Science.gov

Sample records for host epithelial tissue

  1. Computational modeling of epithelial tissues.

    PubMed

    Smallwood, Rod

    2009-01-01

    There is an extensive literature on the computational modeling of epithelial tissues at all levels from subcellular to whole tissue. This review concentrates on behavior at the individual cell to whole tissue level, and particularly on organizational aspects, and provides an indication of where information from other areas, such as the modeling of angiogenesis, is relevant. The skin, and the lining of all of the body cavities (lung, gut, cervix, bladder etc) are epithelial tissues, which in a topological sense are the boundary between inside and outside the body. They are thin sheets of cells (usually of the order of 0.5 mm thick) without extracellular matrix, have a relatively simple structure, and contain few types of cells. They have important barrier, secretory and transport functions, which are essential for the maintenance of life, so homeostasis and wound healing are important aspects of the behavior of epithelial tissues. Carcinomas originate in epithelial tissues.There are essentially two approaches to modeling tissues--to start at the level of the tissue (i.e., a length scale of the order of 1 mm) and develop generalized equations for behavior (a continuum approach); or to start at the level of the cell (i.e., a length scale of the order of 10 µm) and develop tissue behavior as an emergent property of cellular behavior (an individual-based approach). As will be seen, these are not mutually exclusive approaches, and they come in a variety of flavors.

  2. Force transmission in epithelial tissues.

    PubMed

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues.

  3. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    PubMed Central

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  4. Normal morphogenesis of epithelial tissues and progression of epithelial tumors.

    PubMed

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A

    2012-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.

  5. Segmentation and Quantitative Analysis of Epithelial Tissues.

    PubMed

    Aigouy, Benoit; Umetsu, Daiki; Eaton, Suzanne

    2016-01-01

    Epithelia are tissues that regulate exchanges with the environment. They are very dynamic and can acquire virtually any shape; at the cellular level, they are composed of cells tightly connected by junctions. Most often epithelia are amenable to live imaging; however, the large number of cells composing an epithelium and the absence of informatics tools dedicated to epithelial analysis largely prevented tissue scale studies. Here we present Tissue Analyzer, a free tool that can be used to segment and analyze epithelial cells and monitor tissue dynamics.

  6. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis.

  7. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts For Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    NASA Technical Reports Server (NTRS)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  8. Mechanics of epithelial tissue homeostasis and morphogenesis.

    PubMed

    Guillot, Charlène; Lecuit, Thomas

    2013-06-07

    Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.

  9. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    PubMed

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  10. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    PubMed

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  11. Autophagy Controls an Intrinsic Host Defense to Bacteria by Promoting Epithelial Cell Survival: A Murine Model

    PubMed Central

    Chang, Sun-Young; Lee, Se-Na; Yang, Jin-Young; Kim, Dong Wook; Yoon, Joo-Heon; Ko, Hyun-Jeong; Ogawa, Michinaga; Sasakawa, Chihiro; Kweon, Mi-Na

    2013-01-01

    Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of “epithelial barrier turnover” as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy. PMID:24260541

  12. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    PubMed

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  13. Polarized Protein Transport and Lumen Formation During Epithelial Tissue Morphogenesis

    PubMed Central

    Blasky, Alex J.; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo. PMID:26359775

  14. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    PubMed

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.

  15. Crossroads of Wnt and Hippo in epithelial tissues.

    PubMed

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.

  16. Host Responses in Tissue Repair and Fibrosis

    PubMed Central

    Duffield, Jeremy S.; Lupher, Mark; Thannickal, Victor J.

    2013-01-01

    Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary “effector” cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis. PMID:23092186

  17. IFN-λ determines the intestinal epithelial antiviral host defense

    PubMed Central

    Pott, Johanna; Mahlakõiv, Tanel; Mordstein, Markus; Duerr, Claudia U.; Michiels, Thomas; Stockinger, Silvia; Staeheli, Peter; Hornef, Mathias W.

    2011-01-01

    Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor. Here we comparatively analyzed the role of functional IFN-λ and type I IFN receptor signaling in the innate immune response to intestinal rotavirus infection in vivo, and determined viral replication and antiviral gene expression on the cellular level. We observed that both suckling and adult mice lacking functional receptors for IFN-λ were impaired in the control of oral rotavirus infection, whereas animals lacking functional receptors for type I IFN were similar to wild-type mice. Using Mx1 protein accumulation as marker for IFN responsiveness of individual cells, we demonstrate that intestinal epithelial cells, which are the prime target cells of rotavirus, strongly responded to IFN-λ but only marginally to type I IFN in vivo. Systemic treatment of suckling mice with IFN-λ repressed rotavirus replication in the gut, whereas treatment with type I IFN was not effective. These results are unique in identifying a critical role of IFN-λ in the epithelial antiviral host defense. PMID:21518880

  18. Depth sensitive oblique polarized reflectance spectroscopy of oral epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2014-05-01

    Identifying depth-dependent alterations associated with epithelial cancerous lesions can be challenging in the oral cavity where variable epithelial thicknesses and troublesome keratin growths are prominent. Spectroscopic methods with enhanced depth resolution would immensely aid in isolating optical properties associated with malignant transformation. Combining multiple beveled fibers, oblique collection geometry, and polarization gating, oblique polarized reflectance spectroscopy (OPRS) achieves depth sensitive detection. We report promising results from a clinical trial of patients with oral lesions suspected of dysplasia or carcinoma demonstrating the potential of OPRS for the analysis of morphological and architectural changes in the context of multilayer, epithelial oral tissue.

  19. Unified quantitative characterization of epithelial tissue development.

    PubMed

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru; Graner, François; Bellaïche, Yohanns

    2015-12-12

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.

  20. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  1. A multicellular view of cytokinesis in epithelial tissue.

    PubMed

    Herszterg, Sophie; Pinheiro, Diana; Bellaïche, Yohanns

    2014-05-01

    The study of cytokinesis in single-cell systems provided a wealth of knowledge on the molecular and biophysical mechanisms controlling daughter cell separation. In this review, we outline recent advances in the understanding of cytokinesis in epithelial tissues. These findings provide evidence for how the cytokinetic machinery adapts to a multicellular context and how the cytokinetic machinery is itself exploited by the tissue for the preservation of tissue function and architecture during proliferation. We propose that cytokinesis in epithelia should be viewed as a multicellular process, whereby the biochemical and mechanical interactions between the dividing cell and its neighbors are essential for successful daughter cell separation while defining epithelial tissue organization and preserving tissue integrity.

  2. Unified quantitative characterization of epithelial tissue development

    PubMed Central

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285

  3. Gut microbiome derived metabolites modulate intestinal epithelial cell damage and mitigate Graft-versus-Host Disease

    PubMed Central

    Toubai, Tomomi; Oravecz-Wilson, Katherine; Wu, Shin-Rong; Sun, Yaping; Rossi, Corinne; Fujiwara, Hideaki; Byun, Jaeman; Shono, Yusuke; Lindemans, Caroline; Calafiore, Marco; Schmidt, Thomas C.; Honda, Kenya; Reddy, Pavan

    2016-01-01

    The impact of alterations in intestinal microbiota on microbial metabolites and on disease processes, such as graft-versus-host disease (GVHD), is not known. Here we performed unbiased analysis to identify novel alterations in gastrointestinal microbiota-derived short chain fatty acids (SCFA) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amounts of only one SCFA, butyrate, were observed only within the intestinal tissue. The reduced butyrate in CD326+ intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored upon local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis, and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate its severity. PMID:26998764

  4. Engineered human broncho-epithelial tissue-like assemblies

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  5. A dynamic cellular vertex model of growing epithelial tissues

    NASA Astrophysics Data System (ADS)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-03-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  6. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  7. Building Epithelial Tissues from Skin Stem Cells

    PubMed Central

    Fuchs, E.; Nowak, J.A.

    2009-01-01

    The skin epidermis and its appendages provide a protective barrier that guards against loss of fluids, physical trauma, and invasion by harmful microbes. To perform these functions while confronting the harsh environs of the outside world, our body surface undergoes constant rejuvenation through homeostasis. In addition, it must be primed to repair wounds in response to injury. The adult skin maintains epidermal homeostasis, hair regeneration, and wound repair through the use of its stem cells. What are the properties of skin stem cells, when do they become established during embryogenesis, and how are they able to build tissues with such remarkably distinct architectures? How do stem cells maintain tissue homeostasis and repair wounds and how do they regulate the delicate balance between proliferation and differentiation? What is the relationship between skin cancer and mutations that perturbs the regulation of stem cells? In the past 5 years, the field of skin stem cells has bloomed as we and others have been able to purify and dissect the molecular properties of these tiny reservoirs of goliath potential. We report here progress on these fronts, with emphasis on our laboratory’s contributions to the fascinating world of skin stem cells. PMID:19022769

  8. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues.

    PubMed

    Gjorevski, Nikolce; Boghaert, Eline; Nelson, Celeste M

    2012-04-01

    Epithelial-mesenchymal transition (EMT) is a phenotypic shift wherein epithelial cells lose or loosen attachments to their neighbors and assume a mesenchymal-like morphology. EMT drives a variety of developmental processes, but may also be adopted by tumor cells during neoplastic progression. EMT is regulated by both biochemical and physical signals from the microenvironment, including mechanical stress, which is increasingly recognized to play a major role in development and disease progression. Biological systems generate, transmit and concentrate mechanical stress into spatial patterns; these gradients in mechanical stress may serve to spatially pattern developmental and pathologic EMTs. Here we review how epithelial tissues generate and respond to mechanical stress gradients, and highlight the mechanisms by which mechanical stress regulates and patterns EMT.

  9. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  10. Re-epithelialization: a key element in tracheal tissue engineering.

    PubMed

    Zhang, Hengyi; Fu, Wei; Xu, Zhiwei

    2015-11-01

    Trachea-tissue engineering is a thriving new field in regenerative medicine that is reaching maturity and yielding numerous promising results. In view of the crucial role that the epithelium plays in the trachea, re-epithelialization of tracheal substitutes has gradually emerged as the focus of studies in tissue-engineered trachea. Recent progress in our understanding of stem cell biology, growth factor interactions and transplantation immunobiology offer the prospect of optimization of a tissue-engineered tracheal epithelium. In addition, advances in cell culture technology and successful applications of clinical transplantation are opening up new avenues for the construction of a tissue-engineered tracheal epithelium. Therefore, this review summarizes current advances, unresolved obstacles and future directions in the reconstruction of a tissue-engineered tracheal epithelium.

  11. Endomicroscopy imaging of epithelial structures using tissue autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.

    2011-04-01

    We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.

  12. Spraying Respiratory Epithelial Cells to Coat Tissue-Engineered Constructs

    PubMed Central

    Thiebes, Anja Lena; Albers, Stefanie; Klopsch, Christian; Jockenhoevel, Stefan; Cornelissen, Christian G.

    2015-01-01

    Abstract Applying cells in a spray can overcome current hurdles in coating tissue engineered constructs with a thin layer of endo- or epithelial cells. We report here a structured study on the influences of spray application with a medical spray device on vascular smooth muscle cells (vSMCs) and respiratory epithelial cells (RECs) with and without fibrin gel. Next to viability and cytotoxicity assays, the in vitro differentiation capacity after spray processing was analyzed. For vSMC, no influence of air pressures till 0.8 bar could be shown, whereas the viability decreased for higher pressures. The viability of RECs was reduced to 88.5% with 0.4 bar air pressure. Lactate dehydrogenase-levels in the culture medium increased the first day after spraying but normalized afterward. In the short term, no differences by means of morphology and expression-specific markers for vSMCs and RECs were seen between the control and study group. In addition, in a long-term study for 28 days with the air–liquid interface, RECs differentiated and built up an organized epithelial layer with ciliary development that was comparable to the control for cells sprayed without fibrin gel. When spraying within fibrin gel, ciliary development was lower at 28 days. Thus, spraying of vSMCs and RECs was proved to be a suitable method for tissue engineering. Especially for RECs, this application is of special significance when coating luminal structures or other unfavorable topographies. PMID:26309803

  13. Regulation of Host Epithelial Responses to Cryptosporidium Infection by MicroRNAs.

    PubMed

    Ming, Zhenping; Zhou, Rui; Chen, Xian-Ming

    2016-12-15

    Cryptosporidium species infect the gastrointestinal epithelium and other mucosal surfaces of vertebrate hosts. Epithelial cells provide the first line of defense against Cryptosporidium infection and play a critical role in the initiation, regulation, and resolution of both innate and adaptive immune reactions. Host miRNAs in mammalian cells have been shown to play crucial roles in cellular responses to infection by diverse pathogens, including viruses, parasites, and bacteria. Given the absence of RNAi machinery in Cryptosporidium, lack of miRNA expression in the parasite, and minimal invasion nature of infection, Cryptosporidium infection provides an ideal model for exploring miRNA-mediated epithelial cell defense, relevant to infection of mucosal epithelial cells by pathogens in general. Increasing evidence supports that miRNAs may modulate many stages of epithelial responses following Cryptosporidium infection, including activation of the intracellular signaling pathways, production of antimicrobial molecules, expression of cytokines/chemokines, release of epithelial cell-derived exosomes, and feedback regulation of immune homeostasis. On the other hand, this parasite may have developed strategies to modulate host miRNA-mediated cellular function for immune evasion. In this review, we will summarize the recent advances on miRNA regulation of epithelial responses to Cryptosporidium infection, with an emphasis on host defense and parasite immune evasion. This article is protected by copyright. All rights reserved.

  14. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  15. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.

  16. Depth-cumulated epithelial redox ratio and stromal collagen quantity as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Zheng, Liqin; Chen, Jianxin; Xie, Shusen; Zhu, Xiaoqin; Jiang, Xingshan

    2010-10-01

    Multiphoton microscopy was used to isolate the intrinsic emission contribution of epithelial cellular origins and stromal collagen in normal, inflammatory, and dysplastic epithelial tissues, and quantify the depth-cumulated epithelial redox ratio and stromal collagen quantity. It was found that both inflammatory and dysplastic epithelial tissues display a large decrease in stromal collagen quantity but have very different epithelial redox ratio. These results suggest that probing differences in epithelial redox ratio in addition to stromal collagen quantity can serve as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues.

  17. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense.

    PubMed

    Gronert, Karsten; Maheshwari, Neha; Khan, Nabeela; Hassan, Iram R; Dunn, Michael; Laniado Schwartzman, Michal

    2005-04-15

    The surface of the eye actively suppresses inflammation while maintaining a remarkable capacity for epithelial wound repair. Our understanding of mechanisms that balance inflammatory/reparative responses to provide effective host defense while preserving tissue function is limited, in particular, in the cornea. Lipoxin A(4) (LXA(4)) and docosahexaenoic acid-derived neuroprotectin D1 (NPD1) are lipid autacoids formed by 12/15-lipoxygenase (LOX) pathways that exhibit anti-inflammatory and neuroprotective properties. Here, we demonstrate that mouse corneas generate endogenous LXA(4) and NPD1. 12/15-LOX (Alox15) and LXA(4) receptor mRNA expression as well as LXA(4) formation were abrogated by epithelial removal and restored during wound healing. Amplification of these pathways by topical treatment with LXA(4) or NPD1 (1 microg) increased the rate of re-epithelialization (65-90%, n = 6-10, p < 0.03) and attenuated the sequelae of thermal injury. In contrast, the proinflammatory eicosanoids, LTB(4) and 12R-hydroxyeicosatrienoic acid, had no impact on corneal re-epithelialization. Epithelial removal induced a temporally defined influx of neutrophils into the stroma as well as formation of the proinflammatory chemokine KC. Topical treatment with LXA(4) and NPD1 significantly increased PMNs in the cornea while abrogating KC formation by 60%. More importantly, Alox15-deficient mice exhibited a defect in both corneal re-epithelialization and neutrophil recruitment that correlated with a 43% reduction in endogenous LXA(4) formation. Collectively, these results identify a novel action for the mouse 12/15-LOX (Alox15) and its products, LXA(4) and NPD1, in wound healing that is distinct from their well established anti-inflammatory properties.

  18. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  19. Carcinoma cells misuse the host tissue damage response to invade the brain.

    PubMed

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-08-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis.

  20. Examination of epithelial tissue cytokine response to natural peste des petits ruminants virus (PPRV) infection in sheep and goats by immunohistochemistry.

    PubMed

    Atmaca, H T; Kul, O

    2012-01-01

    In this study, we aimed to evaluate expression of IL-4, IL-10, TNF-α, IFN-γ and iNOS in lingual, buccal mucosa and lung epithelial tissue using immunoperoxidase technique and to compare with the tissues of control animals. The tissues used in the study were collected from 17 PPRV-affected and 5 healthy sheep and goats. In PPRV positive animals, the lungs, lingual and buccal mucosa had significantly higher iNOS, IFN-γ and TNF-α expressions compared to control group animals. There was no significant difference between PPRV positive and control groups for IL-4 and IL-10 expressions of epithelial tissues. In conclusion, the epithelial tissues infected by PPRV showed significant iNOS, IFN-γ and TNF-α expressions and they might play an important role in the initiation and regulation of cytokine response, as they take place in the first host barrier to be in contact with PPRV. It is suggested that the more epithelial damage produced by PPRV the more cytokine response may result in the infected epithelial cells. The first demonstration of iNOS expression and epithelial cytokine response to PPRV in natural cases is important because it may contribute to an early initiation of systemic immunity against PPRV infection, in addition to direct elimination of the virus during the initial epithelial phase of the infection.

  1. Thicker host tissues moderate light stress in a cnidarian endosymbiont.

    PubMed

    Dimond, James L; Holzman, Benjamin J; Bingham, Brian L

    2012-07-01

    The susceptibility of algal-cnidarian holobionts to environmental stress is dependent on attributes of both host and symbiont, but the role of the host is often unclear. We examined the influence of the host on symbiont light stress, comparing the photophysiology of the chlorophyte symbiont Elliptochloris marina in two species of sea anemones in the genus Anthopleura. After 3 months of acclimation in outdoor tanks, polyp photoprotective contraction behavior was similar between the two host species, but photochemical efficiency was 1.5 times higher in A. xanthogrammica than in A. elegantissima. Maximum relative electron transport rates, derived from rapid light curves, were 1.5 times higher in A. xanthogrammica than in A. elegantissima when symbionts were inside intact tissues, but were not significantly different between host species upon removal of outer (epidermis and mesoglea) tissue layers from symbiont-containing gastrodermal cells. Tissues of A. xanthogrammica were 1.8 times thicker than those of A. elegantissima, with outer tissue layers attenuating 1.6 times more light. We found no significant differences in light absorption properties per unit volume of tissue, confirming the direct effect of tissue thickness on light attenuation. The thicker tissues of A. xanthogrammica thus provide a favorable environment for E. marina - a relatively stress-susceptible symbiont - and may explain its higher prevalence and expanded range in A. xanthogrammica along the Pacific coast of North America. Our findings also support a photoprotective role for thicker host tissues in reef corals that has long been thought to influence variability in bleaching susceptibility among coral taxa.

  2. Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells

    PubMed Central

    Zakrzewicz, Dariusz; Bergmann, Simone; Didiasova, Miroslava; Giaimo, Benedetto Daniele; Borggrefe, Tilman; Mieth, Maren; Hocke, Andreas C.; Lochnit, Guenter; Schaefer, Liliana; Hammerschmidt, Sven; Preissner, Klaus T.; Wygrecka, Malgorzata

    2016-01-01

    Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. The infection process involves bacterial cell surface receptors, which interact with host extracellular matrix components to facilitate colonization and dissemination of bacteria. Here, we investigated the role of host-derived extracellular RNA (eRNA) in the process of pneumococcal alveolar epithelial cell infection. Our study demonstrates that eRNA dose-dependently increased S. pneumoniae invasion of alveolar epithelial cells. Extracellular enolase (Eno), a plasminogen (Plg) receptor, was identified as a novel eRNA-binding protein on S. pneumoniae surface, and six Eno eRNA-binding sites including a C-terminal 15 amino acid motif containing lysine residue 434 were characterized. Although the substitution of lysine 434 for glycine (K434G) markedly diminished the binding of eRNA to Eno, the adherence to and internalization into alveolar epithelial cells of S. pneumoniae strain carrying the C-terminal lysine deletion and the mutation of internal Plg-binding motif were only marginally impaired. Accordingly, using a mass spectrometric approach, we identified seven novel eRNA-binding proteins in pneumococcal cell wall. Given the high number of eRNA-interacting proteins on pneumococci, treatment with RNase1 completely inhibited eRNA-mediated pneumococcal alveolar epithelial cell infection. Our data support further efforts to employ RNAse1 as an antimicrobial agent to combat pneumococcal infectious diseases. PMID:27892961

  3. Invasion of Host Cells and Tissues by Uropathogenic Bacteria

    PubMed Central

    Lewis, Adam J.; Richards, Amanda C.; Mulvey, Matthew A.

    2016-01-01

    Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of UPEC and other uropathogenic bacteria. PMID:28087946

  4. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  5. Using Organotypic Epithelial Tissue Culture to Study the Human Papillomavirus Life Cycle.

    PubMed

    Lee, Denis; Norby, Kathryn; Hayes, Mitchell; Chiu, Ya-Fang; Sugden, Bill; Lambert, Paul F

    2016-05-06

    Human papillomaviruses (HPVs) are small double-stranded DNA viruses that are associated with greater than 95% of cervical cancers and 20% of head and neck cancers. These cancers arise from persistent infections in which there is continued expression of the HPV E6 and E7 oncogenes, often as a consequence of integration of HPV DNA into the host genome. Such cancers represent "dead ends" for the virus as integration disrupts the viral genome and because the cancers are defective in normal epithelial differentiation, which is required for production of progeny papillomavirus. In order to study the full viral life cycle, from the establishment to maintenance to productive stages, our lab makes use of the organotypic epithelial tissue culture system. This system allows us to mimic the three-dimensional structure of epithelia whose differentiation is tightly linked to the completion of the HPV viral life cycle. In this chapter we describe how various aspects of the HPV life cycle are monitored in raft cultures making use of an immortalized keratinocyte cell line. © 2016 by John Wiley & Sons, Inc.

  6. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells

    PubMed Central

    Miura, Tanya A.; Holmes, Kathryn V.

    2009-01-01

    Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune-mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung. PMID:19638499

  7. Tissue inhibitor of metalloproteinase-1 moderates airway re-epithelialization by regulating matrilysin activity.

    PubMed

    Chen, Peter; McGuire, John K; Hackman, Robert C; Kim, Kyoung-Hee; Black, Roy A; Poindexter, Kurt; Yan, Wei; Liu, Phillip; Chen, Ann J; Parks, William C; Madtes, David K

    2008-05-01

    Obliterative bronchiolitis (OB) is the histopathological finding in chronic lung allograft rejection. Mounting evidence suggests that epithelial damage drives the development of airway fibrosis in OB. Tissue inhibitor of metalloproteinase (TIMP)-1 expression increases in lung allografts and is associated with the onset of allograft rejection. Furthermore, in a mouse model of OB, airway obliteration is reduced in TIMP-1-deficient mice. Matrilysin (matrix metallproteinase-7) is essential for airway epithelial repair and is required for the re-epithelialization of airway wounds by facilitating cell migration; therefore, the goal of this study was to determine whether TIMP-1 inhibits re-epithelialization through matrilysin. We found that TIMP-1 and matrilysin co-localized in the epithelium of human lungs with OB and both co-localized and co-immunoprecipitated in wounded primary airway epithelial cultures. TIMP-1-deficient cultures migrated faster, and epithelial cells spread to a greater extent compared with wild-type cultures. TIMP-1 also inhibited matrilysin-mediated cell migration and spreading in vitro. In vivo, TIMP-1 deficiency enhanced airway re-epithelialization after naphthalene injury. Furthermore, TIMP-1 and matrilysin co-localized in airway epithelial cells adjacent to the wound edge. Our data demonstrate that TIMP-1 interacts with matrix metalloproteinases and regulates matrilysin activity during airway epithelial repair. Furthermore, we speculate that TIMP-1 overexpression restricts airway re-epithelialization by inhibiting matrilysin activity, contributing to a stereotypic injury response that promotes airway fibrosis via bronchiole airway epithelial damage and obliteration.

  8. Tissue Inhibitor of Metalloproteinase-1 Moderates Airway Re-Epithelialization by Regulating Matrilysin Activity

    PubMed Central

    Chen, Peter; McGuire, John K.; Hackman, Robert C.; Kim, Kyoung-Hee; Black, Roy A.; Poindexter, Kurt; Yan, Wei; Liu, Phillip; Chen, Ann J.; Parks, William C.; Madtes, David K.

    2008-01-01

    Obliterative bronchiolitis (OB) is the histopathological finding in chronic lung allograft rejection. Mounting evidence suggests that epithelial damage drives the development of airway fibrosis in OB. Tissue inhibitor of metalloproteinase (TIMP)-1 expression increases in lung allografts and is associated with the onset of allograft rejection. Furthermore, in a mouse model of OB, airway obliteration is reduced in TIMP-1-deficient mice. Matrilysin (matrix metallproteinase-7) is essential for airway epithelial repair and is required for the re-epithelialization of airway wounds by facilitating cell migration; therefore, the goal of this study was to determine whether TIMP-1 inhibits re-epithelialization through matrilysin. We found that TIMP-1 and matrilysin co-localized in the epithelium of human lungs with OB and both co-localized and co-immunoprecipitated in wounded primary airway epithelial cultures. TIMP-1-deficient cultures migrated faster, and epithelial cells spread to a greater extent compared with wild-type cultures. TIMP-1 also inhibited matrilysin-mediated cell migration and spreading in vitro. In vivo, TIMP-1 deficiency enhanced airway re-epithelialization after naphthalene injury. Furthermore, TIMP-1 and matrilysin co-localized in airway epithelial cells adjacent to the wound edge. Our data demonstrate that TIMP-1 interacts with matrix metalloproteinases and regulates matrilysin activity during airway epithelial repair. Furthermore, we speculate that TIMP-1 overexpression restricts airway re-epithelialization by inhibiting matrilysin activity, contributing to a stereotypic injury response that promotes airway fibrosis via bronchiole airway epithelial damage and obliteration. PMID:18385523

  9. Determining optical properties of epithelial tissues with an obliquely incident beam

    NASA Astrophysics Data System (ADS)

    Rohde, Shelley B.; Kim, Arnold D.

    2015-07-01

    We present a technique for determining the scattering coefficient of epithelial tissue from diffuse reflectance measurements due to an obliquely incident Gaussian beam. This method applies the convolution form of the diffuse reflectance as determined by the corrected diffusion approximation.

  10. Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    PubMed

    Flood, P; Alvarez, L; Reynaud, E G

    2016-10-11

    Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturing printers and open source 3D design software offers us the possibility to easily create affordable 3D cell culture platforms. To demonstrate this, we established a simple, inexpensive and robust method for producing arrays of free-floating epithelial micro-tissues. Using a combination of 3D computer aided design and 3D printing, hydrogel micro-moulding and collagen cell encapsulation we engineered microenvironments that consistently direct the growth of micro-tissue arrays. We described the adaptability of this technique by testing several immortalised epithelial cell lines (MDCK, A549, Caco-2) and by generating branching morphology and micron to millimetre scaled micro-tissues. We established by fluorescence and electron microscopy that micro-tissues are polarised, have cell type specific differentiated phenotypes and regain native in vivo tissue qualities. Finally, using Salmonella typhimurium we show micro-tissues display a more physiologically relevant infection response compared to epithelial monolayers grown on permeable filter supports. In summary, we have developed a robust and adaptable technique for producing arrays of epithelial micro-tissues. This in vitro model has the potential to be a valuable tool for studying epithelial cell and tissue function/architecture in a physiologically relevant context.

  11. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  12. Masquerading microbial pathogens: Capsular polysaccharides mimic host-tissue molecules

    PubMed Central

    Cress, Brady F.; Englaender, Jacob A.; He, Wenqin; Kasper, Dennis; Linhardt, Robert J.; Koffas, Mattheos A. G.

    2014-01-01

    Summary Bacterial pathogens bearing capsular polysaccharides identical to mammalian glycans benefit from an additional level of protection from host immune response. The increasing prevalence of antibiotic resistant bacteria portends an impending post-antibiotic age, characterized by diminishing efficacy of common antibiotics and routine application of multifaceted, complementary therapeutic approaches to treat bacterial infections, particularly multidrug-resistant organisms. The first line of defense for most bacterial pathogens consists of a physical and immunological barrier known as the capsule, commonly composed of a viscous layer of carbohydrates that are covalently bound to the cell wall in Gram-positive bacteria or often to lipids of the outer membrane in many Gram-negative bacteria. Bacterial capsular polysaccharides are a diverse class of high molecular weight polysaccharides contributing to virulence of many human pathogens in the gut, respiratory tree, urinary tract, and other host tissues, by hiding cell-surface components that might otherwise elicit host immune response. This review highlights capsular polysaccharides that are structurally identical or similar to polysaccharides found in mammalian tissues, including polysialic acid and glycosaminoglycan capsules hyaluronan, heparosan, and chondroitin. Such non-immunogenic coatings render pathogens insensitive to certain immune responses, effectively increasing residence time in host tissues and enabling pathologically relevant population densities to be reached. Biosynthetic pathways and capsular involvement in immune system evasion are described providing a basis for potential therapies aimed at supplementing or replacing antibiotic treatment. PMID:24372337

  13. The biomechanical properties of an epithelial tissue determine the location of its vasculature

    PubMed Central

    Kragl, Martin; Schubert, Rajib; Karsjens, Haiko; Otter, Silke; Bartosinska, Barbara; Jeruschke, Kay; Weiss, Jürgen; Chen, Chunguang; Alsteens, David; Kuss, Oliver; Speier, Stephan; Eberhard, Daniel; Müller, Daniel J.; Lammert, Eckhard

    2016-01-01

    An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. PMID:27995929

  14. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  15. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    NASA Technical Reports Server (NTRS)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    , cotton rat, guinea pig, ferret, and hamster) fail to accurately imitate viral replication and human disease states (8). Lacking an authentic model has impeded the development and evaluation of live, attenuated vaccine candidates. Development of a physiologically relevant in vitro tissue culture model that reproduces characteristics of the HRE, the primary target of RSV and PIV3, would aid in predicting clinical attenuation and safety of vaccine candidates. Successful tissue engineering of a 3D human intestinal model using novel NASA technology inspired the development of a tri-culture 3D model for the HRE. Sequential layering of primary mesenchymal cells (comprised of normal human fibroblasts and endothelial cells) followed by BEAS-2B epithelial cells derived from human bronchi and tracheae were recapitulated on Cultisphere and/or cytodex3 microcarriers in cylindrical vessels that rotate horizontally creating an organized epithelial structure. Horizontal rotation randomizes the gravity vector modeling aspects of microgravity. Mesenchymal and epithelial cells grown under these conditions reproduce the structural organization, multi-cellular complexity, and differentiation state of the HRE. The opportunity to study respiratory viruses in a nasal epithelium model is invaluable because the most promising respiratory virus vaccine candidates are live attenuated viruses for intranasal administration. Here we characterize the interactions of respiratory viruses and epithelial cells grown under modeled microgravity in comparison to gravity-ladened monolayers. 3D HBE TLAs and traditional monolayers (2D) are infected at 35 C, the upper temperature of the upper HRE, to simulate in vivo infection conditions. Growth kinetics of wild type (wt) RSV and PIV3 viruses were compared in 2D and 3D cells to that of strains attenuated in humans or rhesus macaques. This novel 3D HBE model also offers an opportunity to study whether the epithelial cell function, especially in host defenses

  16. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    PubMed

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  17. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  18. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion.

    PubMed

    Park, Dayoung; Arabyan, Narine; Williams, Cynthia C; Song, Ting; Mitra, Anupam; Weimer, Bart C; Maverakis, Emanual; Lebrilla, Carlito B

    2016-12-01

    Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion.

  19. Host Responses and Regulation by NFκB Signaling in the Liver and Liver Epithelial Cells Infected with A Novel Tick-borne Bunyavirus

    PubMed Central

    Sun, Qiyu; Jin, Cong; Zhu, Lili; Liang, Mifang; Li, Chuan; Cardona, Carol J.; Li, Dexin; Xing, Zheng

    2015-01-01

    Infection in humans by severe fever with thrombocytopenia syndrome virus (SFTSV), a novel bunyavirus transmitted by ticks, is often associated with pronounced liver damage, especially in fatal cases. Little has been known, however, about how liver cells respond to SFTSV and how the response is regulated. In this study we report that proinflammatory cytokines were induced in liver tissues of C57/BL6 mice infected with SFTSV, which may cause tissue necrosis in mice. Human liver epithelial cells were susceptible to SFTSV and antiviral interferon (IFN) and IFN-inducible proteins were induced upon infection. We observed that infection of liver epithelial cells led to significant increases in proinflammatory cytokines and chemokines, including IL-6, RANTES, IP-10, and MIP-3a, which were regulated by NFκB signaling, and the activation of NFκB signaling during infection promoted viral replication in liver epithelial cells. Viral nonstructural protein NSs was inhibitory to the induction of IFN-β, but interestingly, NFκB activation was enhanced in the presence of NSs. Therefore, NSs plays dual roles in the suppression of antiviral IFN-β induction as well as the promotion of proinflammatory responses. Our findings provide the first evidence for elucidating host responses and regulation in liver epithelial cells infected by an emerging bunyavirus. PMID:26134299

  20. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    PubMed

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  1. A Hybrid Computational Model to Explore the Topological Characteristics of Epithelial Tissues.

    PubMed

    González-Valverde, Ismael; García Aznar, José Manuel

    2017-03-01

    Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue.

  2. Epithelial-connective tissue boundary in the oral part of the human soft palate

    PubMed Central

    PAULSEN, FRIEDRICH; THALE, ANDREAS

    1998-01-01

    The papillary layer of the oral part of the human soft palate was studied in 31 subjects of different age by means of histological, immunohistochemical and scanning electron microscopical methods. For scanning electron microscopy a new maceration method was introduced. Results determine epithelial thickness, height and density of connective tissue papillae and their 3-dimensional architecture inside the lining epithelium as well as the collagenous arrangement of the openings of the glandular ducts. The individual connective tissue papillae of the soft palate are compared with the connective tissue boundary on the other side of the oral cavity. The connective tissue plateaux carrying a variable number of connective tissue papillae were found to be the basic structural units of the papillary body. The function of the epithelial-connective tissue interface and the extracellular matrix arrangement in the lamina propria are discussed in order to promote the comparability of normal with pathologically altered human soft palates. PMID:9877301

  3. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    PubMed

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  4. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  5. Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche.

    PubMed

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E; Vernon, Amanda J; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein.

  6. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  7. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  8. Oblique polarized reflectance spectroscopy for depth sensitive measurements in the epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Fradkin, Leonid; Nieman, Linda T.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2013-02-01

    Optical spectroscopy has shown potential as a tool for precancer detection by discriminating alterations in the optical properties within epithelial tissues. Identifying depth-dependent alterations associated with the progression of epithelial cancerous lesions can be especially challenging in the oral cavity due to the variable thickness of the epithelium and the presence of keratinization. Optical spectroscopy of epithelial tissue with improved depth resolution would greatly assist in the isolation of optical properties associated with cancer progression. Here, we report a fiber optic probe for oblique polarized reflectance spectroscopy (OPRS) that is capable of depth sensitive detection by combining the following three approaches: multiple beveled fibers, oblique collection geometry, and polarization gating. We analyze how probe design parameters are related to improvements in collection efficiency of scattered photons from superficial tissue layers and to increased depth discrimination within epithelium. We have demonstrated that obliquely-oriented collection fibers increase both depth selectivity and collection efficiency of scattering signal. Currently, we evaluate this technology in a clinical trial of patients presenting lesions suspicious for dysplasia or carcinoma in the oral cavity. We use depth sensitive spectroscopic data to develop automated algorithms for analysis of morphological and architectural changes in the context of the multilayer oral epithelial tissue. Our initial results show that OPRS has the potential to improve the detection and monitoring of epithelial precancers in the oral cavity.

  9. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  10. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    PubMed

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  11. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues.

    PubMed

    Durr, Nicholas J; Weisspfennig, Christian T; Holfeld, Benjamin A; Ben-Yakar, Adela

    2011-02-01

    Endogenous fluorescence provides morphological, spectral, and lifetime contrast that can indicate disease states in tissues. Previous studies have demonstrated that two-photon autofluorescence microscopy (2PAM) can be used for noninvasive, three-dimensional imaging of epithelial tissues down to approximately 150 μm beneath the skin surface. We report ex-vivo 2PAM images of epithelial tissue from a human tongue biopsy down to 370 μm below the surface. At greater than 320 μm deep, the fluorescence generated outside the focal volume degrades the image contrast to below one. We demonstrate that these imaging depths can be reached with 160 mW of laser power (2-nJ per pulse) from a conventional 80-MHz repetition rate ultrafast laser oscillator. To better understand the maximum imaging depths that we can achieve in epithelial tissues, we studied image contrast as a function of depth in tissue phantoms with a range of relevant optical properties. The phantom data agree well with the estimated contrast decays from time-resolved Monte Carlo simulations and show maximum imaging depths similar to that found in human biopsy results. This work demonstrates that the low staining inhomogeneity (∼ 20) and large scattering coefficient (∼ 10 mm(-1)) associated with conventional 2PAM limit the maximum imaging depth to 3 to 5 mean free scattering lengths deep in epithelial tissue.

  12. SURFACE CHEMISTRY INFLUENCE IMPLANT MEDIATED HOST TISSUE RESPONSES

    PubMed Central

    Kamath, Shwetha; Bhattacharyya, Dhiman; Padukudru, Chandana; Timmons, Richard B.; Tang, Liping

    2011-01-01

    Implant-mediated fibrotic reactions are detrimental to the performance of encapsulated cells, implanted drug release devices and sensors. To improve the implant function and longevity, research has emphasized altering cellular responses. Although material surface functional groups have been shown to be potent in affecting cellular activity in vitro and short term in vivo responses, these groups appear to have little influence on long-term in vivo fibrotic reactions, possibly as a result of insufficient interactions between recruited host cells and functional groups on the implants. To maximize the influence of functionality on cells, and to mimic drug release microspheres, functionalized micron-sized particles were created and tested for their ability in modulating tissue responses to biomaterial implants. In this work, the surfaces of polypropylene particles were controllably coated with four different functional groups, specifically –OH, -NH2, -CFx and –COOH, using a radio frequency glow discharge plasma polymerization technique. The effect of these surface functionalities on host tissue responses were then evaluated using a mice subcutaneous implantation model. Major differences were observed in contrasting tissue response to the different chemistries. Surfaces with –OH and –NH2 surface groups induced the thickest fibrous capsule accompanied with the greatest cellular infiltration into the implants. In contrast, surfaces with –CFx and –COOH exhibited the least inflammatory/fibrotic responses and cellular infiltrations. The present results clearly demonstrate that, by increasing the available functionalized surface area and spatial distribution, the effect of surface chemistry on tissue reactivity can be substantially enhanced. PMID:18022841

  13. CONTRIBUTION OF HOST-DERIVED TISSUE FACTOR TO TUMOR NEOVASCULARIZATION

    PubMed Central

    Yu, Joanne; May, Linda; Milsom, Chloe; Anderson, G. Mark; Weitz, Jeffrey I.; Luyendyk, James P.; Broze, George; Mackman, Nigel; Rak, Janusz

    2010-01-01

    Objective The role of host-derived tissue factor (TF) in tumor growth, angiogenesis and metastasis has hitherto been unclear, and was investigated in this study. Methods We compared tumor growth, vascularity and responses to cyclophosphamide (CTX) of tumors in wild type (wt) mice, or in animals with TF levels reduced by 99% (low-TF mice). Results Global growth rate of three different types of transplantable tumors (LLC, B16F1 and ES teratoma), or metastasis were unchanged in low-TF mice. However, several unexpected tumor/context-specific alterations were observed in these mice, including: (i) reduced tumor blood vessel size in B16F1 tumors; (ii) larger spleen size and greater tolerance to CTX toxicity in the LLC model; (iii) aborted tumor growth after inoculation of TF-deficient tumor cells (ES TF-/-) in low-TF mice. TF-deficient tumor cells grew readily in mice with normal TF levels, and attracted exclusively host-related blood vessels (without vasculogenic mimicry). We postulate that this complementarity may result from tumor-vascular transfer of TF-containing microvesicles, as we observed such transfer using human cancer cells (A431) and mouse endothelial cells, both in vitro and in vivo. Conclusions Our study points to an important, but context-dependent role of host TF in tumor formation, angiogenesis and therapy. PMID:18772494

  14. Remodeling of the epithelial-connective tissue interface (ECTI) in oral epithelial dysplasia as visualized by noninvasive 3D imaging

    PubMed Central

    Pal, Rahul; Shilagard, Tuya; Yang, Jinping; Villarreal, Paula; Brown, Tyra; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-01-01

    Early neoplastic features in oral epithelial dysplasia are first evident at the basal epithelium positioned at the epithelial-connective tissue interface (ECTI), separating the basal epithelium from the underlying lamina propria. The ECTI undergoes significant deformation in early neoplasia due to focal epithelial expansion and proteolytic remodeling of the lamina propria but few studies have examined these changes. In the present study, we quantitated alterations in ECTI topography in dysplasia using in vivo volumetric multiphoton autofluorescence microscopy and second harmonic generation microscopy. The label-free method allows direct noninvasive visualization of the ECTI surface without perturbing the epithelium. An image-based parameter, ‘ECTI contour’, is described that indicates deformation of the ECTI surface. ECTI contour was higher in dysplasia than control or inflammed specimens, indicating transition from flat to a deformed surface. Cellular parameters of nuclear area, nuclear density, coefficient of variation in nuclear area in the basal epithelium and collagen density in areas adjacent to ECTI were measured. ECTI contour differentiated dysplasia from control/benign mucosa with higher sensitivity and specificity than basal nuclear density or basal nuclear area, comparable to coefficient of variation in nuclear area and collagen density. The presented method offers a unique opportunity to study ECTI in intact mucosa with simultaneous assessment of cellular and extracellular matrix features, expanding opportunities for studies of early neoplastic events near this critical interface and potentially leading to development of new approaches for detecting neoplasia in vivo. PMID:27302162

  15. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues.

  16. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs

    PubMed Central

    Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.

    2016-01-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues.

  17. Tissue specificity of epithelial keratins: differential expression of mRNAs from two multigene families.

    PubMed Central

    Kim, K H; Rheinwald, J G; Fuchs, E V

    1983-01-01

    Human epithelial cells cultured from stratified and simple squamous tissues all produce keratins of 40,000 to 58,000 daltons, but within this range the number and sizes vary with different epithelial cells. We have shown that this tissue-specific variation in the keratins is not due to posttranslational modification or processing, but rather to the differential expression of a family of heterogeneous but closely related mRNAs. All of these epithelial keratin mRNAs can be further grouped into two distinct subfamilies by their ability to hybridize with either of two cloned epidermal keratin cDNAs. All of the keratin mRNAs hybridize to one or the other, but not both, of the two cloned cDNAs. However, the mRNAs within each group hybridize with varying degrees of stringency, indicating that they are of similar but not identical sequence. Both types of keratin mRNAs are always expressed in every epithelial cell line studied, suggesting that filament assembly is dependent on the presence of both types of keratins. Within each of these two groups, the slight sequence differences in each class may reflect subtle tissue-specific variations in the structural and functional requirements of the epithelial cytoskeleton. Images PMID:6190074

  18. Tissue architecture: the ultimate regulator of breast epithelial function

    SciTech Connect

    Bissell, Mina J; Rizki, Aylin; Mian, Saira

    2003-10-20

    A problem in developmental biology that continues to take center stage is how higher organisms generate diverse tissues and organs given the same cellular genotype. In cell and tumor biology, the key question is not the production of form, but its preservation: how do tissues and organs maintain homeostasis, and how do cells within tissues lose or overcome these controls in cancer? Undoubtedly, mechanisms that maintain tissue specificity should share features with those employed to drive formation of the tissues. However, they are unlikely to be identical. At a simplistic level, developmental pathways may be thought of as a series of extremely rapid short-term events. Each new step depends on what came before, and the outcome is the organism itself at birth. All organs, with a few notable exceptions, such as the mammary gland and the brain, 'arrive' together and are complete when the organism is born. In mice and humans, these events occur in a mere 21 days and 9 months respectively. The stability of the differentiated state and the homeostasis of the organism, on the other hand, will last 40-110 times longer. How does the organism achieve this feat? How are tissues maintained? These questions also relate fundamentally to how tissues become malignant and, although not discussed here, to aging. While there is much literature on differentiation - loosely defined as the gain of a single or a series of functions - we know much less about the forces and the pathways that maintain organ morphology and function as a unit. This may be partly because it is difficult to study a tissue as a unit in vivo and there are few techniques that allow maintenance of organs in vitro long enough and in such a way as to make cell and molecular biology experiments possible. Techniques for culturing cells in three-dimensional gels (3D) as a surrogate for tissues, however, have been steadily improving and the method is now used by several laboratories. In this commentary we discuss the

  19. Cell-size distribution in epithelial tissue formation and homeostasis.

    PubMed

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.

  20. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  1. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells

    PubMed Central

    Saroj, Sunil D.; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  2. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    SciTech Connect

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  3. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors.

  4. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    PubMed Central

    Asmat, Tauseef M.; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial

  5. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    PubMed

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  6. Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering

    PubMed Central

    Joshi, Sagar D.; Davidson, Lance A.

    2013-01-01

    Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering. PMID:22854913

  7. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  8. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells

    PubMed Central

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-01-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1-ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma. PMID

  9. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

    PubMed

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-04-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).

  10. Segmentation and Tracking of Adherens Junctions in 3D for the Analysis of Epithelial Tissue Morphogenesis

    PubMed Central

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-01-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) PMID:25884654

  11. Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces.

    PubMed

    Tang, L; Wu, Y; Timmons, R B

    1998-10-01

    The physical and chemical characteristics of material surfaces are thought to play important roles in biomaterial-mediated tissue responses. To understand the importance of discrete biomaterial chemical characteristics in modifying host tissue responses, we constructed surfaces bearing different functional groups using radio frequency glow discharge plasma polymerization. Surfaces evaluated included those having high concentrations of -OH, -NH2, -CF3, and siloxyl groups. These surfaces and polyethylene terephthalate controls were used to assess the importance of particular physicochemical characteristics in surface:protein:cell interactions both in vitro and in vivo. The results obtained show that surface functionalities do significantly affect both the adsorption and "denaturation" of adsorbed fibrinogen (which is an important mediator of inflammatory responses to biomaterial implants). In addition, these surfaces provoke different degrees of acute inflammatory responses. Interestingly, the amounts of "denatured" fibrinogen that spontaneously accumulate on the individual surfaces correlate closely with the extent of biomaterial-mediated inflammation. These results suggest that surfaces that tend to "irreversibly" bind fibrinogen prompt greater acute inflammatory responses. Unexpectedly, all test surfaces except those bearing a siloxyl group engender relatively similar biomaterial-mediated fibrotic responses. Thus surface functionalities alone may not be sufficient to affect subsequent fibrotic responses.

  12. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis

    PubMed Central

    Atsuta, Yuji; Takahashi, Yoshiko

    2015-01-01

    When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static (‘rear’) cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth. PMID:26130757

  13. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration

  14. Epithelial bridges maintain tissue integrity during collective cell migration

    NASA Astrophysics Data System (ADS)

    Vedula, Sri Ram Krishna; Hirata, Hiroaki; Nai, Mui Hoon; Brugués, Agustí; Toyama, Yusuke; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit

    2014-01-01

    The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell-substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.

  15. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression

    PubMed Central

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D.; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong

    2016-01-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori. In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA. Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  16. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  17. Experimental control of excitable embryonic tissues: three stimuli induce rapid epithelial contraction

    PubMed Central

    Joshi, Sagar D.; von Dassow, Michelangelo; Davidson, Lance. A.

    2009-01-01

    Cell generated contractility is a major driver of morphogenesis during processes such as epithelial bending and epithelial-to-mesenchymal transitions. Previous studies of contraction in embryos have relied on developmentally programmed cell shape changes such as those that accompany ventral furrow formation in Drosophila, bottle cell formation in Xenopus, ingression in amniote embryos, and neurulation in vertebrate embryos. We have identified three methods to reproducibly and acutely induce contraction in embryonic epithelial sheets: laser activation, electrical stimulation, and nano-perfusion with chemicals released by wounding. Contractions induced by all three methods occur over a similar time scale (1 to 2 min) and lead to reorganization of the F-actin cytoskeleton. By combining induced contractions with micro-aspiration we can simultaneously measure the stiffness of the tissue and the force and work done by contractions. Laser-activation allows real-time visualization of F-actin remodeling during contraction. Perfusion with cell-lysate suggests these three stimuli activate physiologically relevant pathways that maintain epithelial tension or trigger epithelial morphogenesis. Our methods provide the means to control and study cellular contractility and will allow dissection of molecular mechanisms and biomechanics of cellular contractility. PMID:19686733

  18. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  19. A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue.

    PubMed

    Harris, Meagan A; Van, Andrew N; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.

  20. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue.

    PubMed

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-02-20

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet.

  1. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  2. The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella.

    PubMed

    Lai, Livia; Bumstead, Janene; Liu, Yan; Garnett, James; Campanero-Rhodes, Maria A; Blake, Damer P; Palma, Angelina S; Chai, Wengang; Ferguson, David J P; Simpson, Peter; Feizi, Ten; Tomley, Fiona M; Matthews, Stephen

    2011-10-01

    Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.

  3. Exploring processes of organization of normal and neoplastic epithelial tissues in gradient culture.

    PubMed

    Leighton, J

    1994-09-01

    The biology of animal cells in culture is often studied in individual cells or in sheets of cells. The relevance of such studies to the intact animal is unclear, since the spatial conditions encountered by cells in animals is one of dense three-dimensional masses of cells, with limits to migration, and with gradients both of diffusion of metabolites and of morphologic maturation. These spatial requisites have gradually been met in culture. A brief account describes sponge matrix culture for three-dimensional growth and unilaminar, bilaminar, and radial histophysiologic gradient cultures. Some of the common neoplastic abnormalities of surface epithelial tissues are considered. Proposals for investigating the histokinetic mechanisms regulating some epithelial tissue processes are suggested. In the most recent development of gradient culture methods, a thin permeable transparent collagen membrane is intrinsically strengthened by producing a waffle membrane pattern for histophysiologic gradient culture.

  4. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  5. Rescue of embryonic epithelium reveals that the homozygous deletion of the retinoblastoma gene confers growth factor independence and immortality but does not influence epithelial differentiation or tissue morphogenesis.

    PubMed

    Day, Kathleen C; McCabe, Michael T; Zhao, Xin; Wang, Yuzhuo; Davis, Joanne N; Phillips, John; Von Geldern, Marion; Ried, Thomas; KuKuruga, Mark A; Cunha, Gerald R; Hayward, Simon W; Day, Mark L

    2002-11-15

    The ability to rescue viable prostate precursor tissue from retinoblastoma-deficient (Rb-/-) fetal mice has allowed for the isolation and characterization of the first Rb-/- prostate epithelial cell line. This cell line, designated Rb-/-PrE, was utilized for experiments examining the consequences of Rb loss on an epithelial population. These findings demonstrated that Rb deletion has no discernible effect on prostatic histodifferentiation in Rb-/-PrE cultures. When Rb-/-PrE cells were recombined with embryonic rat urogenital mesenchyme and implanted into athymic male, nude mouse hosts, the recombinants developed into fully differentiated and morphologically normal prostate tissue. The Rb-/-PrE phenotype was characterized by serum independence in culture and immortality in vivo, when compared with wild type controls. Cell cycle analysis revealed elevated S phase DNA content accompanied by increased expression of cyclin E1 and proliferating cell nuclear antigen. Rb-/-PrE cultures also exhibited a diminished ability to growth arrest under high density culture conditions. We believe that the development of Rb-/- prostate tissue and cell lines has provided a unique experimental platform with which to investigate the consequences of Rb deletion in epithelial cells under various physiological conditions. Additionally, the development of this technology will allow similar studies in other tissues and cell populations rescued from Rb-/- fetuses.

  6. Tumor suppressor roles of CENP-E and Nsl1 in Drosophila epithelial tissues.

    PubMed

    Clemente-Ruiz, Marta; Muzzopappa, Mariana; Milán, Marco

    2014-01-01

    Depletion of spindle assembly checkpoint (SAC) genes in Drosophila epithelial tissues leads to JNK-dependent programmed cell death and additional blockade of the apoptotic program drives tumorigenesis. A recent report proposes that chromosomal instability (CIN) is not the driving force in the tumorigenic response of the SAC-deficient tissue, and that checkpoint proteins exert a SAC-independent tumor suppressor role. This notion is based on observations that the depletion of CENP-E levels or prevention of Bub3 from binding to the kinetochore in Drosophila tissues unable to activate the apoptotic program induces CIN but does not cause hyperproliferation. Here we re-examined this proposal. In contrast to the previous report, we observed that depletion of CENP-E or Nsl1-the latter mediating kinetochore targeting of Bub3-in epithelial tissues unable to activate the apoptotic program induces significant levels of aneuploidy and drives tumor-like growth. The induction of the JNK transcriptional targets Wingless, a mitogenic molecule, and MMP1, a matrix metaloproteinase 1 involved in basement membrane degradation was also observed in these tumors. An identical response of the tissue was previously detected upon depletion of several SAC genes or genes involved in spindle assembly, chromatin condensation, and cytokinesis, all of which have been described to cause CIN. All together, these results reinforce the role of CIN in driving tumorigenesis in Drosophila epithelial tissues and question the proposed SAC-independent roles of checkpoint proteins in suppressing tumorigenesis. Differences in aneuploidy rates might explain the discrepancy between the previous report and our results.

  7. Temporal Transcriptional Response during Infection of Type II Alveolar Epithelial Cells with Francisella tularensis Live Vaccine Strain (LVS) Supports a General Host Suppression and Bacterial Uptake by Macropinocytosis*

    PubMed Central

    Bradburne, Christopher E.; Verhoeven, Anne B.; Manyam, Ganiraju C.; Chaudhry, Saira A.; Chang, Eddie L.; Thach, Dzung C.; Bailey, Charles L.; van Hoek, Monique L.

    2013-01-01

    Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F. tularensis. A549 cells were infected and analyzed for global transcriptional response at multiple time points up to 16 h following infection. At 15 min and 2 h, a strong transcriptional response was observed including cytoskeletal rearrangement, intracellular transport, and interferon signaling. However, at later time points (6 and 16 h), very little differential gene expression was observed, indicating a general suppression of the host response consistent with other reported cell lines and murine tissues. Genes for macropinocytosis and actin/cytoskeleton rearrangement were highly up-regulated and common to the 15 min and 2 h time points, suggesting the use of this method for bacterial entry into cells. We demonstrate macropinocytosis through the uptake of FITC-dextran and amiloride inhibition of Francisella LVS uptake. Our results suggest that macropinocytosis is a potential mechanism of intracellular entry by LVS and that the host cell response is suppressed during the first 2–6 h of infection. These results suggest that the attenuated Francisella LVS induces significant host cell signaling at very early time points after the bacteria's interaction with the cell. PMID:23322778

  8. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization.

    PubMed

    Kremer, Natacha; Philipp, Eva E R; Carpentier, Marie-Christine; Brennan, Caitlin A; Kraemer, Lars; Altura, Melissa A; Augustin, René; Häsler, Robert; Heath-Heckman, Elizabeth A C; Peyer, Suzanne M; Schwartzman, Julia; Rader, Bethany A; Ruby, Edward G; Rosenstiel, Philip; McFall-Ngai, Margaret J

    2013-08-14

    Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, approximately five V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here, we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to the host's specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization.

  9. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    PubMed

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  10. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    PubMed

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  11. Relative resistance of long junctional epithelial adhesions and connective tissue attachments to plaque-induced inflammation.

    PubMed

    Beaumont, R H; O'Leary, T J; Kafrawy, A H

    1984-04-01

    This study compared the resistance to periodontal disease of the long junctional epithelial adhesion and the naturally occurring dentogingival junction. Two groups were used, each containing three young male beagle dogs with all permanent teeth erupted. Periodontitis was induced around maxillary and mandibular premolars in the experimental dogs over a 42-day period, using subgingival ligatures and a soft diet. Fourteen days after ligature removal, flaps were reflected, granulation tissue was removed and the roots were planed to the alveolar crest. Reference grooves were placed in the root surfaces at the level of the alveolar bone, the flaps were positioned over the alveolar crests, and sutures were placed. A 60-day period permitted healing with formation of long junctional epithelial adhesions. During this 116-day period control dogs were maintained in gingival health by daily brushing and by prophylaxis every 14 days. Both groups had a high level of health (GI scores of 0) at the beginning of the 20-day combined disease phase. Inflammation was induced in both groups by subgingival ligature placement and a plaque-promoting diet. Right and left sides of both groups represented separate time intervals within the 20-day period. Block sections were secured at time of killing and the tissues were prepared for light and fluorescent microscopic evaluation. Mean GI scores and mean probing depths increased similarly in both groups. Tagge index scores of gingival inflammation were higher at the longer time periods in the experimental animals. However, they displayed an intact long junctional epithelial adhesion throughout the study, while control animals frequently showed ulceration of the sulcular epithelium. Neither group showed significant changes in location of the apical cells of the attachment epithelium. Crestal osteoblastic activity, confirmed with Procion labeling, predominated in the experimental animals, while osteoclastic activity predominated in the control

  12. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses

    PubMed Central

    Ozbun, Michelle A.; Patterson, Nicole A.

    2014-01-01

    Papillomaviruses have a strict tropism for epithelial cells and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro wherein virion morphogenesis occurs under cooperative viral and cellular cues requires the cultivation of epithelium. Presented in the first section of this unit is a protocol for growing differentiating epithelial tissues, whose structure and function mimics many important morphological and biochemical aspects of normal skin. The technique, pioneered by Asslineau and Pruniéras (Asselineau and Prunieras 1984) and modified by Kopan et al. (Kopan et al. 1987), involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname “raft” cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, as well as keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single step virus growth

  13. Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. Bacterial entry induces epithelial prostaglandin h synthase-2 expression and prostaglandin E2 and F2alpha production.

    PubMed Central

    Eckmann, L; Stenson, W F; Savidge, T C; Lowe, D C; Barrett, K E; Fierer, J; Smith, J R; Kagnoff, M F

    1997-01-01

    Increased intestinal fluid secretion is a protective host response after enteric infection with invasive bacteria that is initiated within hours after infection, and is mediated by prostaglandin H synthase (PGHS) products in animal models of infection. Intestinal epithelial cells are the first host cells to become infected with invasive bacteria, which enter and pass through these cells to initiate mucosal, and ultimately systemic, infection. The present studies characterized the role of intestinal epithelial cells in the host secretory response after infection with invasive bacteria. Infection of cultured human intestinal epithelial cell lines with invasive bacteria, but not noninvasive bacteria, is shown to induce the expression of one of the rate-limiting enzymes for prostaglandin formation, PGHS-2, and the production of PGE2 and PGF2alpha. Furthermore, increased PGHS-2 expression was observed in intestinal epithelial cells in vivo after infection with invasive bacteria, using a human intestinal xenograft model in SCID mice. In support of the physiologic importance of epithelial PGHS-2 expression, supernatants from bacteria-infected intestinal epithelial cells were shown to increase chloride secretion in an in vitro model using polarized epithelial cells, and this activity was accounted for by PGE2. These studies define a novel autocrine/paracrine function of mediators produced by intestinal epithelial cells in the rapid induction of increased fluid secretion in response to intestinal infection with invasive bacteria. PMID:9218506

  14. Human Bone Marrow Stromal Cells Differentiate Into Corneal Tissue and Prevent Ocular Graft-Versus-Host Disease in Mice.

    PubMed

    Sánchez-Abarca, Luis Ignacio; Hernández-Galilea, Emiliano; Lorenzo, Rebeca; Herrero, Carmen; Velasco, Almudena; Carrancio, Soraya; Caballero-Velázquez, Teresa; Rodríguez-Barbosa, José Ignacio; Parrilla, Marta; Del Cañizo, Consuelo; San Miguel, Jesús; Aijón, José; Pérez-Simón, José Antonio

    2015-01-01

    Clinical trials have assessed the use of human bone marrow stromal cells (hBMSCs) for the treatment of immune-related disorders such as graft-versus-host disease (GVHD). In the current study, we show that GFP(+)-transduced hBMSCs generated from bone marrow migrate and differentiate into corneal tissue after subconjunctival injection in mice. Interestingly, these hBMSCs display morphological features of epithelial, stromal, and endothelial cells and appear at different layers and with different morphologies depending on their position within the epithelium. Furthermore, these cells display ultrastructural properties, such as bundles of intermediate filaments, interdigitations, and desmosomes with GFP(-) cells, which confirms their differentiation into corneal tissues. GFP(+)-transduced hBMSCs were injected at different time points into the right eye of lethally irradiated mice undergoing bone marrow transplantation, which developed ocular GVHD (oGVHD). Remarkably, hBMSCs massively migrate to corneal tissues after subconjunctival injection. Both macroscopic and histopathological examination showed minimal or no evidence of GVHD in the right eye, while the left eye, where no hBMSCs were injected, displayed features of GVHD. Thus, in the current study, we confirm that hBMSCs may induce their therapeutic effect at least in part by differentiation and regeneration of damaged tissues in the host. Our results provide experimental evidence that hBMSCs represent a potential cellular therapy to attenuate oGVHD.

  15. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    PubMed

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal

  16. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  17. Value of human amniotic epithelial cells in tissue engineering for cornea.

    PubMed

    Fatimah, Simat Siti; Ng, Sook Luan; Chua, Kien Hui; Hayati, Abdul Rahman; Tan, Ay Eeng; Tan, Geok Chin

    2010-11-01

    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.

  18. Pathogen and host differences in bacterial adherence to human buccal epithelial cells in a northeast Brazilian community.

    PubMed Central

    Walser, B L; Newman, R D; Lima, A A; Guerrant, R L

    1992-01-01

    The adherence of several strains of Escherichia coli to human buccal epithelial cells was studied, using cells obtained from five groups: healthy adults, healthy children, children with acute diarrhea, children with persistent diarrhea associated with cryptosporidial parasites, and children with noncryptosporidial persistent diarrhea. All groups lived or worked in an urban slum in northeastern Brazil. Samples of buccal epithelial cells from subjects in each of these groups were incubated with wild-type E. coli K-12 (strain C600), the enteroaggregative E. coli strains 17-2 and PDAS 30-5, CFA/II-positive E. coli 1392+ and its plasmid-cured derivative 1392-, and hydrophobic E. coli 132-3. Samples were evaluated microscopically to determine background contamination and the percentage of cells with more than 15% of their surface area obscured by adherent bacteria after incubation and washing. The assay was tested under field conditions and was shown to produce reliable and consistent results. Both enteroaggregative strains of E. coli were shown to adhere to a significantly higher percentage of all groups of human buccal epithelial cells than any of the other tested strains. In addition, buccal epithelial cells from children with nonparasitic persistent diarrhea showed substantially more bacterial adherence in both the native state and with all tested strains of E. coli than did cells from children with persistent cryptosporidial diarrhea or acute diarrhea or from healthy controls. This study provides evidence that enteroaggregative strains of E. coli demonstrate increased adherence to human buccal epithelial cells (as well as to cultured HEp-2 cells) and that buccal epithelial cells from children with noncryptosporidial persistent diarrhea appear to be more susceptible to bacterial adherence and colonization than buccal epithelial cells from control groups. These findings suggest that host differences as well as pathogen differences are important in the pathogenesis of

  19. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    PubMed

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  20. The Respiratory Pathogen Moraxella catarrhalis Targets Collagen for Maximal Adherence to Host Tissues

    PubMed Central

    Singh, Birendra; Alvarado-Kristensson, Maria; Johansson, Martin; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Mörgelin, Matthias

    2016-01-01

    ABSTRACT Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n = 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins. M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2 (UspA2) and UspA2H were identified as major collagen-binding receptors. M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that the M. catarrhalis UspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. PMID:27006460

  1. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    PubMed

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

  2. Pattern formation in fiber-reinforced tubular tissues: Folding and segmentation during epithelial growth

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Ben Amar, M.

    2012-03-01

    Constrained growth processes in living materials result in a complex distribution of residual strains, which in certain geometries may induce a bifurcation in the elastic stability. In this work, we investigate the combined effects of growth and material anisotropy in the epithelial pattern formation of tubular tissues. In order to represent the structural organization of most organs, we adopt a strain energy density which accounts for the presence of a nonlinear reinforcement made of cross-ply fibers distributed inside a ground matrix. Using a canonical transformation in mixed polar coordinates, we transform the nonlinear elastic boundary value problem into a variational formulation, performing a straightforward derivation of the Euler-Lagrange equations for perturbations in circumferential and longitudinal directions. The corresponding curves of marginal stability are obtained numerically: the results demonstrate that both the three-dimensional distribution of residual strains and the mechanical properties of fiber reinforcements within the tissue are fundamental to determine the emergence of a specific instability pattern. In particular, different proportions of axial and circumferential residual strains can model the epithelial formation of mucosal folds in the esophagus and of plicae circulares in the small intestine. The theoretical predictions are compared with morphological data for embryonic intestinal tissues, suggesting that the volumetric growth of the epithelium can also drive the early stages of villi morphogenesis.

  3. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  4. Cell-cycle-associated markers and clinical outcome in human epithelial cancers: a tissue microarray study.

    PubMed

    Abdulkader, I; Sánchez, L; Cameselle-Teijeiro, J; Gude, F; Chávez, J E; López-López, R; Forteza, J; Fraga, M

    2005-12-01

    The development and progression of epithelial cancers are the result of an imbalance in signals promoting and inhibiting cellular proliferation and apoptosis. The aim of this study is to evaluate the expression of cell-cycle and apoptosis regulators and correlate them with clinical outcome in the most frequent carcinomas, in order to establish common prognostic biomarkers independent of cancer origin. Using tissue microarrays (TMAs), we have analysed the immuno-expression of Ki-67, Bcl-2, Bax, cyclin D1, cyclin D3, CDK1, CDK2, CDK6, p16, p21, and p27 in a series of 205 carcinomas of the large bowel, breast, lung and prostate (80, 73, 37 and 15 cases, respectively). By univariate analysis, positivity for p27, p16 and Bcl-2 was associated with better overall survival (P<0.0135, P<0.0442 and P<0.0001, respectively). The risk of mortality was 2.3-fold greater in patients without Bcl-2 expression. TMA immunohistochemical analysis identified a subset of epithelial cancers with overlapping alterations in cell-cycle checkpoints, apoptosis regulators and tumour suppressor pathways. We found that in most common epithelial cancers, regardless of origin, Bcl-2 appears to be the key biological factor influencing clinical behaviour.

  5. TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues.

    PubMed Central

    Krajewska, M.; Krajewski, S.; Zapata, J. M.; Van Arsdale, T.; Gascoyne, R. D.; Berern, K.; McFadden, D.; Shabaik, A.; Hugh, J.; Reynolds, A.; Clevenger, C. V.; Reed, J. C.

    1998-01-01

    TRAF-4 was discovered because of its expression in breast cancers and is a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family of putative signal-transducing proteins. In vitro binding assays demonstrated that TRAF-4 interacts with the cytosolic domain of the lymphotoxin-beta receptor (LT beta R) and weakly with the p75 nerve growth factor receptor (NGFR) but not with TNFR1, TNFR2, Fas, or CD40. Immunofluorescence analysis of TRAF-4 in transfected cells demonstrated localization to cytosol but not nucleus. Immunohistochemical assays of normal human adult tissues revealed prominent cytosolic immunostaining in thymic epithelial cells and lymph node dendritic cells but not in lymphocytes or thymocytes, paralleling the reported patterns of LT beta R expression. The basal cell layer of most epithelia in the body was very strongly TRAF-4 immunopositive, including epidermis, nasopharynx, respiratory tract, salivary gland, and esophagus. Similar findings were obtained in 12- to 18-week human fetal tissue, indicating a highly restricted pattern of expression even during development in the mammary gland, epithelial cells of the terminal ducts were strongly TRAF-4 immunopositive whereas myoepithelial cells and most of the mammary epithelial cells lining the extralobular ducts were TRAF-4 immunonegative. Of 84 primary breast cancers evaluated, only 7 expressed TRAF-4. Ductal carcinoma in situ (DCIS) lesions were uniformly TRAF-4 immunonegative (n = 21). In the prostate, the basal cells were strongly immunostained for TRAF-4, whereas the secretory epithelial cells were TRAF-4 negative. Basal cells in prostate hypertrophy (n = 6) and prostatic intraepithelial neoplasia (PIN; n = 6) were strongly TRAF-4 positive, but none of the 32 primary and 16 metastatic prostate cancer specimens examined contained TRAF-4-positive malignant cells. Although also expressed in some types of mesenchymal cells, these findings suggest that TRAF-4 is a marker of normal

  6. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction.

    PubMed Central

    Traweek, S. T.; Liu, J.; Battifora, H.

    1993-01-01

    Keratin filament are characteristically present in epithelial cells and tumors, but have also been detected in many normal and neoplastic non-epithelial cell types using immunohistochemical techniques. To investigate the validity of this seemingly aberrant protein expression, we applied the highly sensitive polymerase chain reaction (PCR) technique to study keratin gene expression in a variety of non-epithelial tissues. Total RNA was extracted from nine samples of leiomyosarcoma, four non-Hodgkin's lymphoma, seven normal bone marrows, normal lymph node, normal peripheral blood cells, freshly isolated and cultured endothelial cells, cultured skin fibroblasts, and the myeloid leukemia cell line HL-60. Amplification primers and probes for the three most primitive keratin types (8, 18, and 19) were synthesized using published gene sequences. RNA from the breast carcinoma cell line MCF-7, known to be rich in all three keratins, was used as positive control. Concurrently run actin primers were used to confirm RNA integrity. After an initial cycle with reverse transcriptase, PCR amplification was performed for 30 cycles. Southern blots of the PCR products showed variably intense bands corresponding to keratin 8 and 18 gene products in all samples, offering conclusive evidence of keratin gene expression in cells of both stromal and hematopoietic derivation. However, keratin 19 gene transcription was not nearly so ubiquitous, being detected in normal fibroblasts and endothelial cells, two of four non-Hodgkin's lymphoma and four of nine leiomyosarcoma, but not in normal lymph node, peripheral blood cells, HL-60 cells, or any of the seven normal bone marrows examined. Dilutional experiments showed PCR to be highly sensitive in the detection of keratin 19 gene expression, capable of registering one MCF-7 cell in 10(6) HL-60 cells. These studies show that variable levels of keratin 8 and 18 gene expression may be detected by PCR in a wide variety of non-epithelial tissues

  7. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.

    PubMed

    Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E; Flomenberg, Neal; Birbe, Ruth C; Witkiewicz, Agnieszka K; Howell, Anthony; Pavlides, Stephanos; Tsirigos, Aristotelis; Ertel, Adam; Pestell, Richard G; Broda, Paolo; Minetti, Carlo; Lisanti, Michael P; Sotgia, Federica

    2011-12-01

    We have recently proposed a new mechanism for explaining energy transfer in cancer metabolism. In this scenario, cancer cells behave as metabolic parasites, by extracting nutrients from normal host cells, such as fibroblasts, via the secretion of hydrogen peroxide as the initial trigger. Oxidative stress in the tumor microenvironment then leads to autophagy-driven catabolism, mitochondrial dys-function, and aerobic glycolysis. This, in turn, produces high-energy nutrients (such as L-lactate, ketones, and glutamine) that drive the anabolic growth of tumor cells, via oxidative mitochondrial metabolism. A logical prediction of this new "parasitic" cancer model is that tumor-associated fibroblasts should show evidence of mitochondrial dys-function (mitophagy and aerobic glycolysis). In contrast, epithelial cancer cells should increase their oxidative mitochondrial capacity. To further test this hypothesis, here we subjected frozen sections from human breast tumors to a staining procedure that only detects functional mitochondria. This method detects the in situ enzymatic activity of cytochrome C oxidase (COX), also known as Complex IV. Remarkably, cancer cells show an over-abundance of COX activity, while adjacent stromal cells remain essentially negative. Adjacent normal ductal epithelial cells also show little or no COX activity, relative to epithelial cancer cells. Thus, oxidative mitochondrial activity is selectively amplified in cancer cells. Although COX activity staining has never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. Similar results were obtained with NADH activity staining, which measures Complex I activity, and succinate dehydrogenase (SDH) activity staining, which measures Complex II activity. COX and NADH activities were blocked by electron transport inhibitors, such as Metformin. This has mechanistic and clinical implications for

  8. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens

    PubMed Central

    Skogberg, Gabriel; Lundberg, Vanja; Berglund, Martin; Gudmundsdottir, Judith; Telemo, Esbjörn; Lindgren, Susanne; Ekwall, Olov

    2015-01-01

    Exosomes are nano-sized vesicles released by cells into the extracellular space and have been shown to be present in thymic tissue both in mice and in humans. The source of thymic exosomes is however still an enigma and hence it is not known whether thymic epithelial cells (TECs) are able to produce exosomes. In this work, we have cultured human TECs and isolated exosomes. These exosomes carry tissue-restricted antigens (TRAs), for example, myelin basic protein and desmoglein 3. The presence of TRAs indicates a possible role for thymic epithelium-derived exosomes in the selection process of thymocytes. The key contribution of these exosomes could be to disseminate self-antigens from the thymic epithelia, thus making them more accessible to the pool of maturing thymocytes. This would increase the coverage of TRAs within the thymus, and facilitate the process of positive and negative selection. PMID:25776846

  9. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers.

    PubMed

    Giusti, Serena; Sbrana, Tommaso; La Marca, Margherita; Di Patria, Valentina; Martinucci, Valentina; Tirella, Annalisa; Domenici, Claudio; Ahluwalia, Arti

    2014-09-01

    Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.

  10. Mechanical state, material properties and continuous description of an epithelial tissue

    PubMed Central

    Bonnet, Isabelle; Marcq, Philippe; Bosveld, Floris; Fetler, Luc; Bellaïche, Yohanns; Graner, François

    2012-01-01

    During development, epithelial tissues undergo extensive morphogenesis based on coordinated changes of cell shape and position over time. Continuum mechanics describes tissue mechanical state and shape changes in terms of strain and stress. It accounts for individual cell properties using only a few spatially averaged material parameters. To determine the mechanical state and parameters in the Drosophila pupa dorsal thorax epithelium, we severed in vivo the adherens junctions around a disc-shaped domain comprising typically a hundred cells. This enabled a direct measurement of the strain along different orientations at once. The amplitude and the anisotropy of the strain increased during development. We also measured the stress-to-viscosity ratio and similarly found an increase in amplitude and anisotropy. The relaxation time was of the order of 10 s. We propose a space–time, continuous model of the relaxation. Good agreement with experimental data validates the description of the epithelial domain as a continuous, linear, visco-elastic material. We discuss the relevant time and length scales. Another material parameter, the ratio of external friction to internal viscosity, is estimated by fitting the initial velocity profile. Together, our results contribute to quantify forces and displacements, and their time evolution, during morphogenesis. PMID:22628216

  11. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells.

    PubMed

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Dhople, Vishnu M; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2016-06-01

    To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  12. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe.

    PubMed

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K; Ferris, Daron G

    2014-03-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology.

  13. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe

    PubMed Central

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K.; Ferris, Daron G.

    2014-01-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology. PMID:24688805

  14. Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the Drosophila midgut epithelium.

    PubMed

    Antonello, Zeus A; Reiff, Tobias; Dominguez, Maria

    2015-01-01

    Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.

  15. Interaction between Campylobacter and intestinal epithelial cells leads to a different proinflammatory response in human and porcine host.

    PubMed

    Aguilar, Carmen; Jiménez-Marín, Ángeles; Martins, Rodrigo Prado; Garrido, Juan J

    2014-11-15

    Campylobacter jejuni and Campylobacter coli are recognized as the leading causes of human diarrheal disease throughout the development world. Unlike human beings, gastrointestinal tract of pigs are frequently colonized by Campylobacter to a high level in a commensal manner. The aim of this study was to identify the differences underlying the divergent outcome following Campylobacter challenge in porcine versus human host. In order to address this, a comparative in vitro infection model was combined with microscopy, gentamicin protection assay, ELISA and quantitative PCR techniques. Invasion assays revealed that Campylobacter invaded human cells up to 10-fold more than porcine cells (p<0.05). In addition, gene expression of proinflammatory genes encoding for IL1α, IL6, IL8, CXCL2 and CCL20 were strongly up-regulated by Campylobacter in human epithelial cell at early times of infection, whereas a very reduced cytokine gene expression was detected in porcine epithelial cells. These data indicate that Campylobacter fails to invade porcine cells compared to human cells, and this leads to a lack of proinflammatory response induction, probably due to its pathogenic or commensal behavior in human and porcine host, respectively.

  16. The graft-versus-host reaction and immune function. I. T helper cell immunodeficiency associated with graft-versus-host-induced thymic epithelial cell damage

    SciTech Connect

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1984-03-01

    The injection of parental A strain lymphoid cells into adrenalectomized CBAxA F1 (BAF1) mice induced a chronic graft-versus-host (GVH) reaction resulting in T cell and B cell immunosuppression as well as thymic epithelial cell injury, but not stress-related thymic involution. Thymocytes from BAF1 mice undergoing a GVH reaction were studied for their ability to reconstitute T helper cell (TH) function and phytohemagglutinin (PHA) and concanavalin A (Con A) mitogen responses in thymectomized, irradiated, BAF1 mice reconstituted with normal syngeneic bone marrow (ATxBM). Thymocytes from BAF1 mice early after the induction of a GVH reaction (days 10-12) were as effective as normal thymocytes in reconstituting TH and mitogen responses. Thymocytes from BAF1 mice 40 or more days after the induction of a GVH reaction did not reconstitute either the TH function or PHA and Con A responses in ATxBM mice. The inability to reconstitute ATxBM mice was not due to the presence of suppressor cells contained in the thymocyte inoculum. It is proposed that GVH-induced thymic epithelial cell injury blocks or arrests normal T cell differentiation, resulting in a population of thymocytes that lack the potential to become competent T helper cells or mitogen-responsive cells when transferred into ATxBM mice. This thymic functional defect results in a permanent TH immunodeficiency in mice experiencing a chronic GVH reaction.

  17. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras.

    PubMed

    Fu, Qiang; Deng, Chen-Liang; Zhao, Ren-Yan; Wang, Ying; Cao, Yilin

    2014-01-01

    Urethral defects are common and frequent disorders and are difficult to treat. Simple natural or synthetic materials do not provide a satisfactory curative solution for long urethral defects, and urethroplasty with large areas of autologous tissues is limited and might interfere with wound healing. In this study, adipose-derived stem cells were used. These cells can be derived from a wide range of sources, have extensive expansion capability, and were combined with oral mucosal epithelial cells to solve the problem of finding seeding cell sources for producing the tissue-engineered urethras. We also used the synthetic biodegradable polymer poly-glycolic acid (PGA) as a scaffold material to overcome issues such as potential pathogen infections derived from natural materials (such as de-vascular stents or animal-derived collagen) and differing diameters. Furthermore, we used a bioreactor to construct a tissue-engineered epithelial-muscular lumen with a double-layer structure (the epithelial lining and the muscle layer). Through these steps, we used an epithelial-muscular lumen built in vitro to repair defects in a canine urethral defect model (1 cm). Canine urethral reconstruction was successfully achieved based on image analysis and histological techniques at different time points. This study provides a basis for the clinical application of tissue engineering of an epithelial-muscular lumen.

  18. Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment

    PubMed Central

    Tamori, Yoichiro; Suzuki, Emiko; Deng, Wu-Min

    2016-01-01

    Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this “tumor hotspot” where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the “tumor coldspot” nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism. PMID:27584724

  19. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology

    PubMed Central

    Yu, Linda Chia-Hui; Wang, Jin-Town; Wei, Shu-Chen; Ni, Yen-Hsuan

    2012-01-01

    The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status. PMID:22368784

  20. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis.

    PubMed

    Backert, Ingo; Koralov, Sergei B; Wirtz, Stefan; Kitowski, Vera; Billmeier, Ulrike; Martini, Eva; Hofmann, Katharina; Hildner, Kai; Wittkopf, Nadine; Brecht, Katrin; Waldner, Maximilian; Rajewsky, Klaus; Neurath, Markus F; Becker, Christoph; Neufert, Clemens

    2014-10-01

    The Citrobacter rodentium model mimics the pathogenesis of infectious colitis and requires sequential contributions from different immune cell populations, including innate lymphoid cells (ILCs) and CD4(+) lymphocytes. In this study, we addressed the role of STAT3 activation in CD4(+) cells during host defense in mice against C. rodentium. In mice with defective STAT3 in CD4(+) cells (Stat3(ΔCD4)), the course of infection was unchanged during the innate lymphoid cell-dependent early phase, but significantly altered during the lymphocyte-dependent later phase. Stat3(ΔCD4) mice exhibited intestinal epithelial barrier defects, including downregulation of antimicrobial peptides, increased systemic distribution of bacteria, and prolonged reduction in the overall burden of C. rodentium infection. Immunomonitoring of lamina propria cells revealed loss of virtually all IL-22-producing CD4(+) lymphocytes, suggesting that STAT3 activation was required for IL-22 production not only in Th17 cells, but also in Th22 cells. Notably, the defective host defense against C. rodentium in Stat3(∆CD4) mice could be fully restored by specific overexpression of IL-22 through a minicircle vector-based technology. Moreover, expression of a constitutive active STAT3 in CD4(+) cells shaped strong intestinal epithelial barrier function in vitro and in vivo through IL-22, and it promoted protection from enteropathogenic bacteria. Thus, our work indicates a critical role of STAT3 activation in Th17 and Th22 cells for control of the IL-22-mediated host defense, and strategies expanding STAT3-activated CD4(+) lymphocytes may be considered as future therapeutic options for improving intestinal barrier function in infectious colitis.

  1. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering

    PubMed Central

    Gowers, Kate H. C.; Lee, Dani Do Hyang; Brown, James M.; Crowley, Claire; Teixeira, Vitor H.; Smith, Claire M.; Urbani, Luca; Hamilton, Nicholas J.; Thakrar, Ricky M.; Booth, Helen L.; Birchall, Martin A.; De Coppi, Paolo; Giangreco, Adam; O’Callaghan, Christopher

    2016-01-01

    Rationale: Stem cell–based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell–seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. Objectives: To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Methods: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air–liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air–liquid interface cultures. Measurements and Main Results: 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Conclusions: Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical

  2. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

    PubMed

    McHugh, Kevin J; Tao, Sarah L; Saint-Geniez, Magali

    2013-07-01

    Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.

  3. Multimodal tissue imaging: using coregistered optical tomography data to estimate tissue autofluorescence intensity change due to scattering and absorption by neoplastic epithelial cells.

    PubMed

    Pahlevaninezhad, Hamid; Cecic, Ivana; Lee, Anthony M D; Kyle, Alastair H; Lam, Stephen; MacAulay, Calum; Lane, Pierre M

    2013-10-01

    Autofluorescence (AF) imaging provides valuable information about the structural and chemical states of tissue that can be used for early cancer detection. Optical scattering and absorption of excitation and emission light by the epithelium can significantly affect observed tissue AF intensity. Determining the effect of epithelial attenuation on the AF intensity could lead to a more accurate interpretation of AF intensity. We propose to use optical coherence tomography coregistered with AF imaging to characterize the AF attenuation due to the epithelium. We present imaging results from three vital tissue models, each consisting of a three-dimensional tissue culture grown from one of three epithelial cell lines (HCT116, OVCAR8, and MCF7) and immobilized on a fluorescence substrate. The AF loss profiles in the tissue layer show two different regimes, each approximately linearly decreasing with thickness. For thin cell cultures (<300 μm), the AF signal changes as AF(t)/AF(0)=1-1.3t (t is the thickness in millimeter). For thick cell cultures (>400 μm), the AF loss profiles have different intercepts but similar slopes. The data presented here can be used to estimate AF loss due to a change in the epithelial layer thickness and potentially to reduce AF bronchoscopy false positives due to inflammation and non-neoplastic epithelial thickening.

  4. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods.

    PubMed

    Dittmer, J; Beltran-Bech, S; Lesobre, J; Raimond, M; Johnson, M; Bouchon, D

    2014-05-01

    Animal-bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host-associated bacteria might establish tissue-specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue-specific Wolbachia-microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain-specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co-evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia-infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.

  5. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures.

    PubMed

    Franke, Werner W; Rickelt, Steffen

    2011-12-01

    Using biochemical as well as light- and electron-microscopic immunolocalization methods, in cultures of unicellular human blood tumor cells, we have studied the phenomenon of spontaneous and cumulative syntheses of certain epithelial proteins and glycoproteins and their assemblies to two major kinds of novel cell-cell junctions, adhering junctions (AJs) and junctions based on the epithelial cell adhesion molecule (EpCAM). More than two decades, we have selected and characterized clonal sublines of multipotential hematopoietic K562 cells, which are enriched in newly formed AJs based on cis-clusters of desmoglein Dsg2, in some sublines accompanied by desmocollin Dsc2. Both desmosomal cadherins can be anchored in a submembranous plaque containing plakoglobin and plakophilins Pkp2 and Pkp3, with or without other armadillo proteins and desmoplakin. Also, these cells are often connected by an additional, extended junction system, in which the transmembrane epithelial glycoprotein EpCAM is associated with a cytoplasmic plaque rich in several actin-binding proteins such as afadin, α-actinin, ezrin and vinculin. Both kinds of junctions contribute to connections of K562 cells into epithelioid monolayers or even three-dimensional, tissue-like structures, thus markedly changing the cell biological nature and behavior of the resulting tumor subforms (mesenchymal-epithelial transitions). We discuss molecular mechanisms involved in the formation and function of these junctions, also with respect to tumor spread and metastasis, as well as diagnostic and therapeutic consequences.

  6. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue.

    PubMed

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E; Maitland, Kristen C

    2013-05-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue.

  7. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues.

    PubMed

    Helman, S I; Thompson, S M

    1982-12-01

    Whereas transepithelial and intracellular voltages continue to be measured in renal and other epithelial tissues, the origins of these voltages, especially in renal epithelia, remain obscure. Because epithelial tissues have multiple transcellular and extracellular routes of ion transport, it is convenient to model them with electrical equivalent circuits and, in this way, attempt to understand the relative importance of and relationships between the parallel-series arrangements of the membranes and barriers involved. The interpretation of the equivalent electromotive forces and resistances can be complicated, however, by virtue of nonlinear current-voltage relationships of ionic channels. Thus, for ion transport pathways displaying nonlinear I-V relationships, it is important to distinguish between chord and slope formalisms in the use and interpretation of electrophysiological data. For ions like Na that are generally not at electrochemical equilibrium, the Thévenin electromotive force (emf) of the slope formalism is not synonymous with the Nernst equilibrium potential of the chord formalism nor are the slope and chord conductances equal or constant at all voltages. Thus, it is mandatory that the empirical data be calculated and interpreted in a way consistent with the formalism adopted. The existence of nonlinear behavior, characterized by either Goldman or other types of rectification, exacerbates determination of relative ionic permeabilities, fractional resistances, transference numbers, and other electrophysiological parameters for simple membranes and especially for epithelia. It is argued that the use and interpretation of electrical equivalent circuits of epithelia are not arbitrary but must take into account nonlinearities of the ionic current-voltage relationships and concentration and voltage dependencies of the emfs and conductances.

  8. MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease

    PubMed Central

    Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin

    2016-01-01

    Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024

  9. Sugar binding to purified fractions from bovine taste buds and epithelial tissue. Relationships to bioactivity.

    PubMed

    Lum, C K; Henkin, R I

    1976-02-24

    Binding of various sugars was compared in purified subfractions of taste buds isolated from bovine circumvallate papillae and of non-taste bud-bearing epithelium isolated from tissue surrounding these papillae. Binding of 14C-labeled sugars was greater in purified subfractions obtained from taste bud than from non-taste bud-bearing tissue and was, in general, greater in those taste bud subfractions in which a greater membrane purification was achieved. Binding specificity of the 14C-labeled sugars sucrose, fructose, glucose and of 14C-labeled cyclamate and saccharine was measured by competition of each 14C-labeled sugar or synthetic sweetener with its unlabeled homologous sugar in P4(B) taste bud subfractions; this binding, as shown for sucrose, was reversible and temperature dependent. Essentially no competition of the 14C-lageled sugars sucrose, fructose, glucose or 14C-labeled cyclamate and saccharine by their respective unlabeled homologues occurred in epithelial tissue P4(B) subfractions; this binding was not reversible. Binding specificity was further observed by the competition of 14C-labeled sucrose, fructose and glucose with each unlabeled sugar for binding sites on P4(B) taste bud subfractions; unlabeled sucrose was more effective in competing with each 14C-labeled surgar than was unlabeled fructose or glucose. The relatively non-sweet sugar lactose did not compete with 14C-labeled lactose in P4(B) subfractions from either taste bud or non-taste bud-bearing epithelial tissue. Binding of 14C-labeled sucrose in purified P4(B) bud subfractions was inhibited by increased concentrations of unlabeled sucrose, phospholipase C, neuraminidase, EDTA, NaCl and urea. Dissociation constants for sugar or synthetic sweetener binding were low (approx. 10(-3) M) but in a rank order (sucrose greater than fructose greater than glucose greater than saccharine) consistent with preference and electrophysiological responses in cow. The cow is behaviorally indifferent to

  10. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    PubMed

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  11. Highly Differentiated Human Airway Epithelial Cells: a Model to Study Host cell-parasite Interactions in Pertussis

    PubMed Central

    Guevara, Claudia; Zhang, Chengxian; Gaddy, Jennifer A.; Iqbal, Junaid; Guerra, Julio; Greenberg, David P.; Decker, Michael D.; Carbonetti, Nicholas; Starner, Timothy D.; McCray, Paul B.; Mooi, Frits R.

    2017-01-01

    Background Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work are to evaluate B. pertussis infection on highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. Methods Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. Results PHAE and HBE cells infected with B. pertussis wild type strain revealed bacterial adherence to cell’s apical surface and bacterial induced cytoskeleton changes and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthemore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. Conclusions The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo. PMID:26492208

  12. Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target

    PubMed Central

    Tosa, Mamiko; Egawa, Seiko; Murakami, Masahiro; Mohammad, Ghazizadeh; Ogawa, Rei

    2016-01-01

    Background: Keloid is a fibroproliferative skin disorder that is characterized by collagen accumulation and blood vessel proliferation in the reticular layer of the dermis. It is caused by prolonged inflammation after cutaneous injury. Several studies suggested recently that epithelial mesenchymal transition (EMT) is involved in the development of fibrosis. This study assessed whether EMT also participates in keloid development and/or aggravation. Methods: Resected keloid (n = 19) and normal skin (n = 13) samples were subjected to immunohistochemical, immunofluorescent, and Western blot analyses of their expression of epidermal (E-cadherin) and mesenchymal (vimentin) proteins. Results: Immunohistochemical analysis showed that the keloid tissues had more vimentin-positive cells in the epidermis than the normal tissues. When normal primary keratinocytes were cultured with proinflammatory cytokines, the cobblestone-shaped cells changed to a spindle shape and many vimentin-positive cells were detected. When immortalized HaCaT keratinocytes were cocultured in split-well plates with normal or keloid-derived fibroblasts, they also underwent EMT, as indicated by their greater vimentin expression on Western blot analysis compared with HaCaT cells that were cultured alone. Conclusions: EMT was observed in keloid specimens. EMT was induced by inflammatory cytokines and fibroblasts. EMT may be involved in keloid generation and/or aggravation and may have potential as a keloid treatment target. PMID:27975033

  13. Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin

    PubMed Central

    Mallinjoud, Pierre; Villemin, Jean-Philippe; Mortada, Hussein; Polay Espinoza, Micaela; Desmet, François-Olivier; Samaan, Samaan; Chautard, Emilie; Tranchevent, Léon-Charles; Auboeuf, Didier

    2014-01-01

    Alternative splicing is the main mechanism of increasing the proteome diversity coded by a limited number of genes. It is well established that different tissues or organs express different splicing variants. However, organs are composed of common major cell types, including fibroblasts, epithelial, and endothelial cells. By analyzing large-scale data sets generated by The ENCODE Project Consortium and after extensive RT-PCR validation, we demonstrate that each of the three major cell types expresses a specific splicing program independently of its organ origin. Furthermore, by analyzing splicing factor expression across samples, publicly available splicing factor binding site data sets (CLIP-seq), and exon array data sets after splicing factor depletion, we identified several splicing factors, including ESRP1 and 2, MBNL1, NOVA1, PTBP1, and RBFOX2, that contribute to establishing these cell type–specific splicing programs. All of the analyzed data sets are freely available in a user-friendly web interface named FasterDB, which describes all known splicing variants of human and mouse genes and their splicing patterns across several dozens of normal and cancer cells as well as across tissues. Information regarding splicing factors that potentially contribute to individual exon regulation is also provided via a dedicated CLIP-seq and exon array data visualization interface. To the best of our knowledge, FasterDB is the first database integrating such a variety of large-scale data sets to enable functional genomics analyses at exon-level resolution. PMID:24307554

  14. Hepatocyte growth factor/scatter factor induces a variety of tissue- specific morphogenic programs in epithelial cells

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis. PMID:8522613

  15. Philometra floridensis (Nematoda: Philometridae) damages ovarian tissue without reducing host (Sciaenops ocellatus) fecundity.

    PubMed

    Bakenhaster, Micah D; Lowerre-Barbieri, Susan; Kiryu, Yasunari; Walters, Sarah; Fajer-Avila, Emma J

    2014-04-03

    The parasitic nematode Philometra floridensis infects the ovary of its only host, the economically important fish species Sciaenops ocellatus, but the factors influencing host susceptibility and potential pathogenic effects are unknown. Here we report new information on these topics from evaluations of infected and uninfected hosts collected from the northeastern Gulf of Mexico. Fish length and age were evaluated vis-à-vis nematode prevalence to check for ontogenetic differences in host susceptibility. To evaluate health and reproductive consequences of infection, we looked for effects in Fulton's condition factor (K) and batch fecundity estimates (BF), and we evaluated ovarian tissue histologically to check for oocyte atresia and other host responses. We observed localized pathological changes in fish ovarian tissue associated with female nematodes, including leucocytic exudates, granulomatous inflammation, and Langhans-type multinucleated giant cells; the hosts, however, appeared to maintain high fecundity and actually exhibited, on average, better health index scores and higher relative fecundity than did uninfected fish. These differences are likely explained by the parasite's tendency to disproportionately infect the largest, actively spawning fish and by the localization of pathogenic changes, which could have masked effects that otherwise would have been reflected in mass-based health indicators. Although we did not detect negative effects on measures of overall health or reproductive output, further research is needed to better elucidate the relationship between these parasites and other factors affecting host reproductive potential, such as egg quality.

  16. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue

    PubMed Central

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft. PMID:27615195

  17. In situ regeneration of skeletal muscle tissue through host cell recruitment.

    PubMed

    Ju, Young Min; Atala, Anthony; Yoo, James J; Lee, Sang Jin

    2014-10-01

    Standard reconstructive procedures for restoring normal function after skeletal muscle defects involve the use of existing host tissues such as muscular flaps. In many instances, this approach is not feasible and delays the rehabilitation process and restoration of tissue function. Currently, cell-based tissue engineering strategies have been used for reconstruction; however, donor tissue biopsy and ex vivo cell manipulation are required prior to implantation. The present study aimed to overcome these limitations by demonstrating mobilization of muscle cells into a target-specific site for in situ muscle regeneration. First, we investigated whether host muscle cells could be mobilized into an implanted scaffold. Poly(l-lactic acid) (PLLA) scaffolds were implanted in the tibialis anterior (TA) muscle of rats, and the retrieved scaffolds were characterized by examining host cell infiltration in the scaffolds. The host cell infiltrates, including Pax7+ cells, gradually increased with time. Second, we demonstrated that host muscle cells could be enriched by a myogenic factor released from the scaffolds. Gelatin-based scaffolds containing a myogenic factor were implanted in the TA muscle of rats, and the Pax7+ cell infiltration and newly formed muscle fibers were examined. By the second week after implantation, the Pax7+ cell infiltrates and muscle formation were significantly accelerated within the scaffolds containing insulin-like growth factor 1 (IGF-1). Our data suggest an ability of host stem cells to be recruited into the scaffolds with the capability of differentiating to muscle cells. In addition, the myogenic factor effectively promoted host cell recruitment, which resulted in accelerating muscle regeneration in situ.

  18. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.

    PubMed

    O'Leary, Cian; Cavanagh, Brenton; Unger, Ronald E; Kirkpatrick, C James; O'Dea, Shirley; O'Brien, Fergal J; Cryan, Sally-Ann

    2016-04-01

    Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery.

  19. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    PubMed

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  20. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    PubMed

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  1. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    PubMed

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE.

  2. Haemophilus haemolyticus Interaction with Host Cells Is Different to Nontypeable Haemophilus influenzae and Prevents NTHi Association with Epithelial Cells

    PubMed Central

    Pickering, Janessa L.; Prosser, Amy; Corscadden, Karli J.; de Gier, Camilla; Richmond, Peter C.; Zhang, Guicheng; Thornton, Ruth B.; Kirkham, Lea-Ann S.

    2016-01-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic

  3. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    SciTech Connect

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  4. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Zakharov, Andrey P.; Pismen, Len

    2016-08-01

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  5. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation

    PubMed Central

    Su, Tin Tin

    2016-01-01

    Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. PMID:27584613

  6. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues.

    PubMed

    Urdy, S; Goudemand, N; Pantalacci, S

    2016-01-01

    The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.

  7. The influence of surface topography of a porous perfluoropolyether polymer on corneal epithelial tissue growth and adhesion.

    PubMed

    Evans, Margaret D M; Chaouk, Hassan; Wilkie, John S; Dalton, Beatrice A; Taylor, Sarah; Xie, Ruo Zhong; Hughes, Timothy C; Johnson, Graham; McFarland, Gail A; Griesser, Hans H; Steele, John G; Meijs, Gordon F; Sweeney, Deborah F; McLean, Keith M

    2011-12-01

    Design principles for corneal implants are challenging and include permeability which inherently involves pore openings on the polymer surface. These topographical cues can be significant to a successful clinical outcome where a stratified epithelium is needed over the device surface, such as with a corneal onlay or corneal repair material. The impact of polymer surface topography on the growth and adhesion of corneal epithelial tissue was assessed using porous perfluoropolyether membranes with a range of surface topography. Surfaces were characterised by AFM and XPS, and the permeability and water content of membranes was measured. Biological testing of membranes involved a 21-day in vitro tissue assay to evaluate migration, stratification and adhesion of corneal epithelium. Similar parameters were monitored in vivo by surgically implanting membranes into feline corneas for up to 5 months. Data showed optimal growth and adhesion of epithelial tissue in vitro when polymer surface features were below a 150 nm RMS value. Normal processes of tissue growth and adhesion were disrupted when RMS values approached 300 nm. Data from the in vivo study confirmed these findings. Together, outcomes demonstrated the importance of surface topography in the design of implantable devices that depend on functional epithelial cover.

  8. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?

    PubMed

    Nigam, Sanjay K

    2013-12-01

    Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.

  9. Novel Bioceramic Urethral Bulking Agents Elicit Improved Host Tissue Responses in a Rat Model

    PubMed Central

    Mann-Gow, Travis K.; King, Benjamin J.; El-Ghannam, Ahmed; Knabe-Ducheyne, Christine; Kida, Masatoshi; Dall, Ole M.; Krhut, Jan

    2016-01-01

    Objectives. To test the physical properties and host response to the bioceramic particles, silica-calcium phosphate (SCPC10) and Cristobalite, in a rat animal model and compare their biocompatibility to the current clinically utilized urethral bulking materials. Material and Methods. The novel bulking materials, SCPC10 and Cristobalite, were suspended in hyaluronic acid sodium salt and injected into the mid urethra of a rat. Additional animals were injected with bulking materials currently in clinical use. Physiological response was assessed using voiding trials, and host tissue response was evaluated using hard tissue histology and immunohistochemical analysis. Distant organs were evaluated for the presence of particles or their components. Results. Histological analysis of the urethral tissue five months after injection showed that both SCPC10 and Cristobalite induced a more robust fibroblastic and histiocytic reaction, promoting integration and encapsulation of the particle aggregates, leading to a larger bulking effect. Concentrations of Ca, Na, Si, and P ions in the experimental groups were comparable to control animals. Conclusions. This side-by-side examination of urethral bulking agents using a rat animal model and hard tissue histology techniques compared two newly developed bioactive ceramic particles to three of the currently used bulking agents. The local host tissue response and bulking effects of bioceramic particles were superior while also possessing a comparable safety profile. PMID:27688751

  10. Novel Bioceramic Urethral Bulking Agents Elicit Improved Host Tissue Responses in a Rat Model.

    PubMed

    Mann-Gow, Travis K; King, Benjamin J; El-Ghannam, Ahmed; Knabe-Ducheyne, Christine; Kida, Masatoshi; Dall, Ole M; Krhut, Jan; Zvara, Peter

    2016-01-01

    Objectives. To test the physical properties and host response to the bioceramic particles, silica-calcium phosphate (SCPC10) and Cristobalite, in a rat animal model and compare their biocompatibility to the current clinically utilized urethral bulking materials. Material and Methods. The novel bulking materials, SCPC10 and Cristobalite, were suspended in hyaluronic acid sodium salt and injected into the mid urethra of a rat. Additional animals were injected with bulking materials currently in clinical use. Physiological response was assessed using voiding trials, and host tissue response was evaluated using hard tissue histology and immunohistochemical analysis. Distant organs were evaluated for the presence of particles or their components. Results. Histological analysis of the urethral tissue five months after injection showed that both SCPC10 and Cristobalite induced a more robust fibroblastic and histiocytic reaction, promoting integration and encapsulation of the particle aggregates, leading to a larger bulking effect. Concentrations of Ca, Na, Si, and P ions in the experimental groups were comparable to control animals. Conclusions. This side-by-side examination of urethral bulking agents using a rat animal model and hard tissue histology techniques compared two newly developed bioactive ceramic particles to three of the currently used bulking agents. The local host tissue response and bulking effects of bioceramic particles were superior while also possessing a comparable safety profile.

  11. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    PubMed

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids.

  12. Real-Time Sensing of Enteropathogenic E. coli-Induced Effects on Epithelial Host Cell Height, Cell-Substrate Interactions, and Endocytic Processes by Infrared Surface Plasmon Spectroscopy

    PubMed Central

    Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932

  13. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    PubMed

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  14. Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

    PubMed Central

    Grigoriadis, Anita; Oliver, Gavin R; Tanney, Austin; Kendrick, Howard; Smalley, Matt J; Jat, Parmjit; Neville, A Munro

    2009-01-01

    Background More than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs), some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS) pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS) data. Results The expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours. Conclusion Disease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA) confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs. PMID:19615061

  15. Effect of energy intake on the metabolism of glucose and glutamine in rumen epithelial tissue

    SciTech Connect

    Harmon, D.L.

    1986-03-01

    Ten Holstein steers (579 kg average body weight) were fed either alfalfa hay (12.2% crude protein) or a 90% concentrate diet to supply 14.2 or 25.2 Mcal ME respectively for a minimum of 28 days. Samples of rumen epithelial tissue were removed at slaughter from the anterior ventral sac, washed free of feed particles and transported to the laboratory in oxygenated Krebs-Ringer bicarbonate buffer (KRB; pH 7.4). Papillae were weighed (100-200 mg) in triplicate into flasks containing 3 ml KRB with 1 mM glutamine or 5 mM glucose and acetate (50 mM), propionate (25 mM), butyrate (15 mM), lactate (1 mM) and glucose (5 mM) or glutamine (1 mM) as competing substrates. A parallel set of flasks contained 1 or .5 ..mu..Ci of (U-/sup 14/C)-glutamine or glucose respectively for /sup 14/CO/sub 2/ production. There were no interactions with dietary energy intake and substrate addition. Increasing the dietary energy intake increased (P < .01) rates of uptake, /sup 14/CO/sub 2/ production and net lactate production from glucose and increased the /sup 14/CO/sub 2/ production from glutamine. Addition of acetate, propionate, butyrate and lactate decreased (P < .05) uptake of glucose, but only propionate decreased /sup 14/CO/sub 2/ production from glucose (40%). Addition of butyrate and glucose decreased /sup 14/CO/sub 2/ production from glutamine while propionate addition decreased net glutamate production and increased net alanine production. At these substrate concentrations rates of glucose oxidation to /sup 14/CO/sub 2/ were 7-fold higher than glutamine.

  16. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues.

    PubMed

    Miliani de Marval, Paula L; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G; Conti, Claudio J; Rodriguez-Puebla, Marcelo L

    2004-09-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors.

  17. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp.

    PubMed

    Bogdanove, Adam J; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V; Patil, Prabhu B; Van Sluys, Marie-Anne; Ryan, Robert P; Meyer, Damien F; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L; Phillippy, Adam M; Puiu, Daniela; Schatz, Michael C; Shumway, Martin; Sommer, Daniel D; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M; Dorman, Karin S; Ronald, Pamela C; Verdier, Valérie; Dow, J Maxwell; Sonti, Ramesh V; Tsuge, Seiji; Brendel, Volker P; Rabinowicz, Pablo D; Leach, Jan E; White, Frank F; Salzberg, Steven L

    2011-10-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.

  18. Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp.▿†

    PubMed Central

    Bogdanove, Adam J.; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V.; Patil, Prabhu B.; Van Sluys, Marie-Anne; Ryan, Robert P.; Meyer, Damien F.; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L.; Phillippy, Adam M.; Puiu, Daniela; Schatz, Michael C.; Shumway, Martin; Sommer, Daniel D.; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M.; Dorman, Karin S.; Ronald, Pamela C.; Verdier, Valérie; Dow, J. Maxwell; Sonti, Ramesh V.; Tsuge, Seiji; Brendel, Volker P.; Rabinowicz, Pablo D.; Leach, Jan E.; White, Frank F.; Salzberg, Steven L.

    2011-01-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity. PMID:21784931

  19. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process.

    PubMed

    Wächtler, Betty; Citiulo, Francesco; Jablonowski, Nadja; Förster, Stephanie; Dalle, Frederic; Schaller, Martin; Wilson, Duncan; Hube, Bernhard

    2012-01-01

    Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential fluorescence microscopy, we demonstrate that induced endocytosis contributes considerably to the early time points of invasion, while active penetration represents the dominant epithelial invasion route. Although induced endocytosis depends mainly on Als3-E-cadherin interactions, we observed E-cadherin independent induced endocytosis. Finally, we provide evidence of a protective role for serum factors in oral infection: human serum strongly inhibited C. albicans adhesion to, invasion and damage of oral epithelial cells.

  20. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.

  1. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  2. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    PubMed Central

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  3. Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids.

    PubMed

    Dai, Lulu; Ma, Mingyuan; Gao, Guanqun; Chen, Hui

    2016-11-01

    Bark beetles oxidize the defensive allelochemicals of their host trees both to detoxify them and convert them into components of their pheromone systems which were catalyzed by cytochrome P450 enzymes (CYPs) and occur in different tissues of the insect. We study P450 genes in the Chinese white pine beetle (Dendroctonus armandi), and some bio-information analysis was done for the full-length deduced amino acid sequences. The tissue specificity of these P450 genes was determined in three tissues (antenna, gut and reproductive organs). Differential expression of the P450 genes was observed between sexes, and within these significant differences exposed to stimuli (α-pinene (1:1 racemic mix), (S)-(-)-α-pinene, (S)-(-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) at 24h. Increased expression of P450 genes suggested that they play a role in the detoxification of monoterpenes released by the host trees. The different transcript accumulation patterns of these bark beetle P450 genes provided insight into ecological interactions of D. armandi with its host pine.

  4. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage.

    PubMed

    Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschan-Plessl, Astrid; Khanna, Nina; Bumann, Dirk

    2017-01-23

    Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.

  5. YAP Regulates the Expression of Hoxa1 and Hoxc13 in Mouse and Human Oral and Skin Epithelial Tissues

    PubMed Central

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie

    2015-01-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. PMID:25691658

  6. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues.

    PubMed

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping

    2015-04-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.

  7. Transforming growth factor-alpha in vivo stimulates epithelial cell proliferation in digestive tissues of suckling rats.

    PubMed Central

    Hormi, K; Lehy, T

    1996-01-01

    BACKGROUND: The role that exogenous transforming growth factor-alpha (TGF-alpha) may exert on cell proliferation in vivo is poorly understood. AIM: To investigate the effect of rat TGF-alpha on epithelial cell proliferation in all suckling rat digestive tissues and to compare it with that of rat epidermal growth factor (EGF). ANIMAL AND METHODS: TGF-alpha and EGF were given three times daily either subcutaneously (10 or 20 micrograms/kg) or intraperitoneally (100 micrograms/kg) to rats from the ninth postnatal day. Cell proliferation was assessed through 5-bromo- 2-deoxyuridine incorporation and estimation of labelling indices. RESULTS: For both growth factors, the highest dose given for only two days significantly increased stomach and intestinal weights compared with controls (p < 0.05 to p < 0.001). The proliferative responded depended on the dose given, colonic mucosa being the most sensitive whereas oxyntic mucosa remained unresponsive. TGF-alpha was as potent as EGF in stimulating epithelial cell proliferation in antral, duodenal, and colonic mucosae. However, EGF was more active on oesophageal and jejunal cell proliferation whereas TGF-alpha was more active on pancreatic exocrine cell proliferation and the differences between the two growth factor treated groups were significant. CONCLUSIONS: These results prove for the first time the stimulating effect in vivo of exogenous rat TGF-alpha on epithelial cell proliferation in rat digestive tissues during the developmental period and support a functional role for TGF-alpha at that time. PMID:8944561

  8. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells

    PubMed Central

    Haldar, Arun K.; Piro, Anthony S.; Finethy, Ryan; Espenschied, Scott T.; Brown, Hannah E.; Giebel, Amanda M.; Frickel, Eva-Maria; Nelson, David E.

    2016-01-01

    ABSTRACT The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis. The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. PMID:27965446

  9. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.

    PubMed

    Haldar, Arun K; Piro, Anthony S; Finethy, Ryan; Espenschied, Scott T; Brown, Hannah E; Giebel, Amanda M; Frickel, Eva-Maria; Nelson, David E; Coers, Jörn

    2016-12-13

    The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host.

  10. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities.

  11. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function

    PubMed Central

    Cantu, David Antonio; Kao, W. John

    2014-01-01

    This Progress Report reviews recent advances in the utility of extracellular matrix (ECM)-mimic biomaterials in presenting and delivering therapeutic cells to promote tissue healing. This overview gives a brief introduction of different cell types being used in regenerative medicine and tissue engineering while addressing critical issues that must be overcome before cell-based approaches can be routinely employed in the clinic. A selection of 5 commonly used cell-associated, biomaterial platforms (collagen, hyaluronic acid, fibrin, alginate, and poly(ethylene glycol)) are reviewed for treatment of a number of acute injury or diseases with emphasis on animal models and clinical trials. This article concludes with current challenges and future perspectives regarding foreign body host response to biomaterials and immunological reactions to allogeneic or xenogeneic cells, vascularization and angiogenesis, matching mechanical strength and anisotropy of native tissues, as well as other non-technical issues regarding the clinical translation of biomatrix/cell-based therapies. PMID:23828863

  12. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung.

    PubMed

    Donnenberg, Vera S; Landreneau, Rodney J; Pfeifer, Melanie E; Donnenberg, Albert D

    2013-01-01

    Single cell analysis and cell sorting has enabled the study of development, growth, differentiation, repair and maintenance of "liquid" tissues and their cancers. The application of these methods to solid tissues is equally promising, but several unique technical challenges must be addressed. This report illustrates the application of multidimensional flow cytometry to the identification of candidate stem/progenitor populations in non-small cell lung cancer and paired normal lung tissue. Seventeen paired tumor/normal lung samples were collected at the time of surgical excision and processed immediately. Tissues were mechanically and enzymatically dissociated into single cell suspension and stained with a panel of antibodies used for negative gating (CD45, CD14, CD33, glycophorin A), identification of epithelial cells (intracellular cytokeratin), and detection of stem/progenitor markers (CD44, CD90, CD117, CD133). DAPI was added to measure DNA content. Formalin fixed paraffin embedded tissue samples were stained with key markers (cytokeratin, CD117, DAPI) for immunofluorescent tissue localization of populations detected by flow cytometry. Disaggregated tumor and lung preparations contained a high proportion of events that would interfere with analysis, were they not eliminated by logical gating. We demonstrate how inclusion of doublets, events with hypodiploid DNA, and cytokeratin+ events also staining for hematopoietic markers reduces the ability to quantify epithelial cells and their precursors. Using the lung cancer/normal lung data set, we present an approach to multidimensional data analysis that consists of artifact removal, identification of classes of cells to be studied further (classifiers) and the measurement of outcome variables on these cell classes. The results of bivariate analysis show a striking similarity between the expression of stem/progenitor markers on lung tumor and adjacent tumor-free lung.

  13. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  14. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare.

    PubMed

    Dittmer, Jessica; Lesobre, Jérôme; Moumen, Bouziane; Bouchon, Didier

    2016-05-01

    We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.

  15. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    PubMed Central

    Wang, Ying-Na; Qin, Li; Li, Jing-Ming; Chen, Li; Pei, Cheng

    2015-01-01

    AIM To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF). METHODS HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis. RESULTS HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01). CONCLUSION Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro. PMID:26558194

  16. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility

    PubMed Central

    Hoppe, Julia; Ünal, Can M.; Thiem, Stefanie; Grimpe, Louisa; Goldmann, Torsten; Gaßler, Nikolaus; Richter, Matthias; Shevchuk, Olga; Steinert, Michael

    2017-01-01

    Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa. PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila, we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue. PMID:28326293

  17. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells.

    PubMed Central

    Runnels, P L; Moon, H W; Schneider, R A

    1980-01-01

    When isolated intestinal epithelial cells from neonatal and older pigs, calves, and mice were tested for adhesion by K99+ enterotoxigenic Escherichia coli, cells from older animals were resistant to adhesion. PMID:6103878

  18. Formation of adherens junctions leads to the emergence of a tissue-level tension in epithelial monolayers

    PubMed Central

    Harris, Andrew R.; Daeden, Alicia; Charras, Guillaume T.

    2014-01-01

    ABSTRACT Adherens junctions and desmosomes integrate the cytoskeletons of adjacent cells into a mechanical syncitium. In doing so, intercellular junctions endow tissues with the strength needed to withstand the mechanical stresses encountered in normal physiology and to coordinate tension during morphogenesis. Though much is known about the biological mechanisms underlying junction formation, little is known about how tissue-scale mechanical properties are established. Here, we use deep atomic force microscopy (AFM) indentation to measure the apparent stiffness of epithelial monolayers reforming from dissociated cells and examine which cellular processes give rise to tissue-scale mechanics. We show that the formation of intercellular junctions coincided with an increase in the apparent stiffness of reforming monolayers that reflected the generation of a tissue-level tension. Tension rapidly increased, reaching a maximum after 150 min, before settling to a lower level over the next 3 h as monolayers established homeostasis. The emergence of tissue tension correlated with the formation of adherens junctions but not desmosomes. As a consequence, inhibition of any of the molecular mechanisms participating in adherens junction initiation, remodelling and maturation significantly impeded the emergence of tissue-level tension in monolayers. PMID:24659804

  19. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes.

    PubMed

    Gu, Liping; Ma, Yuhang; Gu, Mingyu; Zhang, Ying; Yan, Shuai; Li, Na; Wang, Yufan; Ding, Xiaoying; Yin, Jiajing; Fan, Nengguang; Peng, Yongde

    2015-09-01

    Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, P<0.001), hemoglobin A1c (HbA1c, r=-0.632, P<0.001), triglyceride (TG, r=-0.236, P<0.001) and low density lipoprotein-cholesterol (LDL-C, r=-0.382, P<0.001). A negative correlation of blood glucose with spexin was observed during oral glucose tolerance test (OGTT). Spexin is intensely expressed in normal human endocrine and epithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM.

  20. Morphological and Ultrastructural Changes in Tissues of Intermediate and Definitive Hosts Infected by Protostrongylid Lungworms (Nematoda: Metastrongyloidea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular and sub-cellular mechanisms involved in tissue responses to larval and adult lungworms (Protostrongylidae) were respectively explored through experimental and natural infections in molluscan intermediate (Xeropicta candacharica) and ruminant definitive hosts (Ovis aries). Reaction to develo...

  1. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  2. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury

    PubMed Central

    Ramirez, Kevin; Witherden, Deborah A.; Havran, Wendy L.

    2015-01-01

    Immunology has traditionally focused on the lymphocytes circulating among primary lymphoid organs while the large reservoir of tissue-resident T cells have received relatively less attention. In epithelia, these populations are comprised of significant, and sometimes exclusive, subsets of γδ T cells that are highly specialized in promoting tissue homeostasis. As the epithelial layers of the skin and gut are permanently exposed to the environment, they are continually subject to injury and therefore require highly efficient repair processes to maintain barrier functions. Here, we review the role of γδ T cells in promoting wound healing, a critical and complex process occurring in the skin and other barrier sites. PMID:25958272

  3. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage

    PubMed Central

    Elbediwy, Ahmed; Vincent‐Mistiaen, Zoé I.

    2016-01-01

    The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity. PMID:27173018

  4. Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues

    PubMed Central

    1992-01-01

    We compared the surface envelope glycoprotein distribution and the budding polarity of four RNA viruses in Fischer rat thyroid (FRT) cells and in CaCo-2 cells derived from a human colon carcinoma. Whereas both FRT and CaCo-2 cells sort similarly influenza hemagglutinin and vesicular stomatitis virus (VSV) G protein, respectively, to apical and basolateral membrane domains, they differ in their handling of two togaviruses, Sindbis and Semliki Forest virus (SFV). By conventional EM Sindbis virus and SFV were shown to bud apically in FRT cells and basolaterally in CaCo-2 cells. Consistent with this finding, the distribution of the p62/E2 envelope glycoprotein of SFV, assayed by immunoelectronmicroscopy and by domain-selective surface biotinylation was predominantly apical on FRT cells and basolateral on CaCo-2 cells. We conclude that a given virus and its envelope glycoprotein can be delivered to opposite membrane domains in epithelial cells derived from different tissues. The tissue specificity in the polarity of virus budding and viral envelope glycoprotein distribution indicate that the sorting machinery varies considerably between different epithelial cell types. PMID:1572895

  5. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  6. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.

    PubMed

    Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

    2014-05-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.

  7. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    PubMed Central

    Geisler, Florian; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection. PMID:27355965

  8. Metabolic substrate utilization by tumour and host tissues in cancer cachexia.

    PubMed Central

    Mulligan, H D; Tisdale, M J

    1991-01-01

    Utilization of metabolic substrates in tumour and host tissues was determined in the presence or absence of two colonic tumours, the MAC16, which is capable of inducing cachexia in recipient animals, and the MAC13, which is of the same histological type, but without the effect on host body composition. Glucose utilization by different tissues was determined in vivo by the 2-deoxyglucose tracer technique. Glucose utilization by the MAC13 tumour was significantly higher than by the MAC16 tumour, and in animals bearing tumours of either type the tumour was the second major consumer of glucose after the brain. This extra demand for glucose was accompanied by a marked decrease in glucose utilization by the epididymal fat-pads, testes, colon, spleen, kidney and, in particular, the brain, in tumour-bearing animals irrespective of cachexia. The decrease in glucose consumption by the brain was at least as high as the metabolic demand by the tumour. This suggests that the tissues of tumour-bearing animals adapt to use substrates other than glucose and that alterations in glucose utilization are not responsible for the cachexia. Studies in vitro showed that brain metabolism in the tumour-bearing state was maintained by an increased use of lactate and 3-hydroxybutyrate, accompanied by a 50% increase in 3-oxoacid CoA-transferase. This was supported by studies in vivo which showed an increased metabolism of 3-hydroxybutyrate in tumour-bearing animals. Thus ketone bodies may be utilized as a metabolic fuel during the cancer-bearing state, even though the nutritional conditions mimic the fed state. PMID:1859359

  9. Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues.

    PubMed

    Varone, Antonio; Xylas, Joanna; Quinn, Kyle P; Pouli, Dimitra; Sridharan, Gautham; McLaughlin-Drubin, Margaret E; Alonzo, Carlo; Lee, Kyongbum; Münger, Karl; Georgakoudi, Irene

    2014-06-01

    Alterations in the balance between different metabolic pathways used to meet cellular bioenergetic and biosynthetic demands are considered hallmarks of cancer. Optical imaging relying on endogenous fluorescence has been used as a noninvasive approach to assess tissue metabolic changes during cancer development. However, quantitative correlations of optical assessments with variations in the concentration of relevant metabolites or in the specific metabolic pathways that are involved have been lacking. In this study, we use high-resolution, depth-resolved imaging, relying entirely on endogenous two-photon excited fluorescence in combination with invasive biochemical assays and mass spectrometry to demonstrate the sensitivity and quantitative nature of optical redox ratio tissue assessments. We identify significant differences in the optical redox ratio of live, engineered normal and precancerous squamous epithelial tissues. We establish that while decreases in the optical redox ratio are associated with enhanced levels of glycolysis relative to oxidative phosphorylation, increases in glutamine consumption to support energy production are associated with increased optical redox ratio values. Such mechanistic insights in the origins of optical metabolic assessments are critical for exploiting fully the potential of such noninvasive approaches to monitor and understand important metabolic changes that occur in live tissues at the onset of cancer or in response to treatment.

  10. Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease.

    PubMed

    Kong, Eric F; Kucharíková, Sona; Van Dijck, Patrick; Peters, Brian M; Shirtliff, Mark E; Jabra-Rizk, Mary Ann

    2015-02-01

    The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV(+) and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals.

  11. Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease

    PubMed Central

    Kong, Eric F.; Kucharíková, Sona; Peters, Brian M.; Shirtliff, Mark E.

    2014-01-01

    The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV+ and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals. PMID:25422264

  12. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  13. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice.

    PubMed

    Hu, Rong; Liu, Yalan; Su, Min; Song, Yinhong; Rood, Debra; Lai, Laijun

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.

  14. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-Versus-Host Disease in Mice.

    PubMed

    Hu, Rong; Liu, Yalan; Su, Min; Song, Yinhong; Rood, Debra; Lai, Laijun

    2016-08-02

    : Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD.

  15. Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells.

    PubMed

    Frame, Fiona M; Pellacani, Davide; Collins, Anne T; Maitland, Norman J

    2016-01-01

    In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.

  16. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction

    SciTech Connect

    Roskelley, C.D.; Desprez, P.Y.; Bissell, M.J. )

    1994-12-20

    Extracellular matrix (ECM) profoundly influences the growth and differentiation of the mammary gland epithelium, both in culture and in vivo. Utilizing a clonal population of mouse mammary epithelial cells that absolutely requires an exogenous ECM for function, we developed a rapid assay to study signal transduction by ECM. Two components of the cellular response to a basement membrane overlay that result in the expression of the milk protein [beta]-casein were defined. The first component of this response involves a rounding and clustering of the cells that can be physically mimicked by plating the cells on a nonadhesive substratum. The second component is biochemical in nature, and it is associated with [beta][sub 1] integrin clustering and increased tyrosine phosphorylation. The second component is initiated in a morphology-independent manner, but the proper translation of this biochemical signal into a functional response requires cell rounding and cell clustering. Thus, physical and biochemical signal transduction events contribute to the ECM-dependent regulation of tissue-specific gene expression in mouse mammary epithelial cells. 44 refs., 6 figs.

  17. Isolates of citrus exocortis viroid recovered by host and tissue selection.

    PubMed

    Semancik, J S; Szychowski, J A; Rakowski, A G; Symons, R H

    1993-11-01

    Isolates of citrus exocortis viroid (CEV) from a single sweet orange citrus source have been selected by sequential passage through the alternative hosts citron, Gynura aurantiaca, a hybrid tomato Lycopersicon esculentum x L. peruvianum, and from disorganized callus culture of the hybrid tomato. The distinctions in symptom expression, titre and electrophoretic mobility among the CEV isolates, operationally termed CEVc (citron), CEVg (Gynura), CEVt (tomato) and CEVcls (callus) are supported by characteristically different nucleotide sequences. The nucleotide sequence of full-length cDNA clones of CEVc purified from citron shows exchanges not reported for any previously described CEV variant. An unusual number of exchanges have been localized in the terminal domains of all the isolates analysed here. A common pattern of nucleotide exchanges, described as a 'tomato signature', can be detected in all of the isolates derived from hybrid tomato tissues.

  18. Effect of host plant tissue on the vector transmission of grapevine leafroll-associated virus 3.

    PubMed

    Tsai, Chi-Wei; Bosco, Domenico; Daane, Kent M; Almeida, Rodrigo P P

    2011-10-01

    Many biotic and abiotic factors affect the transmission efficiency of vector-borne plant pathogens. Insect vector within-plant distribution and host tissue preference are known to affect pathogen acquisition and inoculation rates. In this study, we first investigated whether feeding tissue affects the transmission of Grapevine leafroll-associated virus 3 by Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) and the effect of mealybug within-plant distribution on virus transmission under greenhouse conditions. Results showed no significant effect on transmission efficiency after insect confinement on leaf blades, petioles or stems of virus source or healthy test plants for either acquisition or inoculation trials. Transmission efficiency of a single mealybug varied from 4 to 25% in those trials. Second, we tested whether leaf position affected transmission efficiency due to potentially variable virus populations within acquisition plant tissues. No significant differences of transmission rate among acquisition leaf position were observed, probably because there were no differences in the virus population within source tissues. Finally, we examined the seasonality of the virus in field-collected samples and found that GLRaV-3 prevalence varied along a growing season, such that GLRaV-3 translocated along expanding shoots to leaves. Similarly, mealybug populations are known to increase in spring, and then mealybugs spread to cordons and leaves. This coordination of spatial and temporal dynamics of the virus and its vector may increase the risk of GLRaV-3 transmission during late spring and early summer. Further integration of information about pathogen populations in plants, vector feeding behavior and vector population seasonality could lead to more effective management practices.

  19. Nucleotide excision repair is reduced in oral epithelial tissues compared with skin.

    PubMed

    Mitchell, David; Paniker, Lakshmi; Godar, Dianne

    2012-01-01

    Ultraviolet radiation (UVR) exposure to internal tissues for diagnostic, therapeutic and cosmetic procedures has increased dramatically over the past decade. The greatest increase in UVR exposure of internal tissues occurs in the cosmetic industry where it is combined with oxidizing agents for teeth whitening, often in conjunction with indoor tanning. To address potential carcinogenic risks of these procedures, we analyzed the formation and repair of the DNA photoproducts associated with the signature mutations of UVR. Radioimmunoassay was used to quantify the induction and repair of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts in DNA purified from three reconstructed tissues, EpiDerm(TM) , EpiGingival(TM) and EpiOral(TM) . We observed comparable levels of DNA damage in all tissues immediately after UVR exposure. In contrast, repair was significantly reduced in both oral tissues compared with EpiDerm(TM) . Our data suggest that UVR exposure of oral tissues can result in accumulation of DNA damage and increase the risk for carcinoma and melanoma of the mouth. Because NER is a broad-spectrum defense against DNA damage caused by a variety of agents in addition to UVR, our data suggest that the relatively low NER efficiency observed in oral tissues may have wide-ranging consequences in this highly exposed environment.

  20. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism.

    PubMed

    Tsolis, Renee M; Seshadri, Rekha; Santos, Renato L; Sangari, Felix J; Lobo, Juan M García; de Jong, Maarten F; Ren, Qinghu; Myers, Garry; Brinkac, Lauren M; Nelson, William C; Deboy, Robert T; Angiuoli, Samuel; Khouri, Hoda; Dimitrov, George; Robinson, Jeffrey R; Mulligan, Stephanie; Walker, Richard L; Elzer, Philip E; Hassan, Karl A; Paulsen, Ian T

    2009-01-01

    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.

  1. Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism

    PubMed Central

    Tsolis, Renee M.; Seshadri, Rekha; Santos, Renato L.; Sangari, Felix J.; Lobo, Juan M. García; de Jong, Maarten F.; Ren, Qinghu; Myers, Garry; Brinkac, Lauren M.; Nelson, William C.; DeBoy, Robert T.; Angiuoli, Samuel; Khouri, Hoda; Dimitrov, George; Robinson, Jeffrey R.; Mulligan, Stephanie; Walker, Richard L.; Elzer, Philip E.; Hassan, Karl A.; Paulsen, Ian T.

    2009-01-01

    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis. PMID:19436743

  2. Comparison of the Effect of Aloe Vera Gel and Nitrofurazone 2% on Epithelialization and Granulation Tissue Formation Regarding Superficial Second-Degree Burns

    PubMed Central

    Irani, Parichehr Sabaghzade; Varaie, Shokoh

    2016-01-01

    Background: Therapeutic effects of various treatment options in burn wound healing have been one of the most controversial issues in wound care. Aloe Vera is an herbal medicine, which has wound healing effects on chronic wound. The present study was carried out to examine and compare the effect of Aloe Vera gel and nitrofurazone 2% on epithelialization and granulation tissue formation with respect to superficial second-degree burns. Methods: This is a randomized clinical trial and the sampling method was used based on pre-defined inclusion criteria. The sample size was 30 patients that were admitted to Kerman burn center, including patients that had superficial burn in the symmetry limb, who were chosen based on depth burn and the qualifications needed for the study. One part of the burned area was dressed using ointment nitrofurazone 2% (according to routine care in the hospital) and the symmetry part was dressed using Aloe Vera gel. The tools for data collection included a demographic questionnaire, tools of bats-joints for checking epithelialization and granulation tissue. The burn wound epithelialization and granulation at the beginning of patient’s admission and the first, second and third weeks after dressing were assessed and recorded. Results: In patients treated with Aloe Vera gel, epithelialization and granulation tissue of burn wounds were remarkably earlier than those patients treated with nitrofurazone 2% (P<0.05). Conclusion: In conclusion, Aloe Vera gel enhanced epithelialization and granulation tissue of burn wounds in superficial second-degree burn patients better than nitrofurazone 2%. The mechanism of the remarkable efficacy of Aloe Vera gel in the epithelialization and granulation tissue of burn injuries may be explained by its hydrocolloid and moisturizing and anti-inflammatory effects. PMID:27516662

  3. Comparison of the Effect of Aloe Vera Gel and Nitrofurazone 2% on Epithelialization and Granulation Tissue Formation Regarding Superficial Second-Degree Burns

    PubMed Central

    Irani, Parichehr Sabaghzade; Varaie, Shokoh

    2016-01-01

    Background: Therapeutic effects of various treatment options in burn wound healing have been one of the most controversial issues in wound care. Aloe Vera is an herbal medicine, which has wound healing effects on chronic wound. The present study was carried out to examine and compare the effect of Aloe Vera gel and nitrofurazone 2% on epithelialization and granulation tissue formation with respect to superficial second-degree burns. Methods: This is a randomized clinical trial and the sampling method was used based on pre-defined inclusion criteria. The sample size was 30 patients that were admitted to Kerman burn center, including patients that had superficial burn in the symmetry limb, who were chosen based on depth burn and the qualifications needed for the study. One part of the burned area was dressed using ointment nitrofurazone 2% (according to routine care in the hospital) and the symmetry part was dressed using Aloe Vera gel. The tools for data collection included a demographic questionnaire, tools of bats-joints for checking epithelialization and granulation tissue. The burn wound epithelialization and granulation at the beginning of patient’s admission and the first, second and third weeks after dressing were assessed and recorded. Results: In patients treated with Aloe Vera gel, epithelialization and granulation tissue of burn wounds were remarkably earlier than those patients treated with nitrofurazone 2% (P<0.05). Conclusion: In conclusion, Aloe Vera gel enhanced epithelialization and granulation tissue of burn wounds in superficial second-degree burn patients better than nitrofurazone 2%. The mechanism of the remarkable efficacy of Aloe Vera gel in the epithelialization and granulation tissue of burn injuries may be explained by its hydrocolloid and moisturizing and anti-inflammatory effects. PMID:27840469

  4. Histopathology of a mesoparasitic hatschekiid copepod in hospite: does Mihbaicola sakamakii (Copepoda: Siphonostomatoida: Hatschekiidae) fast within the host fish tissue?

    PubMed

    Hirose, Euichi; Uyeno, Daisuke

    2014-08-01

    Mihbaicola sakamakii is a mesoparasitic copepod that infests the branchiostegal membranes of groupers (Perciformes: Serranidae). In this study, we observed M. sakamakii within host tissue. Histologically, copepods were found enclosed inside a pouch composed of the thickened epidermis of the host, tightly encased on all sides by the host epidermal pouch wall. There were no host blood cells or other food resources in the pouch lumen. Since the host epidermis was intact and continuous, even in the vicinity of the oral region of the parasite, the copepod would not have access to the host blood in this state. However, the stomach (ampullary part of the mid gut) was filled with granular components, the majority of which were crystalloids that likely originated from fish erythrocyte hemoglobin. We supposed that the parasite drinks blood exuded from the lesion in the fish caused by copepod entry into the host tissue. Invasion of the parasite may elicit immune responses in the host, but there were no traces on the copepod of any cellular immune reactions, such as encapsulation. The array of minute protuberances on the copepod cuticle surface may be involved in avoidance of cell adhesion. After the lesion has healed, the copepod is enclosed in a tough epidermal pouch, in which it gradually digests the contents of its stomach and continues egg production.

  5. Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue.

    PubMed

    Herszterg, Sophie; Leibfried, Andrea; Bosveld, Floris; Martin, Charlotte; Bellaiche, Yohanns

    2013-02-11

    How adherens junctions (AJs) are formed upon cell division is largely unexplored. Here, we found that AJ formation is coordinated with cytokinesis and relies on an interplay between the dividing cell and its neighbors. During contraction of the cytokinetic ring, the neighboring cells locally accumulate Myosin II and produce the cortical tension necessary to set the initial geometry of the daughter cell interface. However, the neighboring cell membranes impede AJ formation. Upon midbody formation and concomitantly to neighboring cell withdrawal, Arp2/3-dependent actin polymerization oriented by the midbody maintains AJ geometry and regulates AJ final length and the epithelial cell arrangement upon division. We propose that cytokinesis in epithelia is a multicellular process, whereby the cooperative actions of the dividing cell and its neighbors define a two-tiered mechanism that spatially and temporally controls AJ formation while maintaining tissue cohesiveness.

  6. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  7. Effects of Coralliophila violacea on tissue loss in the scleractinian corals Porites spp. depend on host response

    USGS Publications Warehouse

    Raymundo, L.; Work, Thierry M.; Miller, R.L.; Lozada-Misa, P.L.

    2016-01-01

    We investigated interactions between the corallivorous gastropod Coralliophila violacea and its preferred hosts Porites spp. Our objectives were to experimentally determine whether tissue loss could progress in Porites during or after Coralliophila predation on corals with and without tissue loss and to histologically document snail predation. In 64% of feeding scars, tissue regenerated within 3 wk, leaving no trace of predation. However, in roughly 28% of scars, lesions progressed to subacute tissue loss resembling white syndrome. In feeding experiments, scars from snails previously fed diseased tissue developed progressive tissue loss twice as frequently as scars from snails previously fed healthy tissue. Scars from previously healthy-fed snails were 3 times as likely to heal as those from previously diseased-fed snails. Histology revealed marked differences in host responses to snails; P. cylindrica manifested a robust inflammatory response with fewer secondary colonizing organisms such as algae, sponges, and helminths, whereas P. rus showed no evident inflammation and more secondary colonization. We conclude that lesion progression associated with Coralliophila may be associated with secondary colonization of coral tissues damaged by predator-induced trauma and necrosis. Importantly, variation at the cellular level should be considered when explaining interspecific differences in host responses in corals impacted by phenomena such as predation.

  8. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value.

    PubMed

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-11-01

    Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker.Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated.During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001).Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis.

  9. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value

    PubMed Central

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-01-01

    Abstract Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker. Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated. During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001). Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis. PMID:27861355

  10. Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy

    PubMed Central

    Spann, Kirsten M; Baturcam, Engin; Schagen, Johanna; Jones, Carmen; Straub, Claire P; Preston, F Maxine; Chen, Linping; Phipps, Simon; Sly, Peter D; Fantino, Emmanuelle

    2014-01-01

    Background Airway epithelial cells (AEC) from patients with asthma, appear to have an impaired interferon (IFN)-β and -λ response to infection with rhinovirus. Objectives To determine if impaired IFN responses can be identified in young children at risk of developing asthma due to atopy and/or early life wheeze, and if the site of infection or the infecting virus influence the antiviral response. Methods Nasal (N) and tracheal (T) epithelial cells (EC) were collected from children categorised with atopy and/or wheeze based on specific IgE to locally common aeroallergens and a questionnaire concerning respiratory health. Submerged primary cultures were infected with respiratory syncytial virus (RSV) or human metapneumovirus (hMPV), and IFN production, inflammatory cytokine expression and viral replication quantified. Results Nasal epithelial cells (NEC), but not tracheal epithelial cells (TEC), from children with wheeze and/or atopy produced less IFN-β, but not IFN-λ, in response to RSV infection; this was associated with higher viral shedding. However, IFN-regulated factors IRF-7, Mx-1 and CXCL-10, and inflammatory cytokines were not differentially regulated. NECs and TECs from children with wheeze and/or atopy demonstrated no impairment of the IFN response (β or λ) to hMPV infection. Despite this, more hMPV was shed from these cells. Conclusions AECs from children with wheeze and/or atopy do not have an intrinsic defect in the production of IFN-β or -λ, however, this response is influenced by the infecting virus. Higher viral load is associated with atopy and wheeze suggesting an impaired antiviral response to RSV and hMPV that is not influenced by production of IFNs. PMID:24811725

  11. Endogenous tissue factor pathway inhibitor has a limited effect on host defence in murine pneumococcal pneumonia.

    PubMed

    van den Boogaard, Florry E; van 't Veer, Cornelis; Roelofs, Joris J T H; Meijers, Joost C M; Schultz, Marcus J; Broze, George J; van der Poll, Tom

    2015-07-01

    Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Coagulation and inflammation interact in the host response to infection. Tissue factor pathway inhibitor (TFPI) is a natural anticoagulant protein that inhibits tissue factor (TF), the main activator of inflammation-induced coagulation. It was the objective of this study to investigate the effect of endogenous TFPI levels on coagulation, inflammation and bacterial growth during S. pneumoniae pneumonia in mice. The effect of low endogenous TFPI levels was studied by administration of a neutralising anti-TFPI antibody to wild-type mice, and by using genetically modified mice expressing low levels of TFPI, due to a genetic deletion of the first Kunitz domain of TFPI (TFPIK1(-/-)) rescued with a human TFPI transgene. Pneumonia was induced by intranasal inoculation with S. pneumoniae and samples were obtained at 6, 24 and 48 hours after infection. Anti-TFPI reduced TFPI activity by ~50 %. Homozygous lowTFPI mice and heterozygous controls had ~10 % and ~50 % of normal TFPI activity, respectively. TFPI levels did not influence bacterial growth or dissemination. Whereas lung pathology was unaffected in all groups, mice with ~10 % (but not with ~50 %) of TFPI levels displayed elevated lung cytokine and chemokine concentrations 24 hours after infection. None of the groups with low TFPI levels showed an altered procoagulant response in lungs or plasma during pneumonia. These data argue against an important role for endogenous TFPI in the antibacterial, inflammatory and procoagulant response during pneumococcal pneumonia.

  12. The Genes Raw and Ribbon Are Required for Proper Shape of Tubular Epithelial Tissues in Drosophila

    PubMed Central

    Jack, J.; Myette, G.

    1997-01-01

    The products of two genes, raw and ribbon (rib), are required for the proper morphogenesis of a variety of tissues. Malpighian tubules mutant for raw or rib are wider and shorter than normal tubules, which are only two cells in circumference when they are fully formed. The mutations alter the shape of the tubules beginning early in their formation and block cell rearrangement late in development, which normally lengthens and narrows the tubes. Mutations of both genes affect a number of other tissues as well. Both genes are required for dorsal closure and retraction of the CNS during embryonic development. In addition, rib mutations block head involution, and broaden and shorten other tubular epithelia (salivary glands, tracheae, and hindgut) in much same manner as they alter the shape of the Malpighian tubules. In tissues in which the shape of cells can be observed readily, rib mutations alter cell shape, which probably causes the change in shape of the organs that are affected. In double mutants raw enhances the phenotypes of all the tissues that are affected by rib but unaffected by raw alone, indicating that raw is also active in these tissues. PMID:9286684

  13. TGF-β1–Containing Exosomes from Injured Epithelial Cells Activate Fibroblasts to Initiate Tissue Regenerative Responses and Fibrosis

    PubMed Central

    Borges, Fernanda T.; Melo, Sonia A.; Özdemir, Berna C.; Kato, Noritoshi; Revuelta, Ignacio; Miller, Caroline A.; Gattone, Vincent H.; LeBleu, Valerie S.

    2013-01-01

    Hypoxia is associated with tissue injury and fibrosis but its functional role in fibroblast activation and tissue repair/regeneration is unknown. Using kidney injury as a model system, we demonstrate that injured epithelial cells produce an increased number of exosomes with defined genetic information to activate fibroblasts. Exosomes released by injured epithelial cells promote proliferation, α-smooth muscle actin expression, F-actin expression, and type I collagen production in fibroblasts. Fibroblast activation is dependent on exosomes delivering TGF-β1 mRNA among other yet to be identified moieties. This study suggests that TGF-β1 mRNA transported by exosomes constitutes a rapid response to initiate tissue repair/regenerative responses and activation of fibroblasts when resident parenchyma is injured. The results also inform potential utility of exosome-targeted therapies to control tissue fibrosis. PMID:23274427

  14. Epithelial and connective tissue healing following electrosurgical incisions in human gingiva.

    PubMed

    Kalkwarf, K L; Krejci, R F; Wentz, F M; Edison, A R

    1983-02-01

    Electrosurgery is used for intraoral incisions by many clinicians. Much controversy surrounds the effect of lateral heat produced during the electrosurgical incision upon the healing of adjacent connective tissue. Ten electrosurgical incisions were made in the gingiva in each of five adult male volunteers. The duration of incision and actual energy production for each incision were calculated. Excisional biopsies of the incisions were obtained at 0-504 hours. At the light microscopic level, epithelium, totally degenerated immediately following the electrosurgery incision, showed extensive activity at 24-48 hours and had covered all wounds by 72 hours. Early hour specimens showed a homogenous connective tissue region, adjacent to the wound site, devoid of cells and fibers. This zone of denatured connective tissue gradually diminished until it was no longer present at 396 hours.

  15. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models.

    PubMed

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-09-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.

  16. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models

    PubMed Central

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-01-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin. PMID:24151975

  17. The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis.

    PubMed

    Raschperger, Elisabeth; Thyberg, Johan; Pettersson, Sven; Philipson, Lennart; Fuxe, Jonas; Pettersson, Ralf F

    2006-05-15

    The coxsackie- and adenovirus receptor (CAR) is a transmembrane protein belonging to the immunoglobulin superfamily. The function of CAR as a virus receptor has been extensively analyzed, while its physiological role and expression pattern in adult tissues have remained less clear. CAR associates with epithelial tight junctions in vitro and mediates cell-cell adhesion. Using a set of affinity-purified antibodies, we show that CAR is predominantly expressed in epithelial cells lining the body cavities in adult mice, where it specifically co-localizes with the tight junction components ZO-1 and occludin. Notably, CAR could not be detected in endothelial cells of the vasculature, including brain capillaries. CAR expression correlated positively with the maturity of tight junctions and inversely with permeability. With a few exceptions, the two known CAR isoforms were co-expressed in most epithelial cells analyzed. A CAR mutant lacking the intracellular tail over-expressed in transgenic mice was diffusely localized over the plasma membrane, showing the importance of this domain for correct subcellular localization in vivo. We conclude that CAR is localized to epithelial tight junctions in vivo where it may play a role in the regulation of epithelial permeability and tissue homeostasis.

  18. Microbiota-host interactions in irritable bowel syndrome: epithelial barrier, immune regulation and brain-gut interactions.

    PubMed

    Hyland, Niall P; Quigley, Eamonn M M; Brint, Elizabeth

    2014-07-21

    Irritable bowel syndrome (IBS) is a common, sometimes debilitating, gastrointestinal disorder worldwide. While altered gut motility and sensation, as well as aberrant brain perception of visceral events, are thought to contribute to the genesis of symptoms in IBS, a search for an underlying aetiology has, to date, proven unsuccessful. Recently, attention has been focused on the microbiota as a possible factor in the pathogenesis of IBS. Prompted by a number of clinical observations, such as the recognition of the de novo development of IBS following enteric infections, as well as descriptions of changes in colonic bacterial populations in IBS and supported by clinical responses to interventions, such as antibiotics and probiotics, that modify the microbiota, various approaches have been taken to investigating the microbiota-host response in IBS, as well as in animal models thereof. From such studies a considerable body of evidence has accumulated to indicate the activation or upregulation of both factors involved in bacterial engagement with the host as well host defence mechanisms against bacteria. Alterations in gut barrier function, occurring in response, or in parallel, to changes in the microbiota, have also been widely described and can be seen to play a pivotal role in generating and sustaining host immune responses both within and beyond the gut. In this manner a plausible hypothesis, based on an altered microbiota and/or an aberrant host response, for the pathogenesis, of at least some instances of IBS, can be generated.

  19. Microbiota-host interactions in irritable bowel syndrome: Epithelial barrier, immune regulation and brain-gut interactions

    PubMed Central

    Hyland, Niall P; Quigley, Eamonn MM; Brint, Elizabeth

    2014-01-01

    Irritable bowel syndrome (IBS) is a common, sometimes debilitating, gastrointestinal disorder worldwide. While altered gut motility and sensation, as well as aberrant brain perception of visceral events, are thought to contribute to the genesis of symptoms in IBS, a search for an underlying aetiology has, to date, proven unsuccessful. Recently, attention has been focused on the microbiota as a possible factor in the pathogenesis of IBS. Prompted by a number of clinical observations, such as the recognition of the de novo development of IBS following enteric infections, as well as descriptions of changes in colonic bacterial populations in IBS and supported by clinical responses to interventions, such as antibiotics and probiotics, that modify the microbiota, various approaches have been taken to investigating the microbiota-host response in IBS, as well as in animal models thereof. From such studies a considerable body of evidence has accumulated to indicate the activation or upregulation of both factors involved in bacterial engagement with the host as well host defence mechanisms against bacteria. Alterations in gut barrier function, occurring in response, or in parallel, to changes in the microbiota, have also been widely described and can be seen to play a pivotal role in generating and sustaining host immune responses both within and beyond the gut. In this manner a plausible hypothesis, based on an altered microbiota and/or an aberrant host response, for the pathogenesis, of at least some instances of IBS, can be generated. PMID:25083059

  20. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases

    PubMed Central

    Hanukoglu, Israel; Hanukoglu, Aaron

    2016-01-01

    The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na+ ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na+ in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension. PMID:26772908

  1. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis.

    PubMed

    Troll, Joshua V; Adin, Dawn M; Wier, Andrew M; Paquette, Nicholas; Silverman, Neal; Goldman, William E; Stadermann, Frank J; Stabb, Eric V; McFall-Ngai, Margaret J

    2009-07-01

    Peptidoglycan recognition proteins (PGRPs) are mediators of innate immunity and recently have been implicated in developmental regulation. To explore the interplay between these two roles, we characterized a PGRP in the host squid Euprymna scolopes (EsPGRP1) during colonization by the mutualistic bacterium Vibrio fischeri. Previous research on the squid-vibrio symbiosis had shown that, upon colonization of deep epithelium-lined crypts of the host light organ, symbiont-derived peptidoglycan monomers induce apoptosis-mediated regression of remote epithelial fields involved in the inoculation process. In this study, immunofluorescence microscopy revealed that EsPGRP1 localizes to the nuclei of epithelial cells, and symbiont colonization induces the loss of EsPGRP1 from apoptotic nuclei. The loss of nuclear EsPGRP1 occurred prior to DNA cleavage and breakdown of the nuclear membrane, but followed chromatin condensation, suggesting that it occurs during late-stage apoptosis. Experiments with purified peptidoglycan monomers and with V. fischeri mutants defective in peptidoglycan-monomer release provided evidence that these molecules trigger nuclear loss of EsPGRP1 and apoptosis. The demonstration of a nuclear PGRP is unprecedented, and the dynamics of EsPGRP1 during apoptosis provide a striking example of a connection between microbial recognition and developmental responses in the establishment of symbiosis.

  2. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains.

    PubMed

    de Oliveira Caleare, Angelo; Hensel, Andreas; Mello, João Carlos Palazzo; Pinha, Andressa Blainski; Panizzon, Gean Pier; Lechtenberg, Matthias; Petereit, Frank; Nakamura, Celso Vataru

    2017-03-11

    Porphyromonas gingivalis is a pathogen strongly involved in chronic and aggressive forms of periodontitis. Natural products, mainly polyphenols, have been described for advanced treatment of periodontitis by inhibition of the bacterial adhesion of P. gingivalis to the epithelial host cells. An acetone:water extract (LBE) from the rhizomes of Limonium brasiliense (Boiss.) Kuntze was tested under in vitro conditions for potential antiadhesive effects against P. gingivalis to human KB cells and for inhibition of the proteolytic activity of gingipains, the main virulence factor of P. gingivalis. LBE≤100μg/mL had no cytotoxicity against the bacteria and did not influence the cell physiology of human epithelial KB cells. At 100μg/mL LBE reduced the adhesion of P. gingivalis to KB cells significantly by about 80%. LBE at 20μg/mL reduced the proteolytic activity of the arginin-specific Rgp gingipain by about 75%. Chemical profiling of LBE indicated the presence of gallic acid, epigallocatechin-3-O-gallate and samarangenins A and B as lead compounds. UHPLC by using MS and UV detection displays a suitable method for quality control of the extract for identification and quantification of the lead compounds.

  3. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem.

  4. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    PubMed

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction.

  5. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection

    PubMed Central

    Lee, Heather; Prince, Jessica; Stadnisky, Michael D.; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R.; Tung, Kenneth; Brown, Michael G.

    2016-01-01

    The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. PMID:26845690

  6. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells.

    PubMed

    Smith, Stephen P; Scarpini, Cinzia G; Groves, Ian J; Odle, Richard I; Coleman, Nicholas

    2016-07-26

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of 'master regulators' for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins.

  7. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells

    PubMed Central

    Smith, Stephen P.; Scarpini, Cinzia G.; Groves, Ian J.; Odle, Richard I.; Coleman, Nicholas

    2016-01-01

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of ‘master regulators’ for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins. PMID:27457222

  8. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues

    PubMed Central

    Xiang, Ruidong; Oddy, Victor Hutton; Archibald, Alan L.; Vercoe, Phillip E.

    2016-01-01

    Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E−46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different

  9. Tissue Harvesting Site and Culture Medium Affect Attachment, Growth, and Phenotype of Ex Vivo Expanded Oral Mucosal Epithelial Cells.

    PubMed

    Islam, Rakibul; Eidet, Jon Roger; Badian, Reza A; Lippestad, Marit; Messelt, Edward; Griffith, May; Dartt, Darlene A; Utheim, Tor Paaske

    2017-04-06

    Transplantation of cultured oral mucosal epithelial cells (OMECs) is a promising treatment strategy for limbal stem cell deficiency. In order to improve the culture method, we investigated the effects of four culture media and tissue harvesting sites on explant attachment, growth, and phenotype of OMECs cultured from Sprague-Dawley rats. Neither choice of media or harvesting site impacted the ability of the explants to attach to the culture well. Dulbecco's modified Eagle's medium/Ham's F12 (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) supported the largest cellular outgrowth. Fold outgrowth was superior from LL explants compared to explants from the buccal mucosa (BM), HP, and transition zone of the lower lip (TZ) after six-day culture. Putative stem cell markers were detected in cultures grown in DMEM and RPMI. In DMEM, cells from TZ showed higher colony-forming efficiency than LL, BM, and HP. In contrast to RPMI, DMEM both expressed the putative stem cell marker Bmi-1 and yielded cell colonies. Our data suggest that OMECs from LL and TZ cultured in DMEM give rise to undifferentiated cells with high growth capacity, and hence are the most promising for treatment of limbal stem cell deficiency.

  10. Sub-epithelial connective tissue graft for root coverage in nonsmokers and smokers: A pilot comparative clinical study

    PubMed Central

    Dwarakanath, Chini Doraswamy; Divya, Bheemavarapu; Sruthima, Gottumukkala Naga Venkata Satya; Penmetsa, Gautami Subadra

    2016-01-01

    Background: Gingival recession is a common condition and is more prevalent in smokers. It is widely believed that root coverage procedures in smokers result in less desirable outcome compared to nonsmokers', and there are few controlled studies in literature to support this finding. Therefore, the purpose of this study was to evaluate and compare the outcome of root coverage with sub-epithelial connective tissue graft (SCTG) in nonsmokers and smokers. Materials and Methods: A sample of twenty subjects, 10 nonsmokers and 10 smokers were selected each with at least 1 Miller's Class I or II recession on a single rooted tooth. Clinical measurements of probing depth, clinical attachment level (CAL), gingival recession total surface area (GRTSA), depth of recession (RD), width of recession (RW), and width of keratinized tissue were determined at baseline, 3, and 6 months after surgery. Results: The treatment of gingival recession with SCTG and coronally advanced flap showed a decrease in the GRTSA, RD, RW, and an increase in CAL and width of keratinized gingiva in both the groups. However, the intergroup comparison of the clinical parameters showed no statistical significance. About 6 out of 10 nonsmokers (60%) and 3 smokers (30%) showed complete root coverage. The mean percentage of root coverage of 71.2% in nonsmokers and 38% in smokers was observed. Conclusion: The results of the present study suggest that smoking may negatively influence gingival recession reduction and CAL gain. In addition, smokers may exhibit fewer chances of complete root coverage. Overall, nonsmokers showed better improvements in all the parameters compared to smokers at the end of 6 months.

  11. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38α-Dependent Restraint of NF-κB Signaling.

    PubMed

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2016-03-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy.

  12. Epithelial control of gut-associated lymphoid tissue formation through p38α-dependent restraint of NF-κB signaling

    PubMed Central

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2015-01-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. Here we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a non-cell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. PMID:26792803

  13. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures.

    PubMed

    Schlage, Walter K; Iskandar, Anita R; Kostadinova, Radina; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Talikka, Marja; Geertz, Marcel; Mathis, Carole; Ivanov, Nikolai; Hoeng, Julia; Peitsch, Manuel C

    2014-10-01

    Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.

  14. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures

    PubMed Central

    Schlage, Walter K.; Kostadinova, Radina; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Talikka, Marja; Geertz, Marcel; Mathis, Carole; Ivanov, Nikolai; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air–liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products. PMID:25046638

  15. Meningococcal interactions with the host.

    PubMed

    Carbonnelle, Etienne; Hill, Darryl J; Morand, Philippe; Griffiths, Natalie J; Bourdoulous, Sandrine; Murillo, Isabel; Nassif, Xavier; Virji, Mumtaz

    2009-06-24

    Neisseria meningitidis interacts with host tissues through hierarchical, concerted and co-ordinated actions of a number of adhesins; many of which undergo antigenic and phase variation, a strategy that helps immune evasion. Three major structures, pili, Opa and Opc predominantly influence bacterial adhesion to host cells. Pili and Opa proteins also determine host and tissue specificity while Opa and Opc facilitate efficient cellular invasion. Recent studies have also implied a role of certain adhesin-receptor pairs in determining increased host susceptibility to infection. This chapter examines our current knowledge of meningococcal adhesion and invasion mechanisms particularly related to human epithelial and endothelial cells which are of primary importance in the disease process.

  16. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  17. Host-Integration of a Tissue-Engineered Airway Patch: Two-Year Follow-Up in a Single Patient

    PubMed Central

    Dally, Iris; Friedel, Godehard; Walles, Heike; Walles, Thorsten

    2015-01-01

    Different bioengineering techniques have been applied repeatedly for the reconstruction of extensive airway defects in the last few years. While short-term surgical success is evident, there is a lack of long-term results in patients. Here, we report the case of a young male who received a 5×2 cm bioartificial airway patch for tracheoesophageal reconstruction focusing on clinical defect healing and histomorphological tissue reorganization 2.5 years after surgery. We generated bioartificial airway tissue using a cell-free biological vascularized scaffold that was re-endothelialized and reseeded with the recipient's autologous primary cells and we implanted it into the recipient's left main bronchus. To investigate host-integration 2.5 years after the implantation, we obtained biopsies of the implant and adjacent tracheal tissue and processed these for histological and immunohistochemical analyses. The early postoperative course was uneventful and the transplanted airway tissue was integrated into the host. 2.5 years after transplantation, a bronchoscopy confirmed the scar-free reconstruction of the former airway defect. Histological work-up documented respiratory airway mucosa lining the bronchial reconstruction, making it indistinguishable from native airway mucosa. After transplantation, our bioartificial airway tissue provided perfect airway healing, with no histological evidence of tissue dedifferentiation. PMID:25316325

  18. Ecotoxicoparasitology: Understanding mercury concentrations in gut contents, intestinal helminths and host tissues of Alaskan gray wolves (Canis lupus)

    PubMed Central

    McGrew, Ashley K.; O'Hara, Todd M.; Stricker, Craig A.; Castellini, J. Margaret; Beckmen, Kimberlee B.; Salman, Mo D.; Ballweber, Lora R.

    2015-01-01

    Some gastrointestinal helminths acquire nutrients from the lumen contents in which they live; thus, they may be exposed to non-essential elements, such as mercury (Hg), during feeding. The objectives of this study were: 1) determine the total mercury concentrations ([THg]) in Gray wolves (Canis lupus) and their parasites, and 2) use stable isotopes to evaluate the trophic relationships within the host. [THg] and stable isotopes (C and N) were determined for helminths, host tissues, and lumen contents from 88 wolves. Sixty-three wolves contained grossly visible helminths (71.5%). The prevalence of taeniids and ascarids was 63.6% (56/88) and 20.5% (18/88), respectively. Nine of these 63 wolves contained both taeniids and ascarids (14.3%). All ascarids were determined to be Toxascaris leonina. Taenia species present included T. krabbei and T. hydatigena. Within the GI tract, [THg] in the lumen contents of the proximal small intestine were significantly lower than in the distal small intestine. There was a significant positive association between hepatic and taeniid [THg]. Bioaccumulation factors (BAF) ranged from <1 to 22.9 in taeniids, and 1.1 to 12.3 in Toxascaris leonina. Taeniid and ascarid BAF were significantly higher than 1, suggesting that both groups are capable of THg accumulation in their wolf host. δ13C in taeniids was significantly lower than in host liver and skeletal muscle. [THg] in helminths and host tissues, in conjunction with stable isotope (C and N) values, provides insight into food-web dynamics of the host GI tract, and aids in elucidating ecotoxicoparasitologic relationships. Variation of [THg] throughout the GI tract, and between parasitic groups, underscores the need to further evaluate the effect(s) of feeding niche, and the nutritional needs of parasites, as they relate to toxicant exposure and distribution within the host. PMID:26283618

  19. Ecotoxicoparasitology: Understanding mercury concentrations in gut contents, intestinal helminths and host tissues of Alaskan gray wolves (Canis lupus).

    PubMed

    McGrew, Ashley K; O'Hara, Todd M; Stricker, Craig A; Castellini, J Margaret; Beckmen, Kimberlee B; Salman, Mo D; Ballweber, Lora R

    2015-12-01

    Some gastrointestinal helminths acquire nutrients from the lumen contents in which they live; thus, they may be exposed to non-essential elements, such as mercury (Hg), during feeding. The objectives of this study were: 1) determine the total mercury concentrations ([THg]) in Gray wolves (Canis lupus) and their parasites, and 2) use stable isotopes to evaluate the trophic relationships within the host. [THg] and stable isotopes (C and N) were determined for helminths, host tissues, and lumen contents from 88 wolves. Sixty-three wolves contained grossly visible helminths (71.5%). The prevalence of taeniids and ascarids was 63.6% (56/88) and 20.5% (18/88), respectively. Nine of these 63 wolves contained both taeniids and ascarids (14.3%). All ascarids were determined to be Toxascaris leonina. Taenia species present included T. krabbei and T. hydatigena. Within the GI tract, [THg] in the lumen contents of the proximal small intestine were significantly lower than in the distal small intestine. There was a significant positive association between hepatic and taeniid [THg]. Bioaccumulation factors (BAF) ranged from <1 to 22.9 in taeniids, and 1.1 to 12.3 in T. leonina. Taeniid and ascarid BAF were significantly higher than 1, suggesting that both groups are capable of THg accumulation in their wolf host. δ13C in taeniids was significantly lower than in host liver and skeletal muscle. [THg] in helminths and host tissues, in conjunction with stable isotope (C and N) values, provides insight into food-web dynamics of the host GI tract, and aids in elucidating ecotoxicoparasitologic relationships. Variation of [THg] throughout the GI tract, and between parasitic groups, underscores the need to further evaluate the effect(s) of feeding niche, and the nutritional needs of parasites, as they relate to toxicant exposure and distribution within the host.

  20. Ecotoxicoparasitology: Understanding mercury concentrations in gut contents, intestinal helminths and host tissues of Alaskan gray wolves (Canis lupus)

    USGS Publications Warehouse

    McGrew, Ashley K.; O'Hara, Todd M.; Stricker, Craig A.; Castellini, Margaret; Beckmen, Kimberlee B.; Salman, Mo D.; Ballweber, Lora R.

    2015-01-01

    Some gastrointestinal helminths acquire nutrients from the lumen contents in which they live; thus, they may be exposed to non-essential elements, such as mercury (Hg), during feeding. The objectives of this study were: 1) determine the total mercury concentrations ([THg]) in Gray wolves (Canis lupus) and their parasites, and 2) use stable isotopes to evaluate the trophic relationships within the host. [THg] and stable isotopes (C and N) were determined for helminths, host tissues, and lumen contents from 88 wolves. Sixty-three wolves contained grossly visible helminths (71.5%). The prevalence of taeniids and ascarids was 63.6% (56/88) and 20.5% (18/88), respectively. Nine of these 63 wolves contained both taeniids and ascarids (14.3%). All ascarids were determined to beToxascaris leonina. Taenia species present included T. krabbei and T. hydatigena. Within the GI tract, [THg] in the lumen contents of the proximal small intestine were significantly lower than in the distal small intestine. There was a significant positive association between hepatic and taeniid [THg]. Bioaccumulation factors (BAF) ranged from < 1 to 22.9 in taeniids, and 1.1 to 12.3 in T. leonina. Taeniid and ascarid BAF were significantly higher than 1, suggesting that both groups are capable of THg accumulation in their wolf host. δ13C in taeniids was significantly lower than in host liver and skeletal muscle. [THg] in helminths and host tissues, in conjunction with stable isotope (C and N) values, provides insight into food-web dynamics of the host GI tract, and aids in elucidating ecotoxicoparasitologic relationships. Variation of [THg] throughout the GI tract, and between parasitic groups, underscores the need to further evaluate the effect(s) of feeding niche, and the nutritional needs of parasites, as they relate to toxicant exposure and distribution within the host.

  1. Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes.

    PubMed

    Nuss, Aaron M; Beckstette, Michael; Pimenova, Maria; Schmühl, Carina; Opitz, Wiebke; Pisano, Fabio; Heroven, Ann Kathrin; Dersch, Petra

    2017-01-31

    Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.

  2. Developing a quantitative in vivo tissue reconstitution assay to assess the relative potency of candidate populations of mouse oesophageal epithelial cells.

    PubMed

    Croagh, Daniel; Redvers, Rick; Phillips, Wayne A; Kaur, Pritinder

    2012-01-01

    Proliferation in mouse oesophageal epithelial cells is confined to the basal layer of the epithelium. Within this population, it is possible to discriminate different sub-populations using a combination of cell kinetic studies and functional assays. In particular, it is possible to distinguish basal epithelial cells, which are post-mitotic and destined to leave the basal layer and differentiate compared with those cells that remain in the cycling pool. Within the cycling basal population, there appears to be a hierarchy with respect to the rate of cell turnover which may reflect a hierarchy of "stemness", although it has not been possible to demonstrate functional differences between these populations using current in vivo tissue reconstitution assays. The aim of this chapter is to describe the development of a quantitative in vivo tissue reconstitution assay to assess the potency of candidate stem cell populations within the mouse oesophageal epithelium.

  3. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    PubMed

    Wang, Li; Xing, Jie; Cheng, Rui; Shao, Ying; Li, Peng; Zhu, Shengtao; Zhang, Shutian

    2015-01-01

    Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC) is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  4. Qualitatively monitoring binding and expression of the transcription factor Sp1 as a useful tool to evaluate the reliability of primary cultured epithelial stem cells in tissue reconstruction.

    PubMed

    Gaudreault, Manon; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L

    2013-01-01

    Electrophoretic mobility shift assay and Western blot are simple, efficient, and rapid methods for the study of DNA-protein interactions and expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem-cells through the culture process is essential to produce high quality substitutes. However as such cells are passaged in culture, they often lose their ability to proliferate, a process likely to be determined by the altered expression of nuclear-located transcription factors such as Sp1, whose expression has been documented to be required for cell adhesion, migration, and differentiation. Our recent studies demonstrated that reconstructed tissues exhibiting poor histological and structural characteristics are also those that were produced with epithelial cells in which expression and DNA binding of Sp1 was reduced in vitro. Therefore, monitoring both the expression and DNA binding of this transcription factor in human skin and corneal epithelial cells might prove a particularly useful tool for selecting which cells are to be used for tissue reconstruction.

  5. Tissue types (image)

    MedlinePlus

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports other tissues and binds them together (bone, blood, and lymph tissues). ...

  6. A STUDY OF THE SPECIFIC LOCATION OF LEPTOSPIRES WITH RESPECT TO VARIOUS TISSUE CELLS OF INFECTED ANIMAL HOSTS.

    DTIC Science & Technology

    The objectives of the research were as follows: (1) To determine the specific location of leptospires with respect to various tissue cells of the...infected animal host. (2) To study histologic variations at the cellular level as a result of leptospiral activity. (3) To determine final...disposition and significance of morphologically intact leptospires within vesicular structures of hepatic and renal cells and (4) To compare the 3341 and MLS

  7. Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells

    PubMed Central

    Oliveira, Ernna H.; Macedo, Claudia; Collares, Cristhianna V.; Freitas, Ana Carolina; Donate, Paula Barbim; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2016-01-01

    Autoimmune regulator (Aire) is a transcriptional regulator of peripheral tissue antigens (PTAs) and microRNAs (miRNAs) in medullary thymic epithelial cells (mTECs). In this study, we tested the hypothesis that Aire also played a role as an upstream posttranscriptional controller in these cells and that variation in its expression might be associated with changes in the interactions between miRNAs and the mRNAs encoding PTAs. We demonstrated that downregulation of Aire in vivo in the thymuses of BALB/c mice imbalanced the large-scale expression of these two RNA species and consequently their interactions. The expression profiles of a large set of mTEC miRNAs and mRNAs isolated from the thymuses of mice subjected (or not) to small-interfering-induced Aire gene knockdown revealed that 87 miRNAs and 4,558 mRNAs were differentially expressed. The reconstruction of the miRNA–mRNA interaction networks demonstrated that interactions between these RNAs were under Aire influence and therefore changed when this gene was downregulated. Prior to Aire-knockdown, only members of the miR-let-7 family interacted with a set of PTA mRNAs. Under Aire-knockdown conditions, a larger set of miRNA families and their members established this type of interaction. Notably, no previously described Aire-dependent PTA interacted with the miRNAs, indicating that these PTAs were somehow refractory. The miRNA–mRNA interactions were validated by calculating the minimal free energy of the pairings between the miRNA seed regions and the mRNA 3′ UTRs and within the cellular milieu using the luciferase reporter gene assay. These results suggest the existence of a link between transcriptional and posttranscriptional control because Aire downregulation alters the miRNA–mRNA network controlling PTAs in mTEC cells. PMID:27933063

  8. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells.

  9. Effects of a Mediterranean Diet Intervention on Anti- and Pro-Inflammatory Eicosanoids, Epithelial Proliferation, and Nuclear Morphology in Biopsies of Normal Colon Tissue.

    PubMed

    Djuric, Zora; Turgeon, D Kim; Ren, Jianwei; Neilson, Andrew; Plegue, Missy; Waters, Ian G; Chan, Alexander; Askew, Leah M; Ruffin, Mack T; Sen, Ananda; Brenner, Dean E

    2015-01-01

    This randomized trial evaluated the effects of intervention with either a Healthy Eating or a Mediterranean diet on colon biomarkers in 120 healthy individuals at increased colon cancer risk. The hypothesis was that eicosanoids and markers of proliferation would be favorably affected by the Mediterranean diet. Colon epithelial biopsy tissues and blood samples were obtained at baseline and after 6 mo of intervention. Colonic eicosanoid concentrations were evaluated by HPLC-MS-MS, and measures of epithelial proliferation and nuclear morphology were evaluated by image analysis of biopsy sections. There was little change in proinflammatory eicosanoids and in plasma cytokine concentrations with either dietary intervention. There was, however, a 50% increase in colonic prostaglandin E3 (PGE3), which is formed from eicosapentanoic acid, in the Mediterranean arm. Unlike PGE2, PGE3, was not significantly affected by regular use of non-steroidal anti-inflammatory drugs at baseline, and normal weight subjects had significantly higher colon PGE3 than overweight or obese subjects. Increased proliferation in the colon at baseline, by Ki67 labeling, was associated with morphological features that defined smaller nuclei in the epithelial cells, lower colon leukotriene concentrations and higher plasma cytokine concentrations. Dietary intervention had little effect on measures of epithelial proliferation or of nuclear morphology. The increase in PGE3 with a Mediterranean diet indicates that in normal colon, diet might affect protective pathways to a greater extent than proinflammatory and proliferative pathways. Hence, biomarkers from cancer models might not be relevant in a true prevention setting.

  10. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant

    PubMed Central

    Shen, Jiangfeng; Chen, Xian; Chen, Jianping; Sun, Liying

    2016-01-01

    A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant. PMID:27432466

  11. Abiotic Versus Biotic Pathogens: Replicative Growth in Host Tissues Key to Discriminating Between Biotoxic Injury and Active Pathogenesis

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Life can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution; a self-bounded, self-replicating, and self-perpetuating entity [1]. This definition should hold for terrestrial as well as extraterrestrial life-forms. Although, it is reasonable to expect that a Mars life-form would be more adaptable to Mars-like conditions than to Earth-like environments, it remains possible that negative ecological or host interactions might occur if Mars microbiota were to be inadvertently released into the terrestrial environment. A biogenic infectious agent can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution and derives its sustenance from a living cell or from the by-products of cell death. Disease can be de-fined as the detrimental alteration of one or more ordered metabolic processes in a living host caused by the continued irritation of a primary causal factor or factors; disease is a dynamic process [2]. In contrast, an injury is due to an instantaneous event; injury is not a dynamic process [2]. A causal agent of disease is defined as a pathogen, and can be either abiotic or biotic in nature. Diseases incited by biotic pathogens are the exceptions, not the norms, in terrestrial host-microbe interactions. Disease induction in a plant host can be conceptually characterized using the Disease Triangle (Fig. 1) in which disease occurs only when all host, pathogen, and environ-mental factors that contribute to the development of disease are within conducive ranges for a necessary minimum period of time. For example, plant infection and disease caused by the wheat leaf rust fungus, Puccinia recondita, occur only if virulent spores adhere to genetically susceptible host tissues for at least 4-6 hours under favorable conditions of temperature and moisture [3]. As long as one or more conditions required for disease initiation are not available, disease symptoms will not develop.

  12. Epithelialization Over a Scaffold of Antibiotic-Impregnated PMMA Beads: A Salvage Technique for Open Tibial Fractures with Bone and Soft Tissue Loss When all Else Fails

    PubMed Central

    Masrouha, Karim Z.; El-Bitar, Youssef; Najjar, Marc; Saghieh, Said

    2016-01-01

    The management of soft tissue defects in tibial fractures is essential for limb preservation. Current techniques are not without complications and may lead to poor functional outcomes. A salvage method is described using three illustrative cases whereby a combination of flaps and antibiotic-impregnated polymethylmethacrylate beads are employed to fill the bony defect, fight the infection, and provide a surface for epithelial regeneration and secondary wound closure. This was performed after the partial failure of all other options. All patients were fully ambulatory with no clinical, radiographic or laboratory sign of infection at their most recent follow-up. Although our findings are encouraging, this is the first report of epithelialization of the skin on a polymethylmethacrylate scaffold. Further studies investigating the use of this technique are warranted. PMID:27517073

  13. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    PubMed

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  14. COX2 (PTGS2) gene methylation in epithelial, subepithelial lymphocyte and stromal tissue compartments in a spectrum of esophageal squamous neoplasia

    PubMed Central

    Dawsey, Sonja P.; Roth, Mark J.; Adams, Lisa; Hu, Nan; Wang, Quan-Hong; Taylor, Philip R.; Woodson, Karen

    2008-01-01

    Background Previous studies have shown important effects of stromal elements in carcinogenesis. To explore the tumor-stromal relationship in esophageal neoplasia, we examined methylation of COX-2 (PTGS2), a gene etiologically associated with the development of gastrointestinal cancers, in adjacent foci of epithelium, subepithelial lymphocytes and non-lymphocytic stromal cells found in sections of normal squamous epithelium, squamous dysplasia and invasive esophageal squamous cell carcinoma. Methods Adjacent foci of epithelium, subepithelial lymphocytic aggregates and non-lymphocytic stromal tissues were laser microdissected from six fully embedded, ethanol fixed, esophagectomy samples from Shanxi, China, a high-risk region for esophageal cancer. Promoter CpG site-specific hypermethylation status of COX-2 was determined using real-time methylation specific PCR (qMS-PCR) based on Taqman Chemistry. The methylation status of a subset of samples was confirmed by pyrosequencing. Results Forty-nine microdissected foci were analyzed. COX-2 gene methylation was significantly more common in subepithelial lymphocytes (12/16 (75% of all foci)) than in epithelial foci (3/16 (19%)) or foci of non-lymphocytic stromal tissues (3/17 (18%)) (Fisher’s Exact p=0.05). Two of three epithelial samples and all three stromal samples that showed COX-2 methylation were adjacent to foci of methylated subepithelial lymphocytes. Pyrosequencing confirmed the methylation status in a subset of samples. Conclusions In these esopohageal cancer patients, COX-2 gene methylation was more common in subepithelial lymphocytes than in adjacent epithelial or stromal cells in both grades of dysplasia and in foci of invasive cancer. These findings raise the possibility that methylation of subepithelial lymphocytes may be important for tumorigenesis. Future studies of gene methylation should consider separate evaluation of epithelial and non-epithelial cell populations. Condensed abstract COX2 (PTGS2) gene

  15. Tissue-Specific Expression Patterns of MicroRNA during Acute Graft-versus-Host Disease in the Rat

    PubMed Central

    Jalapothu, Dasaradha; Boieri, Margherita; Crossland, Rachel E.; Shah, Pranali; Butt, Isha A.; Norden, Jean; Dressel, Ralf; Dickinson, Anne M.; Inngjerdingen, Marit

    2016-01-01

    MicroRNAs (miRNA) have emerged as central regulators of diverse biological processes and contribute to driving pathology in several diseases. Acute graft-versus-host disease (aGvHD) represents a major complication after allogeneic hematopoietic stem cell transplantation, caused by alloreactive donor T cells attacking host tissues leading to inflammation and tissue destruction. Changes in miRNA expression patterns occur during aGvHD, and we hypothesized that we could identify miRNA signatures in target tissues of aGvHD that may potentially help understand the underlying molecular pathology of the disease. We utilized a rat model of aGvHD with transplantation of fully MHC-mismatched T cell depleted bone marrow, followed by infusion of donor T cells. The expression pattern of 423 rat miRNAs was investigated in skin, gut, and lung tissues and intestinal T cells with the NanoString hybridization platform, in combination with validation by quantitative PCR. MHC-matched transplanted rats were included as controls. In the skin, upregulation of miR-34b and downregulation of miR-326 was observed, while in the intestines, we detected downregulation of miR-743b and a trend toward downregulation of miR-345-5p. Thus, tissue-specific expression patterns of miRNAs were observed. Neither miR-326 nor miR-743b has previously been associated with aGvHD. Moreover, we identified upregulation of miR-146a and miR-155 in skin tissue of rats suffering from aGvHD. Analysis of intestinal T cells indicated 23 miRNAs differentially regulated between aGvHD and controls. Two of these miRNAs were differentially expressed either in skin (miR-326) or in intestinal (miR-345-5p) tissue. Comparison of intestinal and peripheral blood T cells indicated common dysregulated expression of miR-99a, miR-223, miR-326, and miR-345-5p. Analysis of predicted gene targets for these miRNAs indicated potential targeting of an inflammatory network both in skin and in the intestines that may further regulate

  16. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    USGS Publications Warehouse

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  17. Teratocarcinomas Arising from Allogeneic Induced Pluripotent Stem Cell-Derived Cardiac Tissue Constructs Provoked Host Immune Rejection in Mice

    PubMed Central

    Kawamura, Ai; Miyagawa, Shigeru; Fukushima, Satsuki; Kawamura, Takuji; Kashiyama, Noriyuki; Ito, Emiko; Watabe, Tadashi; Masuda, Shigeo; Toda, Koichi; Hatazawa, Jun; Morii, Eiichi; Sawa, Yoshiki

    2016-01-01

    Transplantation of induced pluripotent stem cell-derived cardiac tissue constructs is a promising regenerative treatment for cardiac failure: however, its tumourigenic potential is concerning. We hypothesised that the tumourigenic potential may be eliminated by the host immune response after allogeneic cell transplantation. Scaffold-free iPSC-derived cardaic tissue sheets of C57BL/6 mouse origin were transplanted into the cardiac surface of syngeneic C57BL/6 mice and allogeneic BALB/c mice with or without tacrolimus injection. Syngeneic mice and tacrolimus-injected immunosuppressed allogeneic mice formed teratocarcinomas with identical phenotypes, characteristic, and time courses, as assessed by imaging tools including 18F-fluorodeoxyglucose-positron emission tomography. In contrast, temporarily immunosuppressed allogeneic mice, following cessation of tacrolimus injection displayed diminished progression of the teratocarcinoma, accompanied by an accumulation of CD4/CD8-positive T cells, and finally achieved complete elimination of the teratocarcinoma. Our results indicated that malignant teratocarcinomas arising from induced pluripotent stem cell-derived cardiac tissue constructs provoked T cell-related host immune rejection to arrest tumour growth in murine allogeneic transplantation models. PMID:26763872

  18. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    PubMed

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes.

  19. Processing window for femtosecond laser microsurgery and fluorescence imaging of an arterial tissue hosted in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Li, Jianzhao; Herman, Peter R.

    2016-02-01

    We study the exposure limitations of femtosecond laser microsurgery and multiphoton imaging in a microfluidic chip environment, assessing damage thresholds at various interfaces as well as interference from bubble formation in the hosting solution. Both heat accumulation and incubation effects from multipulse laser exposures at 1-MHz repetition rate were evaluated. For demonstration, three microsurgery approaches of laser scribing, percussion drilling and trepanning were applied to arterial walls loaded in vitro in a lab-on-a-chip device. We report that deleterious effects from interface damage and microbubble formation can be avoided to offer laser processing windows for damage-free fluorescence imaging and precise microsurgery of live tissue hosted inside small microfluidic chambers.

  20. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.

  1. Depletion of host CCR7(+) dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients.

    PubMed

    He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu

    2014-07-01

    We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects.

  2. Expression of tumor necrosis factor-alpha-induced protein 8 in pancreas tissues and its correlation with epithelial growth factor receptor levels.

    PubMed

    Liu, Ke; Qin, Cheng-Kun; Wang, Zhi-Yi; Liu, Su-Xia; Cui, Xian-Ping; Zhang, Dong-Yuan

    2012-01-01

    Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) is a recently identified protein considered to be associated with carcinogenesis. To investigate its expression pattern in pancreatic cancer patients and to analyse its correlation with clinicopathological significance and the expression levels of epithelial growth factor receptor (EGFR), immunohistochemistry was performed to detect the TNFAIP8 and EGFR proteins in pancreatic cancers, pancreatitis tissues, and healthy controls. The results showed stronger staining of TNFAIP8 protein in pancreatic cancer tissues compared with normal pancreas tissue. Furthermore, in 56 patients with pancreatic cancer, the expression levels of TNFAIP8 in patients with low tumor stage was higher than that with high tumor stage, and correlated with tumor staging and lymph node metastasis (P<0.05). Furthermore, TNFAIP8 expression positively correlated with EGFR levels (r=0.671135, P<0.05). These results indicate that TNFAIP8 may play important roles in the progression of pancreatic cancer.

  3. Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia.

    PubMed Central

    Robles, A I; Larcher, F; Whalin, R B; Murillas, R; Richie, E; Gimenez-Conti, I B; Jorcano, J L; Conti, C J

    1996-01-01

    To study the involvement of cyclin D1 in epithelial growth and differentiation and its putative role as an oncogene in skin, transgenic mice were developed carrying the human cyclin D1 gene driven by a bovine keratin 5 promoter. As expected, all squamous epithelia including skin, oral mucosa, trachea, vaginal epithelium, and the epithelial compartment of the thymus expressed aberrant levels of cyclin D1. The rate of epidermal proliferation increased dramatically in transgenic mice, which also showed basal cell hyperplasia. However, epidermal differentiation was unaffected, as shown by normal growth arrest of newborn primary keratinocytes in response to high extracellular calcium. Moreover, an unexpected phenotype was observed in the thymus. Transgenic mice developed a severe thymic hyperplasia that caused premature death due to cardio-respiratory failure within 4 months of age. By 14 weeks, the thymi of transgenic mice increased in weight up to 40-fold, representing 10% of total body weight. The hyperplastic thymi had normal histology revealing a well-differentiated cortex and medulla, which supported an apparently normal T-cell developmental program based on the distribution of thymocyte subsets. These results suggest that proliferation and differentiation of epithelial cells are under independent genetic controls in these organs and that cyclin D1 can modulate epithelial proliferation without altering the initiation of differentiation programs. No spontaneous development of epithelial tumors or thymic lymphomas was perceived in transgenic mice during their first 8 months of life, although they continue under observation. This model provides in vivo evidence of the action of cyclin D1 as a pure mediator of proliferation in epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755527

  4. Povidone-iodine-induced cell death in cultured human epithelial HeLa cells and rat oral mucosal tissue.

    PubMed

    Sato, So; Miyake, Masao; Hazama, Akihiro; Omori, Koichi

    2014-07-01

    Although povidone-iodine (PVP-I) has been used as a gargle since 1956, its effectiveness and material safety have been remained controversial. The aim of this study was to investigate the toxicity of PVP-I to epithelial cells in a concentration range significantly lower than that used clinically. Study design was in vitro laboratory investigations and in vivo histological and immunologic analysis. We examined the effects of PVP-I at concentrations of 1 × 10(-2) to 1 × 10(3) μM and 1 × 10(-4) to 1 × 10 μM on HeLa cells as a model of epithelial cells and rat oral mucosa, respectively, after 1 or 2 days of exposure. Annexin V/FLUOS was used to distinguish live, apoptotic and necrotic cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was also used to observe whether apoptotic epithelial cells exist in rat oral mucosa after 1 day of exposure of PVP-I. HeLa cells developed concentration-dependent cytotoxicity, and epithelium of rat oral mucosa was thinned in a concentration-dependent manner. HeLa cell apoptosis increased after 1 × 10(0) μM of PVP-I exposure for 2 days. In the TUNEL method, many apoptotic epithelial cells were observed in the rat oral mucosa after 1 day of exposure to diluted 1 × 10(-2) μM of PVP-I, but minimal apoptotic epithelial cells were observed using 1 × 10(-3) μM of PVP-I. Our findings suggest that exposure to PVP-I, of which concentrations are even lower than those used clinically, causes toxicity in epithelial cells. This knowledge would help us better understand the risk of the use of PVP-I against mucosa.

  5. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    PubMed

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  6. Host tissue response by the expression of collagen to cyanoacrylate adhesives used in implant fixation for abdominal hernia repair.

    PubMed

    Pascual, Gemma; Rodríguez, Marta; Pérez-Köhler, Bárbara; Mesa-Ciller, Claudia; Fernández-Gutiérrez, Mar; San Román, Julio; Bellón, Juan M

    2017-04-01

    The less traumatic use of surgical adhesives rather than sutures for mesh fixation in hernia repair has started to gain popularity because they induce less host tissue damage and provoke less postoperative pain. This study examines the host tissue response to a new cyanoacrylate (CA) adhesive (n-octyl, OCA). Partial defects (3 × 5 cm) created in the rabbit anterior abdominal wall were repaired by mesh fixation using OCA, Glubran2(®)(n-butyl-CA), Ifabond(®)(n-hexyl-CA) or sutures. Samples were obtained at 14/90 days for morphology, collagens qRT-PCR/immunofluorescence and biomechanical studies. All meshes were successfully fixed. Seroma was detected mainly in the Glubran group at 14 days. Meshes fixed using all methods showed good host tissue incorporation. No signs of degradation of any of the adhesives were observed. At 14 days, collagen 1 and 3 mRNA expression levels were greater in the suture and OCA groups, and lower in Ifabond, with levels varying significantly in the latter group with respect to the others. By 90 days, expression levels had fallen in all groups, except for collagen 3 mRNA in Ifabond. Collagen I and III protein expression was marked in the suture and OCA groups at 90 days, but lower in Ifabond at both time points. Tensile strengths were similar across groups. Our findings indicate the similar behavior of the adhesives to sutures in terms of good tissue incorporation of the meshes and optimal repair zone strength. The lower seroma rate and similar collagenization to controls induced by OCA suggests its improved behavior over the other two glues. This article deals with a preclinical study to examine different aspects of the repair process in the host of three alkyl cyanoacrylates (n-butyl (GLUBRAN 2), n-hexyl (IFABOND), and n-octyl cyanoacrylate (EVOBOND)) compared to sutures (control), in the fixation of surgical meshes for hernia repair. It goes into detail about collagen deposition in the repair zone at short and medium term. The

  7. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.

  8. Exotic herbivores on a shared native host: tissue quality after individual, simultaneous, and sequential attack.

    PubMed

    Gómez, Sara; Orians, Colin M; Preisser, Evan L

    2012-08-01

    Plants in nature are often attacked by multiple enemies whose effect on the plant cannot always be predicted based on the outcome of individual attacks. We investigated how two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) (HWA) and the elongate hemlock scale (Fiorinia externa) (EHS), alter host plant quality (measured as amino acid concentration and composition) when feeding individually or jointly on eastern hemlock (Tsuga canadensis), an important long-lived forest tree that is in severe decline. The joint herbivore treatments included both simultaneous and sequential infestations by the two herbivores. We expected resource depletion over time, particularly in response to feeding by HWA. In contrast, HWA dramatically increased the concentration and altered the composition of individual free amino acids. Compared to control trees, HWA increased total amino acid concentration by 330% after 1 year of infestation. Conversely, EHS had a negligible effect when feeding individually. Interestingly, there was a marginally significant HWA × EHS interaction that suggests the potential for EHS presence to reduce the impact of HWA on foliage quality when the two species co-occur. We suggest indirect effects of water stress as a possible physiological mechanism for our results. Understanding how species interactions change the physiology of a shared host is crucial to making more accurate predictions about host mortality and subsequent changes in affected communities and ecosystems, and to help design appropriate management plans.

  9. Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens

    NASA Astrophysics Data System (ADS)

    Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

    2004-08-01

    Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

  10. Cementum- and periodontal ligament-like tissue formation by dental follicle cell sheets co-cultured with Hertwig's epithelial root sheath cells.

    PubMed

    Bai, Yudi; Bai, Yuxiang; Matsuzaka, Kenichi; Hashimoto, Sadamitsu; Fukuyama, Tatsuro; Wu, Lian; Miwa, Tsuneyuki; Liu, Xiaohui; Wang, Xiaojing; Inoue, Takashi

    2011-06-01

    Dental follicle cells (DFCs) are believed contain the precursor cells of the periodontium and can form cell sheets by secreting extracellular matrix (ECM) proteins. Cell sheet engineering has been recently developed and applied successfully in the field of tissue regeneration. However, research on the in vitro characteristics of DFC sheets is lacking and an assessment of whether DFC sheets can produce periodontal tissues in vivo has not been reported. To test the characteristics and applicability of DFC sheets in this field, we established a co-culture system of rat DFCs and Hertwig's epithelial root sheath (HERS) cells in vitro, and included the following controls: a co-culture of DFCs and alveolar mucosa epithelial cells, DFCs with no cells in the upper chamber, and DFCs cultured without an upper chamber. After 3 weeks of co-culturing the cells, the DFC sheets were transplanted into adult male rats' omenta. One week after co-culturing DFCs with HERS cells, mRNA levels of collagen type I (COL-1), alkaline phosphatase (ALP), runt related transcription factor 2 (Runx 2) and bone sialoprotein (BSP) were increased significantly. In addition, after 3 weeks of co-culturing the cells, the numbers of ALP-, osteocalcin (OCN)-, BSP- and osteoprotegerin (OPG)-positive DFCs increased. The DFCs also produced more calcified nodules and exhibited an increased number of subcellular organelles, which are important for protein synthesis and secretion. Moreover, gap junctions were found between the experimental DFCs within the sheet. Five weeks of in vivo growth of DFC sheets pre-exposed to HERS cells led to the formation of cementum-like tissues, which were positive for OCN, BSP and OPG, as well as the formation of periodontal ligament-like tissues, which were positive for COL-1. In contrast, control cells only produced fibrous tissues. These results indicate that the DFC sheets induced by HERS cells are able to produce periodontal tissues through epithelial

  11. A Core Invasiveness Gene Signature Reflects Epithelial-to-Mesenchymal Transition but Not Metastatic Potential in Breast Cancer Cell Lines and Tissue Samples

    PubMed Central

    Marsan, Melike; Van den Eynden, Gert; Limame, Ridha; Neven, Patrick; Hauspy, Jan; Van Dam, Peter A.; Vergote, Ignace; Dirix, Luc Y.; Vermeulen, Peter B.; Van Laere, Steven J.

    2014-01-01

    Introduction Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an invasiveness gene signature and investigated its biological relevance in breast cancer. Methods & Results We collected a set of published gene signatures related to cell motility and invasion. Using this collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all P<0.001). When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896–1.019, P = 0.186). Discussion These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate a link between the core invasiveness gene signature and enhanced metastatic potential. PMID:24586640

  12. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  13. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: Towards treatment of limbal epithelial stem cell deficiency.

    PubMed

    Massie, Isobel; Kureshi, Alvena K; Schrader, Stefan; Shortt, Alex J; Daniels, Julie T

    2015-09-01

    Limbal epithelial stem cell (LESC) deficiency can cause blindness. Transplantation of cultured human limbal epithelial cells (hLE) on human amniotic membrane (HAM) can restore vision but clinical graft manufacture can be unreliable. We have developed a reliable and robust tissue equivalent (TE) alternative to HAM, Real Architecture for 3D Tissue (RAFT). Here, we aimed to optimize the optical and mechanical properties of RAFT TE for treatment of LESC deficiency in clinical application. The RAFT TE protocol is tunable; varying collagen concentration and volume produces differing RAFT TEs. These were compared with HAM samples taken from locations proximal and distal to the placental disc. Outcomes assessed were transparency, thickness, light transmission, tensile strength, ease of handling, degradation rates and suitability as substrate for hLE culture. Proximal HAM samples were thicker and stronger with poorer optical properties than distal HAM samples. RAFT TEs produced using higher amounts of collagen were thicker and stronger with poorer optical properties than those produced using lower amounts of collagen. The 'optimal' RAFT TE was thin, transparent but still handleable and was produced using 0.6ml of 3mg/ml collagen. Degradation rates of the 'optimal' RAFT TE and HAM were similar. hLE achieved confluency on 'optimal' RAFT TEs at comparable rates to HAM and cells expressed high levels of putative stem cell marker p63α. These findings support the use of RAFT TE for hLE transplantation towards treatment of LESC deficiency.

  14. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis.

    PubMed Central

    Henderson, B; Poole, S; Wilson, M

    1996-01-01

    Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support. PMID:8801436

  15. Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues.

    PubMed

    Grandjean, Frédéric; Vrålstad, Trude; Diéguez-Uribeondo, Javier; Jelić, Mišel; Mangombi, Joa; Delaunay, Carine; Filipová, Lenka; Rezinciuc, Svetlana; Kozubíková-Balcarová, Eva; Guyonnet, Daniel; Viljamaa-Dirks, Satu; Petrusek, Adam

    2014-06-04

    Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.

  16. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    PubMed

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  17. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  18. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals

    PubMed Central

    Marcinkiewicz, Mariola M.; Baker, Sandy T.; Wu, Jichuan; Hubert, Terrence L.; Wolfson, Marla R.

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation—6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung. PMID:26999050

  19. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-01-01

    Background This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. Material/Methods A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3′UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. Results MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3′UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. Conclusions MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression. PMID:27771733

  20. Analysis of the epithelial damage produced by Entamoeba histolytica infection.

    PubMed

    Betanzos, Abigail; Schnoor, Michael; Javier-Reyna, Rosario; García-Rivera, Guillermina; Bañuelos, Cecilia; Pais-Morales, Jonnatan; Orozco, Esther

    2014-06-12

    Entamoeba histolytica is the causative agent of human amoebiasis, a major cause of diarrhea and hepatic abscess in tropical countries. Infection is initiated by interaction of the pathogen with intestinal epithelial cells. This interaction leads to disruption of intercellular structures such as tight junctions (TJ). TJ ensure sealing of the epithelial layer to separate host tissue from gut lumen. Recent studies provide evidence that disruption of TJ by the parasitic protein EhCPADH112 is a prerequisite for E. histolytica invasion that is accompanied by epithelial barrier dysfunction. Thus, the analysis of molecular mechanisms involved in TJ disassembly during E. histolytica invasion is of paramount importance to improve our understanding of amoebiasis pathogenesis. This article presents an easy model that allows the assessment of initial host-pathogen interactions and the parasite invasion potential. Parameters to be analyzed include transepithelial electrical resistance, interaction of EhCPADH112 with epithelial surface receptors, changes in expression and localization of epithelial junctional markers and localization of parasite molecules within epithelial cells.

  1. Epithelial-mesenchymal transition delayed by E-cad to promote tissue formation in hepatic differentiation of mouse embryonic stem cells in vitro.

    PubMed

    Hu, Anbin; Shang, Changzhen; Li, Qiang; Sun, Nianfeng; Wu, Linwei; Ma, Yi; Jiao, Xingyuan; Min, Jun; Zeng, Gucheng; He, Xiaoshun

    2014-04-15

    Hepatic differentiation of embryonic stem cells (ESCs) usually results in a single cell lineage, and the formation of liver tissues remains difficult. Here, we examine the role of epithelial-mesenchymal transition (EMT) that is regulated by epithelial cadherin (E-cad) expression in hepatic tissue formation from ESCs. E-cad was transfected into mouse ESCs to enable a stable expression of E-cad. Hepatic differentiation of ESCs was then induced by hepatic growth factors. Wnt/β-catenin signaling and EMT speed were examined to determine the differentiation process. Hepatic and angiogenesis markers, as well as differentiated cell-adhesive force were also examined to identify the hepatic tissue differentiation. In our results, E-cad expression gradually decreased in normal ESC (N-ESC) differentiation, but remained stable in the E-cad transfected ESC (EC-ESC) group. In EC-ESC differentiation, expressions of cytoplastic β-catenin and EMT were much lower and significantly prolonged. Angiogenesis markers vascular endothelial growth factor receptor-1 (VEGFR-1) and CD31/PECAM-1 were expressed only on day 5-13 in N-ESC differentiation, whereas VEGFR-1 and CD31/PECAM-1 were expressed prolonged on day 5-17 in the EC-ESC group and were coincident with the expression of hepatic markers. Finally, EC-ESC differentiation maintained multilayer-growth patterns, and abundant vascular network structures appeared and migrated in albumin-positive cell areas. The cellular adhesion forces between embryonic body cells in EC-ESC differentiation during day 13-17 were similar to those of mouse liver tissue. In conclusion, accelerated EMT due to the decreased E-cad expression may partially contribute to the failure of hepatic tissue formation in N-ESC differentiation. E-cad can act in synergy with hepatic growth factors and facilitate the early-stage formation of hepatic tissues through down-regulating Wnt/β-catenin signaling and delaying EMT. This work provides a new insight into hepatic tissue

  2. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.

  3. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo.

    PubMed

    Khandrika, Lakshmipathi; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2012-01-01

    Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1) in response to oxalate in human renal cells (HK2 cells) in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.

  4. Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue

    PubMed Central

    Huang, Edmond; Leone, Vanessa; Devkota, Suzanne; Wang, Yunwei; Brady, Matthew; Chang, Eugene

    2013-01-01

    Background Growing evidence shows that dietary factors can dramatically alter the gut microbiome in ways that contribute to metabolic disturbance and progression of obesity. In this regard, mesenteric adipose tissue has been implicated in mediating these processes through the elaboration of pro-inflammatory adipokines. In this study, we examined the relationship of these events by determining the effects of dietary fat content and source on gut microbiota, as well as the effects on adipokine profiles of mesenteric and peripheral adipocytes. Methods Adult male C57Bl/6 mice were fed milk fat-, lard-(SFA sources), or safflower oil (PUFA)- based high fat diets for four weeks. Body mass and food consumption were measured. Stool 16S rRNA was isolated and analyzed via T-RFLP as well as variable V3-4 sequence tags via next gen sequencing. Mesenteric and gonadal adipose samples were analyzed for both lipogenic and inflammatory mediators via qRT-PCR. Results High-fat feedings caused more weight gain with concomitant increases in caloric consumption relative to low-fat diets. Additionally, each of the high fat diets induced dramatic and specific 16S rRNA phylogenic profiles that were associated with different inflammatory and lipogenic mediator profile of mesenteric and gonadal fat depots. Conclusions Our findings support the notion that dietary fat composition can both reshape the gut microbiota as well as alter host adipose tissue inflammatory/lipogenic profiles. They also demonstrate the interdependency of dietary fat source, commensal gut microbiota, and inflammatory profile of mesenteric fat that can collectively impact the host metabolic state. PMID:23639897

  5. The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration.

    PubMed

    Bahar, Ofir; Levi, Noam; Burdman, Saul

    2011-09-01

    Acidovorax citrulli causes seedling blight and bacterial fruit blotch of cucurbits. Previous reports demonstrated the contribution of type IV pili (T4P) to A. citrulli virulence and to systemic infection of melon seedlings. Microfluidic flow-chamber assays demonstrated the involvement of T4P in surface adhesion and biofilm formation, whereas polar flagella did not appear to contribute to either of these features. On the other hand, a transposon mutant impaired in the biosynthesis of polar flagella was identified in screens for reduced virulence of an A. citrulli mutant library. Further characterization of polar flagellum mutants confirmed that A. citrulli requires a polar flagellum for full virulence on melon plants. Foliage and stem inoculation experiments revealed that polar flagella contribute to A. citrulli virulence and growth in planta at both pre- and post-host-tissue penetration. Interestingly, light microscope observations revealed that almost all A. citrulli wild-type cells extracted from the xylem sap of stem-inoculated melon seedlings remained motile, supporting the importance of this organelle in virulence and colonization of the host vascular system. We also report a negative effect of polar flagellum impairment on T4P-mediated twitching motility of A. citrulli and discuss a possible co-regulation of these two motility machineries in this bacterium.

  6. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host.

    PubMed

    Mikolajczak, Sebastian A; Silva-Rivera, Hilda; Peng, Xinxia; Tarun, Alice S; Camargo, Nelly; Jacobs-Lorena, Vanessa; Daly, Thomas M; Bergman, Lawrence W; de la Vega, Patricia; Williams, Jack; Aly, Ahmed S I; Kappe, Stefan H I

    2008-10-01

    The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).

  7. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients.

  8. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review

    PubMed Central

    Fekrazad, Reza; Naghdi, Nafiseh; Nokhbatolfoghahaei, Hanieh; Bagheri, Hossein

    2016-01-01

    Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser’s wavelength and nanoparticle’s properties more animal studies and clinical trials are required as a lack of perfect studies PMID:27330701

  9. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue.

    PubMed

    Sorg, D; Potzel, A; Beck, M; Meyer, H H D; Viturro, E; Kliem, H

    2012-10-01

    Primary bovine mammary epithelial cells (pbMEC) are often used in cell culture to study metabolic and inflammatory processes in the udder of dairy cows. The most common source is udder tissue from biopsy or after slaughter. However, it is also possible to culture them from milk, which is non-invasive, repeatable and yields less contamination with fibroblasts. Generally, not much is known about the influence of cell origin and cell culture techniques such as cryopreservation on pbMEC functionality. Cells were extracted from milk and udder tissue to evaluate if milk-derived pbMEC are a suitable alternative to tissue-derived pbMEC and to test what influence cryopreservation has. The cells were cultivated for three passages and stored in liquid nitrogen. The relative gene expression of the five target genes kappa-casein, lingual antimicrobial peptide (LAP), lactoferrin, lysozyme (LYZ1) and the prolactin receptor normalised with keratin 8 showed a tendency to decrease in the tissue cultures, but not in the milk-derived cultures, suggesting a greater influence of the cultivation process on tissue-derived cells, freezing lowered expression levels in both cultures. Overall expression of LAP and LYZ1 tended to be higher in milk cells. Cholesterol efflux was measured to compare passages one to seven in milk-derived cells. Passage number did not alter the efflux rate (p ≤ 0.05). We showed for the first time that the extraction of pbMEC from milk can be a suitable alternative to tissue extraction.

  10. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin

    PubMed Central

    Blanco, Rancés; Quintana, Yisel; Blanco, Damián; Cedeño, Mercedes; Rengifo, Charles E.; Frómeta, Milagros; Ríos, Martha; Rengifo, Enrique; Carr, Adriana

    2013-01-01

    The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule. PMID:26317019

  11. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin.

    PubMed

    Blanco, Rancés; Quintana, Yisel; Blanco, Damián; Cedeño, Mercedes; Rengifo, Charles E; Frómeta, Milagros; Ríos, Martha; Rengifo, Enrique; Carr, Adriana

    2013-01-01

    The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule.

  12. Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue-engineered therapeutic devices for renal diseases.

    PubMed

    Westover, Angela J; Buffington, Deborah A; Humes, H D

    2012-08-01

    Renal cell therapy employing cells derived from adult renal epithelial cell (REC) progenitors promises to reduce the morbidity of patients with renal insufficiency due to acute renal failure and end stage renal disease. To this end, tissue engineered devices addressing the neglected biologic component of renal replacement therapy are being developed. Because human donor tissue is limited, novel enhanced progenitor cell propagation (EP) techniques have been developed and applied to adult human kidney transplant discards from six donors. Changes include more efficient digestion and the amplification of progenitors prior to terminal epithelial differentiation promoted by contact inhibition and the addition of retinoic acid. Differentiated morphology in EP populations was demonstrated by the ability to form polarized epithelium with tight junctions, apical central cilia and expression of brush border membrane enzymes. Evaluation of lipopolysaccharide stimulated interleukin-8 secretion and γ-glutamyl transpeptisade activity in EP derived cells was used to confirm therapeutic equivalence to REC obtained using published techniques, which have previously shown efficacy in large animal models and clinical trials. Yield exceeded 10(16) cells/gram cortex from the only kidney obtained due to an anatomical defect, while the average yield from diseased kidneys ranged from 1.1 × 10(9) to 8.8 × 10(11) cells/gram cortex, representing an increase of more than 10 doublings over standard methods. Application of the EP protocol to REC expansion has solved the problem of cell sourcing as the limiting factor to the manufacture of cell based therapies targeting renal diseases and may provide a method for autologous device fabrication from core kidney biopsies.

  13. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model.

    PubMed

    Brady, Rebecca A; Bruno, Vincent M; Burns, Drusilla L

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  14. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model

    PubMed Central

    Brady, Rebecca A.; Bruno, Vincent M.; Burns, Drusilla L.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  15. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  16. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-23

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  17. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  18. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes

    USGS Publications Warehouse

    Work, Thierry M.; Russell, Robin; Aeby, Greta S.

    2012-01-01

    Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.

  19. Postoperative analysis of the mechanical interaction between stent and host tissue in patients after transcatheter aortic valve implantation.

    PubMed

    Hopf, Raoul; Sündermann, Simon H; Born, Silvia; Ruiz, Carlos E; Van Mieghem, Nicolas M; de Jaegere, Peter P; Maisano, Francesco; Falk, Volkmar; Mazza, Edoardo

    2017-02-28

    The analysis is based on a finite element procedure to extract the contact forces between an implanted Nitinol stent and the surrounding host tissue using postoperative CT images. The methodology was applied for patients (N=46) which have undergone a TAVI procedure with the Medtronic CoreValve Revalving System (MCRS) to obtain corresponding deformation and force maps. The postoperative CT data were recorded for each patient in both systolic and diastolic phase of the heart cycle. Scalar parameters were defined, which map deformed geometry and contact force field to mechanically relevant quantities: radial dilatation, radial shape distortion, non-convex points, mean force, a force deviation measure and a pressure equivalent. The latter demonstrates that in the area of the aortic root, the added circumferential loading is of the same order as the baseline average blood pressure, thus leading to a doubling of the local mechanical load. Generally the force distribution along the stent is non-homogeneous. A comparison of systolic and diastolic data revealed slightly higher contact forces during the diastole, indicating that the stent has to carry more load in this phase. The geometrical and mechanical parameters were compared for two types of clinical complication: para-valvular leakage (PVL) and permanent pacemaker requirement (PPM). It was found that an increase in mean force can be associated with both complications; significantly for PVL and as a trend for PPM.

  20. Immune dynamics following infection of avian macrophages and epithelial cells with typhoidal and non-typhoidal Salmonella enterica serovars; bacterial invasion and persistence, nitric oxide and oxygen production, differential host gene expression, NF-κB signalling and cell cytotoxicity.

    PubMed

    Setta, Ahmed; Barrow, Paul A; Kaiser, Pete; Jones, Michael A

    2012-05-15

    Poultry-derived food is a common source of infection of human with the non-host-adapted salmonellae while fowl typhoid and pullorum disease are serious diseases in poultry. Development of novel immune-based control strategies against Salmonella infection necessitates a better understanding of the host-pathogen interactions at the cellular level. Intestinal epithelial cells are the first line of defence against enteric infections and the role of macrophages is crucial in Salmonella infection and pathogenesis. While gene expression following Salmonella infection has been investigated, a comparison between different serovars has not been, as yet, extensively studied in poultry. In this study, chicken macrophage-like cells (HD11) and chick kidney epithelial cells (CKC) were used to study and compare the immune responses and mechanisms that develop after infection with different Salmonella serotypes. Salmonella serovars Typhimurium, Enteritidis, Hadar and Infantis showed a greater level of invasion and/or uptake characters when compared with S. Pullorum or S. Gallinarum. Nitrate and reactive oxygen species were greater in Salmonella-infected HD11 cells with the expression of iNOS and nuclear factor-κB by chicken macrophages infected with both systemic and broad host range serovars. HD11 cells revealed higher mRNA gene expression for CXCLi2, IL-6 and iNOS genes in response to S. Enteritidis infection when compared to S. Pullorum-infected cells. S. Typhimurium- and S. Hadar-infected HD11 showed higher gene expression for CXCLi2 versus S. Pullorum-infected cells. Higher mRNA gene expression levels of pro-inflammatory cytokine IL-6, chemokines CXCLi1 and CXCLi2 and iNOS genes were detected in S. Typhimurium- and S. Enteritidis-infected CKC followed by S. Hadar and S. Infantis while no significant changes were observed in S. Pullorum or S. Gallinarum-infected CKC.

  1. Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells.

    PubMed

    Ayinde, Oluseyi; Wang, Zhuo; Griffin, Martin

    2017-02-16

    Human colon cancer cell lines (CRCs) RKO, SW480 and SW620 were investigated for TG2 involvement in tumour advancement and aggression. TG2 expression correlated with tumour advancement and expression of markers of epithelial-mesenchymal transition (EMT). The metastatic cell line SW620 showed high TG2 expression compared to the primary tumour cell lines SW480 and RKO and could form tumour spheroids under non- adherent conditions. TG2 manipulation in the CRCs by shRNA or TG2 transduction confirmed the relationship between TG2 and EMT. TGFβ1 expression in CRC cells, and its level in the cell medium and extracellular matrix was increased in primary tumour CRCs overexpressing TG2 and could regulate TG2 expression and EMT by both canonical (RKO) and non-canonical (RKO and SW480) signalling. TGFβ1 regulation was not observed in the metastatic SW620 cell line, but TG2 knockdown or inhibition in SW620 reversed EMT. In SW620, TG2 expression and EMT was associated with increased presence of nuclear β-catenin which could be mediated by association of TG2 with the Wnt signalling co-receptor LRP5. TG2 inhibition/knockdown increased interaction between β-catenin and ubiquitin shown by co-immunoprecipitation, suggesting that TG2 could be important in β-catenin regulation. β-Catenin and TG2 was also upregulated in SW620 spheroid cells enriched with cancer stem cell marker CD44 and TG2 inhibition/knockdown reduced the spheroid forming potential of SW620 cells. Our data suggests that TG2 could hold both prognostic and therapeutic significance in colon cancer.

  2. Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid.

    PubMed

    De Baere, Siegrid; Devreese, Mathias; Watteyn, Anneleen; Wyns, Heidi; Plessers, Elke; De Backer, Patrick; Croubels, Siska

    2015-06-12

    A sensitive and specific method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid (PELF) using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. The sample preparation was rapid, straightforward and consisted of a deproteinization and phospholipid removal step using an Oasis(®) Ostro™ 96-well plate (chicken, turkey and calf plasma) or HybridSPE(®)-Phospholipid SPE cartridges (pig plasma and turkey lung tissue), while a liquid-liquid extraction with diethyl ether in alkaline medium was used for PELF of turkey poults. Chromatography was performed on a C18 Hypersil GOLD column using 0.01M ammonium acetate in water with a pH of 9, and acetonitrile as mobile phases. The MS/MS instrument was operated in the positive electrospray ionization mode and the following selected reaction monitoring transitions were monitored for gamithromycin (protonated molecule>product ion): m/z 777.45>619.35 and m/z 777.45>157.80 for quantification and identification, respectively. The method was validated in-house: matrix-matched calibration graphs were prepared and good linearity (r≥0.99) was achieved over the concentration ranges tested (2.5-10,000ngmL(-1) for chicken, pig and calf plasma; 5.0-2500ngmL(-1) for turkey plasma; 50-10,000ngg(-1) for turkey lung tissue and 20-1000ngmL(-1) for turkey PELF). Limits of quantification (LOQ) were 2.5ngmL(-1) for chicken, pig and calf plasma and 5.0ngmL(-1) for turkey plasma, while the limits of detection (LOD) ranged between 0.007 and 0.07ngmL(-1). For lung tissue and PELF, respective LOQ and LOD values of 50ngg(-1) and 0.76ngg(-1) (lung tissue) and 20ngmL(-1) and 0.1ngmL(-1) (PELF) were obtained. The results for the within-day and between-day precision, expressed as relative standard deviation (RSD), fell within the maximal RSD values. The accuracy fell within -30% to +10% (concentrations 1-10ngmL(-1)) or

  3. Response of human limbal epithelial cells to wounding on 3D RAFT tissue equivalents: effect of airlifting and human limbal fibroblasts.

    PubMed

    Massie, Isobel; Levis, Hannah J; Daniels, Julie T

    2014-10-01

    Limbal epithelial stem cell deficiency can cause blindness but may be treated by human limbal epithelial cell (hLE) transplantation, normally on human amniotic membrane. Clinical outcomes using amnion can be unreliable and so we have developed an alternative tissue equivalent (TE), RAFT (Real Architecture for 3D Tissue), which supports hLE expansion, and stratification when airlifted. Human limbal fibroblasts (hLF) may be incorporated into RAFT TEs, where they support overlying hLE and improve phenotype. However, the impact of neither airlifting nor hLF on hLE function has been investigated. hLE on RAFT TEs (±hLF and airlifting) were wounded using heptanol and re-epithelialisation (fluorescein diacetate staining), and percentage putative stem cell marker p63α and proliferative marker Ki67 expression (wholemount immunohistochemistry), measured. Airlifted, hLF- RAFT TEs were unable to close the wound and p63α expression was 7 ± 0.2% after wounding. Conversely, non-airlifted, hLF- RAFT TEs closed the wound within 9 days and p63α expression was higher at 22 ± 5% (p < 0.01). hLE on both hLF- and hLF+ RAFT TEs (non-airlifted) closed the wound and p63α expression was 26 ± 8% and 36 ± 3% respectively (ns). Ki67 expression by hLE increased from 1.3 ± 0.5% before wounding to 7.89 ± 2.53% post-wounding for hLF- RAFT TEs (p < 0.01), and 0.8 ± 0.08% to 17.68 ± 10.88% for hLF+ RAFT TEs (p < 0.05), suggesting that re-epithelialisation was a result of proliferation. These data suggest that neither airlifting nor hLF are necessarily required to maintain a functional epithelium on RAFT TEs, thus simplifying and shortening the production process. This is important when working towards clinical application of regenerative medicine products.

  4. Interleukin-8 gene regulation in epithelial cells by Vibrio cholerae: role of multiple promoter elements, adherence and motility of bacteria and host MAPKs.

    PubMed

    Sarkar, Madhubanti; Bhowmick, Swati; Casola, Antonella; Chaudhuri, Keya

    2012-04-01

    Interleukin (IL)-8 is an important mediator in neutrophil-mediated acute inflammation. We previously demonstrated that incubation of intestinal epithelial cells with Vibrio cholerae O395 resulted in increased IL-8 mRNA expression and IL-8 secretion, which was associated with the adherence and motility of bacteria. However, the mechanisms responsible for transcriptional regulation of the IL-8 gene in epithelial cells during V. cholerae infections were not explored. Transient transfection analysis of 5' deletions and mutations of the IL-8 promoter driving expression of the luciferase reporter gene indicates that multiple binding sites contribute to IL-8 promoter induction in response to V. cholerae and that cooperation among these different sites is required for full activation of the promoter. Stimulation with V. cholerae O395 insertional mutants, defective in adherence and motility, significantly reduced IL-8 promoter activity compared with the wild-type strain. We further demonstrate maximal involvement of extracellular signal-regulated kinase 1/2/mitogen-activated protein kinase pathways to regulate IL-8 gene transcription. This study will help to design agents which could reduce the V. cholerae-induced inflammatory response and in the generation of safe vaccines.

  5. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment

    PubMed Central

    Maza, Paloma K.; Suzuki, Erika

    2016-01-01

    Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation. PMID:27148251

  6. Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model

    PubMed Central

    Kaluzhny, Yulia; Kandárová, Helena; d’Argembeau-Thornton, Laurence; Kearney, Paul; Klausner, Mitchell

    2015-01-01

    To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492. PMID:26325674

  7. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    SciTech Connect

    Antoniades, H.N. Center for Blood Research, Boston, MA Inst. of Molecular Biology, Boston, MA ); Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P. Inst. of Molecular Biology, Boston, MA ); Lynch, S.E. Inst. of Molecular Biology, Boston, MA Harvard School of Dental Medicine, Boston, MA )

    1991-01-15

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth.

  8. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry.

    PubMed

    Schmid, Maximilian; Dufner, Bianca; Dürk, Julius; Bedal, Konstanze; Stricker, Kristina; Prokoph, Lukas Ali; Koch, Christoph; Wege, Anja K; Zirpel, Henner; van Zandbergen, Ger; Ecker, Rupert; Boghiu, Bogdan; Ritter, Uwe

    2015-01-01

    Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.

  9. Differential expression of GSK3β and pS9GSK3β in normal human tissues: can pS9GSK3β be an epithelial marker?

    PubMed

    Lee, Hojung; Ro, Jae Y

    2015-01-01

    Glycogen synthase kinase 3β (GSK3β) and phosphorylated GSK3β at Ser9 (pS9GSK3β) are crucial in cellular proliferation and metabolism. GSK3β and pS9GSK3β are deregulated in many diseases including tumors. Data on altered expression of GSK3β and pS9GSK3β are mainly limited to tumor tissues, thus the expression of GSK3β and pS9GSK3β in normal human tissue has been largely unknown. Thus, we examined the immunohistochemical localization of GSK3β and pS9GSK3β in human fetal and adult tissues, and also compared the expression pattern of GSK3β and pS9GSK3β with that of the CK7 and CK20. We found GSK3β expression in neurons of brain, myenteric plexus in gastrointestinal tract, squamous epithelium of skin, and mammary gland. The expression of pS9GSK3β was restricted to the epithelial cells of breast and pancreaticobiliary duct, distal nephron of kidney, gastrointestinal tract, fallopian tube, epididymis, secretory cell of prostatic gland, and umbrella cell of urinary tract. The staining pattern of pS9GSK3β and CK7 was overlapped in most organs except for gastrointestinal tract where CK7 was negative and CK20 was positive. Our results show that the expression of GSK3β may be associated with differentiation of ectodermal derived tissues and pS9GSK3β with that of epithelial cells of endodermal derived tissues in human. In addition, the expression of pS9GSK3β in the selective epithelial cells may indicate its association with secretory or barrier function of specific cells and may serve as another immunohistochemical marker for epithelial cells.

  10. Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance.

    PubMed

    Hua, Zhong L; Chang, Hao; Wang, Yanshu; Smallwood, Philip M; Nathans, Jeremy

    2014-10-01

    In mammals, a set of anatomically diverse polarity processes - including axon growth and guidance, hair follicle orientation, and stereociliary bundle orientation in inner ear sensory hair cells - appear to be mechanistically related, as judged by their dependence on vertebrate homologues of core tissue polarity/planar cell polarity (PCP) genes in Drosophila. To explore more deeply the mechanistic similarities between different polarity processes, we have determined the extent to which frizzled 3 (Fz3) can rescue the hair follicle and Merkel cell polarity defects in frizzled 6-null (Fz6(-/-)) mice, and, reciprocally, the extent to which Fz6 can rescue the axon growth and guidance defects in Fz3(-/-) mice. These experiments reveal full rescue of the Fz6(-/-) phenotype by Fz3 and partial rescue of the Fz3(-/-) phenotype by Fz6, implying that these two proteins are likely to act in a conserved manner in these two contexts. Stimulated by these observations, we searched for additional anatomical structures that exhibit macroscopic polarity and that might plausibly use Fz3 and/or Fz6 signaling. This search has revealed a hitherto unappreciated pattern of papillae on the dorsal surface of the tongue that depends, at least in part, on redundant signaling by Fz3 and Fz6. Taken together, these experiments provide compelling evidence for a close mechanistic relationship between multiple anatomically diverse polarity processes.

  11. Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells.

    PubMed

    Püls, Jurgen; Fischer, Wolfgang; Haas, Rainer

    2002-02-01

    Helicobacter pylori type I strains harbour the cag pathogenicity island (cag-PAI), a 37 kb sequence,which encodes the components of a type IV secretion system. CagA, the first identified effector protein of the cag-PAI, is translocated into eukaryotic cells and tyrosine phosphorylated (CagAP-tyr) by a host cell tyrosine kinase. Translocation of CagA induces the dephosphorylation of a set of phosphorylated host cell proteins of unknown identity. CagA proteins of independent H. pylori strains vary in sequence and thus in the number and composition of putative tyrosine phosphorylation motifs (TPMs). The CagA protein of H. pylori strain J99 (CagAJ99) does not carry any of three putative tyrosine phosphorylation motifs (TPM-A, TPM-B or TPM-C) predicted by the MOTIF algorithm in CagA proteins. CagA,n is not tyrosine phosphorylated and is inactive in the dephosphorylation of host cell proteins. By site-specific mutagenesis,we introduced a TPM-C into CagA,. by replacing a single lysine with a tyrosine. This slight modification resulted in tyrosine phosphorylation of CagAJ99 and host cell protein dephosphorylation. In contrast, the removal of the indigenous TPM-C from CagAP12 did not abolish its tyrosine phosphorylation, suggesting that further phosphorylated sites are present in CagAP12. By generation of hybrid CagA proteins, a phosphorylation of the most N-terminal TPM-A could be excluded. Our data suggest that tyrosine phosphorylation at TPM-C is sufficient, but not exclusive,to activate translocated CagA. Activated CagAPtr might either convert into a phosphatase itself or activate a cellular phosphatase to dephosphorylate cellular phosphoproteins and modulate cellular signalling cascades of the host.

  12. In Vitro Development and Characterization of a Tissue-Engineered Conduit Resembling Esophageal Wall Using Human and Pig Skeletal Myoblast, Oral Epithelial Cells, and Biologic Scaffolds

    PubMed Central

    Poghosyan, Tigran; Gaujoux, Sebastien; Vanneaux, Valerie; Bruneval, Patrick; Domet, Thomas; Lecourt, Severine; Jarraya, Mohamed; Sfeir, Rony; Larghero, Jerome

    2013-01-01

    Introduction Tissue engineering represents a promising approach for esophageal replacement, considering the complexity and drawbacks of conventional techniques. Aim To create the components necessary to reconstruct in vitro or in vivo an esophageal wall, we analyzed the feasibility and the optimal conditions of human and pig skeletal myoblast (HSM and PSM) and porcine oral epithelial cell (OEC) culture on biologic scaffolds. Materials and Methods PSM and HSM were isolated from striated muscle and porcine OECs were extracted from oral mucosa biopsies. Myoblasts were seeded on an acellular scaffold issue from porcine small intestinal submucosa (SIS) and OEC on decellularized human amniotic membrane (HAM). Seeding conditions (cell concentrations [0.5×106 versus 106 cells/cm2] and culture periods [7, 14 and 21 days]), were analyzed using the methyl thiazoltetrazolium assay, quantitative PCR, flow cytometry, and immunohistochemistry. Results Phenotypic stability was observed after cellular expansion for PSM and HSM (85% and 97% CD56-positive cells, respectively), and OECs (90% AE1/AE3- positive cells). After PSM and HSM seeding, quantities of viable cells were similar whatever the initial cell concentration used and remained stable at all time points. During cell culture on SIS, a decrease of CD56-positive cells was observed (76% and 76% by D7, 56% and 70% by D14, 28% and 60% by D21, for PSM and HSM, respectively). Multilayered surface of α-actin smooth muscle and Desmine-positive cells organized in bundles was seen as soon as D7, with no evidence of cell within the SIS. Myoblasts fusion was observed at D21. Pax3 and Pax7 expression was downregulated and MyoD expression upregulated, at D14.OEC proliferation was observed on HAM with both cell concentrations from D7 to D21. The cell metabolism activity was more important on matrix seeded by 106 cells/cm2. With 0.5×106 OEC/cm2, a single layer of pancytokeratin-positive cells was seen at D7, which became pluristratified

  13. The effect of dietary carbohydrates and Trichuris suis infection on pig large intestine tissue structure, epithelial cell proliferation and mucin characteristics.

    PubMed

    Thomsen, L E; Knudsen, K E Bach; Hedemann, M S; Roepstorff, A

    2006-11-30

    Two experiments (Exps. 1 and 2) were performed to study the influence of Trichuris suis infection and type of dietary carbohydrates on large intestine morphology, epithelial cell proliferation and mucin characteristics. Two experimental diets based on barley flour were used; Diet 1 was supplemented with resistant carbohydrates from oat hull meal, while Diet 2 was supplemented with fermentable carbohydrates from sugar beet fibre and inulin. In Experiment 1, 32 pigs were allocated randomly into four groups. Two groups were fed Diet 1 and two groups Diet 2. Pigs from one of each diet group were inoculated with a single dose of 2000 infective T. suis eggs and the other two groups remained uninfected controls. In Experiment 2, 12 pigs were allocated randomly into two groups and fed Diet 1 or Diet 2, respectively, and inoculated with a single dose of 2000 infective T. suis eggs. All the pigs were slaughtered 8 weeks post inoculation (p.i.). The worm counts were lower in pigs fed Diet 2 in both experiments, but not significantly so. Both diet and infection status significantly influenced the tissue weight of the large intestine. In both experiments, pigs fed Diet 2 had heavier large intestines than pigs fed Diet 1 and in Experiment1 the infected pigs of both diets had heavier large intestines than their respective control groups. Diet and infection also significantly affected the morphological architecture and mucin production in both experiments. Pigs fed Diet 1 had larger crypts both in terms of area and height than pigs fed Diet 2 and T. suis infected pigs on both diets in Experiment 1 had larger crypts than their respective control groups. The area of the mucin granules in the crypts constituted 22-53% of the total crypt area and was greatest in the T. suis infected pigs fed Diet 1. Epithelial cell proliferation was affected neither by diet nor infection in any of the experiments. The study showed that both T. suis infection and dietary carbohydrates significantly

  14. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation.

    PubMed

    Reineke, Gavin; Heinze, Bernadette; Schirawski, Jan; Buettner, Hermann; Kahmann, Regine; Basse, Christoph W

    2008-05-01

    Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.

  15. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  16. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  17. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  18. Advantages of COS-1 monkey kidney epithelial cells as packaging host for small-volume production of high-quality recombinant lentiviruses.

    PubMed

    Smith, Shannon L; Shioda, Toshi

    2009-04-01

    The HEK293T human embryonic kidney cells have been used widely as a packaging host for transfection-based production of recombinant lentiviruses. The present study describes advantages of using COS-1 African green monkey kidney cells versus HEK293T cells as a packaging host for small-volume production of high-quality recombinant lentiviruses. The particle performance index, defined as the ratio of infection-competent viral particles to the total number of particles, was three- to four-fold greater in transfection supernatants generated using COS-1 cells than that generated using HEK293T cells. Adhesion of HEK293T cells to the cell culture-treated plastic surface was weak, causing significant HEK293T cell contamination in the transfection supernatants produced by laboratory automation using the 96-well cell culture plates. In contrast, COS-1 cells adhered strongly to the plastic surface, and cell contamination was not detected in the transfection supernatants. These results suggest that COS-1 cells may be a useful alternative packaging host for use for automated generation of large numbers of high-quality lentivirus reagents, particularly because they eliminate the need for additional purification steps to remove viral particles from cell culture supernatant.

  19. Relatively high rates of G:C → A:T transitions at CpG sites were observed in certain epithelial tissues including pancreas and submaxillary gland of adult big blue® mice.

    PubMed

    Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A

    2014-01-01

    With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known.

  20. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines.

    PubMed

    Swindall, Amanda F; Londoño-Joshi, Angelina I; Schultz, Matthew J; Fineberg, Naomi; Buchsbaum, Donald J; Bellis, Susan L

    2013-04-01

    The ST6Gal-I sialyltransferase adds an α2-6-linked sialic acid to the N-glycans of certain receptors. ST6Gal-I mRNA has been reported to be upregulated in human cancer, but a prior lack of antibodies has limited immunochemical analysis of the ST6Gal-I protein. Here, we show upregulated ST6Gal-I protein in several epithelial cancers, including many colon carcinomas. In normal colon, ST6Gal-I localized selectively to the base of crypts, where stem/progenitor cells are found, and the tissue staining patterns were similar to the established stem cell marker ALDH1. Similarly, ST6Gal-I expression was restricted to basal epidermal layers in skin, another stem/progenitor cell compartment. ST6Gal-I was highly expressed in induced pluripotent stem (iPS) cells, with no detectable expression in the fibroblasts from which iPS cells were derived. On the basis of these observations, we investigated further an association of ST6Gal-I with cancer stem cells (CSC). Selection of irinotecan resistance in colon carcinoma cells led to a greater proportion of CSCs compared with parental cells, as measured by the CSC markers CD133 and ALDH1 activity (Aldefluor). These chemoresistant cells exhibited a corresponding upregulation of ST6Gal-I expression. Conversely, short hairpin RNA (shRNA)-mediated attenuation of ST6Gal-I in colon carcinoma cells with elevated endogenous expression decreased the number of CD133/ALDH1-positive cells present in the cell population. Collectively, our results suggest that ST6Gal-I promotes tumorigenesis and may serve as a regulator of the stem cell phenotype in both normal and cancer cell populations.

  1. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    PubMed Central

    Wang, Ting-gang; Xu, Jie; Zhu, Ai-hua; Lu, Hua; Miao, Zong-ning; Zhao, Peng; Hui, Guo-zhen; Wu, Wei-jiang

    2016-01-01

    Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells. PMID:27904501

  2. Host tissue reactions of non-demineralized autogenic and xenogenic dentin blocks implanted in a non-osteogenic environment. An experimental study in rabbits.

    PubMed

    Al-Asfour, Adel; Farzad, Payam; Andersson, Lars; Joseph, Bobby; Dahlin, Christer

    2014-06-01

    Dentoalveolar ankylosis with osseous replacement is often seen after replantation of avulsed teeth, and this process may be used for preservation of alveolar crests after trauma. Its exact mechanisms with regard to osteoinductive properties are not yet fully understood and need to be systematically investigated. Dentin can possibly act as a slow-releasing carrier of bone morphogenic proteins (BMP), and this property of dentin has been proposed to be used as an alternative or supplement to bone grafting in the maxillofacial region. We aimed to initially asses host tissue reactions to dentin by implanting dentin blocks of autogenic and xenogenic human origin in rabbit connective tissue of the abdominal wall and femoral muscle. Animals were sacrificed after a period of 3 months, and histological processing, sectioning and examinations were carried out. Bone formation, cell counts and thickness of capsule surrounding the grafts were evaluated. Only minor signs of heterotopic bone formation were seen. There were no significant differences between autografts and xenografts or grafts implanted in connective tissue or muscle with regards to tissue reactions except for a significant difference (P = 0.018) in findings of more local inflammatory cells in relation to grafts placed in connective tissue in the autograft group. We conclude that during the time frame of this study, non-demineralized dentin, whether autogenous or xenogenic did not have the potential to induce bone formation when implanted in non-osteogenic areas such as the abdominal wall and abdominal muscle of rabbits.

  3. In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage.

    PubMed

    Salinas, Irene; Myklebust, Reidar; Esteban, Maria Angeles; Olsen, Rolf Erik; Meseguer, José; Ringø, Einar

    2008-04-01

    Probiotic bacteria increase the host health status and protect mucosal tissue against pathogen-caused damage in mammalian models. Using an in vitro (intestinal sac) method this study aimed to address (a) the in vitro ability of Lactobacillus delbrueckii subsp. lactis to remain in the gastrointestinal tract of Atlantic salmon (Salmo salar L.) and (b) its ability to prevent cellular damage caused by successive incubation with Aeromonas salmonicida subsp. salmonicida the causative agent of furunculosis. Short in vitro incubation of salmon foregut with (TRITC)-labelled L. delbrueckii subsp. lactis showed that the probiont was able to colonize the enterocyte surface as studied by confocal microscopy. Furthermore, foregut incubated with the probiotic bacteria only, resulted in a healthy intestinal barrier whereas exposure to A. salmonicida disrupted its integrity. However, pre-treatment of salmon intestine with L. delbrueckii subsp. lactis prevented Aeromonas damaging effects. These results are promising in the context of the use of non-autochthonous probiotic bacteria as prophylactic agents against fish bacterial infections in the gastrointestinal tract.

  4. Cellular transcriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway

    PubMed Central

    2011-01-01

    Background Influenza viruses can modulate and hijack several cellular signalling pathways to efficiently support their replication. We recently investigated and compared the cellular gene expression profiles of human lung A549 cells infected by five different subtypes of human and avian influenza viruses (Josset et al. Plos One 2010). Using these transcriptomic data, we have focused our analysis on the modulation of the p53 pathway in response to influenza infection. Results Our results were supported by both RT-qPCR and western blot analyses and reveal multiple alterations of the p53 pathway during infection. A down-regulation of mRNA expression was observed for the main regulators of p53 protein stability during infection by the complete set of viruses tested, and a significant decrease in p53 mRNA expression was also observed in H5N1 infected cells. In addition, several p53 target genes were also down-regulated by these influenza viruses and the expression of their product reduced. Conclusions Our data reveal that influenza viruses cause an overall down-regulation of the host p53 pathway and highlight this pathway and p53 protein itself as important viral targets in the altering of apoptotic processes and in cell-cycle regulation. PMID:21651802

  5. Characterization of effector mechanisms at the host:parasite interface during the immune response to tissue-dwelling intestinal nematode parasites

    PubMed Central

    Patel, Nirav; Kreider, Timothy; Urban, Joseph F.; Gause, William C.

    2010-01-01

    The protective immune response that develops following infection with many tissue-dwelling intestinal nematode parasites is characterized by elevations in IL-4 and IL-13 and increased numbers of CD4+ T cells, granulocytes and macrophages. These cells accumulate at the site of infection and in many cases can mediate resistance to these large multicellular pathogens. Recent studies suggest novel potential mechanisms mediated by these immune cell populations through their differential activation and ability to stimulate production of novel effector molecules. These newly discovered protective mechanisms may provide novel strategies to develop immunotherapies and vaccines against this group of pathogens. In this review, we will examine recent studies elucidating mechanisms of host protection against three widely-used experimental murine models of tissue-dwelling intestinal nematode parasites: Heligmosomoides polygyrus, Trichuris muris and Trichinella spiralis. PMID:18804113

  6. Understanding the Molecular Mechanisms of Rifaximin in the Treatment of Gastrointestinal Disorders--A Focus on the Modulation of Host Tissue Function.

    PubMed

    Hirota, Simon A

    2015-01-01

    Rifaximin is a broad-spectrum oral antibiotic, exhibiting limited systemic absorption, that is used clinically to treat a variety of gastrointestinal disorders, including traveller's diarrhea, hepatic encephalopathy, irritable bowel syndrome, and the inflammatory bowel diseases. Rifaximin's antimicrobial properties, in the context of enteric infections, and its effects on the host's intestinal microbiota have been well characterized. More recently, it has been reported that rifaximin can modulate host tissue function through the activation of distinct molecular events. Within the gastrointestinal tract, rifaximin is a selective agonist of the pregnane X receptor (PXR), a nuclear receptor that regulates the expression of genes related to xenobiotic metabolism and drug detoxification. The PXR can also elicit immunomodulatory effects through its interaction with a variety of intracellular signaling cascades, including the nuclear factor kappa B and c-jun N-terminal kinase pathways. In this review, we will summarize the clinical uses of rifaximin and discuss its mechanism of action in relation to the modulation of the intestinal microbiota and the regulation of gastrointestinal host cell function, with a specific focus on PXR-dependent pathways.

  7. Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation

    PubMed Central

    Yi, Jiling; Xiong, Feng; Li, Binbin; Chen, Heping; Yin, Yixia; Dai, Honglian; Li, Shipu

    2016-01-01

    This study is aimed to evaluate the degradation characteristics, cell viability and host tissue responses of PDLLA/PRGD/β-TCP (PRT) composite nerve scaffold, which was fabricated by poly(d, l-lactic acid) (PDLLA), RGD peptide(Gly-Arg-Gly-Asp-Tyr, GRGDY, abbreviated as RGD) modified poly-{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]}(PRGD) and β-tricalcium phosphate (β-TCP). The scaffolds’ in vitro degradation behaviors were investigated in detail by analysing changes in weight loss, pH and morphology. Then, the 3-(4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2 -H-tetrazolium bromide (MTT) assay and cell live/dead assay were carried out to assess their cell viability. Moreover, in vivo degradation patterns and host inflammation responses were monitored by subcutaneous implantation of PRT scaffold in rats. Our data showed that, among the tested scaffolds, the PRT scaffold had the best buffering capacity (pH = 6.1–6.3) and fastest degradation rate (12.4%, 8 weeks) during in vitro study, which was contributed by the incorporation of β-TCP nanoparticles. After in vitro and in vivo degradation, the high porosity structure of PRT could be observed using scanning electron microscopy. Meanwhile, the PRT scaffold could significantly promote cell survival. In the PRT scaffold implantation region, less inflammatory cells (especially for neutrophil and lymphocyte) could be detected. These results indicated that the PRT composite scaffold had a good biodegradable property; it could improve cells survival and reduced the adverse host tissue inflammation responses. PMID:27252885

  8. In vivo evaluation of implant-host tissue interaction using morphology-controlled hydroxyapatite-based biomaterials.

    PubMed

    Rodriguez, Rogelio; Loske, Achim M; Fernández, Francisco; Estevez, Miriam; Vargas, Susana; Fernández, Gilberto; Paredes, Miguel I

    2011-01-01

    In medicine, micro-electro-mechanical systems (MEMS) perform several specific functions. The design of bio-packages for MEMS to be implanted into the human body has been an increasing challenge in the last years. Mechanical, chemical and thermal resistance, as well as excellent bonding to silicon surfaces, are needed. Furthermore, ideal bio-packages should minimize post-operative complications and be well accepted by the host. To reach this goal, two different morphology-controlled hydroxyapatite-based porous biomaterials were synthesized, implanted in rats and evaluated mechanically and histologically. The novel biomaterials were prepared at room temperature using synthetic hydroxyapatite micro-particles, silica nanoparticles and water-based resin and compared with a standard hydroxyapatite biomaterial. The morphology (porosity) was controlled to obtain interconnected pores with appropriated pore size and pore volume fraction. All biomaterials were implanted in rats at the dorsal area near the third thoracic vertebra. The rats were killed 2, 7 and 21 days after surgery. Histological analysis revealed that the implants were well accepted by the host and minimal local inflammation was observed. The acute inflammatory response disappeared 21 days after surgery for both novel biomaterials. Additionally, organic matter (collagen) was produced in the interior of the porous biomaterial, indicating that an incipient vascularization process was in progress after 21 days of implantation. Both new biomaterials showed high abrasion resistance, high Young modulus, the appropriate porosity to allow possible vascularization, and good bonding to silicon surfaces.

  9. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo.

    PubMed

    Furuta, Akira; Miyoshi, Shunichiro; Itabashi, Yuji; Shimizu, Tatsuya; Kira, Shinichiro; Hayakawa, Keiko; Nishiyama, Nobuhiro; Tanimoto, Kojiro; Hagiwara, Yoko; Satoh, Toshiaki; Fukuda, Keiichi; Okano, Teruo; Ogawa, Satoshi

    2006-03-17

    We devised a method of fabricating easily transplantable scaffoldless 3D heart tissue, made with a novel cell-sheet (CS) technology from cultured cardiomyocytes using a fibrin polymer coated dish. In the present study, we tested in vivo electrical communication which is essential for improving heart function between the host heart and the grafted CS. The epicardial surface of the ventricle of an anesthetized open-chest nude rat was ablated by applying a heated metal. Bilayered CS was obtained from neonatal rat primary culture. CS was transplanted onto the injured myocardial surface (sMI) (sMI+sheet group). The rats were allowed to recover for 1 to 4 weeks, to stabilize the grafts. Action potentials (APs) from the excised perfused heart were monitored by the fluorescence signal of di-4ANEPPS with a high speed charge-coupled device camera. The APs were observed under epicardial pacing of the host heart or the CS grafts. The pacing threshold of the current output was measured in the sMI+sheet group and in the nongrafted sMI group at the center of the sMI and in the normal zone (Nz). Bidirectional AP propagation between the sMI and Nz was observed in the sMI+sheet group (n=14), but was blocked at the marginal area of the sMI in the sMI group (n=9). The ratio of the pacing threshold (sMI/Nz) was significantly lower in the sMI+sheet than in the sMI group (3.0+/-0.7, 19.0+/-6.1 respectively P<0.05). There were neither spontaneous nor pacing-induced arrhythmias in these two groups. Bidirectional smooth AP propagation between the host heart and the grafted CS was observed. This finding suggested functional integration of this CS graft with the host heart without serious arrhythmia.

  10. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    PubMed

    Lindemans, Caroline A; Calafiore, Marco; Mertelsmann, Anna M; O'Connor, Margaret H; Dudakov, Jarrod A; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Lawrence, Gillian; Ivanov, Juliet A; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L; O'Rourke, Kevin P; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas E; Nieuwenhuis, Edward E; Shroyer, Noah F; Liu, Chen; Kolesnick, Richard; van den Brink, Marcel R M; Hanash, Alan M

    2015-12-24

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.

  11. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    PubMed Central

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  12. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    PubMed

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  13. alpha-Linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer.

    PubMed Central

    Bougnoux, P.; Koscielny, S.; Chajès, V.; Descamps, P.; Couet, C.; Calais, G.

    1994-01-01

    The association between the levels of various fatty acids in adipose breast tissue and the emergence of visceral metastases was prospectively studied in a cohort of 121 patients with an initially localised breast cancer. Adipose breast tissue was obtained at the time of initial surgery, and its fatty acid content analysed by capillary gas chromatography. A low level of alpha-linolenic acid (18:3n-3) in adipose breast tissue was associated with positive axillary lymph node status and with the presence of vascular invasion, but not with tumour size or mitotic index. After an average 31 months of follow-up, 21 patients developed metastases. Large tumour size, high mitotic index, presence of vascular invasion and low level of 18:3n-3 were single factors significantly associated with an increased risk of metastasis. A Cox proportional hazard regression model was used to identify prognostic factors. Low 18:3n-3 level and large tumour size were the two factors predictive of metastases. These results suggest that host alpha-linolenic acid has a specific role in the metastatic process in vivo. Further understanding of the biology of this essential fatty acid of the n-3 series is needed in breast carcinoma. PMID:7914425

  14. Tissue-specific and SRSF1-dependent splicing of fibronectin, a matrix protein that controls host cell invasion

    PubMed Central

    Lopez-Mejia, Isabel Cristina; De Toledo, Marion; Della Seta, Flavio; Fafet, Patrick; Rebouissou, Cosette; Deleuze, Virginie; Blanchard, Jean Marie; Jorgensen, Christian; Tazi, Jamal; Vignais, Marie-Luce

    2013-01-01

    Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA–) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma. PMID:23966470

  15. Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications

    PubMed Central

    Fosca, Marco; De Bonis, Angela; Curcio, Mariangela; Lolli, Maria Grazia; De Stefanis, Adriana; Marchese, Rodolfo; Rau, Julietta V.

    2016-01-01

    In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs' properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications. PMID:28078286

  16. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-03-08

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.

  17. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney.

    PubMed

    Dankers, Patricia Y W; Boomker, Jasper M; Huizinga-van der Vlag, Ali; Smedts, Frank M M; Harmsen, Martin C; van Luyn, Marja J A

    2010-11-10

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability. We found that after 7 d, in comparison to conventional microporous membranes, renal tubular cells cultured on top of our fibrous supramolecular membranes formed polarized monolayers, which is prerequisite for a well-functioning bioartificial kidney. In future, these supramolecular membranes allow for incorporation of peptides that may increase cell function even further.

  18. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans.

    PubMed

    Curt, Alexander; Zhang, Jiuli; Minnerly, Justin; Jia, Kailiang

    2014-08-01

    Salmonella typhimurium infects both intestinal epithelial cells and macrophages. Autophagy is a lysosomal degradation pathway that is present in all eukaryotes. Autophagy has been reported to limit the Salmonella replication in Caenorhabditis elegans and in mammals. However, it is unknown whether intestinal autophagy activity plays a role in host defense against Salmonella infection in C. elegans. In this study, we inhibited the autophagy gene bec-1 in different C. elegans tissues and examined the survival of these animals following Salmonella infection. Here we show that inhibition of the bec-1 gene in the intestine but not in other tissues confers susceptibility to Salmonella infection, which is consistent with recent studies in mice showing that autophagy is involved in clearance of Salmonella in the intestinal epithelial cells. Therefore, the intestinal autophagy activity is essential for host defense against Salmonella infection from C. elegans to mice, perhaps also in humans.

  19. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Díaz, Leila Milena; Villanueva, Claudia Añazco; Heyser, Wolfgang; Boeckx, Pascal

    2012-01-01

    Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plant. This study evaluated the effects of ectomycorrhizal morphotype and soil fertility on ACP activity in the extraradical mycelium (ACP(myc)), the mantle (ACP(mantle)) and the Hartig net region (ACP(Hartig)) of ectomycorrhizal Nothofagus obliqua seedlings. ACP activity was quantified in vivo using enzyme-labelled fluorescence-97 (ELF-97) substrate, confocal laser microscopy and digital image processing routines. There was a significant effect of ectomycorrhizal morphotype on ACP(myc), ACP(mantle) and ACP(Hartig), while soil fertility had a significant effect on ACP(myc) and ACP(Hartig). The relative contribution of the mantle and the Hartig net region to the ACP activity on the ectomycorrhizal root was significantly affected by ectomycorrhizal morphotype and soil fertility. A positive correlation between ACP(Hartig) and the shoot P concentration was found, providing evidence that ACP activity at the fungus:root interface is involved in P transfer from the fungus to the host. It is concluded that the spatial distribution of ACP in ectomycorrhizas varies as a function of soil fertility and colonizing fungus.

  20. Host Genetic Variations and Sex Differences Potentiate Predisposition, Severity, and Outcomes of Group A Streptococcus-Mediated Necrotizing Soft Tissue Infections

    PubMed Central

    Mukundan, Santhosh; Alagarsamy, Jeyashree; Laturnus, Donna

    2015-01-01

    Host genetic variations play an important role in several pathogenic diseases, and we previously provided strong evidence that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive group A Streptococcus (GAS) patients, including sepsis and necrotizing soft tissue infections (NSTIs). The goal of the present study was to investigate how genetic variations and sex differences among four commonly used mouse strains contribute to variation in severity, manifestations, and outcomes of NSTIs. DBA/2J mice were more susceptible to NSTIs than C57BL/6J, BALB/c, and CD-1 mice, as exhibited by significantly greater bacteremia, excessive dissemination to the spleen, and significantly higher mortality. Differences in the sex of the mice also contributed to differences in disease severity and outcomes: DBA/2J female mice were relatively resistant compared to their male counterparts. However, DBA/2J mice exhibited minimal weight loss and developed smaller lesions than did the aforementioned strains. Moreover, at 48 h after infection, compared with C57BL/6J mice, DBA/2J mice had increased bacteremia, excessive dissemination to the spleen, and excessive concentrations of inflammatory cytokines and chemokines. These results indicate that variations in the host genetic context as well as sex play a dominant role in determining the severity of and susceptibility to GAS NSTIs. PMID:26573737

  1. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    PubMed

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  2. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  3. Study Bacteria-Host Interactions Using Intestinal Organoids.

    PubMed

    Zhang, Yong-Guo; Sun, Jun

    2016-08-19

    The intestinal epithelial cells function to gain nutrients, retain water and electrolytes, and form an efficient barrier against foreign microbes and antigens. Researchers employed cell culture lines derived from human or animal cancer cells as experimental models in vitro for understanding of intestinal infections. However, most in vitro models used to investigate interactions between bacteria and intestinal epithelial cells fail to recreate the differentiated tissue components and structure observed in the normal intestine. The in vitro analysis of host-bacteria interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we present a new experimental model using an organoid culture system to study bacterial infection.

  4. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells.

    PubMed

    Chai, Jianyuan; Norng, Manith; Modak, Cristina; Reavis, Kevin M; Mouazzen, Wasim; Pham, Jennifer

    2010-08-01

    CCN1 is a matricellular protein that activates many genes related to wound healing and tissue remodeling in fibroblasts, but its effect on epithelial cells remains unclear. This study examined the role of CCN1 in epithelial wound healing using rat gastric epithelial cells and rat stomach ulcer as in vitro and in vivo models, respectively. We found that CCN1 expression is highly upregulated in the epithelial cells adjacent to a wound and remains high until the wound is healed. Upregulation of CCN1 activates a transient epithelial-mesenchymal transition in the epithelial cells at the migrating front and drives wound closure. Once the wound is healed, these epithelial cells and their progeny can resume their original epithelial phenotype. We also found that CCN1-induced E-cadherin loss is not due to transcriptional regulation but rather protein degradation due to the collapse of adherens junctions, which is contributed by beta-catenin translocation. CCN1-activated integrin-linked kinase mediates this process. Finally, our in vivo study showed that locally neutralizing CCN1 drastically impairs wound closure, whereas local injection of recombinant CCN1 protein induces expression of vimentin and smooth muscle alpha-actin in normal gastric mucosal epithelial cells and accelerates re-epithelialization during ulcer healing. In conclusion, our study indicates that CCN1 can induce reversible epithelial-mesenchymal transition, and this feature may have great value for clinical wound healing.

  5. Treatment of cutaneous and/or soft tissue manifestations of corticosteroids refractory chronic graft versus host disease (cGVHD) by a total nodal irradiation (TNI).

    PubMed

    Peyraga, Guillaume; Lizee, Thibaut; Gustin, Pierre; Clement-Colmou, Karen; Di Bartolo, Christelle; Supiot, Stephane; Mahe, Marc-Andre; François, Sylvie; Mege, Martine

    2017-02-09

    The management of corticosteroids refractory chronic graft versus host disease (cGVHD) remains controversial. Retrospective analysis of patients treated at the Integrated Center of Oncology by total nodal irradiation (TNI) was performed to evaluate its therapy potency. TNI delivers a dose of 1 Gy in a single session. The delimitation of the fields is clinical (upper limit: external auditory meatus; lower limit: mid-femur). No pre-therapeutic dosimetry scanner was necessary. Evaluation of the efficacy was by clinical measures at 6 months after the treatment. Twelve patients were treated by TNI between January 2010 and December 2013. TNI was used in second-line treatment or beyond. The median time between allograft and TNI was 31.2 months, and the median time between the first manifestations of cGVHD and TNI was about 24.2 months. Of the 12 patients, nine had a clinical response at 6 months (75%), including five complete clinical responses (41.6%). Five patients could benefit from a reduction of corticosteroid doses. Three patients had hematologic toxicity. TNI could be considered as an option for the treatment of a cutaneous and/or soft tissues corticosteroids refractory cGVHD. However, prospective randomized and double-blind trials remain essential to answer the questions about TNI safety and effectiveness.

  6. DNA-based HLA typing of nonhematopoietic tissue used to select the marrow transplant donor for successful treatment of transfusion-associated graft-versus-host disease.

    PubMed Central

    Friedman, D F; Kwittken, P; Cizman, B; Argyris, E; Kearns, J; Yang, S Y; Zmijewski, C; Bunin, N; Douglas, S D; Monos, D

    1994-01-01

    Transfusion-associated graft-versus-host disease (TAGVHD) is a rare and usually fatal complication of blood transfusion which can arise when immunocompetent lymphocytes from the donor of a cellular blood product are transfused into a severely immunocompromised recipient. We describe the case of an 8-month-old male with a severe combined immunodeficiency syndrome who developed TAGVHD after receiving an unirradiated transfusion. Serologic HLA typing of the parents, the patient, and the blood donor demonstrated the foreign origin of circulating lymphocytes, confirming the diagnosis of TAGVHD. The manifestations of TAGVHD did not respond to medical immunosuppressive therapy, and bone marrow transplantation was planned to treat the underlying immunodeficiency as well as the TAGVHD. By using DNA-based class I and class II HLA typing, the child's HLA type was determined from nonhematopoietic tissues. This information proved critical in selecting the bone marrow donor. The child received immunosuppression, myeloablation, and a T-depleted, maternal bone marrow graft mismatched at one HLA class II allele. Trilineage hematopoietic engraftment occurred within 3 weeks, and the child remains clinically stable with no evidence of TAGVHD more than 2 years after the transplant. This case illustrates that TAGVHD can be successfully treated by allogeneic bone marrow transplantation and that DNA-based HLA typing can play a unique role in the diagnosis and management of TAGVHD. PMID:8556506

  7. Promoter methylation in the PTCH gene in cervical epithelial cancer and ovarian cancer tissue as studied by eight novel Pyrosequencing® assays.

    PubMed

    Löf-Öhlin, Zarah M; Levanat, Sonja; Sabol, Maja; Sorbe, Bengt; Nilsson, Torbjörn K

    2011-03-01

    DNA methylation status in the CpG sites of promoter regions in cancer-related genes, such as PTCH, has traditionally been investigated using either dye-terminator sequencing or methylation-specific PCR. We aimed to study the PTCH gene promoter methylation in gynecological cancers, with a method that gives a quantitative measure of the methylation status of the promoter region of the studied gene, and for this purpose, we designed novel Pyrosequencing-based assays. Bisulfite-treated genomic DNA (bsDNA) was amplified by standard PCR and applied to novel Pyrosequencing® assays, in order to measure the methylated fraction (%) at each CpG site of the PTCH gene promoter. We analyzed 22 squamous cell cervical cancer tissue specimens (11 with good and 11 with poor outcomes after radiotherapy) and 5 ovarian cancer tissue specimens matched with 5 normal ovarian tissue specimens. Six optimized PCR protocols which generated 8 Pyrosequencing assays covering 63 CpG sites in the promoter regions 1 and 2 as well as the previously unanalyzed promoter region 3 in the PTCH gene were developed. The 27 tumor tissue specimens and 5 normal tissues did not show any methylation within any of the 63 CpG sites. Our data suggest that methylation of the PTCH promoter is not a high-prevalence feature of squamous cell cervical cancer or ovarian cancer, but Pyrosequencing assays are a good method for studying promoter methylation.

  8. A Review of Ribonuclease 7’s Structure, Regulation, and Contributions to Host Defense

    PubMed Central

    Becknell, Brian; Spencer, John David

    2016-01-01

    The Ribonuclease A Superfamily is composed of a group of structurally similar peptides that are secreted by immune cells and epithelial tissues. Several members of the Ribonuclease A Superfamily demonstrate antimicrobial activity, and it has been suggested that some of these ribonucleases play an essential role in host defense. Ribonuclease 7 (RNase 7) is an epithelial-derived secreted peptide with potent broad-spectrum antimicrobial activity. This review summarizes the published literature on RNase 7’s antimicrobial properties, structure, regulation, and contributions to host defense. In doing so, we conclude by highlighting key knowledge gaps that must be investigated to completely understand the potential of developing RNase 7 as a novel therapeutic for human infectious diseases. PMID:27011175

  9. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor

    PubMed Central

    Valle, Jaione; Latasa, Cristina; Gil, Carmen; Toledo-Arana, Alejandro; Solano, Cristina; Penadés, José R.; Lasa, Iñigo

    2012-01-01

    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections. PMID:22876182

  10. Fas ligand is not only expressed in immune privileged human organs but is also coexpressed with Fas in various epithelial tissues.

    PubMed Central

    Xerri, L; Devilard, E; Hassoun, J; Mawas, C; Birg, F

    1997-01-01

    AIMS: To confirm the recent data obtained in mice, showing that the Fas ligand (FasL) is involved in the phenomenon of "immune privilege" (the apparent defect of the immune system in specific anatomical sites) and to extend this finding to humans. METHODS: The expression of FasL was analysed in a panel of histologically normal human tissues by reverse transcriptase polymerase chain reaction and Western blotting. The tissues sampled were brain, breast, bone marrow, oesophagus, kidney, liver, lung, lymph node, ovary, pancreas, pituitary gland, prostate, spleen, stomach (antrum and fundus), striated muscle, testis, thyroid, and uterus. These were obtained from patients with various neoplastic and non-neoplastic disorders; placental tissue was obtained after normal obstetric delivery, and spontaneous or voluntary abortion. RESULTS: Strong FasL expression was detected in testis and placenta. FasL expression was also detectable, although it was seen to a lesser extent, in oesophagus, prostate, lung, and uterus, which also coexpressed variable amounts of Fas mRNA or protein or both. The other organs tested for FasL expression were all negative. CONCLUSIONS: FasL in humans is expressed predominantly in immune "sanctuaries" such as testis and placenta, suggesting that, similar to mice, this expression may contribute to the immune privileged status of these organs, by preventing dangerous inflammatory responses. The coexpression of FasL and Fas in particular epithelia suggests that the physiological cell turnover of some tissues may be regulated by the Fas-FasL apoptotic pathway. Images PMID:9231156

  11. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  12. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores

  13. Epithelial Conduction in Hydromedusae

    PubMed Central

    Mackie, G. O.; Passano, L. M.

    1968-01-01

    Sarsia, Euphysa, and other hydromedusae have been studied by electrophysiological techniques and are found to have nonnervous conducting epithelia resembling those described earlier for siphonophores. Simple, non-muscular epithelia fire singly or repetitively following brief electrical stimuli. The pulses recorded with suction electrodes are biphasic, initially positive, and show amplitudes of 0.75–2.0 mv, durations of 5–15 msec, and velocities of 15–35 cm/sec with short refractory periods. In the swimming muscle (myoepithelium) 2.0–4.0 mv composite events lasting 150–300 msec are associated with contraction waves. Propagation in nonnervous epithelia is typically all-or-none, nondecremental, and unpolarized. The subumbrellar endoderm lamella conducts independently of the adjacent ectoderm. The lower regions of the tentacles do not show propagated epithelial events. The spread of excitation in conducting epithelia and associated effector responses are described. Examples are given of interaction between events seemingly conducted in the nervous system and those in nonnervous epithelia. Either system may excite the other. Spontaneous activity, however, appears to originate in the nervous system. Conduction in nonnervous tissues is unaffected by excess Mg++ in concentrations suppressing presumed nervous activity, although this may not be a wholly adequate criterion for distinguishing components of the two systems. Evidence from old work by Romanes is considered in the light of these findings and the general significance of epithelial conduction is discussed. PMID:4386662

  14. Quantitative Morphology of Epithelial Folds

    PubMed Central

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  15. Emerging roles for renal primary cilia in epithelial repair.

    PubMed

    Deane, James A; Ricardo, Sharon D

    2012-01-01

    Primary cilia are microscopic sensory antennae that cells in many vertebrate tissues use to gather information about their environment. In the kidney, primary cilia sense urine flow and are essential for the maintenance of epithelial architecture. Defects of this organelle cause the cystic kidney disease characterized by epithelial abnormalities. These findings link primary cilia to the regulation of epithelial differentiation and proliferation, processes that must be precisely controlled during epithelial repair in the kidney. Here, we consider likely roles for primary cilium-based signaling during responses to renal injury and ensuing epithelial repair processes.

  16. Measles Virus Host Invasion and Pathogenesis

    PubMed Central

    Laksono, Brigitta M.; de Vries, Rory D.; McQuaid, Stephen; Duprex, W. Paul; de Swart, Rik L.

    2016-01-01

    Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150+ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis. PMID:27483301

  17. Assessment of Tissue Eosinophilia as a Prognosticator in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma—An Image Analysis Study

    PubMed Central

    Jain, Megha; Kasetty, Sowmya; Sudheendra, U. S.; Tijare, Manisha; Khan, Samar; Desai, Ami

    2014-01-01

    Association of tissue eosinophilia with oral squamous cell carcinoma has shown variable results ranging from favourable to unfavourable or even having no influence on prognosis. Also, very few studies have been done to know the role of eosinophils in premalignancy. So the present study investigated role of eosinophilic infiltration in oral precancer and cancer and its possible use as a prognosticator. 60 histopathologically proven cases (20 cases each of metastatic and nonmetastatic oral squamous cell carcinoma and oral leukoplakia with dysplasia of various grades) were included. Congo red is used as a special stain for eosinophils. Each specimen slide was viewed under high power in 10 consecutive microscopic fields for counting of eosinophils. As a result, a significant increase in eosinophil count was found in oral carcinomas compared to dysplasia. Nonmetastatic cases showed higher counts than metastatic carcinomas. So, it is concluded that eosinophilia is a favourable histopathological prognostic factor in oral cancer. Moreover, higher eosinophil counts in carcinoma group compared to dysplasia group proved that they might have a role in stromal invasion thus suggesting that quantitative assessment of tissue eosinophilia should become a part of the routine histopathological diagnosis for oral precancer and OSCC. PMID:24693457

  18. Anthrax edema toxin inhibits Nox1-mediated formation of reactive oxygen species by colon epithelial cells.

    PubMed

    Kim, Jun-Sub; Bokoch, Gary M

    2009-01-01

    One major route of intoxication by Bacillus anthracis (anthrax) spores is via their ingestion and subsequent uptake by the intestinal epithelium. Anthrax edema toxin (ETx) is an adenylate cyclase that causes persistent elevation of cAMP in intoxicated cells. NADPH oxidase enzymes (Nox1-Nox5, Duox1 and 2) generate reactive oxygen species (ROS) as components of the host innate immune response to bacteria, including Nox1 in gastrointestinal epithelial tissues. We show that ETx effectively inhibits ROS formation by Nox1 in HT-29 colon epithelial cells. This inhibition requires the PKA-mediated phosphorylation of the Nox1-regulatory component, NoxA1, and the subsequent binding of 14-3-3zeta. Inhibition of Nox1-mediated ROS formation in the gut epithelium may be a mechanism used by B. anthracis to circumvent the innate immune response.

  19. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats

    PubMed Central

    Jiao, Jinzhen; Huang, Jinyu; Zhou, Chuanshe

    2015-01-01

    Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen. PMID:25769827

  20. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  1. The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens.

    PubMed

    Zeitouni, Nathalie E; Chotikatum, Sucheera; von Köckritz-Blickwede, Maren; Naim, Hassan Y

    2016-12-01

    The maintenance of oxygen homeostasis in human tissues is mediated by several cellular adaptations in response to low-oxygen stress, called hypoxia. A decrease in tissue oxygen levels is initially counteracted by increasing local blood flow to overcome diminished oxygenation and avoid hypoxic stress. However, studies have shown that the physiological oxygen concentrations in several tissues are much lower than atmospheric (normoxic) conditions, and the oxygen supply is finely regulated in individual cell types. The gastrointestinal tract has been described to subsist in a state of physiologically low oxygen level and is thus depicted as a tissue in the state of constant low-grade inflammation. The intestinal epithelial cell layer plays a vital role in the immune response to inflammation and infections that occur within the intestinal tissue and is involved in many of the adaptation responses to hypoxic stress. This is especially relevant in the context of inflammatory disorders, such as inflammatory bowel disease (IBD). Therefore, this review aims to describe the intestinal epithelial cellular response to hypoxia and the consequences for host interactions with invading gastrointestinal bacterial pathogens.

  2. Enhancerless cytomegalovirus is capable of establishing a low-level maintenance infection in severely immunodeficient host tissues but fails in exponential growth.

    PubMed

    Podlech, Jürgen; Pintea, Rares; Kropp, Kai A; Fink, Annette; Lemmermann, Niels A W; Erlach, Katja C; Isern, Elena; Angulo, Ana; Ghazal, Peter; Reddehase, Matthias J

    2010-06-01

    Major immediate-early transcriptional enhancers are genetic control elements that act, through docking with host transcription factors, as a decisive regulatory unit for efficient initiation of the productive virus cycle. Animal models are required for studying the function of enhancers paradigmatically in host organs. Here, we have sought to quantitatively assess the establishment, maintenance, and level of in vivo growth of enhancerless mutants of murine cytomegalovirus in comparison with those of an enhancer-bearing counterpart in models of the immunocompromised or immunologically immature host. Evidence is presented showing that enhancerless viruses are capable of forming restricted foci of infection but fail to grow exponentially.

  3. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse.

    PubMed

    Yamben, Idella F; Rachel, Rivka A; Shatadal, Shalini; Copeland, Neal G; Jenkins, Nancy A; Warming, Soren; Griep, Anne E

    2013-12-01

    The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.

  4. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    PubMed

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  5. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model

    USGS Publications Warehouse

    Tomašek, Ines; Horwell, Claire J.; Damby, David; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-01-01

    BackgroundThere are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles.MethodsA sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1β) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively.ResultsThe combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1β, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all

  6. Phenotypic plasticity in normal breast derived epithelial cells

    PubMed Central

    2014-01-01

    Background Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. Results All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. Conclusions The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools. PMID:24915897

  7. Propagating Stress Waves During Epithelial Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Utuje, Kazage J. C.; Marchetti, M. Cristina

    2015-06-01

    Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis involves mechanical stress generation. Here we propose a model for the dynamics of epithelial expansion that couples mechanical deformations in the tissue to contractile activity and polarization in the cells. A new ingredient of our model is a feedback between local strain, polarization, and contractility that naturally yields a mechanism for viscoelasticity and effective inertia in the cell monolayer. Using a combination of analytical and numerical techniques, we demonstrate that our model quantitatively reproduces many experimental findings [Nat. Phys. 8, 628 (2012)], including the buildup of intercellular stresses, and the existence of traveling mechanical waves guiding the oscillatory monolayer expansion.

  8. Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells.

    PubMed

    Olczak, Teresa; Maszczak-Seneczko, Dorota; Smalley, John W; Olczak, Mariusz

    2012-08-01

    Porphyromonas gingivalis acquires heme for growth, and initiation and progression of periodontal diseases. One of its heme acquisition systems consists of the HmuR and HmuY proteins. This study analyzed the antimicrobial activity of non-iron metalloporphyrins against P. gingivalis during planktonic growth, biofilm formation, epithelial cell adhesion and invasion, and employed hmuY, hmuR and hmuY-hmuR mutants to assess the involvement of HmuY and HmuR proteins in the acquisition of metalloporphyrins. Iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) supported planktonic growth of P. gingivalis cells, biofilm accumulation, as well as survival, adhesion and invasion of HeLa cells in a way analogous to protoheme. In contrast, cobalt(III), gallium(III) and copper(II) protoporphyrin IX exhibited antimicrobial activity against P. gingivalis, and thus represent potentially useful antibacterial compounds with which to target P. gingivalis. P. gingivalis hmuY, hmuR and hmuY-hmuR mutants showed decreased growth and infection of epithelial cells in the presence of all metalloporphyrins examined. In conclusion, the HmuY protein may not be directly involved in transport of free metalloporphyrins into the bacterial cell, but it may also play a protective role against metalloporphyrin toxicity by binding an excess of these compounds.

  9. Cellular systems for epithelial invagination

    PubMed Central

    2017-01-01

    Epithelial invagination is a fundamental module of morphogenesis that iteratively occurs to generate the architecture of many parts of a developing organism. By changing the physical properties such as the shape and/or position of a population of cells, invagination drives processes ranging from reconfiguring the entire body axis during gastrulation, to forming the primordia of the eyes, ears and multiple ducts and glands, during organogenesis. The epithelial bending required for invagination is achieved through a variety of mechanisms involving systems of cells. Here we provide an overview of the different mechanisms, some of which can work in combination, and outline the circumstances in which they apply. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348256

  10. Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri

    PubMed Central

    Schleicher, Tyler R.; Nyholm, Spencer V.

    2011-01-01

    The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association. PMID:21998678

  11. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri.

    PubMed

    Schleicher, Tyler R; Nyholm, Spencer V

    2011-01-01

    The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.

  12. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  13. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    PubMed

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals' actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a "forgotten organ," functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host's biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom?

  14. Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia-reperfusion.

    PubMed

    Grootjans, Joep; Thuijls, Geertje; Derikx, Joep P M; van Dam, Ronald M; Dejong, Cornelis H C; Buurman, Wim A

    2011-07-01

    To ensure a sufficient barrier between a host and noxious luminal content, the intestinal epithelium must be equipped with efficient mechanisms to limit damage to the epithelial lining. Using a human model, we were able to investigate these mechanisms in the human gut exposed to ischaemia-reperfusion (IR) over the time course of 150 min. In 10 patients a part of jejunum, to be removed for surgical reasons, was selectively exposed to IR. Control tissue was collected, as well as tissue exposed to 30 min of ischaemia with 0, 30 or 120 min of reperfusion. Haematoxylin/eosin staining demonstrated the appearance of subepithelial spaces following 30 min of ischaemia, while the epithelial lining remained intact at this stage. Western blot for myosin light chain kinase (MLCK) revealed a significant increase in protein levels after ischaemia (p < 0.01), and selective staining of MLCK and phosphorylated MLC (pMLC) in lamina propria muscle fibres indicated that appearance of subepithelial spaces was a consequence of active villus contraction. Early during reperfusion, accumulation of pMLC was observed exclusively at the basal side of enterocytes that had lost contact with the collagen-IV-positive basement membrane. These epithelial sheets were pulled together like a zipper, even before these cells were shed. This constriction, verified by increased F-actin and pMLC double staining, accounted for a 45% reduction in virtual wound surface (p < 0.001) at 30 min of reperfusion. In addition, these mechanisms were involved in resealing remaining small epithelial defects, resulting in a fully restored epithelial lining within 120 min of reperfusion. In conclusion, we show in a human in vivo model that the human jejunum has the ability to preserve the epithelial lining during intestinal IR by rapid lamina propria contraction and zipper-like constriction of epithelial cells that are to be shed into the lumen. These newly described phenomena limit exposure to noxious luminal content.

  15. Isolated extramedullary cutaneous relapse despite concomitant severe graft-vs.-host disease and tissue chimerism analysis in a patient with acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation: A case report

    PubMed Central

    Kantarcioglu, Bulent; Bekoz, Huseyin Saffet; Ogret, Yeliz Duvarci; Cakir, Asli; Kivanc, Demet; Oguz, Fatma Savran; Sargin, Deniz

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option for patients with acute lymphoblastic leukemia (ALL). The curative potential of allo-HSCT for ALL is, in part, due to the graft-vs.-leukemia (GVL) effect, in addition to the intensive conditioning chemo-radiotherapy. However, relapse remains the major cause of treatment failure following allo-HSCT for ALL. In the allo-HSCT setting, testing for genetic markers of hematopoietic chimerism has become a part of the routine diagnostic program. Routine chimerism analysis is usually performed in peripheral blood or bone marrow; in fact, little is known about the value of tissue chimerism in patients with extramedullary relapse (EMR) after the allo-HSCT setting. The present study reports on, a case of a patient with ALL who experienced isolated cutaneous EMR despite ongoing graft-vs.-host disease (GVHD), and the results of peripheral blood and skin tissue chimerism studies using multiplex polymerase chain reaction (PCR) of short tandem repeats (STR-PCR). The present case demonstrates that, although complete remission and/or chimerism may be achieved in the bone marrow, chimerism achieved at the tissue level, and the subsequent GVL effect, may be limited, despite concomitant severe GVHD following allo-HSCT. Our tissue chimerism analysis results provide a good example of how skin tissue may be a ‘sanctuary’ site for effector cells of GVL, despite active GVHD and complete hematopoetic chimerism. PMID:28105353

  16. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  17. Host pathogen interactions in Helicobacter pylori related gastric cancer.

    PubMed

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-03-07

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.

  18. Host pathogen interactions in Helicobacter pylori related gastric cancer

    PubMed Central

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  19. In Vitro Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary Airway Epithelial Cells (WD-PAECs).

    PubMed

    Broadbent, Lindsay; Villenave, Remi; Guo-Parke, Hong; Douglas, Isobel; Shields, Michael D; Power, Ultan F

    2016-01-01

    The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.

  20. Focal epithelial hyperplasia: Heck disease.

    PubMed

    Cohen, P R; Hebert, A A; Adler-Storthz, K

    1993-09-01

    Two sisters of Mexican ancestry had focal epithelial hyperplasia (FEH). The lesions on the oral mucosa of the older child were initially misinterpreted as representing sexual abuse. Microscopic evaluation of a hematoxylin and eosin-stained section from a lower lip papule demonstrated the histologic features of FEH. Although human papillomavirus (HPV) type 13 and HPV32 have been most consistently present in FEH lesions, types 6, 11, 13, and 32 were not detected in the paraffin-embedded tissue specimen of our patient using an in situ hybridization technique. The lesions persisted or recurred during management using destructive modalities; subsequently, they completely resolved spontaneously.

  1. The Limbal Epithelial Progenitors in the Limbal Niche Environment

    PubMed Central

    Zhang, Yuan; Sun, Hong; Liu, Yongsong; Chen, Shuangling; Cai, Subo; Zhu, Yingting; Guo, Ping

    2016-01-01

    Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we present the audience with recent evidence that limbal epithelial progenitors may be a powerful stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of their mechanism may shed lights to the future successful application of stem cell therapy not only to the eye tissue, but also to the other tissues in the human body. PMID:27877075

  2. Theory of epithelial elasticity

    NASA Astrophysics Data System (ADS)

    Krajnc, Matej; Ziherl, Primož

    2015-11-01

    We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures: Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics of three-dimensional structures with cylindrical symmetry.

  3. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.

  4. Autoimmune epitheliitis: Sjögren's syndrome.

    PubMed

    Skopouli, F N; Moutsopoulos, H M

    1994-01-01

    Sjögren's syndrome (SS), an autoimmune exocrinopathy, is a common, chronic disease of females. Clinical studies of kidney involvement in SS patients have shown that the predominant lesion is interstitial nephritis which produces tubular dysfunction. Studies on lung involvement have previously indicated that one fourth of SS patients suffer from subclinical interstitial lung disease. Re-evaluation, however, of the pulmonary disease using functional, radiologic and histopathologic studies showed that the lesion starts peribronchially. Finally, evaluation of liver disease in SS patients revealed that this consists of a pericholangeal round-cell infiltrate resembling the early lesion of primary biliary cirrhosis. These clinical studies suggest that the systemic manifestations of SS are probably due to the attraction of lymphocytes by different epithelial tissues. Studies of the epithelial cells of minor salivary glands from SS patients have shown that these inappropriately and selectively express HLA class II molecules and the proto-oncogene c-myc. Evaluation of cytokines in the minor salivary glands from these patients by in situ hybridization revealed that the proinflammatory cytokines IL-1 and IL-6 are also produced by the epithelial cells. Finally, proviral DNA has been shown to be incorporated in the DNA of epithelial cells. On the basis of these clinical and laboratory observations, we would like to suggest that the target tissue involved in the autoimmune histopathologic lesions of SS is the epithelium, and therefore we propose the term "Autoimmune Epitheliitis" instead of "Sjögren's syndrome" for this disease.

  5. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  6. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila.

    PubMed

    Petkau, Kristina; Parsons, Brendon D; Duggal, Aashna; Foley, Edan

    2014-10-10

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function.

  7. Probing the luminal microenvironment of reconstituted epithelial microtissues

    PubMed Central

    Cerchiari, Alec E.; Samy, Karen E.; Todhunter, Michael E.; Schlesinger, Erica; Henise, Jeff; Rieken, Christopher; Gartner, Zev J.; Desai, Tejal A.

    2016-01-01

    Polymeric microparticles can serve as carriers or sensors to instruct or characterize tissue biology. However, incorporating microparticles into tissues for in vitro assays remains a challenge. We exploit three-dimensional cell-patterning technologies and directed epithelial self-organization to deliver microparticles to the lumen of reconstituted human intestinal microtissues. We also develop a novel pH-sensitive microsensor that can measure the luminal pH of reconstituted epithelial microtissues. These studies offer a novel approach for investigating luminal microenvironments and drug-delivery across epithelial barriers. PMID:27619235

  8. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-12-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.

  9. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion

    PubMed Central

    Golovkine, Guillaume; Faudry, Eric; Bouillot, Stéphanie; Elsen, Sylvie; Attrée, Ina; Huber, Philippe

    2016-01-01

    To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS) and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment. PMID:26727615

  10. Impact of the Stem Extract of Thevetia neriifolia on the Feeding Potential and Histological Architecture of the Midgut Epithelial Tissue of Early Fourth Instars of Helicoverpa armigera Hübner

    PubMed Central

    Mishra, Monika; Gupta, Kamal Kumar; Kumar, Sarita

    2015-01-01

    Helicoverpa armigera Hübner is one of the most important agricultural crop pests in the world causing heavy crop yield losses. The continued and indiscriminate use of synthetic insecticides in agriculture for their control has received wide public apprehension because of multifarious problems, including insecticide resistance, resurgence of pest species, environmental pollution, and toxic hazards to humans and nontarget organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and biodegradable plant products. In view of this, the efficacy of Thevetia neriifolia methanol stem extract was evaluated against the early fourth instars of H. armigera as an antifeedant and stomach poison agent. Feeding of larvae with the diet containing 0.005%–5.0% extract resulted in 2.06%–37.35% antifeedant index; the diet with 5.0% extract caused 54.3% reduced consumption. The negative impact of extract on larval feeding resulted in 37.5%–77.7% starvation, causing adverse effects on the larval weight. Choice between control and experimental diet resulted in feeding preference of larvae for the control diet, leading to 7.3%–42.9% reduced consumption of extract-containing diet. The only exception was the diet with 0.005% extract, which could not cause any deterrence. The midgut histological architecture of H. armigera larvae fed with 0.005%–0.05% extract-containing diet with negligible antifeedant potential showed significant damage, shrinkage, and distortion and vacuolization of gut tissues and peritrophic membrane, causing the disintegration of epithelial, goblet, and regenerative cells; the damage increased with the increase in concentration. These changes in the gut caused negative impact on the digestion and absorption of food and thus nutritional deficiency in the larvae, which could probably affect their growth and development. This study reveal the appreciable stomach poison potential of T. neriifolia stem

  11. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    PubMed Central

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a “forgotten organ,” functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom? PMID

  12. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  13. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  14. Coronavirus entry and release in polarized epithelial cells: a review.

    PubMed

    Cong, Yingying; Ren, Xiaofeng

    2014-09-01

    Most coronaviruses cause respiratory or intestinal infections in their animal or human host. Hence, their interaction with polarized epithelial cells plays a critical role in the onset and outcome of infection. In this paper, we review the knowledge regarding the entry and release of coronaviruses, with particular emphasis on the severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses. As these viruses approach the epithelial surfaces from the apical side, it is not surprising that coronavirus cell receptors are exposed primarily on the apical domain of polarized epithelial cells. With respect to release, all possibilities appear to occur. Thus, most coronaviruses exit through the apical surface, several through the basolateral one, although the Middle East respiratory syndrome coronavirus appears to use both sides. These observations help us understand the local or systematic spread of the infection within its host as well as the spread of the virus within the host population.

  15. Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis.

    PubMed

    Fidel, P L

    2011-04-01

    Oropharyngeal candidiasis (OPC), caused primarily by Candida albicans, is the most common oral infection in HIV(+) persons. Although Th1-type CD4(+) T cells are the predominant host defense mechanism against OPC, CD8(+) T cells and epithelial cells become important when blood CD4(+) T cells are reduced below a protective threshold during progression to AIDS. In an early cross-sectional study, OPC(+) tissue biopsied from HIV(+) persons had an accumulation of activated memory CD8(+) T cells at the oral epithelial-lamina propria interface, with reduced expression of the adhesion molecule E-cadherin, suggesting a protective role for CD8(+) T cells but a dysfunction in the mucosal migration of the cells. In a subsequent 1-year longitudinal study, OPC(-) patients with high oral Candida colonization (indicative of a preclinical OPC condition), had higher numbers of CD8(+) T cells distributed throughout the tissue, with normal E-cadherin expression. In OPC(+) patients, where lack of CD8(+) T cell migration was associated with reduced E-cadherin, subsequent evaluations following successful treatment of infection revealed normal E-cadherin expression and cellular distribution. Regarding epithelial cell responses, intact oral epithelial cells exhibit fungistatic activity via an acid-labile protein moiety. A proteomic analysis revealed that annexin A1 is a strong candidate for the effector moiety. The current hypothesis is that under reduced CD4(+) T cells, HIV(+) persons protected from OPC have CD8(+) T cells that migrate to the site of a preclinical infection under normal expression of E-cadherin, whereas those with OPC have a transient reduction in E-cadherin that prohibits CD8(+) T cells from migrating for effector function. Oral epithelial cells concomitantly function through annexin A1 to keep Candida in a commensal state but can easily be overwhelmed, thereby contributing to susceptibility to OPC.

  16. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue.

    PubMed

    Wang, Dongsheng; Wagner, Manfred; Butt, Hans-Jürgen; Wu, Si

    2015-10-14

    We report a novel red-light-responsive supramolecule. The tetra-ortho-methoxy-substituted azobenzene (mAzo) and β-cyclodextrin (β-CD) spontaneously formed a supramolecular complex. The substituted methoxy groups shifted the responsive wavelength of the azo group to the red light region, which is in the therapeutic window and desirable for biomedical applications. Red light induced the isomerization of mAzo and the disassembly of the mAzo/β-CD supramolecular complex. We synthesized a mAzo-functionalized polymer and a β-CD-functionalized polymer. Mixing the two polymers in an aqueous solution generated a supramolecular hydrogel. Red light irradiation induced a gel-to-sol transition as a result of the disassembly of the mAzo/β-CD complexes. Proteins were loaded in the hydrogel. Red light could control protein release from the hydrogel in tissue due to its deep penetration depth in tissue. We envision the use of red-light-responsive supramolecules for deep-tissue biomedical applications.

  17. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    PubMed Central

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  18. Global sensitivity analysis of a mathematical model of acute inflammation identifies nonlinear dependence of cumulative tissue damage on host interleukin-6 responses.

    PubMed

    Mathew, Shibin; Bartels, John; Banerjee, Ipsita; Vodovotz, Yoram

    2014-10-07

    The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the ODE model for different levels of simulated LPS challenges using a global sensitivity approach called Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient parametric Monte Carlo samples to generate the variance-based Sobol' global sensitivity indices, and found that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak representing healthy response and the higher peak representing sustained inflammation. Damage was minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6 resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the NO-mediated anti-inflammatory responses. These observations suggest that the host's health status during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory stimulus

  19. Homeostatic Imbalance in Epithelial Ducts and Its Role in Carcinogenesis

    PubMed Central

    Rejniak, Katarzyna A.

    2012-01-01

    An epithelial duct is a well-defined multicellular structure composed of tightly packed cells separating and protecting body compartments that are used for enzyme secretion and its transport across the internal. The structural and functional integrity (homeostasis) of such ducts is vital in carrying many life functions (breathing, lactation, production of hormones). However, the processes involved in maintaining the homeostatic balance are not yet fully understood. On the other hand, the loss of epithelial tissue architecture, such as filled lumens or ductal disorganization, are among the first symptoms of the emerging epithelial tumors (carcinomas). Using the previously developed biomechanical model of epithelial ducts: IBCell, we investigated how different signals and mechanical stimuli imposed on individual epithelial cells can impact the homeostatic (im)balance and integrity of the whole epithelial tissue. We provide a link between erroneous responses of individual epithelial cells to specific signals and the emerging ductal morphologies characteristic for preinvasive cancers observed in pathology specimens, or characteristic for multicellular structures arising from mutated cells cultured in vitro. We summarize our finding in terms of altered properties of epithelial cell polarization, and discuss the relative importance of various polarization signals on the formation of tumor-like multicellular structures. PMID:24278670

  20. Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections

    PubMed Central

    Siemens, Nikolai; Kittang, Bård R.; Chakrakodi, Bhavya; Oppegaard, Oddvar; Johansson, Linda; Bruun, Trond; Mylvaganam, Haima; Arnell, Per; Hyldegaard, Ole; Nekludov, Michael; Karlsson, Ylva; Svensson, Mattias; Skrede, Steiner; Norrby-Teglund, Anna

    2015-01-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) has emerged as an important cause of severe skin and soft tissue infections, but little is known of the pathogenic mechanisms underlying tissue pathology. Patient samples and a collection of invasive and non-invasive group G SDSE strains (n = 69) were analyzed with respect to virulence factor expression and cytotoxic or inflammatory effects on human cells and 3D skin tissue models. SDSE strains efficiently infected the 3D-skin model and severe tissue pathology, inflammatory responses and altered production of host structural framework proteins associated with epithelial barrier integrity were evident already at 8 hours post-infection. Invasive strains were significantly more cytotoxic towards keratinocytes and expressed higher Streptokinase and Streptolysin O (SLO) activities, as compared to non-invasive strains. The opposite was true for Streptolysin S (SLS). Fractionation and proteomic analysis of the cytotoxic fractions implicated SLO as a factor likely contributing to the keratinocyte cytotoxicity and tissue pathology. Analyses of patient tissue biopsies revealed massive bacterial load, high expression of slo, as well as immune cell infiltration and pro-inflammatory markers. Our findings suggest the contribution of SLO to epithelial cytotoxicity and tissue pathology in SDSE tissue infections. PMID:26601609

  1. Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections.

    PubMed

    Siemens, Nikolai; Kittang, Bård R; Chakrakodi, Bhavya; Oppegaard, Oddvar; Johansson, Linda; Bruun, Trond; Mylvaganam, Haima; Svensson, Mattias; Skrede, Steiner; Norrby-Teglund, Anna

    2015-11-25

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) has emerged as an important cause of severe skin and soft tissue infections, but little is known of the pathogenic mechanisms underlying tissue pathology. Patient samples and a collection of invasive and non-invasive group G SDSE strains (n = 69) were analyzed with respect to virulence factor expression and cytotoxic or inflammatory effects on human cells and 3D skin tissue models. SDSE strains efficiently infected the 3D-skin model and severe tissue pathology, inflammatory responses and altered production of host structural framework proteins associated with epithelial barrier integrity were evident already at 8 hours post-infection. Invasive strains were significantly more cytotoxic towards keratinocytes and expressed higher Streptokinase and Streptolysin O (SLO) activities, as compared to non-invasive strains. The opposite was true for Streptolysin S (SLS). Fractionation and proteomic analysis of the cytotoxic fractions implicated SLO as a factor likely contributing to the keratinocyte cytotoxicity and tissue pathology. Analyses of patient tissue biopsies revealed massive bacterial load, high expression of slo, as well as immune cell infiltration and pro-inflammatory markers. Our findings suggest the contribution of SLO to epithelial cytotoxicity and tissue pathology in SDSE tissue infections.

  2. Transcriptional regulators transforming growth factor-beta 1 and estrogen-related receptor-alpha identified as putative mediators of calf rumen epithelial tissue development and function during weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular mechanisms controlling rumen epithelial development at weaning remain largely unknown. To identify gene networks and regulatory factors responsive to concentrate versus forage feeding at weaning, Holstein bull calves (n = 18) were fed commercial milk replacer only (MRO) until 42 d of age. ...

  3. [Focal epithelial hyperplasia].

    PubMed

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign