogeneic bone marrow transplantation is a curative treatment for leukemia and lymphoma, but graft-vs-host disease (GVHD) remains a major complication. Using a GVHD protective nonmyeloablative conditioning regimen of total lymphoid irradiation and antithymocyte serum (TLI/ATS) in mice that has been recently adapted to clinical studies, we show that regulatory host NKT cells prevent the expansion and tissue inflammation induced by donor T cells, but allow retention of the killing activity of donor T cells against the BCL1 B cell lymphoma. Whereas wild-type hosts given transplants from wild-type donors were protected against progressive tumor growth and lethal GVHD, NKT cell-deficient CD1d-/- and Jalpha-18-/- host mice given wild-type transplants cleared the tumor cells but died of GVHD. In contrast, wild-type hosts given transplants from CD8-/- or perforin-/- donors had progressive tumor growth without GVHD. Injection of host-type NKT cells into Jalpha-18-/- host mice conditioned with TLI/ATS markedly reduced the early expansion and colon injury induced by donor T cells. In conclusion, after TLI/ATS host conditioning and allogeneic bone marrow transplantation, host NKT cells can separate the proinflammatory and tumor cytolytic functions of donor T cells.

  12. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells.

    PubMed

    Popa, Crina M; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.

  13. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  14. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum

    PubMed Central

    Lampe, Elisabeth O.; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C.

    2015-01-01

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism. PMID:26712555

  15. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum.

    PubMed

    Lampe, Elisabeth O; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C; Hagedorn, Monica

    2015-12-28

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.

  16. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  17. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    PubMed Central

    Masciarelli, Silvia; Larivera, Simone; Legnini, Ivano; Iosue, Ilaria; Bozzoni, Irene; Fazi, Francesco; Fatica, Alessandro

    2016-01-01

    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non-coding RNA (lncRNA) in AML. We show that from the primary nuclear transcript, the alternative production of miR-223 and linc-223 is finely regulated during monocytic differentiation. Moreover, linc-223 expression inhibits cell cycle progression and promotes monocytic differentiation of AML cells. We also demonstrate that endogenous linc-223 localizes in the cytoplasm and acts as a competing endogenous RNA for miR-125-5p, an oncogenic microRNA in leukemia. In particular, we show that linc-223 directly binds to miR-125-5p and that its knockdown increases the repressing activity of miR-125-5p resulting in the downregulation of its target interferon regulatory factor 4 (IRF4), which it was previously shown to inhibit the oncogenic activity of miR-125-5p in vivo. Furthermore, data from primary AML samples show significant downregulation of linc-223 in different AML subtypes. Therein, these findings indicate that the newly identified lncRNA linc-223 may have an important role in myeloid differentiation and leukemogenesis, at least in part, by cross-talking with IRF4 mRNA. PMID:27517498

  18. Different serotypes of dengue viruses differently regulate the expression of the host cell antigen processing machinery.

    PubMed

    Gan, Chye Sheng; Yusof, Rohana; Othman, Shatrah

    2015-09-01

    Dengue virus (DV) infection demonstrates an intriguing virus-induced intracellular membrane alteration that results in the augmentation of major histocompatibility complex (MHC) class I-restricted antigen presentation. As oppose to its biological function in attracting CD8(+) T-cells, this phenomenon appears to facilitate the immune evasion. However, the molecular events that attribute to the dysregulation of the antigen presenting mechanism (APM) by DV remain obscure. In this study, we aimed to characterize the host cell APM upon infection with all serotypes of whole DV. Cellular RNA were isolated from infected cells and the gene expressions of LMP2, LMP7, TAP1, TAP2, TAPBP, CALR, CANX, PDIA3, HLA-A and HLA-B were analyzed via quantitative PCR. The profiles of the gene expression were further validated. We showed that all four DV serotypes modulate host APM at the proteasomal level with DV2 showing the most prominent expression profile.

  19. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells.

    PubMed

    Sateriale, Adam; Miller, Peter; Huston, Christopher D

    2016-04-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment.

  20. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells

    PubMed Central

    Sateriale, Adam; Miller, Peter

    2016-01-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment. PMID:26810036

  1. Host cell infiltration into PDT-treated tumor

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd; Dougherty, Graeme J.; Chaplin, David J.

    1992-06-01

    C3H mice bearing SCCVII squamous cell carcinoma were treated with photodynamic therapy (PDT) 24 hours after receiving Photofrin (25 mg/kg, i.v.). Single cell suspensions obtained by the enzymatic digestion of tumors excised either 30 minutes or 4 hours after PDT were analyzed for the content of host immune cells and colony forming ability of malignant cells. The results were compared to the data obtained with non-treated tumors. It is shown that there is a marked increase in the content of cells expressing Mac-1 (monocytes/macrophages or granulocytes) in the tumor 30 minutes post PDT, while a high level of other leucocytes are found within the tumors by 4 hours after PDT. As elaborated in Discussion, the infiltration rate of host immune cells, dying of malignant tumor cells, and yet unknown death rate of host cells originally present in PDT treated tumor occurring concomitantly during this time period complicates this analysis. The results of this study suggest a massive infiltration of macrophages and other leucocytes in PDT treated SCCVII tumor, supporting the suggestion that a potent immune reaction is one of the main characteristics of PDT action in solid tumors. It remains to be determined to what extent is the activity of tumor infiltrating immune cells responsible for its eradication by PDT.

  2. Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response

    PubMed Central

    Qu, Lin; Murakami, Kosuke; Broughman, James R.; Lay, Margarita K.; Guix, Susana; Tenge, Victoria R.; Atmar, Robert L.

    2016-01-01

    ABSTRACT Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these

  3. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Canet-Perez, Juan V; Fleming, Thomas; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2016-07-01

    Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia

    PubMed Central

    Silva, Ricardo Jorge; Cruz, Ana Rita; Mano, Miguel

    2017-01-01

    MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells. PMID:28394930

  5. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia.

    PubMed

    Sunkavalli, Ushasree; Aguilar, Carmen; Silva, Ricardo Jorge; Sharan, Malvika; Cruz, Ana Rita; Tawk, Caroline; Maudet, Claire; Mano, Miguel; Eulalio, Ana

    2017-04-01

    MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.

  6. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis

    PubMed Central

    Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.

    2016-01-01

    Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830

  7. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling.

    PubMed

    Flygare, Steven; Simmon, Keith; Miller, Chase; Qiao, Yi; Kennedy, Brett; Di Sera, Tonya; Graf, Erin H; Tardif, Keith D; Kapusta, Aurélie; Rynearson, Shawn; Stockmann, Chris; Queen, Krista; Tong, Suxiang; Voelkerding, Karl V; Blaschke, Anne; Byington, Carrie L; Jain, Seema; Pavia, Andrew; Ampofo, Krow; Eilbeck, Karen; Marth, Gabor; Yandell, Mark; Schlaberg, Robert

    2016-05-26

    High-throughput sequencing enables unbiased profiling of microbial communities, universal pathogen detection, and host response to infectious diseases. However, computation times and algorithmic inaccuracies have hindered adoption. We present Taxonomer, an ultrafast, web-tool for comprehensive metagenomics data analysis and interactive results visualization. Taxonomer is unique in providing integrated nucleotide and protein-based classification and simultaneous host messenger RNA (mRNA) transcript profiling. Using real-world case-studies, we show that Taxonomer detects previously unrecognized infections and reveals antiviral host mRNA expression profiles. To facilitate data-sharing across geographic distances in outbreak settings, Taxonomer is publicly available through a web-based user interface. Taxonomer enables rapid, accurate, and interactive analyses of metagenomics data on personal computers and mobile devices.

  8. Splenic microRNA Expression Profiles and Integration Analyses Involved in Host Responses to Salmonella enteritidis Infection in Chickens

    PubMed Central

    Li, Peng; Fan, Wenlei; Li, Qinghe; Wang, Jie; Liu, Ranran; Everaert, Nadia; Liu, Jie; Zhang, Yonghong; Zheng, Maiqing; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2017-01-01

    To understand the role of miRNAs in regulating genes involved in the host response to Salmonella enteritidis (SE) infection, next generation sequencing was applied to explore the altered splenic expression of microRNAs (miRNAs) and deregulated genes in specific-pathogen-free chickens. Birds were either infected or not (controls, C) and those challenged with SE were evaluated 24 h later and separated into two groups on the basis of the severity of clinical symptoms and blood load of SE: resistant (R, SE challenged-slight clinical symptoms and <105 cfu / 10 μL), and susceptible (S, SE challenged-severe clinical symptoms and >107 cfu/10 μL). Thirty-two differentially expressed (DE) miRNAs were identified in spleen, including 16 miRNAs between S and C, 13 between R and C, and 13 between S and R. Through integration analysis of DE miRNAs and mRNA, a total of 273 miRNA-target genes were identified. Functional annotation analysis showed that Apoptosis and NOD-like receptor signaling pathway and adaptive immune response were significantly enriched (P < 0.05). Interestingly, apoptosis pathway was significantly enriched in S vs. C, while NOD-like receptor pathway was enriched in R vs. C (P < 0.05). Two miRNAs, gga-miR-101-3p and gga-miR-155, in the hub positions of the miRNA-mRNA regulatory network, were identified as candidates potentially associated with SE infection. These 2 miRNAs directly repressed luciferase reporter gene activity via binding to 3′-untranslated regions of immune-related genes IRF4 and LRRC59; over-expressed gga-miR-155 and interference gga-miR-101-3p in chicken HD11 macrophage cells significantly altered expression of their target genes and decreased the production of pro-inflammatory cytokines. These findings facilitate better understanding of the mechanisms of host resistance and susceptibility to SE infection in chickens.

  9. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  10. Mechanisms of outer membrane vesicle entry into host cells.

    PubMed

    O'Donoghue, Eloise J; Krachler, Anne Marie

    2016-11-01

    Bacterial outer membrane vesicles (OMVs) are nano-sized compartments consisting of a lipid bilayer that encapsulates periplasm-derived, luminal content. OMVs, which pinch off of Gram-negative bacteria, are now recognized as a generalized secretion pathway which provides a means to transfer cargo to other bacterial cells as well as eukaryotic cells. Compared with other secretion systems, OMVs can transfer a chemically extremely diverse range of cargo, including small molecules, nucleic acids, proteins, and lipids to proximal cells. Although it is well recognized that OMVs can enter and release cargo inside host cells during infection, the mechanisms of host association and uptake are not well understood. This review highlights existing studies focusing on OMV-host cell interactions and entry mechanisms, and how these entry routes affect cargo processing within the host. It further compares the wide range of methods currently used to dissect uptake mechanisms, and discusses potential sources of discrepancy regarding the mechanism of OMV uptake across different studies. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  11. Mechanisms of outer membrane vesicle entry into host cells

    PubMed Central

    O'Donoghue, Eloise J.

    2016-01-01

    Abstract Bacterial outer membrane vesicles (OMVs) are nano‐sized compartments consisting of a lipid bilayer that encapsulates periplasm‐derived, luminal content. OMVs, which pinch off of Gram‐negative bacteria, are now recognized as a generalized secretion pathway which provides a means to transfer cargo to other bacterial cells as well as eukaryotic cells. Compared with other secretion systems, OMVs can transfer a chemically extremely diverse range of cargo, including small molecules, nucleic acids, proteins, and lipids to proximal cells. Although it is well recognized that OMVs can enter and release cargo inside host cells during infection, the mechanisms of host association and uptake are not well understood. This review highlights existing studies focusing on OMV‐host cell interactions and entry mechanisms, and how these entry routes affect cargo processing within the host. It further compares the wide range of methods currently used to dissect uptake mechanisms, and discusses potential sources of discrepancy regarding the mechanism of OMV uptake across different studies. PMID:27529760

  12. Toxoplasma Co-opts Host Cells It Does Not Invade

    PubMed Central

    Koshy, Anita A.; Dietrich, Hans K.; Christian, David A.; Melehani, Jason H.; Shastri, Anjali J.; Hunter, Christopher A.; Boothroyd, John C.

    2012-01-01

    Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. PMID:22910631

  13. Mechanism of host restriction of adenovirus-associated virus replication in African green monkey kidney cells.

    PubMed

    Buller, R M; Straus, S E; Rose, J A

    1979-06-01

    Human adenovirus (Ad) serotypes provide an early factor(s) that is necessary for adenovirus-associated virus (AAV) multiplication in human cell lines. However, little, if any, AAV production occurs in primary African green monkey kidney (AGMK) cells co-infected with AAV and a helper human Ad (non-permissive infection), unless cells are additionally infected with SV40 (permissive infection). To determine the basis of the host restriction of AAV replication in AGMK cells, AAV DNA, RNA and protein synthesis were analyzed under various conditions of infection. Hybridization reactions revealed no detectable AAV-specific DNA or RNA in infections with AAV alone or in combination with SV40. In co-infections with AAV and Ad5 or Ad7, the synthesis of both AAV- and Ad-specific DNA and RNA occurred without a significant rise in titre of either virus. During non-permissive infection, however, AAV DNA synthesis was abnormal in that an expected accumulation of single-stranded progeny molecules was not observed. Finally, although intact 20S AAV transcripts were present in the cytoplasm of AGMK cells during non-permissive infection (in amounts ranging from 50 to 80% of that found during permissive infection), AAV-specific polypeptides were not demonstrable by polyacrylamide gel electrophoresis. Taken together, these experiments indicate that the host restriction of AAV replication in AGMK cells is exerted at the level of translation of the single AAV messenger RNA. In addition, it appears that one or more of the AAV polypeptides specified by this message is required for the production of single-stranded AAV progeny DNA.

  14. Host cell targets for African swine fever virus.

    PubMed

    Muñoz-Moreno, Raquel; Galindo, Inmaculada; Cuesta-Geijo, Miguel Ángel; Barrado-Gil, Lucía; Alonso, Covadonga

    2015-11-02

    Viruses are strict intracellular pathogens that require the cellular environment to complete a successful infection. Among them, African swine fever virus (ASFV) is an evolutionary ancient DNA virus, endemic in Africa, which is nowadays causing an emergent disease in Europe with a potential high economic impact in the pig industry. It is well known that host-cell components are critical crossroads mapping the virus path for a productive infection, some of them at the endocytic pathway. Considering that ASFV infectious cycle strongly relies in several factors from the host cell, the study of virus-host interactions remains crucial as they will reveal the obstacles, routes and tracks, hints and the target waypoint in the virus journey to destination. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Host cell modulation by human, animal and plant pathogens.

    PubMed

    Andersson, Siv G E; Kempf, Volkhard A J

    2004-04-01

    Members of the alpha-proteobacteria display a broad range of interactions with higher eukaryotes. Some are pathogens of humans, such as Rickettsia and Bartonella that are associated with diseases like epidemic typhus, trench fever, cat scratch disease and bacillary angiomatosis. Others like the Brucella cause abortions in pregnant animals. Yet other species have evolved elaborate interactions with plants; in this group we find both plant symbionts and parasites. Despite radically different host preferences, extreme genome size variations and the absence of toxin genes, similarities in survival strategies and host cell interactions can be recognized among members of the alpha-proteobacteria. Here, we review some of these similarities, with a focus on strategies for modulation of the host target cell.

  16. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection.

    PubMed

    Liehl, Peter; Zuzarte-Luís, Vanessa; Chan, Jennie; Zillinger, Thomas; Baptista, Fernanda; Carapau, Daniel; Konert, Madlen; Hanson, Kirsten K; Carret, Céline; Lassnig, Caroline; Müller, Mathias; Kalinke, Ulrich; Saeed, Mohsan; Chora, Angelo Ferreira; Golenbock, Douglas T; Strobl, Birgit; Prudêncio, Miguel; Coelho, Luis P; Kappe, Stefan H; Superti-Furga, Giulio; Pichlmair, Andreas; Vigário, Ana M; Rice, Charles M; Fitzgerald, Katherine A; Barchet, Winfried; Mota, Maria M

    2014-01-01

    Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/β receptor-dependent manner. This signaling pathway is critical for immune cell-mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.

  17. Biological significance of RNA editing in cells.

    PubMed

    Tang, Wei; Fei, Yongjun; Page, Michael

    2012-09-01

    RNA editing is one of the post-transcriptional RNA processes. RNA editing generates RNA and protein diversity in eukaryotes and results in specific amino acid substitutions, deletions, and changes in gene expression levels. Adenosine-to-inosine RNA editing represents the most important class of editing in human and affects function of many genes. The importance of balancing RNA modification levels across time and space is becoming increasingly evident. In this review, we overview the biological significance of RNA editing including RNA editing in tumorigenesis, RNA editing in neuronal tissues, RNA editing as a regulator of gene expression, and RNA editing in dsRNA-mediated gene silencing, which may increase our understanding of RNA biology.

  18. Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells

    PubMed Central

    Das, Provas; Saha, Shekhar; Chandra, Sunandini; Das, Alakesh; Dey, Sumit K.; Das, Mahua R.; Sen, Shamik; Sarkar, Debi P.; Jana, Siddhartha S.

    2015-01-01

    Enveloped viruses enter host cells through membrane fusion and the cells in turn alter their shape to accommodate components of the virus. However, the role of nonmuscle myosin II of the actomyosin complex of host cells in membrane fusion is yet to be understood. Herein, we show that both (−) blebbistatin, a specific inhibitor of nonmuscle myosin II (NMII) and small interfering RNA markedly augment fusion of Sendai virus (SeV), with chinese hamster ovary cells and human hepatocarcinoma cells. Inhibition of RLC phosphorylation using inhibitors against ROCK, but not PKC and MRCK, or overexpression of phospho-dead mutant of RLC enhances membrane fusion. SeV infection increases cellular stiffness and myosin light chain phosphorylation at two hour post infection. Taken together, the present investigation strongly indicates that Rho-ROCK-NMII contractility signaling pathway may provide a physical barrier to host cells against viral fusion. PMID:25993465

  19. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.

    PubMed

    Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A

    2013-10-17

    Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection.

  20. Th9 cells drive host immunity against gastrointestinal worm infection

    PubMed Central

    Licona-Limón, Paula; Henao-Mejía, Jorge; Temann, Angela U.; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De’Broski R.; Flavell, Richard A.

    2013-01-01

    Type 2 inflammatory cytokines including interleukin-4 (IL-4), -5, -9, and -13 drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial and the importance of IL-9 vs. IL-4 producing CD4+ effector T cells in Type 2 immunity is incompletely defined. Herein, we generated IL-9 deficient and IL-9 fluorescent reporter mice that demonstrated an essential role for this cytokine in the early Type 2 immunity against Nippostrongylus brasiliensis. Whereas Th9 cells and Type 2 Innate Lymphoid Cells (ILC2) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells caused rapid worm expulsion, marked basophilia and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and non-redundant role for Th9 cells and IL-9 in host protective Type 2 immunity against parasitic worm infection. PMID:24138883

  1. Host MicroRNA miR-197 Plays a Negative Regulatory Role in the Enterovirus 71 Infectious Cycle by Targeting the RAN Protein

    PubMed Central

    Tang, Wen-Fang; Huang, Ru-Ting; Chien, Kun-Yi; Huang, Jo-Yun; Lau, Kean-Seng; Jheng, Jia-Rong; Chiu, Cheng-Hsun; Wu, Tzong-Yuan; Chen, Chung-Yung

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a member of Picornaviridae, is associated with severe central nervous system complications. In this study, we identified a cellular microRNA (miRNA), miR-197, whose expression was downregulated by viral infection in a time-dependent manner. In miR-197 mimic-transfected cells, EV71 replication was inhibited, whereas the internal ribosome entry site (IRES) activity was decreased in EV71 strains with or without predicted miR-197 target sites, indicating that miR-197 targets host proteins to modulate viral replication. We thus used a quantitative proteomics approach, aided by the TargetScan algorithm, to identify putative target genes of miR-197. Among them, RAN was selected and validated as a genuine target in a 3′ untranslated region (UTR) reporter assay. Reduced production of RAN by RNA interference markedly reduced the synthesis of EV71-encoded viral proteins and virus titers. Furthermore, reintroduction of nondegradable RAN into these knockdown cells rescued viral protein synthesis. miR-197 levels were modulated by EV71 to maintain RAN mRNA translatability at late times postinfection since we demonstrated that cap-independent translation exerted by its intrinsic IRES activity was occurring at times when translation attenuation was induced by EV71. EV71-induced downregulation of miR-197 expression increased the expression of RAN, which supported the nuclear transport of the essential viral proteins 3D/3CD and host protein hnRNP K for viral replication. Our data suggest that downregulation of cellular miRNAs may constitute a newly identified mechanism that sustains the expression of host proteins to facilitate viral replication. IMPORTANCE Enterovirus 71 (EV71) is a picornavirus with a positive-sense single-stranded RNA that globally inhibits the cellular translational system, mainly by cleaving cellular eukaryotic translation initiation factor 4G (eIF4G) and poly(A)-binding protein (PABP), which inhibits the association of the

  2. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells.

    PubMed

    Afonso-Grunz, Fabian

    2015-12-01

    The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA) represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730) covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA) sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL, PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  3. Selection of RNA Replicons Capable of Persistent Noncytopathic Replication in Mammalian Cells

    PubMed Central

    Frolov, Ilya; Agapov, Eugene; Hoffman, Thomas A.; Prágai, Béla M.; Lippa, Mara; Schlesinger, Sondra; Rice, Charles M.

    1999-01-01

    The natural life cycle of alphaviruses, a group of plus-strand RNA viruses, involves transmission to vertebrate hosts via mosquitoes. Chronic infections are established in mosquitoes (and usually in mosquito cell cultures), but infection of susceptible vertebrate cells typically results in rapid shutoff of host mRNA translation and cell death. Using engineered Sindbis virus RNA replicons expressing puromycin acetyltransferase as a dominant selectable marker, we identified mutations allowing persistent, noncytopathic replication in BHK-21 cells. Two of these adaptive mutations involved single-amino-acid substitutions in the C-terminal portion of nsP2, the viral helicase-protease. At one of these loci, nsP2 position 726, numerous substitution mutations were created and characterized in the context of RNA replicons and infectious virus. Our results suggest a direct correlation between the level of viral RNA replication and cytopathogenicity. This work also provides a series of alphavirus replicons for noncytopathic gene expression studies (E. V. Agapov, I. Frolov, B. D. Lindenbach, B. M. Prágai, S. Schlesinger, and C. M. Rice, Proc. Natl. Acad. Sci. USA 95:12989–12994, 1998) and a general strategy for selecting RNA viral mutants adapted to different cellular environments. PMID:10196280

  4. Maternal mRNA knockdown studies: antisense experiments using the host-transfer technique in X. laevis and X. tropicalis

    PubMed Central

    Olson, David J.; Hulstrand, Alissa M.; Houston, Douglas W.

    2014-01-01

    SUMMARY The ability to inhibit the activity of maternally stored gene products in Xenopus has led to numerous insights into early developmental mechanisms. Oocytes can be cultured and manipulated in vitro and then implanted into the body cavity of a host female to make them competent for fertilization. Here, we summarize the methods for obtaining, culturing and fertilizing Xenopus oocytes, with the goal of inhibiting maternal gene function through antisense oligonucleotide-mediated mRNA knockdown. We describe a simplified technique for implanting donor oocytes into host females using intraperitoneal injection. Also, we present optimized methods for performing the host-transfer procedure with X. tropicalis oocytes. PMID:22956088

  5. Comprehensive Identification of Meningococcal Genes and Small Noncoding RNAs Required for Host Cell Colonization

    PubMed Central

    Capel, Elena; Zomer, Aldert L.; Nussbaumer, Thomas; Bole, Christine; Izac, Brigitte; Frapy, Eric; Meyer, Julie; Bouzinba-Ségard, Haniaa; Bille, Emmanuelle; Jamet, Anne; Cavau, Anne; Letourneur, Franck; Bourdoulous, Sandrine; Rattei, Thomas; Coureuil, Mathieu

    2016-01-01

    ABSTRACT Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization. PMID:27486197

  6. Downregulation of rRNA transcription triggers cell differentiation.

    PubMed

    Hayashi, Yuki; Kuroda, Takao; Kishimoto, Hiroyuki; Wang, Changshan; Iwama, Atsushi; Kimura, Keiji

    2014-01-01

    Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA) in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  7. Viral evolution and interferon resistance of hepatitis C virus RNA replication in a cell culture model.

    PubMed

    Sumpter, Rhea; Wang, Chunfu; Foy, Eileen; Loo, Yueh-Ming; Gale, Michael

    2004-11-01

    Hepatitis C virus (HCV) replicates through an error-prone process that may support the evolution of genetic variants resistant to the host cell antiviral response and interferon (IFN)-based therapy. We evaluated HCV-IFN interactions within a long-term culture system of Huh7 cell lines harboring different variants of an HCV type 1b subgenomic RNA replicon that differed at only two sites within the NS5A-encoding region. A replicon with a K insertion at HCV codon 2040 replicated efficiently and exhibited sequence stability in the absence of host antiviral pressure. In contrast, a replicon with an L2198S point mutation replicated poorly and triggered a cellular response characterized by IFN-beta production and low-level IFN-stimulated gene (ISG) expression. When maintained in long term-culture, the L2198S RNA evolved into a stable high-passage (HP) variant with six additional point mutations throughout the HCV protein-encoding region that enhanced viral replication. The HP RNA transduced Huh7 cells with more than 1,000-fold greater efficiency than its L2198S progenitor or the K2040 sequence. Replication of the HP RNA resisted suppression by IFN-alpha treatment and was associated with virus-directed reduction in host cell expression of ISG56, an antagonist of HCV RNA translation. Accordingly, the HP RNA was retained within polyribosome complexes in vivo that were refractory to IFN-induced disassembly. These results identify ISG56 as a translational control effector of the host response to HCV and provide direct evidence to link this response to viral sequence evolution, ISG regulation, and selection of the IFN-resistant viral phenotype.

  8. Host cell factors in HIV replication: meta-analysis of genome-wide studies.

    PubMed

    Bushman, Frederic D; Malani, Nirav; Fernandes, Jason; D'Orso, Iván; Cagney, Gerard; Diamond, Tracy L; Zhou, Honglin; Hazuda, Daria J; Espeseth, Amy S; König, Renate; Bandyopadhyay, Sourav; Ideker, Trey; Goff, Stephen P; Krogan, Nevan J; Frankel, Alan D; Young, John A T; Chanda, Sumit K

    2009-05-01

    We have analyzed host cell genes linked to HIV replication that were identified in nine genome-wide studies, including three independent siRNA screens. Overlaps among the siRNA screens were very modest (<7% for any pairwise combination), and similarly, only modest overlaps were seen in pairwise comparisons with other types of genome-wide studies. Combining all genes from the genome-wide studies together with genes reported in the literature to affect HIV yields 2,410 protein-coding genes, or fully 9.5% of all human genes (though of course some of these are false positive calls). Here we report an "encyclopedia" of all overlaps between studies (available at http://www.hostpathogen.org), which yielded a more extensively corroborated set of host factors assisting HIV replication. We used these genes to calculate refined networks that specify cellular subsystems recruited by HIV to assist in replication, and present additional analysis specifying host cell genes that are attractive as potential therapeutic targets.

  9. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer

    PubMed Central

    Askarian-Amiri, Marjan E.; Crawford, Joanna; French, Juliet D.; Smart, Chanel E.; Smith, Martin A.; Clark, Michael B.; Ru, Kelin; Mercer, Tim R.; Thompson, Ella R.; Lakhani, Sunil R.; Vargas, Ana C.; Campbell, Ian G.; Brown, Melissa A.; Dinger, Marcel E.; Mattick, John S.

    2011-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to play major regulatory roles in development and disease. To identify novel regulators in breast biology, we identified differentially regulated lncRNAs during mouse mammary development. Among the highest and most differentially expressed was a transcript (Zfas1) antisense to the 5′ end of the protein-coding gene Znfx1. In vivo, Zfas1 RNA is localized within the ducts and alveoli of the mammary gland. Zfas1 intronically hosts three previously undescribed C/D box snoRNAs (SNORDs): Snord12, Snord12b, and Snord12c. In contrast to the general assumption that noncoding SNORD-host transcripts function only as vehicles to generate snoRNAs, knockdown of Zfas1 in a mammary epithelial cell line resulted in increased cellular proliferation and differentiation, while not substantially altering the levels of the SNORDs. In support of an independent function, we also found that Zfas1 is extremely stable, with a half-life >16 h. Expression analysis of the SNORDs revealed these were expressed at different levels, likely a result of distinct structures conferring differential stability. While there is relatively low primary sequence conservation between Zfas1 and its syntenic human ortholog ZFAS1, their predicted secondary structures have similar features. Like Zfas1, ZFAS1 is highly expressed in the mammary gland and is down-regulated in breast tumors compared to normal tissue. We propose a functional role for Zfas1/ ZFAS1 in the regulation of alveolar development and epithelial cell differentiation in the mammary gland, which, together with its dysregulation in human breast cancer, suggests ZFAS1 as a putative tumor suppressor gene. PMID:21460236

  10. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer.

    PubMed

    Askarian-Amiri, Marjan E; Crawford, Joanna; French, Juliet D; Smart, Chanel E; Smith, Martin A; Clark, Michael B; Ru, Kelin; Mercer, Tim R; Thompson, Ella R; Lakhani, Sunil R; Vargas, Ana C; Campbell, Ian G; Brown, Melissa A; Dinger, Marcel E; Mattick, John S

    2011-05-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to play major regulatory roles in development and disease. To identify novel regulators in breast biology, we identified differentially regulated lncRNAs during mouse mammary development. Among the highest and most differentially expressed was a transcript (Zfas1) antisense to the 5' end of the protein-coding gene Znfx1. In vivo, Zfas1 RNA is localized within the ducts and alveoli of the mammary gland. Zfas1 intronically hosts three previously undescribed C/D box snoRNAs (SNORDs): Snord12, Snord12b, and Snord12c. In contrast to the general assumption that noncoding SNORD-host transcripts function only as vehicles to generate snoRNAs, knockdown of Zfas1 in a mammary epithelial cell line resulted in increased cellular proliferation and differentiation, while not substantially altering the levels of the SNORDs. In support of an independent function, we also found that Zfas1 is extremely stable, with a half-life >16 h. Expression analysis of the SNORDs revealed these were expressed at different levels, likely a result of distinct structures conferring differential stability. While there is relatively low primary sequence conservation between Zfas1 and its syntenic human ortholog ZFAS1, their predicted secondary structures have similar features. Like Zfas1, ZFAS1 is highly expressed in the mammary gland and is down-regulated in breast tumors compared to normal tissue. We propose a functional role for Zfas1/ ZFAS1 in the regulation of alveolar development and epithelial cell differentiation in the mammary gland, which, together with its dysregulation in human breast cancer, suggests ZFAS1 as a putative tumor suppressor gene.

  11. RNA METABOLISM IN HELA CELLS AT REDUCED TEMPERATURE

    PubMed Central

    Stevens, Ronald H.; Amos, Harold

    1972-01-01

    Incubation of HeLa cells at 24°C results in the modification of the processing of pre-tRNA to tRNA. Both methylation and size reduction were shown to take place in vitro when purified pre-tRNA was subjected to processing in a cytoplasmic extract of HeLa cells The migration of pre-tRNA from the nucleus to the cytoplasm was not significantly altered at 24°C PMID:5038872

  12. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica.

    PubMed

    Leskinen, Katarzyna; Blasdel, Bob G; Lavigne, Rob; Skurnik, Mikael

    2016-04-22

    Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.

  13. NS Reassortment of an H7-Type Highly Pathogenic Avian Influenza Virus Affects Its Propagation by Altering the Regulation of Viral RNA Production and Antiviral Host Response▿ †

    PubMed Central

    Wang, Zhongfang; Robb, Nicole C.; Lenz, Eva; Wolff, Thorsten; Fodor, Ervin; Pleschka, Stephan

    2010-01-01

    Highly pathogenic avian influenza viruses (HPAIV) with reassorted NS segments from H5- and H7-type avian virus strains placed in the genetic background of the A/FPV/Rostock/34 HPAIV (FPV; H7N1) were generated by reverse genetics. Virological characterizations demonstrated that the growth kinetics of the reassortant viruses differed from that of wild-type (wt) FPV and depended on whether cells were of mammalian or avian origin. Surprisingly, molecular analysis revealed that the different reassortant NS segments were not only responsible for alterations in the antiviral host response but also affected viral genome replication and transcription as well as nuclear ribonucleoprotein (RNP) export. RNP reconstitution experiments demonstrated that the effects on accumulation levels of viral RNA species were dependent on the specific NS segment as well as on the genetic background of the RNA-dependent RNA polymerase (RdRp). Beta interferon (IFN-β) expression and the induction of apoptosis were found to be inversely correlated with the magnitude of viral growth, while the NS allele, virus subtype, and nonstructural protein NS1 expression levels showed no correlation. Thus, these results demonstrate that the origin of the NS segment can have a dramatic effect on the replication efficiency and host range of HPAIV. Overall, our data suggest that the propagation of NS reassortant influenza viruses is affected at multiple steps of the viral life cycle as a result of the different effects of the NS1 protein on multiple viral and host functions. PMID:20739516

  14. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica

    PubMed Central

    Leskinen, Katarzyna; Blasdel, Bob G.; Lavigne, Rob; Skurnik, Mikael

    2016-01-01

    Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins. PMID:27110815

  15. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins.

    PubMed

    Fischer, Silke F; Vier, Juliane; Kirschnek, Susanne; Klos, Andreas; Hess, Simone; Ying, Songmin; Häcker, Georg

    2004-10-04

    Chlamydia are obligate intracellular bacteria that replicate in a vacuole inside a host cell. Chlamydial infection has been shown to protect the host cell against apoptotic stimuli. This is likely important for the ability of Chlamydia to reproduce in human cells. Here we show that resistance to apoptosis is conveyed by the destruction of the proapoptotic BH3-only proteins Bim/Bod, Puma, and Bad during infection. Apoptotic stimuli were blocked upstream of the mitochondrial activation of Bax/Bak. During infection with both species, Chlamydia trachomatis and Chlamydia pneumoniae, Bim protein gradually disappeared without noticeable changes in Bim mRNA. The disappearance was blocked by inhibitors of the proteasome. Infected cells retained sensitivity to Bim expressed by transfection, indicating functional relevance of the Bim disappearance. Fusion to Bim targeted the green fluorescent protein for destruction during infection. Analysis of truncation mutants showed that a short region of Bim containing the BH3 domain was sufficient for destruction during chlamydial infection. Like Bim, Puma and Bad proteins disappeared during infection. These results reveal a novel way by which microbes can interfere with the host cell's apoptotic machinery, and provide a molecular explanation of the cellular resistance to apoptosis during infection with Chlamydia.

  16. Removing the needle from the haystack: Enrichment of Wolbachia endosymbiont transcripts from host nematode RNA by Cappable-seq™.

    PubMed

    Luck, Ashley N; Slatko, Barton E; Foster, Jeremy M

    2017-01-01

    Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues.

  17. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    PubMed

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.

  18. Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense

    USDA-ARS?s Scientific Manuscript database

    RNA silencing, or posttranscriptional gene silencing (PTGS) is one of the most important defense mechanisms employed by higher plants and animals to defend against viral infections. Plant viruses evolved by adopting divergent proteins, even within single virus families, to counter this host defense ...

  19. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites.

    PubMed

    Bayer-Santos, Ethel; Marini, Marjorie M; da Silveira, José F

    2017-01-01

    Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.

  20. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    PubMed Central

    Markwell, M A; Paulson, J C

    1980-01-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells. Images PMID:6255459

  1. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy.

    PubMed

    Kato, Mitsuo; Wang, Mei; Chen, Zhuo; Bhatt, Kirti; Oh, Hyung Jung; Lanting, Linda; Deshpande, Supriya; Jia, Ye; Lai, Jennifer Y C; O'Connor, Christopher L; Wu, YiFan; Hodgin, Jeffrey B; Nelson, Robert G; Bitzer, Markus; Natarajan, Rama

    2016-09-30

    It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-β1 (TGF- β1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop(-/-) mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.

  2. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection

    PubMed Central

    2014-01-01

    Background Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. Results After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Discussion and conclusion Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis. PMID:24642186

  3. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells

    PubMed Central

    Sigova, Alla A.; Mullen, Alan C.; Molinie, Benoit; Gupta, Sumeet; Orlando, David A.; Guenther, Matthew G.; Almada, Albert E.; Lin, Charles; Sharp, Phillip A.; Giallourakis, Cosmas C.; Young, Richard A.

    2013-01-01

    Many long noncoding RNA (lncRNA) species have been identified in mammalian cells, but the genomic origin and regulation of these molecules in individual cell types is poorly understood. We have generated catalogs of lncRNA species expressed in human and murine embryonic stem cells and mapped their genomic origin. A surprisingly large fraction of these transcripts (>60%) originate from divergent transcription at promoters of active protein-coding genes. The divergently transcribed lncRNA/mRNA gene pairs exhibit coordinated changes in transcription when embryonic stem cells are differentiated into endoderm. Our results reveal that transcription of most lncRNA genes is coordinated with transcription of protein-coding genes. PMID:23382218

  4. Efficient Hepatitis Delta Virus RNA Replication in Avian Cells Requires a Permissive Factor(s) from Mammalian Cells

    PubMed Central

    Liu, Yu-Tsueng; Brazas, Rob; Ganem, Don

    2001-01-01

    Hepatitis delta virus (HDV) is a highly pathogenic human RNA virus whose genome is structurally related to those of plant viroids. Although its spread from cell to cell requires helper functions supplied by hepatitis B virus (HBV), intracellular HDV RNA replication can proceed in the absence of HBV proteins. As HDV encodes no RNA-dependent RNA polymerase, the identity of the (presumably cellular) enzyme responsible for this reaction remains unknown. Here we show that, in contrast to mammalian cells, avian cells do not support efficient HDV RNA replication and that this defect cannot be rescued by provision of HDV gene products in trans. Contrary to earlier assertions, this defect is not due to enhanced apoptosis triggered in avian cells by HDV. Fusion of avian cells to mammalian cells rescues HDV replication in avian nuclei, indicating that the nonpermissive phenotype of avian cells is not due to the presence of dominantly acting inhibitors of replication. Rather, avian cells lack one or more essential permissive factors present in mammalian cells. These results set the stage for the identification of such factors and also explain the failure of earlier efforts to transmit HDV infection to avian hosts harboring indigenous hepadnaviruses. PMID:11462021

  5. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    SciTech Connect

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed.

  6. Host cell kinases and the hepatitis C virus life cycle.

    PubMed

    Colpitts, Che C; Lupberger, Joachim; Doerig, Christian; Baumert, Thomas F

    2015-10-01

    Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Recombinant host cells and media for ethanol production

    SciTech Connect

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  8. Cancer Cell Discrimination Using Host-Guest "Doubled" Arrays.

    PubMed

    Le, Ngoc D B; Yesilbag Tonga, Gulen; Mout, Rubul; Kim, Sung-Tae; Wille, Marcos E; Rana, Subinoy; Dunphy, Karen A; Jerry, D Joseph; Yazdani, Mahdieh; Ramanathan, Rajesh; Rotello, Caren M; Rotello, Vincent M

    2017-06-14

    We report a nanosensor that uses cell lysates to rapidly profile the tumorigenicity of cancer cells. This sensing platform uses host-guest interactions between cucurbit[7]uril and the cationic headgroup of a gold nanoparticle to non-covalently modify the binding of three fluorescent proteins of a multi-channel sensor in situ. This approach doubles the number of output channels to six, providing single-well identification of cell lysates with 100% accuracy. Significantly, this classification could be extended beyond the training set, determining the invasiveness of novel cell lines. The unique fingerprint of these cell lysates required minimal sample quantity (200 ng, ∼1000 cells), making the methodology compatible with microbiopsy technology.

  9. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

    PubMed Central

    Jäderstad, Johan; Jäderstad, Linda M.; Li, Jianxue; Chintawar, Satyan; Salto, Carmen; Pandolfo, Massimo; Ourednik, Vaclav; Teng, Yang D.; Sidman, Richard L.; Arenas, Ernest; Snyder, Evan Y.; Herlenius, Eric

    2010-01-01

    How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication. PMID:20147621

  10. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host.

    PubMed

    Jäderstad, Johan; Jäderstad, Linda M; Li, Jianxue; Chintawar, Satyan; Salto, Carmen; Pandolfo, Massimo; Ourednik, Vaclav; Teng, Yang D; Sidman, Richard L; Arenas, Ernest; Snyder, Evan Y; Herlenius, Eric

    2010-03-16

    How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.

  11. Metabolism and expression of RNA polymerase II transcripts in Influenza virus-infected cells

    SciTech Connect

    Katze, M.G.; Krug, R.M.

    1984-10-01

    Influenza virus infection has adverse effects on the metabolism of two representative RNA polymerase II transcripts in chicken embryo fibroblasts, those coding for BETA-actin and for avian leukosis virus (ALV) proteins. Proviral ALV DNA was integrated into host cell DNA by prior infection with ALV. By S1 endonuclease assay, it was confirmed that nuclear ALV transcripts disappeared very early after infection, already decreasing ca. 80% by 1 h postinfection. A plausible explanation for this nuclear degradation is that the viral cap-dependent endonuclease in the nucleas cleaves the 5' ends of new polymerase II transcripts, rendering the resulting decapped RNAs susceptible to hydrolysis by cellular nucleases. Similar stability of cytoplasmic host cell mRNAs was observed in infected HeLa cells, in which the levels of actin mRNA and two HeLa cell mRNAs (pHe 7 and pHe 28) remained at undiminished levels for 3 h of infection and decreased only slightly by 4.5 h postinfection. The cytoplamic actin and pHe 7 mRNAs isolated from infected HeLa cells were shown to be translated in reticulocyte extracts in biro, indicating that host mRNAs were not inactivated by a virus-induced modification. Despite the continued presence of high levels of functional host cell mRNAs, host cell protein synthesis was effectively shut off by about 3 h postinfection in both chicken embryo fibroblasts and HeLa cells. These results are consistent with the establishment of an influenza virus-specific translational system that selectively translates viral and not host mRNAs.

  12. RNA-based gene circuits for cell regulation

    PubMed Central

    KARAGIANNIS, Peter; FUJITA, Yoshihiko; SAITO, Hirohide

    2016-01-01

    A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications. PMID:27840389

  13. RELATION OF TOBACCO MOSAIC VIRUS TO THE HOST CELLS

    PubMed Central

    Esau, Katherine; Cronshaw, James

    1967-01-01

    The relation of tobacco mosaic virus (TMV) to host cells was studied in leaves of Nicotiana tabacum L. systemically infected with the virus. The typical TMV inclusions, striate or crystalline material and ameboid or X-bodies, which are discernible with the light microscope, and/or particles of virus, which are identifiable with the electron microscope, were observed in epidermal cells, mesophyll cells, parenchyma cells of the vascular bundles, differentiating and mature tracheary elements, and immature and mature sieve elements. Virus particles were observed in the nuclei and the chloroplasts of parenchyma cells as well as in the ground cytoplasm, the vacuole, and between the plasma membrane and the cell wall. The nature of the conformations of the particle aggregates in the chloroplasts was compatible with the concept that some virus particles may be assembled in these organelles. The virus particles in the nuclei appeared to be complete particles. Under the electron microscope the X-body constitutes a membraneless assemblage of endoplasmic reticulum, ribosomes, virus particles, and of virus-related material in the form of wide filaments indistinctly resolvable as bundles of tubules. Some parenchyma cells contained aggregates of discrete tubules in parallel arrangement. These groups of tubules were relatively free from components of host protoplasts. PMID:6036529

  14. Genomic RNAi screening in Drosophila S2 cells: What have we learned about host-pathogen interactions?

    PubMed Central

    Cherry, Sara

    2008-01-01

    The détente between pathogen and host has been of keen interest to researchers in spite of being exceedingly difficult to probe. Recently, new RNA interference (RNAi) technologies, in particular in Drosophila tissue culture cells, have made it possible to interrogate the genetics of host organisms rapidly, with nearly complete genomic coverage and high fidelity. Therefore, it is not surprising that the applications of RNAi to the study of host-pathogen interactions were amongst the first to be published, and have already revealed many new insights into the hosts’ role in infection. This review will highlight the application of RNAi screening to pathogen-host interactions in Drosophila cells and will reveal some of the lessons learned from this approach. PMID:18539520

  15. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella.

    PubMed

    Saliba, Antoine-Emmanuel; Li, Lei; Westermann, Alexander J; Appenzeller, Silke; Stapels, Daphne A C; Schulte, Leon N; Helaine, Sophie; Vogel, Jörg

    2016-11-14

    Intracellular bacterial pathogens can exhibit large heterogeneity in growth rate inside host cells, with major consequences for the infection outcome. If and how the host responds to this heterogeneity remains poorly understood. Here, we combined a fluorescent reporter of bacterial cell division with single-cell RNA-sequencing analysis to study the macrophage response to different intracellular states of the model pathogen Salmonella enterica serovar Typhimurium. The transcriptomes of individual infected macrophages revealed a spectrum of functional host response states to growing and non-growing bacteria. Intriguingly, macrophages harbouring non-growing Salmonella display hallmarks of the proinflammatory M1 polarization state and differ little from bystander cells, suggesting that non-growing bacteria evade recognition by intracellular immune receptors. By contrast, macrophages containing growing bacteria have turned into an anti-inflammatory, M2-like state, as if fast-growing intracellular Salmonella overcome host defence by reprogramming macrophage polarization. Additionally, our clustering approach reveals intermediate host functional states between these extremes. Altogether, our data suggest that gene expression variability in infected host cells shapes different cellular environments, some of which may favour a growth arrest of Salmonella facilitating immune evasion and the establishment of a long-term niche, while others allow Salmonella to escape intracellular antimicrobial activity and proliferate.

  16. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses

    PubMed Central

    Di Genova, Bruno M.; Tonelli, Renata R.

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  17. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  18. Brucella T4SS: the VIP pass inside host cells.

    PubMed

    Lacerda, Thais Lourdes Santos; Salcedo, Suzana Pinto; Gorvel, Jean-Pierre

    2013-02-01

    For many Gram-negative bacteria, like Brucella, the type IV secretion system (T4SS) has a critical role in bacterial virulence. In Brucella, the VirB T4SS permits the injection of bacterial effectors inside host cells, leading to subversion of signaling pathways and favoring bacterial growth and pathogenesis. The virB operon promoter is tightly regulated by a combination of transcriptional activators and repressors that are expressed according to the environmental conditions encountered by Brucella. Recent advances have shed light on the Brucella T4SS regulatory mechanisms and also its substrates. Characterization of the targets and functions of these translocated effectors is underway and will help understand the role of the T4SS in the establishment of a replication niche inside host cells.

  19. Host cell autophagy in immune response to zoonotic infections.

    PubMed

    Skendros, Panagiotis; Mitroulis, Ioannis

    2012-01-01

    Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  20. Infection of U937 monocytic cells with Chlamydia pneumoniae induces extensive changes in host cell gene expression.

    PubMed

    Virok, Dezso; Loboda, Andrey; Kari, Laszlo; Nebozhyn, Michael; Chang, Celia; Nichols, Calen; Endresz, Valeria; Gonczol, Eva; Berencsi, Klara; Showe, Michael K; Showe, Louise C

    2003-11-01

    The effect of infection with Chlamydia pneumoniae on host messenger RNA expression in human monocytic cells with complement DNA microarrays was studied. The data chronicle a cascade of transcriptional events affecting 128 genes, many of which have not previously been reported to be affected by C. pneumoniae infection. Down-regulated genes are primarily associated with RNA and DNA metabolism, chromosomal stability, and cell-cycle regulation. Up-regulated messages include those for a variety of genes with important proinflammatory functions. Many of the up-regulated genes-including the hyaluron receptor CD44, vasoconstrictor endothelin-1, smooth muscle growth factor heparin-binding EGF-like growth factor, and fatty acid binding protein-4-had been previously described as linked to the development of atherosclerosis and other chronic inflammatory diseases. C. pneumoniae-infected monocytes can contribute to the development and progression of diseases for which acute or chronic inflammation has been shown to be important, such as atherosclerosis.

  1. A white spot syndrome virus microRNA promotes the virus infection by targeting the host STAT

    PubMed Central

    Ren, Qian; Huang, Ying; He, Yaodong; Wang, Wen; Zhang, Xiaobo

    2015-01-01

    JAK/STAT pathway plays an important role in invertebrates during virus infection. However the microRNA (miRNA)-mediated regulation of JAK/STAT is not intensively investigated. Viral miRNAs, encoded by virus genome, have emerged as important regulators in the virus-host interactions. In this study, a WSSV (white spot syndrome virus)-encoded miRNA (WSSV-miR-22) was characterized in shrimp during virus infection. The results showed that the viral miRNA could promote WSSV infection in shrimp by targeting the host STAT gene. When the expression of JAK or STAT was knocked down by sequence-specific siRNA, the WSSV copies in shrimp were significantly increased, indicating that the JAK/STAT played positive roles in the antiviral immunity of shrimp. The further findings revealed that TEP1 and TEP2 were the effectors of JAK-STAT signaling pathway. The silencing of TEP1 or TEP2 led to an increase of WSSV copies in shrimp, showing TEP1 and TEP2 were involved in the shrimp immune response against virus infection. Therefore our study presented a novel viral miRNA-mediated JAK/STAT-TEP1/TEP2 signaling pathway in virus infection. PMID:26671453

  2. Centrality of host cell death in plant-microbe interactions.

    PubMed

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  3. A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication.

    PubMed

    Teferi, Wondimagegnehu M; Dodd, Kristopher; Maranchuk, Rob; Favis, Nicole; Evans, David H

    2013-04-01

    Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.

  4. Human Enterovirus 68 Interferes with the Host Cell Cycle to Facilitate Viral Production

    PubMed Central

    Wang, Zeng-yan; Zhong, Ting; Wang, Yue; Song, Feng-mei; Yu, Xiao-feng; Xing, Li-ping; Zhang, Wen-yan; Yu, Jing-hua; Hua, Shu-cheng; Yu, Xiao-fang

    2017-01-01

    Enterovirus D68 (EV-D68) is an emerging pathogen that recently caused a large outbreak of severe respiratory disease in the United States and other countries. Little is known about the relationship between EV-D68 virus and host cells. In this study, we assessed the effect of the host cell cycle on EV-D68 viral production, as well as the ability of EV-D68 to manipulate host cell cycle progression. The results suggest that synchronization in G0/G1 phase, but not S phase, promotes viral production, while synchronization in G2/M inhibits viral production. Both an early EV-D68 isolate and currently circulating strains of EV-D68 can manipulate the host cell cycle to arrest cells in the G0/G1 phase, thus providing favorable conditions for virus production. Cell cycle regulation by EV-D68 was associated with corresponding effects on the expression of cyclins and CDKs, which were observed at the level of the protein and/or mRNA. Furthermore, the viral non-structural protein 3D of EV-D68 prevents progression from G0/G1 to S. Interestingly, another member of the Picornaviridae family, EV-A71, differs from EV-D68 in that G0/G1 synchronization inhibits, rather than promotes, EV-A71 viral replication. However, these viruses are similar in that G2/M synchronization inhibits the production and activity of both viruses, which is suggestive of a common therapeutic target for both types of enterovirus. These results further clarify the pathogenic mechanisms of enteroviruses and provide a potential strategy for the treatment and prevention of EV-D68-related disease. PMID:28229049

  5. Toxoplasma Actin Is Required for Efficient Host Cell Invasion

    PubMed Central

    Drewry, Lisa L.

    2015-01-01

    ABSTRACT Apicomplexan parasites actively invade host cells using a mechanism predicted to be powered by a parasite actin-dependent myosin motor. In the model apicomplexan Toxoplasma gondii, inducible knockout of the actin gene, ACT1, was recently demonstrated to limit but not completely abolish invasion. This observation has led to the provocative suggestion that T. gondii possesses alternative, ACT1-independent invasion pathways. Here, we dissected the residual invasive ability of Δact1 parasites. Surprisingly, we were able to detect residual ACT1 protein in inducible Δact1 parasites as long as 5 days after ACT1 deletion. We further found that the longer Δact1 parasites were propagated after ACT1 deletion, the more severe an invasion defect was observed. Both findings are consistent with the quantity of residual ACT1 retained in Δact1 parasites being responsible for their invasive ability. Furthermore, invasion by the Δact1 parasites was also sensitive to the actin polymerization inhibitor cytochalasin D. Finally, there was no clear defect in attachment to host cells or moving junction formation by Δact1 parasites. However, Δact1 parasites often exhibited delayed entry into host cells, suggesting a defect specific to the penetration stage of invasion. Overall, our results support a model where residual ACT1 protein retained in inducible Δact1 parasites facilitates their limited invasive ability and confirm that parasite actin is essential for efficient penetration into host cells during invasion. PMID:26081631

  6. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells

    PubMed Central

    Meng, Lingyu; Liu, Cuicui; Lü, Jinhui; Zhao, Qian; Deng, Shengqiong; Wang, Guangxue; Qiao, Jing; Zhang, Chuyi; Zhen, Lixiao; Lu, Ying; Li, Wenshu; Zhang, Yuzhen; Pestell, Richard G.; Fan, Huiming; Chen, Yi-Han; Liu, Zhongmin; Yu, Zuoren

    2017-01-01

    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed ‘small RNA zipper'. It is designed to connect miRNA molecules end to end, forming a DNA–RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30–50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes. PMID:28045030

  7. [Cell surface RNA--a possible molecular receptor of adaptogens].

    PubMed

    Malenkov, A G; Kolotygina, I M

    1984-01-01

    When RNA of the cell surface is destroyed with RNAase, the effect of adaptogenes is removed. Such effect is produced by introduction of actinomycin D 30 minutes before intake of adaptogene. Destruction of surface RNA stimulates protein synthesis. Comparison of these facts permits a hypothesis to be advanced saying that surface RNA is a receptor of adaptogenes obtained from plants of Aralia family.

  8. Baculovirus Infection Influences Host Protein Expression in Two Established Insect Cell Lines

    USDA-ARS?s Scientific Manuscript database

    We identified host proteins that changed in response to host cell susceptibility to baculovirus infection. We used three baculovirus–host cell systems utilizing two cell lines derived from pupal ovaries, Hz-AM1 (from Helicoverpa zea) and Hv-AM1 (from Heliothis virescens). Hv-AM1 cells are permissive...

  9. Dissection of tumour and host cells from target organs of metastasis for testing gene expression directly ex vivo.

    PubMed Central

    Rocha, M.; Hexel, K.; Bucur, M.; Schirrmacher, V.; Umansky, V.

    1996-01-01

    We report on a new methodology which allows the direct analysis ex vivo of tumour cells and host cells (lymphocytes, macrophages, endothelial cells) from a metastasised organ (liver or spleen) at any time point during the metastatic process and without any further in vitro culture. First, we used a tumour cell line transduced with the bacterial gene lacZ, which permits the detection of the procaryotic enzyme beta-galactosidase in eukaryotic cells at the single cell level thus allowing flow adhesion cell sorting (FACS) analysis of tumour cells from metastasised target organs. Second, we established a method for the separation and enrichment of tumour and host cells from target organs of metastasis with a high viability and reproducibility. As exemplified with the murine lymphoma ESb, this new methodology permits the study of molecules of importance for metastasis or anti-tumour immunity (adhesion, costimulatory and cytotoxic molecules, cytokines, etc.) at the RNA or protein level in tumour and host cells during the whole process of metastasis. This novel approach may open new possibilities of developing strategies for intervention in tumour progression, since it allows the determination of the optimal window in time for successful treatments. The possibility of direct analysis of tumour and host cell properties also provides a new method for the evaluation of the effects of immunisation with tumour vaccines or of gene therapy. Images Figure 3 PMID:8883407

  10. Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines.

    PubMed Central

    Guzo, D; Rathburn, H; Guthrie, K; Dougherty, E

    1992-01-01

    Infection of two gypsy moth cell lines (IPLB-Ld652Y and IPLB-LdFB) by the Autographa californica multiple-enveloped nuclear polyhedrosis virus (AcMNPV) is characterized by extremely attenuated viral protein synthesis followed by a total arrest of all viral and cellular protein production. In this study, AcMNPV- and host cell-specific transcription were examined. Overall levels of viral RNAs in infected gypsy moth cells were, at most measured times, comparable to RNA levels from an infected cell line (TN-368) permissive for AcMNPV replication. Northern blot (RNA) analyses using viral and host gene-specific probes revealed predominantly normal-length virus- and cell-specific transcripts postinfection. Transport of viral RNAs from the nucleus to the cytoplasm and transcript stability in infected gypsy moth cells also appeared normal compared with similar parameters for AcMNPV-infected TN-368 cells. Host cellular and viral mRNAs extracted from gypsy moth and TN-368 cells at various times postinfection and translated in vitro yielded similar spectra of host and viral proteins. Treatment of infected gypsy moth cells with the DNA synthesis inhibitor aphidicolin eliminated the total protein synthesis shutoff in infected IPLB-LdFB cells but had no effect on protein synthesis inhibition in infected IPLB-Ld652Y cells. The apparent selective block in the translation of viral transcripts early in infection and the absence of normal translation or transcription of host cellular genes at later times is discussed. Images PMID:1560533

  11. Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA.

    PubMed

    Sharifpanah, Fatemeh; De Silva, Sepali; Bekhite, Mohamed M; Hurtado-Oliveros, Jorge; Preissner, Klaus T; Wartenberg, Maria; Sauer, Heinrich

    2015-12-01

    Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated. ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4. Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines.

    PubMed

    Wu, Qian; Guo, Li; Jiang, Fei; Li, Lei; Li, Zhong; Chen, Feng

    2015-12-01

    Recently, rapid advances in bioinformatics analysis have expanded our understanding of the transcriptome to a genome-wide level. miRNA-mRNA-lncRNA interactions have been shown to play critical regulatory role in cancer biology. In this study, we discussed the use of an integrated systematic approach to explore new facets of the oestrogen receptor (ER)-regulated transcriptome. The identification of RNAs that are related to the expression status of the ER may be useful in clinical therapy and prognosis. We used a network modelling strategy. First, microarray expression profiling of mRNA, lncRNA and miRNA was performed in MCF-7 (ER-positive) and MDA-MB-231 cells (ER- negative). A co-expression network was then built using co-expression relationships of the differentially expressed mRNAs and lncRNAs. Finally, the selected miRNA-mRNA network was added to the network. The key miRNA-mRNA-lncRNA interaction can be inferred from the network. The mRNA and non-coding RNA expression profiles of the cells with different ER phenotypes were distinct. Among the aberrantly expressed miRNAs, the expression levels of miR-19a-3p, miR-19b-3p and miR-130a-3p were much lower in the MCF-7 cells, whereas that of miR-148b-3p was much higher. In a cluster of miR-17-92, the expression levels of six of seven miRNAs were lower in the MCF-7 cells, in addition to miR-20b in the miR-106a-363 cluster. However, the levels of all the miRNAs in the miR-106a-25 cluster were higher in the MCF-7 cells. In the co-expression networking, CD74 and FMNL2 gene which is involved in the immune response and metastasis, respectively, had a stronger correlation with ER. Among the aberrantly expressed lncRNAs, lncRNA-DLEU1 was highly expressed in the MCF-7 cells. A statistical analysis revealed that there was a co-expression relationship between ESR1 and lncRNA-DLEU1. In addition, miR-19a and lncRNA-DLEU1 are both located on the human chromosome 13q. We speculate that miR-19a might be co-expressed with lncRNA-DLEU1

  13. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts

    PubMed Central

    Kolondam, Beivy; Rao, Parth; Sztuba-Solinska, Joanna; Weber, Philipp H.; Dzianott, Aleksandra; Johns, Mitrick A.; Bujarski, Jozef J.

    2015-01-01

    We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric (‘mosaic’) nature of the BMV RNA genome. PMID:27774290

  14. Single-Cell RNA Sequencing of Human T Cells.

    PubMed

    Villani, Alexandra-Chloé; Shekhar, Karthik

    2017-01-01

    Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity to achieve a wide range of functional flexibility, particularly during dynamic processes such as development, differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profiling of single T cells can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell-surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particular interest in the study of T cells for which classical phenotypic criteria are now viewed as insufficient for distinguishing different T cell subtypes and transitional states, and defining the changes associated with dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol to generate single-cell transcriptomic libraries of human blood CD4(+) and CD8(+) T cells, and also introduces the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We show how cellular subpopulations can be identified from transcriptional data, and derive characteristic gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful technique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the immune system.

  15. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell.

    PubMed

    Rolando, Monica; Buchrieser, Carmen

    2014-12-01

    Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.

  16. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication.

    PubMed

    Hagiwara, Yuka; Komoda, Keisuke; Yamanaka, Takuya; Tamai, Atsushi; Meshi, Tetsuo; Funada, Ryo; Tsuchiya, Tomohiro; Naito, Satoshi; Ishikawa, Masayuki

    2003-01-15

    Arabidopsis TOM1 (AtTOM1) and TOM2A (AtTOM2A) are integral membrane proteins genetically identified to be necessary for efficient intracellular multiplication of tobamoviruses. AtTOM1 interacts with the helicase domain polypeptide of tobamovirus-encoded replication proteins and with AtTOM2A, suggesting that both AtTOM1 and AtTOM2A are integral components of the tobamovirus replication complex. We show here that AtTOM1 and AtTOM2A proteins tagged with green fluorescent protein (GFP) are targeted to the vacuolar membrane (tonoplast)-like structures in plant cells. In subcellular fractionation analyses, GFP-AtTOM2A, AtTOM2A and its tobacco homolog NtTOM2A were predominantly fractionated to low-density tonoplast-rich fractions, whereas AtTOM1-GFP, AtTOM1 and its tobacco homolog NtTOM1 were distributed mainly into the tonoplast-rich fractions and partially into higher-buoyant-density fractions containing membranes from several other organelles. The tobamovirus-encoded replication proteins were co-fractionated with both NtTOM1 and viral RNA-dependent RNA polymerase activity. The replication proteins were also found in the fractions containing non-membrane-bound proteins, but neither NtTOM1 nor the polymerase activity was detected there. These observations suggest that the formation of tobamoviral RNA replication complex occurs on TOM1-containing membranes and is facilitated by TOM2A.

  17. Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T-Cell Function

    PubMed Central

    Guo, Yang Eric; Riley, Kasandra J.; Iwasaki, Akiko; Steitz, Joan A.

    2014-01-01

    SUMMARY In marmoset T cells transformed by Herpesvirus saimiri (HVS), a viral U-rich noncoding RNA, HSUR 1, specifically mediates degradation of host microRNA-27 (miR-27). High-throughput sequencing of RNA after crosslinking immunoprecipitation (HITS-CLIP) identified mRNAs targeted by miR-27 as enriched in the T-cell receptor (TCR) signaling pathway, including GRB2. Accordingly, transfection of miR-27 into human T cells attenuates TCR-induced activation of mitogen-activated protein kinases (MAPKs) and induction of CD69. MiR-27 also robustly regulates SEMA7A and IFN-γ, key modulators and effectors of T-cell function. Knockdown or ectopic expression of HSUR 1 alters levels of these proteins in virally-transformed cells. Two other T-lymphotropic γ-herpesviruses, AlHV-1 and OvHV-2, do not produce a noncoding RNA to downregulate miR-27, but instead encode homologs of miR-27 target genes. Thus, oncogenic γ-herpesviruses have evolved diverse strategies to converge on common targets in host T cells. PMID:24725595

  18. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    PubMed Central

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Zhang, Qing; Choi, Sung W.; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA–transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  19. Clinical impact of the use of 16S rRNA sequencing method for the identification of "difficult-to-identify" bacteria in immunocompromised hosts.

    PubMed

    Bharadwaj, R; Swaminathan, S; Salimnia, H; Fairfax, M; Frey, A; Chandrasekar, P H

    2012-04-01

    Molecular method of 16S rRNA sequencing is reported to be helpful in the accurate identification of organisms with ambiguous phenotypic profiles. We analyzed the use of 16S rRNA sequencing method to identify clinically significant, "difficult-to-identify" bacteria recovered from clinical specimens, and evaluated its role in patient management and consequent clinical outcome. Among the 172 "difficult-to-identify" bacteria recovered over a 4-year period, 140 were gram-positive cocci or gram-negative bacilli; identification by 16S rRNA did not play a role in the management of patients infected with these bacteria. From 32 patients, 33 "difficult-to-identify" gram-positive bacilli were identified; the organisms were mycobacteria, Nocardia, Tsukamurella, Rhodococcus, and Gordonia. In 24 patients for whom clinical data were available, results from the 16S rRNA sequencing method led to treatment change in 14 immunocompromised patients (including 7 hematopoietic stem cell recipients and 1 liver transplant recipient). Therapy was modified in 9 patients, initiated in 3 patients, and discontinued in 2 patients. Most patients' therapy was switched to oral antibiotics with discontinuation of intravascular catheters, facilitating early hospital discharge. All 14 patients were alive 30 days after infection onset. The present study demonstrates the clinical application of 16S rRNA sequencing method to identify "difficult-to-identify" mycobacteria and other gram-positive bacilli in clinical specimens, particularly in immunocompromised hosts.

  20. siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection

    PubMed Central

    Radoshitzky, Sheli R.; Pegoraro, Gianluca; Chī, Xiǎolì; Dǒng, Lián; Chiang, Chih-Yuan; Jozwick, Lucas; Clester, Jeremiah C.; Cooper, Christopher L.; Courier, Duane; Langan, David P.; Underwood, Knashka; Kuehl, Kathleen A.; Sun, Mei G.; Caì, Yíngyún; Yú, Shuǐqìng; Burk, Robin; Zamani, Rouzbeh; Kota, Krishna; Kuhn, Jens H.; Bavari, Sina

    2016-01-01

    Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling. PMID:27031835

  1. siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection.

    PubMed

    Radoshitzky, Sheli R; Pegoraro, Gianluca; Chī, Xi Olì; D Ng, Lián; Chiang, Chih-Yuan; Jozwick, Lucas; Clester, Jeremiah C; Cooper, Christopher L; Courier, Duane; Langan, David P; Underwood, Knashka; Kuehl, Kathleen A; Sun, Mei G; Caì, Yíngyún; Yú, Shu Qìng; Burk, Robin; Zamani, Rouzbeh; Kota, Krishna; Kuhn, Jens H; Bavari, Sina

    2016-03-01

    Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1-PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.

  2. P-bodies and their functions during mRNA cell cycle: mini-review.

    PubMed

    Olszewska, Marta; Bujarski, Józef J; Kurpisz, Maciej

    2012-04-01

    P-bodies (processing bodies) are observed in different organisms such as yeast, Caenorhabditis elegans and mammals. A typical eukaryotic cell contains several types of spatially formed granules, such as P-bodies, stress granules and a variety of ribonucleoprotein bodies. These microdomains play important role in mRNA processing, including RNA interference, repression of translation and mRNA decay. The P-bodies components as well as stress granules may play an important role in host defense against viral infection. The complete set of P-bodies protein elements is still poor known. They contain conserved protein core limited to different organisms or to stress status of the cell. P-bodies are related also to some neuronal mRNA granules as well as to maternal RNA granules or male germ cell granules. In this mini-review, we focus on the structure of P-bodies and their function in the mRNA utilization and processing because of the high mRNA's dynamics between different cellular compartments and its key role in modulation of gene expression.

  3. Host Cell Invasion in Mucormycosis: Role of Iron

    PubMed Central

    Ibrahim, Ashraf S.

    2011-01-01

    Clinical hallmarks of mucormycosis infections include the unique susceptibility of patients with increased available serum iron, the propensity of the organism to invade blood vessels, and defective phagocytic function. These hallmarks underscore the critical roles of iron metabolism, phagocyte function, and interactions with endothelial cells lining blood vessels, in the organism’s virulence strategy. In an attempt to understand how Mucorales invade the host, we will review the current knowledge about interactions between Mucorales and the host while evading phagocyte-mediated killing. Additionally, since iron is an important determinant of the disease, we will focus on the role of iron on these interactions. Ultimately, a superior understanding of the pathogenesis of mucormycosis will enable development of novel therapies for this disease. PMID:21807554

  4. Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine.

    PubMed

    Bao, Hua; Kommadath, Arun; Liang, Guanxiang; Sun, Xu; Arantes, Adriano S; Tuggle, Christopher K; Bearson, Shawn M D; Plastow, Graham S; Stothard, Paul; Guan, Le Luo

    2015-07-31

    To understand the role of miRNAs in regulating genes involved in host response to bacterial infection and shedding of foodborne pathogens, a systematic profiling of miRNAs and mRNAs from the whole blood of pigs upon Salmonella challenge was performed. A total of 62 miRNAs were differentially expressed post infection (false discovery rate <0.1). An integrative analysis of both the differentially expressed miRNAs and mRNAs using sequence-based miRNA target prediction and negative correlation of miRNA-mRNA profiles helped identify miRNA-mRNA networks that may potentially regulate host response to Salmonella infection. From these networks, miR-214 and miR-331-3p were identified as new candidates potentially associated with Salmonella infection. An miRNA seed sequence analysis suggested that these miRNAs regulate several critical immune-related genes including SLC11A1, PIGE-108A11.3 and VAV2. We showed that challenged pigs had reduced miR-214 expression and increased miR-331-3p expression in the whole blood. Furthermore, the expression of the proposed targets of miR-214 (SLC11A1 and PIGE-108A11.3) increased while that of the proposed target of miR-331-3p (VAV2) decreased following challenge (expression changes confirmed by in vitro assays). Based on these observations, we propose potential roles for miR-214 and miR-331-3p in regulation of immune responses to Salmonella infection.

  5. Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine

    PubMed Central

    Bao, Hua; Kommadath, Arun; Liang, Guanxiang; Sun, Xu; Arantes, Adriano S.; Tuggle, Christopher K.; Bearson, Shawn M.D.; Plastow, Graham S.; Stothard, Paul; Guan, Le Luo

    2015-01-01

    To understand the role of miRNAs in regulating genes involved in host response to bacterial infection and shedding of foodborne pathogens, a systematic profiling of miRNAs and mRNAs from the whole blood of pigs upon Salmonella challenge was performed. A total of 62 miRNAs were differentially expressed post infection (false discovery rate <0.1). An integrative analysis of both the differentially expressed miRNAs and mRNAs using sequence-based miRNA target prediction and negative correlation of miRNA-mRNA profiles helped identify miRNA-mRNA networks that may potentially regulate host response to Salmonella infection. From these networks, miR-214 and miR-331-3p were identified as new candidates potentially associated with Salmonella infection. An miRNA seed sequence analysis suggested that these miRNAs regulate several critical immune-related genes including SLC11A1, PIGE-108A11.3 and VAV2. We showed that challenged pigs had reduced miR-214 expression and increased miR-331-3p expression in the whole blood. Furthermore, the expression of the proposed targets of miR-214 (SLC11A1 and PIGE-108A11.3) increased while that of the proposed target of miR-331-3p (VAV2) decreased following challenge (expression changes confirmed by in vitro assays). Based on these observations, we propose potential roles for miR-214 and miR-331-3p in regulation of immune responses to Salmonella infection. PMID:26227241

  6. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    PubMed

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.

  7. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    SciTech Connect

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna; Yang, Hanchun; Hu, Hongbo

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  8. Single-cell sequencing of the small-RNA transcriptome.

    PubMed

    Faridani, Omid R; Abdullayev, Ilgar; Hagemann-Jensen, Michael; Schell, John P; Lanner, Fredrik; Sandberg, Rickard

    2016-12-01

    Little is known about the heterogeneity of small-RNA expression as small-RNA profiling has so far required large numbers of cells. Here we present a single-cell method for small-RNA sequencing and apply it to naive and primed human embryonic stem cells and cancer cells. Analysis of microRNAs and fragments of tRNAs and small nucleolar RNAs (snoRNAs) reveals the potential of microRNAs as markers for different cell types and states.

  9. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  10. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  11. Identifying Francisella tularensis genes required for growth in host cells.

    PubMed

    Brunton, J; Steele, S; Miller, C; Lovullo, E; Taft-Benz, S; Kawula, T

    2015-08-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence.

  12. Dendritic cell-mediated HIV-1 infection of T-cells demonstrates a direct relationship to plasma viral RNA levels

    PubMed Central

    Arora, Reetakshi; Bull, Lara; Siwak, Edward B.; Thippeshappa, Rajesh; Arduino, Roberto C.; Kimata, Jason T.

    2011-01-01

    Objective To examine the relationship between infectivity of HIV-1 variants in dendritic cell-mediated in trans infection of T-cells and plasma viral RNA levels in infected subjects. Methods HIV-1 was isolated from PBMCs of chronically infected individuals, typed for coreceptor usage, and viral replication was examined in monocyte derived-dendritic cells-peripheral blood lymphocytes (DC-PBL) co-cultures. The rate of p24 antigen production during the logarithmic phase of viral replication was determined by ELISA. Additionally, nef variants were cloned and expressed in trans with a HIV-luciferase vector and CCR5-tropic HIV-1 envelope, and infectivity was measured in DC-mediated capture-transfer assays. Results Replication capacity of HIV-1 viral CCR5-tropic isolates in DC-PBL co-cultures was linearly associated with the plasma viral RNA levels in a cohort of HIV-1 infected individuals exhibiting an inverse relationship between plasma viral RNA and CD4 cell count. Furthermore, infectivity activity of Nef variants in context of DC-mediated enhanced infection of T-cells also showed a linear relationship to plasma viral RNA levels. Conclusion These results illustrate that replication capacity of HIV-1 in DC-T-cell cultures is a significant predictor of plasma viral RNA level. The data suggest that adaptation of HIV-1 to DC interactions with T-cells influences the level of viral replication in the host. PMID:20386455

  13. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells.

  14. RNA interference mediated in human primary cells via recombinant baculoviral vectors.

    PubMed

    Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T

    2005-04-01

    The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.

  15. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    PubMed Central

    2010-01-01

    Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains. PMID:20942914

  16. Fluorescent Probes for Live-Cell RNA Detection

    PubMed Central

    Bao, Gang; Rhee, Won Jong; Tsourkas, Andrew

    2009-01-01

    Commonly used techniques for analyzing gene expression, such as polymerase chain reaction (PCR), microarrays, and in situ hybridization, have proven invaluable in understanding RNA processing and regulation. However, these techniques rely on the use of lysed and/or fixed cells and are therefore limited in their ability to provide important spatial-temporal information. This has led to the development of numerous techniques for imaging RNA in living cells, some of which have already provided important insight into the dynamic role RNA plays in dictating cell behavior. Here we review the fluorescent probes that have allowed for RNA imaging in living cells and discuss their utility and limitations. Common challenges faced by fluorescent probes, such as probe design, delivery, and target accessibility, are also discussed. It is expected that continued advancements in live cell imaging of RNA will open new and exciting opportunities in a wide range of biological and medical applications. PMID:19400712

  17. Removing the needle from the haystack: Enrichment of Wolbachia endosymbiont transcripts from host nematode RNA by Cappable-seq™

    PubMed Central

    Luck, Ashley N.; Slatko, Barton E.; Foster, Jeremy M.

    2017-01-01

    Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues. PMID:28291780

  18. An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses

    PubMed Central

    Schreiber, Claire A.; Sakuma, Toshie; Izumiya, Yoshihiro; Holditch, Sara J.; Hickey, Raymond D.; Bressin, Robert K.; Basu, Upamanyu; Koide, Kazunori; Asokan, Aravind; Ikeda, Yasuhiro

    2015-01-01

    Adeno-associated viruses (AAV) have evolved to exploit the dynamic reorganization of host cell machinery during co-infection by adenoviruses and other helper viruses. In the absence of helper viruses, host factors such as the proteasome and DNA damage response machinery have been shown to effectively inhibit AAV transduction by restricting processes ranging from nuclear entry to second-strand DNA synthesis. To identify host factors that might affect other key steps in AAV infection, we screened an siRNA library that revealed several candidate genes including the PHD finger-like domain protein 5A (PHF5A), a U2 snRNP-associated protein. Disruption of PHF5A expression selectively enhanced transgene expression from AAV by increasing transcript levels and appears to influence a step after second-strand synthesis in a serotype and cell type-independent manner. Genetic disruption of U2 snRNP and associated proteins, such as SF3B1 and U2AF1, also increased expression from AAV vector, suggesting the critical role of U2 snRNP spliceosome complex in this host-mediated restriction. Notably, adenoviral co-infection and U2 snRNP inhibition appeared to target a common pathway in increasing expression from AAV vectors. Moreover, pharmacological inhibition of U2 snRNP by meayamycin B, a potent SF3B1 inhibitor, substantially enhanced AAV vector transduction of clinically relevant cell types. Further analysis suggested that U2 snRNP proteins suppress AAV vector transgene expression through direct recognition of intact AAV capsids. In summary, we identify U2 snRNP and associated splicing factors, which are known to be affected during adenoviral infection, as novel host restriction factors that effectively limit AAV transgene expression. Concurrently, we postulate that pharmacological/genetic manipulation of components of the spliceosomal machinery might enable more effective gene transfer modalities with recombinant AAV vectors. PMID:26244496

  19. An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses.

    PubMed

    Schreiber, Claire A; Sakuma, Toshie; Izumiya, Yoshihiro; Holditch, Sara J; Hickey, Raymond D; Bressin, Robert K; Basu, Upamanyu; Koide, Kazunori; Asokan, Aravind; Ikeda, Yasuhiro

    2015-08-01

    Adeno-associated viruses (AAV) have evolved to exploit the dynamic reorganization of host cell machinery during co-infection by adenoviruses and other helper viruses. In the absence of helper viruses, host factors such as the proteasome and DNA damage response machinery have been shown to effectively inhibit AAV transduction by restricting processes ranging from nuclear entry to second-strand DNA synthesis. To identify host factors that might affect other key steps in AAV infection, we screened an siRNA library that revealed several candidate genes including the PHD finger-like domain protein 5A (PHF5A), a U2 snRNP-associated protein. Disruption of PHF5A expression selectively enhanced transgene expression from AAV by increasing transcript levels and appears to influence a step after second-strand synthesis in a serotype and cell type-independent manner. Genetic disruption of U2 snRNP and associated proteins, such as SF3B1 and U2AF1, also increased expression from AAV vector, suggesting the critical role of U2 snRNP spliceosome complex in this host-mediated restriction. Notably, adenoviral co-infection and U2 snRNP inhibition appeared to target a common pathway in increasing expression from AAV vectors. Moreover, pharmacological inhibition of U2 snRNP by meayamycin B, a potent SF3B1 inhibitor, substantially enhanced AAV vector transduction of clinically relevant cell types. Further analysis suggested that U2 snRNP proteins suppress AAV vector transgene expression through direct recognition of intact AAV capsids. In summary, we identify U2 snRNP and associated splicing factors, which are known to be affected during adenoviral infection, as novel host restriction factors that effectively limit AAV transgene expression. Concurrently, we postulate that pharmacological/genetic manipulation of components of the spliceosomal machinery might enable more effective gene transfer modalities with recombinant AAV vectors.

  20. Host microRNA-203a is antagonistic to the progression of foot-and-mouth disease virus infection

    USDA-ARS?s Scientific Manuscript database

    Sam68 was previously shown to be a critical host factor for foot-and-mouth disease virus (FMDV) replication. MicroRNA (miR)-203a is a potent regulator of Sam68 expression both in vitro and in vivo. Here, we showed transfection of miR-203a-3p and miR-203a-5p mimics separately and in combination in a ...

  1. Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus

    PubMed Central

    Lalić, Jasna; Cuevas, José M.; Elena, Santiago F.

    2011-01-01

    Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host. PMID:22125497

  2. Effect of host species on the distribution of mutational fitness effects for an RNA virus.

    PubMed

    Lalić, Jasna; Cuevas, José M; Elena, Santiago F

    2011-11-01

    Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host.

  3. RNA-programmed genome editing in human cells.

    PubMed

    Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer

    2013-01-29

    Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3' end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells.DOI:http://dx.doi.org/10.7554/eLife.00471.001.

  4. Inkjet printing of silk nest arrays for cell hosting.

    PubMed

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation.

  5. Identification of Restriction Factors by Human Genome-Wide RNA Interference Screening of Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as Inhibitors of the Vaccinia Virus K1L-C7L- Mutant.

    PubMed

    Sivan, Gilad; Ormanoglu, Pinar; Buehler, Eugen C; Martin, Scott E; Moss, Bernard

    2015-08-04

    RNA interference (RNAi) screens intended to identify host factors that restrict virus replication may fail if the virus already counteracts host defense mechanisms. To overcome this limitation, we are investigating the use of viral host range mutants that exhibit impaired replication in nonpermissive cells. A vaccinia virus (VACV) mutant with a deletion of both the C7L and K1L genes, K1L(-)C7L(-), which abrogates replication in human cells at a step prior to late gene expression, was chosen for this strategy. We carried out a human genome-wide small interfering RNA (siRNA) screen in HeLa cells infected with a VACV K1L(-)C7L(-) mutant that expresses the green fluorescent protein regulated by a late promoter. This positive-selection screen had remarkably low background levels and resulted in the identification of a few cellular genes, notably SAMD9 and WDR6, from approximately 20,000 tested that dramatically enhanced green fluorescent protein expression. Replication of the mutant virus was enabled by multiple siRNAs to SAMD9 or WDR6. Moreover, SAMD9 and WDR6 clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout HeLa cell lines were permissive for replication of the K1L(-)C7L(-) mutant, in agreement with the siRNA data. Expression of exogenous SAMD9 or interferon regulatory factor 1 restricted replication of the K1L(-)C7L(-) mutant in the SAMD9(-/-) cells. Independent interactions of SAMD9 with the K1 and C7 proteins were suggested by immunoprecipitation. Knockout of WDR6 did not reduce the levels of SAMD9 and interactions of WDR6 with SAMD9, C7, and K1 proteins were not detected, suggesting that these restriction factors act independently but possibly in the same innate defense pathway. The coevolution of microbial pathogens with cells has led to an arms race in which the invader and host continuously struggle to gain the advantage. For this reason, traditional siRNA screens may fail to uncover important immune mechanisms if the pathogens

  6. Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells

    PubMed Central

    Baldridge, Gerald D.; Carroll, Elissa M.; Kurtz, Cassandra M.

    2015-01-01

    Wolbachia is an obligate intracellular alphaproteobacterium that occurs in arthropod and nematode hosts. Wolbachia presumably provides a fitness benefit to its hosts, but the basis for its retention and spread in host populations remains unclear. Wolbachia genomes retain biosynthetic pathways for some vitamins, and the possibility that these vitamins benefit host cells provides a potential means of selecting for Wolbachia-infected cell lines. To explore whether riboflavin produced by Wolbachia is available to its host cell, we established that growth of uninfected C7–10 mosquito cells decreases in riboflavin-depleted culture medium. A well studied inhibitor of riboflavin uptake, lumiflavin, further inhibits growth of uninfected C7–10 cells with an LC50 of approximately 12 µg/ml. Growth of C/wStr1 mosquito cells, infected with Wolbachia from the planthopper, Laodelphax striatellus, was enhanced in medium containing low levels of lumiflavin, but Wolbachia levels decreased. Lumiflavin-enhanced growth thus resembled the improved growth that accompanies treatment with antibiotics that deplete Wolbachia, rather than a metabolic advantage provided by the Wolbachia infection. We used the polymerase chain reaction to validate the decrease in Wolbachia abundance and evaluated our results in the context of a proteomic analysis in which we detected nearly 800 wStr proteins. Our data indicate that Wolbachia converts riboflavin to FMN and FAD for its own metabolic needs, and does not provide a source of riboflavin for its host cell. PMID:24789726

  7. Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells.

    PubMed

    Fallon, Ann M; Baldridge, Gerald D; Carroll, Elissa M; Kurtz, Cassandra M

    2014-09-01

    Wolbachia is an obligate intracellular alphaproteobacterium that occurs in arthropod and nematode hosts. Wolbachia presumably provides a fitness benefit to its hosts, but the basis for its retention and spread in host populations remains unclear. Wolbachia genomes retain biosynthetic pathways for some vitamins, and the possibility that these vitamins benefit host cells provides a potential means of selecting for Wolbachia-infected cell lines. To explore whether riboflavin produced by Wolbachia is available to its host cell, we established that growth of uninfected C7-10 mosquito cells decreases in riboflavin-depleted culture medium. A well-studied inhibitor of riboflavin uptake, lumiflavin, further inhibits growth of uninfected C7-10 cells with an LC50 of approximately 12 μg/ml. Growth of C/wStr1 mosquito cells, infected with Wolbachia from the planthopper, Laodelphax striatellus, was enhanced in medium containing low levels of lumiflavin, but Wolbachia levels decreased. Lumiflavin-enhanced growth thus resembled the improved growth that accompanies treatment with antibiotics that deplete Wolbachia, rather than a metabolic advantage provided by the Wolbachia infection. We used the polymerase chain reaction to validate the decrease in Wolbachia abundance and evaluated our results in the context of a proteomic analysis in which we detected nearly 800 wStr proteins. Our data indicate that Wolbachia converts riboflavin to FMN and FAD for its own metabolic needs, and does not provide a source of riboflavin for its host cell.

  8. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    USDA-ARS?s Scientific Manuscript database

    Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...

  9. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    PubMed

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  10. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  11. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  12. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2.

    PubMed

    de Vries, Sophie; von Dahlen, Janina K; Uhlmann, Constanze; Schnake, Anika; Kloesges, Thorsten; Rose, Laura E

    2017-01-01

    Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, 'Phytophthora suppressor of RNA silencing 2') has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.

  14. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations.

    PubMed

    Bedhomme, Stéphanie; Lafforgue, Guillaume; Elena, Santiago F

    2012-05-01

    For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and the severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. Using Tobacco etch potyvirus (TEV) and four natural hosts, we have designed an evolution experiment whose strength and novelty are the use of complex multicellular host organism as hosts and a high level of replication of different evolutionary histories and lineages. A pattern of local adaptation, characterized by a higher infectivity and virulence on host(s) encountered during the experimental evolution was found. Local adaptation only had a cost in terms of performance on other hosts in some cases. We could not verify the existence of a cost for generalists, as expected to arise from antagonistic pleiotropy and other genetic mechanisms generating a fitness trade-off between hosts. This observation confirms that this classical theoretical prediction lacks empirical support. We discuss the reasons for this discrepancy between theory and experiment in the light of our results. The analysis of full genome consensus sequences of the evolved lineages established that all mutations shared between lineages were host specific. A low degree of parallel evolution was observed, possibly reflecting the various adaptive pathways available for TEV in each host. Altogether, these results reveal a strong adaptive potential of TEV to new hosts without severe evolutionary constraints.

  15. The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response

    PubMed Central

    Mehrabadi, Mohammad; Hussain, Mazhar; Matindoost, Leila

    2015-01-01

    ABSTRACT RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. IMPORTANCE Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a

  16. The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Matindoost, Leila; Asgari, Sassan

    2015-08-01

    RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a virus-encoded protein

  17. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  18. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    PubMed

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.

  19. A Cytoplasmic RNA Virus Alters the Function of the Cell Splicing Protein SRSF2.

    PubMed

    Rivera-Serrano, Efraín E; Fritch, Ethan J; Scholl, Elizabeth H; Sherry, Barbara

    2017-04-01

    To replicate efficiently, viruses must create favorable cell conditions and overcome cell antiviral responses. We previously reported that the reovirus protein μ2 from strain T1L, but not strain T3D, represses one antiviral response: alpha/beta interferon signaling. We report here that T1L, but not T3D, μ2 localizes to nuclear speckles, where it forms a complex with the mRNA splicing factor SRSF2 and alters its subnuclear localization. Reovirus replicates in cytoplasmic viral factories, and there is no evidence that reovirus genomic or messenger RNAs are spliced, suggesting that T1L μ2 might target splicing of cell RNAs. Indeed, RNA sequencing revealed that reovirus T1L, but not T3D, infection alters the splicing of transcripts for host genes involved in mRNA posttranscriptional modifications. Moreover, depletion of SRSF2 enhanced reovirus replication and cytopathic effect, suggesting that T1L μ2 modulation of splicing benefits the virus. This provides the first report of viral antagonism of the splicing factor SRSF2 and identifies the viral protein that determines strain-specific differences in cell RNA splicing.IMPORTANCE Efficient viral replication requires that the virus create favorable cell conditions. Many viruses accomplish this by repressing specific antiviral responses. We demonstrate here that some mammalian reoviruses, RNA viruses that replicate strictly in the cytoplasm, express a protein variant that localizes to nuclear speckles, where it targets a cell mRNA splicing factor. Infection with a reovirus strain that targets this splicing factor alters splicing of cell mRNAs involved in the maturation of many other cell mRNAs. Depletion of this cell splicing factor enhances reovirus replication and cytopathic effect. Our results provide the first evidence of viral antagonism of this splicing factor and suggest that downstream consequences to the cell are global and benefit the virus. Copyright © 2017 American Society for Microbiology.

  20. A Cytoplasmic RNA Virus Alters the Function of the Cell Splicing Protein SRSF2

    PubMed Central

    Rivera-Serrano, Efraín E.; Fritch, Ethan J.; Scholl, Elizabeth H.

    2017-01-01

    ABSTRACT To replicate efficiently, viruses must create favorable cell conditions and overcome cell antiviral responses. We previously reported that the reovirus protein μ2 from strain T1L, but not strain T3D, represses one antiviral response: alpha/beta interferon signaling. We report here that T1L, but not T3D, μ2 localizes to nuclear speckles, where it forms a complex with the mRNA splicing factor SRSF2 and alters its subnuclear localization. Reovirus replicates in cytoplasmic viral factories, and there is no evidence that reovirus genomic or messenger RNAs are spliced, suggesting that T1L μ2 might target splicing of cell RNAs. Indeed, RNA sequencing revealed that reovirus T1L, but not T3D, infection alters the splicing of transcripts for host genes involved in mRNA posttranscriptional modifications. Moreover, depletion of SRSF2 enhanced reovirus replication and cytopathic effect, suggesting that T1L μ2 modulation of splicing benefits the virus. This provides the first report of viral antagonism of the splicing factor SRSF2 and identifies the viral protein that determines strain-specific differences in cell RNA splicing. IMPORTANCE Efficient viral replication requires that the virus create favorable cell conditions. Many viruses accomplish this by repressing specific antiviral responses. We demonstrate here that some mammalian reoviruses, RNA viruses that replicate strictly in the cytoplasm, express a protein variant that localizes to nuclear speckles, where it targets a cell mRNA splicing factor. Infection with a reovirus strain that targets this splicing factor alters splicing of cell mRNAs involved in the maturation of many other cell mRNAs. Depletion of this cell splicing factor enhances reovirus replication and cytopathic effect. Our results provide the first evidence of viral antagonism of this splicing factor and suggest that downstream consequences to the cell are global and benefit the virus. PMID:28077658

  1. mRNA decay during herpes simplex virus (HSV) infections: mutations that affect translation of an mRNA influence the sites at which it is cleaved by the HSV virion host shutoff (Vhs) protein.

    PubMed

    Shiflett, Lora A; Read, G Sullivan

    2013-01-01

    During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation. To explore how Vhs is targeted to preferred sites, we examined the in vitro degradation of a target mRNA in rabbit reticulocyte lysates containing in vitro-translated Vhs. Vhs caused rapid degradation of mRNAs beginning with cleavages at sites in the first 250 nucleotides, including a number near the start codon and in the 5' untranslated region. Ligation of the ends to form a circular mRNA inhibited Vhs cleavage at the same sites at which it cuts capped linear molecules. This was not due to an inability to cut any circular RNA, since Vhs cuts circular mRNAs containing an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) at the same sites as linear molecules with the IRES. Cutting linear mRNAs at preferred sites was augmented by the presence of a 5' cap. Moreover, mutations that altered the 5' proximal AUG abolished Vhs cleavage at nearby sites, while mutations that changed sequences surrounding the AUG to improve their match to the Kozak consensus sequence enhanced Vhs cutting near the start codon. The results indicate that mutations in an mRNA that affect its translation affect the sites at which it is cut by Vhs and suggest that Vhs is directed to its preferred cut sites during translation initiation.

  2. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa.

    PubMed

    Chevallereau, Anne; Blasdel, Bob G; De Smet, Jeroen; Monot, Marc; Zimmermann, Michael; Kogadeeva, Maria; Sauer, Uwe; Jorth, Peter; Whiteley, Marvin; Debarbieux, Laurent; Lavigne, Rob

    2016-07-01

    As interest in the therapeutic and biotechnological potentials of bacteriophages has grown, so has value in understanding their basic biology. However, detailed knowledge of infection cycles has been limited to a small number of model bacteriophages, mostly infecting Escherichia coli. We present here the first analysis coupling data obtained from global next-generation approaches, RNA-Sequencing and metabolomics, to characterize interactions between the virulent bacteriophage PAK_P3 and its host Pseudomonas aeruginosa. We detected a dramatic global depletion of bacterial transcripts coupled with their replacement by viral RNAs over the course of infection, eventually leading to drastic changes in pyrimidine metabolism. This process relies on host machinery hijacking as suggested by the strong up-regulation of one bacterial operon involved in RNA processing. Moreover, we found that RNA-based regulation plays a central role in PAK_P3 lifecycle as antisense transcripts are produced mainly during the early stage of infection and viral small non coding RNAs are massively expressed at the end of infection. This work highlights the prominent role of RNA metabolism in the infection strategy of a bacteriophage belonging to a new characterized sub-family of viruses with promising therapeutic potential.

  3. Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode

    PubMed Central

    Tian, Bin; Li, Jiarui; Oakley, Thomas R.; Todd, Timothy C.; Trick, Harold N.

    2016-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alternative method for gene silencing, with the advantage that they can lead to more specific silencing of target genes than traditional RNAi vectors. To explore the application of amiRNAs for improving soybean resistance to SCN, three nematode genes (designated as J15, J20, and J23) were targeted using amiRNA vectors. The transgenic soybean hairy roots, transformed independently with these three amiRNA vectors, showed significant reductions in SCN population densities in bioassays. Expression of the targeted genes within SCN eggs were downregulated in populations feeding on transgenic hairy roots. Our results provide evidence that host-derived amiRNA methods have great potential to improve soybean resistance to SCN. This approach should also limit undesirable phenotypes associated with off-target effects, which is an important consideration for commercialization of transgenic crops. PMID:27941644

  4. Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells.

    PubMed Central

    Collis, P S; O'Donnell, B J; Barton, D J; Rogers, J A; Flanegan, J B

    1992-01-01

    Full-length and subgenomic poliovirus RNAs were transcribed in vitro and transfected into HeLa cells to study viral RNA replication in vivo. RNAs with deletion mutations were analyzed for the ability to replicate in either the absence or the presence of helper RNA by using a cotransfection procedure and Northern (RNA) blot analysis. An advantage of this approach was that viral RNA replication and genetic complementation could be characterized without first isolating conditional-lethal mutants. A subgenomic RNA with a large in-frame deletion in the capsid coding region (P1) replicated more efficiently than full-length viral RNA transcripts. In cotransfection experiments, both the full-length and subgenomic RNAs replicated at slightly reduced levels and appeared to interfere with each other's replication. In contrast, a subgenomic RNA with a similarly sized out-of-frame deletion in P1 did not replicate in transfected cells, either alone or in the presence of helper RNA. Similar results were observed with an RNA transcript containing a large in-frame deletion spanning the P1, P2, and P3 coding regions. A mutant RNA with an in-frame deletion in the P1-2A coding sequence was self-replicating but at a significantly reduced level. The replication of this RNA was fully complemented after cotransfection with a helper RNA that provided 2A in trans. A P1-2A-2B in-frame deletion, however, totally blocked RNA replication and was not complemented. Control experiments showed that all of the expected viral proteins were both synthesized and processed when the RNA transcripts were translated in vitro. Thus, our results indicated that 2A was a trans-acting protein and that 2B and perhaps other viral proteins were cis acting during poliovirus RNA replication in vivo. Our data support a model for poliovirus RNA replication which directly links the translation of a molecule of plus-strand RNA with the formation of a replication complex for minus-strand RNA synthesis. Images PMID

  5. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements.

    PubMed

    Haase, Astrid D

    2016-01-01

    Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.

  6. Quantifying Protein-mRNA Interactions in Single Live Cells.

    PubMed

    Wu, Bin; Buxbaum, Adina R; Katz, Zachary B; Yoon, Young J; Singer, Robert H

    2015-07-02

    Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known bi