Sample records for host factor involved

  1. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  2. Mechanisms involved in parasitic castration: in vitro effects of the trematode Prosorhynchus squamatus on the gametogenesis and the nutrient storage metabolism of the marine bivalve mollusc Mytilus edulis.

    PubMed

    Coustau, C; Renaud, F; Delay, B; Robbins, I; Mathieu, M

    1991-07-01

    The mechanisms involved in the parasitic castration of the marine mussel Mytilus edulis by the trematode parasite Prosorhynchus squamatus Odhner, 1905, have been investigated in vitro with two bioassays employing dissociated host tissues. There is no conclusive evidence that P. squamatus affects the secretion of two host neuroendocrine factors, viz., gonial mitosis-stimulating factor and glycogen mobilization hormone, involved in the gametogenesis/nutrient storage cycles of the mussel. In contrast, extracts of P. squamatus sporocysts and cercariae significantly stimulated glycogen mobilization in host glycogen cells and strongly inhibited host gonial mitosis. A gonial mitosis-inhibiting factor (GMIF) was found in the hemolymph of parasitized mussels. The existence of an endogenous GMIF in mantle tissue of uninfected mussels has been demonstrated. This factor appeared to be secreted into the hemolymph during the period of sexual maturity. Whether the parasite acts directly on the host gonia, or by provoking the liberation of this endogenous GMIF, has yet to be ascertained. It would appear, however, that the parasite acts directly on host glycogen cells.

  3. Recent advances in the identification of the host factors involved in dengue virus replication.

    PubMed

    Wang, Yi; Zhang, Ping

    2017-02-01

    Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.

  4. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  5. Interaction between FMDV Lpro and transcription factor ADNP is required for viral replication

    USDA-ARS?s Scientific Manuscript database

    The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an ...

  6. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    PubMed

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  7. Complex Virus–Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview

    PubMed Central

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-01-01

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV–host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus–host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding. PMID:28678154

  8. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    PubMed Central

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  9. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  10. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus.

    PubMed

    Nagy, Peter D; Pogany, Judit

    2010-01-01

    The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. The Perfect Match: Factors That Characterize the AACSB International Initial Accreditation Host School and Mentor Relationship

    ERIC Educational Resources Information Center

    Solomon, Norman A.; Scherer, Robert F.; Oliveti, Joseph J.; Mochel, Lucienne; Bryant, Michael

    2017-01-01

    Initial Association to Advance Collegiate Schools of Business International accreditation involves a process of pairing mentor and host schools to provide guidance and feedback on the congruence of the host school with the accreditation standards. The mentor serves as the primary resource for assisting the host school in identifying gaps with the…

  12. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies.

    PubMed

    Al-Bader, Nadia; Sheppard, Donald C

    2016-11-16

    Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.

  13. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    PubMed

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis.

    PubMed

    Maruzuru, Yuhei; Koyanagi, Naoto; Takemura, Naoki; Uematsu, Satoshi; Matsubara, Daisuke; Suzuki, Yutaka; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2016-08-01

    p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Gut Microbiota: A Contributing Factor to Obesity

    PubMed Central

    Harakeh, Steve M.; Khan, Imran; Kumosani, Taha; Barbour, Elie; Almasaudi, Saad B.; Bahijri, Suhad M.; Alfadul, Sulaiman M.; Ajabnoor, Ghada M. A.; Azhar, Esam I.

    2016-01-01

    Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD) and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM) have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 1014 microorganisms reside within the lower human intestine and many of these 1014 microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition) with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review. Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics, and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity. PMID:27625997

  16. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract

    PubMed Central

    Ferrando, Maria Laura; Schultsz, Constance

    2016-01-01

    ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998

  17. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors.

    PubMed

    Calvo, María; Martínez-Turiño, Sandra; García, Juan Antonio

    2014-11-01

    Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.

  18. Ultrastructure of the replication sites of positive-strand RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harak, Christian; Lohmann, Volker, E-mail: volker_lohmann@med.uni-heidelberg.de

    2015-05-15

    Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. Inmore » this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.« less

  19. Impact of Leishmania metalloprotease GP63 on macrophage signaling

    PubMed Central

    Isnard, Amandine; Shio, Marina T.; Olivier, Martin

    2012-01-01

    The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions. PMID:22919663

  20. Impact of Leishmania metalloprotease GP63 on macrophage signaling.

    PubMed

    Isnard, Amandine; Shio, Marina T; Olivier, Martin

    2012-01-01

    The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.

  1. Computational Analysis of Host-Pathogen Protein Interactions between Humans and Different Strains of Enterohemorrhagic Escherichia coli.

    PubMed

    Bose, Tungadri; Venkatesh, K V; Mande, Sharmila S

    2017-01-01

    Serotype O157:H7, an enterohemorrhagic Escherichia coli (EHEC), is known to cause gastrointestinal and systemic illnesses ranging from diarrhea and hemorrhagic colitis to potentially fatal hemolytic uremic syndrome. Specific genetic factors like ompA, nsrR , and LEE genes are known to play roles in EHEC pathogenesis. However, these factors are not specific to EHEC and their presence in several non-pathogenic strains indicates that additional factors are involved in pathogenicity. We propose a comprehensive effort to screen for such potential genetic elements, through investigation of biomolecular interactions between E. coli and their host. In this work, an in silico investigation of the protein-protein interactions (PPIs) between human cells and four EHEC strains (viz., EDL933, Sakai, EC4115, and TW14359) was performed in order to understand the virulence and host-colonization strategies of these strains. Potential host-pathogen interactions (HPIs) between human cells and the "non-pathogenic" E. coli strain MG1655 were also probed to evaluate whether and how the variations in the genomes could translate into altered virulence and host-colonization capabilities of the studied bacterial strains. Results indicate that a small subset of HPIs are unique to the studied pathogens and can be implicated in virulence. This subset of interactions involved E. coli proteins like YhdW, ChuT, EivG, and HlyA. These proteins have previously been reported to be involved in bacterial virulence. In addition, clear differences in lineage and clade-specific HPI profiles could be identified. Furthermore, available gene expression profiles of the HPI-proteins were utilized to estimate the proportion of proteins which may be involved in interactions. We hypothesized that a cumulative score of the ratios of bound:unbound proteins (involved in HPIs) would indicate the extent of colonization. Thus, we designed the Host Colonization Index (HCI) measure to determine the host colonization potential of the E. coli strains. Pathogenic strains of E. coli were observed to have higher HCIs as compared to a non-pathogenic laboratory strain. However, no significant differences among the HCIs of the two pathogenic groups were observed. Overall, our findings are expected to provide additional insights into EHEC pathogenesis and are likely to aid in designing alternate preventive and therapeutic strategies.

  2. Host Factors in Ebola Infection.

    PubMed

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  3. Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.

    PubMed

    Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris

    2011-01-01

    Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.

  4. Accommodation of powdery mildew fungi in intact plant cells.

    PubMed

    Eichmann, Ruth; Hückelhoven, Ralph

    2008-01-01

    Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.

  5. Mortality and Population Dynamics of Bemisia tabaci within a Multi-Crop System

    USDA-ARS?s Scientific Manuscript database

    The population dynamics of mobile polyphagous pests is governed by a complex set of interacting factors that involve multiple host-plants, seasonality, movement and demography. Bemisia tabaci is a multivoltine insect with no diapause that maintains population continuity by moving from one host to a...

  6. OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes

    PubMed Central

    Medjkane, Souhila; Perichon, Martine; Yin, Qinyan; Flemington, Erik; Weitzman, Matthew D.; Weitzman, Jonathan B.

    2013-01-01

    The intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet ‘oncogene addiction’ implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies. Furthermore, feedback loops often act as key regulatory hubs in tumorigenesis. We searched for microRNAs involved in addiction to regulatory loops in leukocytes infected with Theileria parasites. We show that Theileria transformation involves induction of the host bovine oncomiR miR-155, via the c-Jun transcription factor and AP-1 activity. We identified a novel miR-155 target, DET1, an evolutionarily-conserved factor involved in c-Jun ubiquitination. We show that miR-155 expression led to repression of DET1 protein, causing stabilization of c-Jun and driving the promoter activity of the BIC transcript containing miR-155. This positive feedback loop is critical to maintain the growth and survival of Theileria-infected leukocytes; transformation is reversed by inhibiting AP-1 activity or miR-155 expression. This is the first demonstration that Theileria parasites induce the expression of host non-coding RNAs and highlights the importance of a novel feedback loop in maintaining the proliferative phenotypes induced upon parasite infection. Hence, parasite infection drives epigenetic rewiring of the regulatory circuitry of host leukocytes, placing miR-155 at the crossroads between infection, regulatory circuits and transformation. PMID:23637592

  7. Expression of virulence factors by Staphylococcus aureus grown in serum.

    PubMed

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  8. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.

    PubMed

    Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D

    2017-01-01

    Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.

  9. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    PubMed

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2018-06-01

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  10. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization

    PubMed Central

    Chavez-Dozal, Alba; Hogan, David; Gorman, Clayton; Quintanal-Villalonga, Alvaro; Nishiguchi, Michele K.

    2012-01-01

    Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships. PMID:22486781

  11. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virus Nucleocapsid and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication.

    PubMed

    Schuchman, Ryan; Kilianski, Andy; Piper, Amanda; Vancini, Ricardo; Ribeiro, José M C; Sprague, Thomas R; Nasar, Farooq; Boyd, Gabrielle; Hernandez, Raquel; Glaros, Trevor

    2018-05-09

    Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro and Chikungunya virus. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic Alphaviruses, such as Chikungunya and Mayaro virus, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed Arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens such as dengue fever, West Nile and Yellow fever viruses. With few exceptions there are no vaccines or prophylactics for these agents leaving one third of the world population at risk of infection. Identifying effective antivirals has been a long term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses. Copyright © 2018 Schuchman et al.

  12. Recent progress in the understanding of host immunity to avian coccidiosis: IL-17 family cytokines as the sentinels on the intestinal mucosa

    USDA-ARS?s Scientific Manuscript database

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. Innate immunity is mediated by various subpopulations of innate immune cells through the secretion of soluble factors with diverse functi...

  13. The case of a city where 1 in 6 residents is a refugee: ecological factors and host community adaptation in successful resettlement.

    PubMed

    Smith, R Scott

    2008-12-01

    The notable success of an upstate New York community in resettling refugees raises the question of whether multiple waves of resettlement over a 15-year period have resulted in greater accommodation to refugees. Structured interviews based on transactional models of acculturation were used along with archival data to explore ecological factors supporting a host community's behavioral flexibility and perseverance in response to the influx of refugees. Evidence suggests that socioeconomic climate, historical background/social norms, and the organizational structure of agencies involved in resettlement moderate successful inclusion of refugees into a host community in a bidirectional process.

  14. Cytokines and their STATs in cutaneous and visceral leishmaniasis.

    PubMed

    Cummings, Hannah E; Tuladhar, Rashmi; Satoskar, Abhay R

    2010-01-01

    Cytokines play a critical role in shaping the host immune response to Leishmania infection and directing the development of protective and non-protective immunities during infection. Cytokines exert their biological activities through the activation and translocation of transcription factors into the nucleus whether they drive the expression of specific cytokine-responsive genes. Signal transducer and activator of transcription (STATs) are transcription factors which play a critical role in mediating signaling downstream of cytokine receptors and are important for shaping the host immune response during Leishmania infection. Here we discuss the signature cytokines and their associated STATs involved in the host immune response during cutaneous and visceral leishmaniasis.

  15. Neutrophils differentially attenuate immune response to Aspergillus infection through complement receptor 3 and induction of myeloperoxidase.

    PubMed

    Goh, Jessamine G; Ravikumar, Sharada; Win, Mar Soe; Cao, Qiong; Tan, Ai Ling; Lim, Joan H J; Leong, Winnie; Herbrecht, Raoul; Troke, Peter F; Kullberg, Bart Jan; Netea, Mihai G; Chng, Wee Joo; Dan, Yock Young; Chai, Louis Y A

    2018-03-01

    Invasive aspergillosis (IA) remains a major cause of morbidity in immunocompromised hosts. This is due to the inability of the host immunity to respond appropriately to Aspergillus. An established risk factor for IA is neutropenia that is encountered by patients undergoing chemotherapy. Herein, we investigate the role of neutrophils in modulating host response to Aspergillus. We found that neutrophils had the propensity to suppress proinflammatory cytokine production but through different mechanisms for specific cytokines. Cellular contact was requisite for the modulation of interleukin-1 beta production by Aspergillus with the involvement of complement receptor 3. On the other hand, inhibition of tumour necrosis factor-alpha production (TNF-α) was cell contact-independent and mediated by secreted myeloperoxidase. Specifically, the inhibition of TNF-α by myeloperoxidase was through the TLR4 pathway and involved interference with the mRNA transcription of TNF receptor-associated factor 6/interferon regulatory factor 5. Our study illustrates the extended immune modulatory role of neutrophils beyond its primary phagocytic function. The absence of neutrophils and loss of its inhibitory effect on cytokine production explains the hypercytokinemia seen in neutropenic patients when infected with Aspergillus. © 2017 John Wiley & Sons Ltd.

  16. Impairment of Host Liver Repopulation by Transplanted Hepatocytes in Aged Rats and the Release by Short-Term Growth Hormone Treatment.

    PubMed

    Stock, Peggy; Bielohuby, Maximilian; Staege, Martin S; Hsu, Mei-Ju; Bidlingmaier, Martin; Christ, Bruno

    2017-03-01

    Hepatocyte transplantation is an alternative to whole liver transplantation. Yet, efficient liver repopulation by transplanted hepatocytes is low in livers of old animals. This restraint might be because of the poor proliferative capacity of aged donor hepatocytes or the regenerative impairment of the recipient livers. The age-dependent liver repopulation by transplanted wild-type hepatocytes was investigated in juvenile and senescent rats deficient in dipeptidyl-peptidase IV. Repopulation was quantified by flow cytometry and histochemical estimation of dipeptidyl-peptidase IV enzyme activity of donor cells in the negative host liver. As a potential pathway involved, expression of cell cycle proteins was assessed. Irrespective of the age of the donor hepatocytes, large cell clusters appeared in juvenile, but only small clusters in senescent host livers. Because juvenile and senescent donor hepatocytes were likewise functional, host-derived factor(s) impaired senescent host liver repopulation. Growth hormone levels were significantly higher in juvenile than in senescent rats, suggesting that growth hormone might promote host liver repopulation. Indeed, short-term treatment with growth hormone augmented senescent host liver repopulation involving the growth hormone-mediated release of the transcriptional blockade of genes associated with cell cycle progression. Short-term growth hormone substitution might improve liver repopulation by transplanted hepatocytes, thus augmenting the therapeutic benefit of clinical hepatocyte transplantation in older patients. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Elongation Factor-1a is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum*

    USDA-ARS?s Scientific Manuscript database

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess a unique complex of organelles at the anterior end, referred to as the apical complex, which is involved in host cell invasion. Previously, we generated the chicken m...

  18. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase

    PubMed Central

    Bella, Chiara; Koehler, Lars; Grosser, Katrin; Berendonk, Thomas U.; Petroni, Giulio; Schrallhammer, Martina

    2016-01-01

    According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days. PMID:28066397

  20. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games.

    PubMed

    Hehlgans, Thomas; Pfeffer, Klaus

    2005-05-01

    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.

  1. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  2. Host-derived, pore-forming toxin–like protein and trefoil factor complex protects the host against microbial infection

    PubMed Central

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng’an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-01-01

    Aerolysins are virulence factors belonging to the bacterial β-pore–forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens. PMID:24733922

  3. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity

    PubMed Central

    Heermann, Ralf; Fuchs, Thilo M

    2008-01-01

    Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body) temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P. luminescens towards insects, and suggests a putative broader insect host spectrum of this pathogen. Conclusion A set of factors shared by the two pathogens was identified including those that are involved in the host infection process, in persistence within the insect, or in host exploitation. Some of them might have been selected during the association with insects and then adapted to pathogenesis in mammalian hosts. PMID:18221513

  4. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication

    PubMed Central

    Yang, Jian; Zhang, Fen; Cai, Nian-Jun; Wu, Ne; Chen, Xuan; Li, Jing; Meng, Xiang-Feng; Zhu, Tong-Quan; Chen, Jian-Ping; Zhang, Heng-Mu

    2017-01-01

    Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167–333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones. PMID:28367995

  5. Streptococcus mitis: walking the line between commensalism and pathogenesis.

    PubMed

    Mitchell, J

    2011-04-01

    Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen. © 2011 John Wiley & Sons A/S.

  6. Chemical Genetics Reveals Bacterial and Host Cell Functions Critical for Type IV Effector Translocation by Legionella pneumophila

    PubMed Central

    Charpentier, Xavier; Gabay, Joëlle E.; Reyes, Moraima; Zhu, Jing W.; Weiss, Arthur; Shuman, Howard A.

    2009-01-01

    Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions. PMID:19578436

  7. Drivers of symbiont diversity in freshwater snails: a comparative analysis of resource availability, community heterogeneity, and colonization opportunities

    PubMed Central

    McCaffrey, Keegan; Johnson, Pieter T. J.

    2017-01-01

    Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528

  8. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    PubMed

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  9. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular bacteria based on the GFP signal, with only intracellular bacteria being able to express GFP. This allows the robust detection of single intracellular bacteria before intracellular proliferation is initiated.

  10. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    PubMed Central

    2012-01-01

    Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis. Recently, genome-wide association studies (GWAS) were utilized for unbiased searches at a genome-wide level to discover novel genetic factors and pathways involved in HIV-1 infection. This review gives an overview of findings from the GWAS performed on HIV infection, within different cohorts, with variable patient and phenotype selection. Furthermore, novel techniques and strategies in research that might contribute to the complete understanding of virus-host interactions and its role on the pathogenesis of HIV infection are discussed. PMID:22920050

  11. The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates.

    PubMed

    Murrell, Ben; Vollbrecht, Thomas; Guatelli, John; Wertheim, Joel O

    2016-09-15

    Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates. Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Gang Involvement among Immigrant and Refugee Youth: A Developmental Ecological Systems Approach

    ERIC Educational Resources Information Center

    Goodrum, Nada M.; Chan, Wing Yi; Latzman, Robert D.

    2015-01-01

    Immigrant and refugee youth are at elevated risk for joining gangs, which, in turn, is associated with a host of maladaptive outcomes. Previous literature on risk and protective factors for immigrant and refugee youth gang involvement has been inconclusive. Applying a developmental ecological systems approach, this study investigated contextual…

  13. Modelling of Cerebral Tuberculosis: Hope for Continuous Research in Solving the Enigma of the Bottom Billion’s Disease

    PubMed Central

    Hernández Pando, Rogelio

    2011-01-01

    Cerebral tuberculosis is a severe type of extrapulmonary disease that is highly predominant in children. It is thought that meningeal tuberculosis, the most common form of cerebral tuberculosis, begins with respiratory infection followed by early haematogenous dissemination to extrapulmonary sites involving the brain. Host genetic susceptibility factors and specific mycobacteria substrains could be involved in the development of this serious form of tuberculosis. In this editorial the different animal models of cerebral tuberculosis are commented, highlighting a recently described murine model in which BALB/c mice were infected by the intratracheal route with clinical isolates, which exhibited rapid dissemination and brain infection. These strains were isolated from the cerebrospinal fluid of patients with meningeal tuberculosis; they showed specific genotype and induced a peculiar immune response in the infected brain. This model could be a useful tool to study host and bacilli factors involved in the pathogenesis of the most severe form of tuberculosis. PMID:22135568

  14. Context Dependency of a Marine Defensive Symbiosis over a Wide Geographic Distribution

    NASA Astrophysics Data System (ADS)

    Lopanik, N.; Linneman, J.; Mathew, M.

    2016-02-01

    The invasive, temperate marine bryozoan Bugula neritina possesses an uncultured, vertically-transmitted bacterial symbiont that produces natural products known as bryostatins. These unpalatable polyketides protect the host larvae from predation. In the western Atlantic, two host genotypes were thought to be restricted to differing latitudes based on the presence of the defensive symbiont: undefended aposymbiotic Type N animals were found at high latitudes, while defended symbiotic Type S colonies were found at low latitudes, where predation pressure is higher. We found that the host genotypes are more widespread than previously thought, but that the symbiont appeared to be restricted to hosts at lower latitudes, regardless of host phylotype, leading to the question of what factors are involved in restricting the symbiont's range. We performed reciprocal transplant experiments of symbiotic and antibiotic-cured hosts, and measured host growth, a proxy for fitness. Our data indicate that possession of the symbiont appears to present a physiological cost to the host. This cost may be more pronounced at higher latitudes where the benefit of symbiosis is less apparent. In addition, preliminary evidence suggests that symbiont titer in a Type S colony from North Carolina transplanted to Virginia is reduced over a period of nearly 4 months. Taken together, these results suggest that a combination of factors may play a role in the distribution of the defensive symbiont: (i) hosts that possess the symbiont are outcompeted by aposymbiotic conspecifics at high latitude and reduced levels of predation pressure; and (ii) symbiont growth may be inhibited or sanctioned by the host at high latitudes. As defensive symbiosis is an important trait in marine habitats, understanding factors that affect the distribution of both the host and symbiont are necessary to fully appreciate the ecological impact of symbiosis.

  15. A Systematic Review of the Epidemiology of Echinococcosis in Domestic and Wild Animals

    PubMed Central

    Otero-Abad, Belen; Torgerson, Paul R.

    2013-01-01

    Background Human echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search. Methodology and Principal Findings The systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities. Conclusions/Significance Results derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies. PMID:23755310

  16. Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment

    PubMed Central

    Nakatsuji, Teruaki; Tang, De-chu C.; Zhang, Liangfang; Gallo, Richard L.; Huang, Chun-Ming

    2011-01-01

    Background In the progression of acne vulgaris, the disruption of follicular epithelia by an over-growth of Propionibacterium acnes (P. acnes) permits the bacteria to spread and become in contact with various skin and immune cells. Methodology/Principal Findings We have demonstrated in the present study that the Christie, Atkins, Munch-Peterson (CAMP) factor of P. acnes is a secretory protein with co-hemolytic activity with sphingomyelinase that can confer cytotoxicity to HaCaT keratinocytes and RAW264.7 macrophages. The CAMP factor from bacteria and acid sphingomyelinase (ASMase) from the host cells were simultaneously present in the culture supernatant only when the cells were co-cultured with P. acnes. Either anti-CAMP factor serum or desipramine, a selective ASMase inhibitor, significantly abrogated the P. acnes-induced cell death of HaCaT and RAW264.7 cells. Intradermal injection of ICR mouse ears with live P. acnes induced considerable ear inflammation, macrophage infiltration, and an increase in cellular soluble ASMase. Suppression of ASMase by systemic treatment with desipramine significantly reduced inflammatory reaction induced by intradermal injection with P. acnes, suggesting the contribution of host ASMase in P. acnes-induced inflammatory reaction in vivo. Vaccination of mice with CAMP factor elicited a protective immunity against P. acnes-induced ear inflammation, indicating the involvement of CAMP factor in P. acnes-induced inflammation. Most notably, suppression of both bacterial CAMP factor and host ASMase using vaccination and specific antibody injection, respectively, cooperatively alleviated P. acnes-induced inflammation. Conclusions/Significance These findings envision a novel infectious mechanism by which P. acnes CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against acne vulgaris. PMID:21533261

  17. Gut Microbiota: Modulation of Host Physiology in Obesity

    PubMed Central

    Allen, Jacob M.; Mailing, Lucy J.; Kashyap, Purna C.; Woods, Jeffrey A.

    2016-01-01

    Many factors are involved in weight gain and metabolic disturbances associated with obesity. The gut microbiota has been of particular interest in recent years, since both human and animal studies have increased our understanding of the delicate symbiosis between the trillions of microbes that reside in the GI tract and the host. It has been suggested that disruption of this mutual tolerance may play a significant role in modulating host physiology during obesity. Environmental influences such as diet, exercise, and early life exposures can significantly impact the composition of the microbiota, and this dysbiosis can in turn lead to increased host adiposity via a number of different mechanisms. The ability of the microbiota to regulate host fat deposition, metabolism, and immune function makes it an attractive target for achieving sustained weight loss. PMID:27511459

  18. Helicobacter pylori virulence factors in development of gastric carcinoma.

    PubMed

    Wang, Ming-Yi; Liu, Xiao-Fei; Gao, Xiao-Zhong

    2015-01-01

    Helicobacter pylori plays a vital role in the pathogenesis of gastric carcinoma. However, only a relatively small proportion of individuals infected with H. pylori develop gastric carcinoma. Differences in the incidence of gastric carcinoma among infected individuals can be explained, at least partly, by the different genotypes of H. pylori virulence factors. Thus far, many virulence factors of H. pylori, such as Cag PAI, VacA, OMPs and DupA, have been reported to be involved in the development of gastric cancer. The risk of developing gastric cancer during H. pylori infection is affected by specific host-microbe interactions that are independent of H. pylori virulence factors. In this review, we discuss virulence factors of H. pylori and their role in the development of gastric carcinoma that will provide further understanding of the biological interactions of H. pylori with the host.

  19. Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions

    PubMed Central

    Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály

    2012-01-01

    Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127

  20. The Well-Tempered SIV Infection: Pathogenesis of SIV Infection in Natural Hosts in the Wild, with Emphasis on Virus Transmission and Early Events Post-Infection that May Contribute to Protection from Disease Progression

    PubMed Central

    Raehtz, Kevin; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV. PMID:27394696

  1. Studies on Sam68 a cell factor involved in the life cycle of foot-and-mouth disease virus

    USDA-ARS?s Scientific Manuscript database

    As with other RNA viruses, Foot-and-Mouth Disease Virus (FMDV) recruits various host cell factors to assist in translation and replication of the virus genome. While FMDV translation has been thoroughly investigated, much remains unknown regarding replication of the positive-sense RNA genome. In th...

  2. Single-cell transcriptional dynamics of flavivirus infection

    PubMed Central

    Bekerman, Elena

    2018-01-01

    Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage and shock or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level. PMID:29451494

  3. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion

    PubMed Central

    Andritschke, Daniel; Dilling, Sabrina; Emmenlauer, Mario; Welz, Tobias; Schmich, Fabian; Misselwitz, Benjamin; Rämö, Pauli; Rottner, Klemens; Kerkhoff, Eugen; Wada, Teiji; Penninger, Josef M.; Beerenwinkel, Niko; Horvath, Peter; Dehio, Christoph; Hardt, Wolf-Dietrich

    2016-01-01

    Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect. PMID:27627128

  4. Leishmania Hijacks Myeloid Cells for Immune Escape

    PubMed Central

    Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David

    2018-01-01

    Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798

  5. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  6. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  7. Emerging and re-emerging infections.

    PubMed

    Lim, V K

    1999-06-01

    An emerging infection is defined as an infection which has newly appeared in a population while a re-emerging infection is one which has existed in the past but its incidence is rapidly increasing. The reasons for the emergence and re-emergence of infections are not well understood but appear to be associated with factors that involve the pathogen, the host and the environment. These factors are often inter-related and act together in a complex manner to bring about changes in patterns of infection. Pathogens are extremely resourceful and possess mechanisms to adapt to new hosts and environments as well as to acquire new virulence traits. Host factors include herd immunity, social behaviour and demographics. Environmental factors like the climate, deforestation and new technologies have an impact on the emergence of infections. The challenge is to contain an infection when it emerges but more importantly to prevent its emergence in the first place. As the emergence of an infection is complex and multifactorial, a multidisciplinary approach is required. Health based strategies alone are insufficient. Social, economic and environmental measures and the political will to implement appropriate policies are equally important.

  8. The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins.

    PubMed

    Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin

    2015-03-24

    Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.

  9. Analysis of host-pathogen modulators of autophagy during Mycobacterium Tuberculosis infection and therapeutic repercussions.

    PubMed

    Khan, Arshad; Jagannath, Chinnaswamy

    2017-09-03

    Mycobacterium tuberculosis is one of the most deadly human pathogens known today in modern world, responsible for about 1.5 million deaths annually. Development of TB disease occurs only in 1 out of 10 individuals exposed to the pathogen which indicates that the competent host defense mechanisms exist in majority of the hosts to control the infection. In the last decade, autophagy has emerged as a key host immune defense mechanism against intracellular M. tuberculosis infection. Autophagy has been demonstrated not only as an effective antimicrobial mechanism for the clearance of M. tuberculosis, but the process has also been suggested to prevent excessive inflammation to avoid the adverse effects of infection on host. Nevertheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to compromise the optimal functioning of host autophagic machinery. This review describes an overview of the various host signaling pathways such as pattern recognition receptors, cytokines, nutrient starvation and other cellular stress that have been implicated in induction of autophagy during M. tuberculosis infection. The review also chalk out the complex interplay of several bacterial factors of M. tuberculosis that are known to be involved in compromising autophagy mediated defense of the host. A comprehensive understanding of the interaction of bacterial and host factors at the intersections of autophagic pathways could provide integrative insights for the development of autophagy-based prophylactics and novel therapeutic interventions for TB.

  10. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study

    PubMed Central

    2013-01-01

    Background Identifying people at higher risk of developing tuberculosis with human immunodeficiency virus (HIV) infection may improve clinical management of co-infections. Iron influences tuberculosis (TB) pathogenesis, but understanding the exact mechanisms of how and timing of when iron is involved remains challenging since biological samples are rarely available from the disease susceptibility period due to the difficulty in predicting in who and when, if ever, TB will develop. The objective of this research was to determine how host iron status measured at HIV diagnosis and genotypes related to host iron metabolism were associated with incident TB. Methods Archived clinical data, plasma and DNA were analyzed from 1139 adult participants in a large HIV-1, HIV-2 and dual seroprevalent cohort based at the Medical Research Council Laboratories in The Gambia. Incident pulmonary and/or extrapulmonary TB diagnoses a minimum of 28 days after HIV diagnosis were independently re-confirmed using available evidence (n=152). Multiple host iron status biomarkers, Haptoglobin and solute carrier family 11, member 1 (SLC11A1) genotypes were modeled to characterize how indicators of host iron metabolism were associated with TB susceptibility. Results Hemoglobin (incidence rate ratio, IRR=0.88, 95% CI=0.79-0.98), plasma transferrin (IRR=0.53, 0.33-0.84) and ferritin (IRR=1.26, 1.05-1.51) were significantly associated with TB after adjusting for TB susceptibility factors. While genotype associations were not statistically significant, SLC11A1 associations replicated similar directions as reported in HIV-seronegative meta-analyses. Conclusions Evidence of host iron redistribution at HIV diagnosis was associated with incident TB, and genetic influences on iron homeostasis may be involved. Low hemoglobin was associated with subsequent diagnosis of TB, but when considered in combination with additional iron status biomarkers, the collective findings point to a mechanism whereby anemia and iron redistribution are likely due to viral and/or bacteria-driven processes and the host immune response to infection. As a result, iron supplementation may not be efficacious or safe under these circumstances. Clinical and nutritional management of HIV and Mycobacterium tuberculosis co-infected individuals, especially in regions where food insecurity and malnutrition co-exist, may be further improved when the iron-related TB risk factors identified here are better understood and managed to favor host rather than pathogen outcomes. PMID:23360117

  11. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.

    PubMed

    Zhang, Hao; Sun, Jun; Ye, Jing; Ashraf, Usama; Chen, Zheng; Zhu, Bibo; He, Wen; Xu, Qiuping; Wei, Yanming; Chen, Huanchun; Fu, Zhen F; Liu, Rong; Cao, Shengbo

    2015-12-04

    West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.

  12. Providing Individually Tailored Academic and Behavioral Support Services for Youth in the Juvenile Justice and Child Welfare Systems. Practice Guide

    ERIC Educational Resources Information Center

    Gonsoulin, S.; Darwin, M. J.; Read, N. W.

    2012-01-01

    Youth who are involved with the juvenile justice and child welfare systems face many challenges and barriers to academic and vocational success. Regardless of the reasons for their involvement, youth in these systems are "disproportionately children and youth of color who currently have, or have experienced, a host of risk factors that are…

  13. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less

  14. Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity

    PubMed Central

    Isnard, Amandine; Christian, Jan G.; Kodiha, Mohamed; Stochaj, Ursula; McMaster, W. Robert; Olivier, Martin

    2015-01-01

    The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. PMID:25826301

  15. ECM-Based Materials in Cardiovascular Applications: Inherent Healing Potential and Augmentation of Native Regenerative Processes

    PubMed Central

    Piterina, Anna V.; Cloonan, Aidan J.; Meaney, Claire L.; Davis, Laura M.; Callanan, Anthony; Walsh, Michael T.; McGloughlin, Tim M.

    2009-01-01

    The in vivo healing process of vascular grafts involves the interaction of many contributing factors. The ability of vascular grafts to provide an environment which allows successful accomplishment of this process is extremely difficult. Poor endothelisation, inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are common issues with synthetic grafts in vivo. Advanced materials composed of decellularised extracellular matrices (ECM) have been shown to promote the healing process via modulation of the host immune response, resistance to bacterial infections, allowing re-innervation and reestablishing homeostasis in the healing region. The physiological balance within the newly developed vascular tissue is maintained via the recreation of correct biorheology and mechanotransduction factors including host immune response, infection control, homing and the attraction of progenitor cells and infiltration by host tissue. Here, we review the progress in this tissue engineering approach, the enhancement potential of ECM materials and future prospects to reach the clinical environment. PMID:20057951

  16. The Genetics of Urinary Tract Infections and the Innate Defense of the Kidney and Urinary tract

    PubMed Central

    Ambite, Ines; Rydstrom, Gustav; Schwaderer, Andrew L.; Hains, David S.

    2015-01-01

    The urinary tract is a sterile organ system. Urinary tract infections (UTIs) are common and often serious infections. Research has focused on uropathogen, environment, and host factors leading to UTI pathogenesis. A growing body of evidence exists implicating genetic factors that can contribute to UTI risks. In this review, we highlight genetic variations in aspects of the innate immune system critical to the host response to uropathogens. This overview includes genetic variations in pattern recognition receptor molecules, chemokines/cytokines, and neutrophil activation. We also comprehensively cover murine knockout models of UTI, genetic variations involved in renal scarring as a result of ascending UTIs, and asymptomatic bacteriuria. PMID:27617139

  17. Evolution of entomopathogenicity in fungi.

    PubMed

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  18. Exploring the host transcriptome for mechanisms underlying protective immunity and resistance to nematode infections in ruminants.

    PubMed

    Li, Robert W; Choudhary, Ratan K; Capuco, Anthony V; Urban, Joseph F

    2012-11-23

    Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants. Published by Elsevier B.V.

  19. High within-host genetic variation of the nematode Spirocerca lupi in a high-density urban dog population.

    PubMed

    de Waal, Pamela J; Gous, Annemarie; Clift, Sarah J; Greeff, Jaco M

    2012-06-08

    The nematode worm Spirocerca lupi has a cosmopolitan distribution and can cause the death of its final canid host, typically dogs. While its life cycle, which involves a coprophagous beetle intermediate host, a number of non-obligatory vertebrate paratenic hosts and a canid final host, is well understood, surprisingly little is known about its transmission dynamics and population genetic structure. Here we sequenced cox1 to quantify genetic variation and the factors that limit gene flow in a 300 km(2) area in South Africa. Three quarters of the genetic variation, was explained by differences between worms from the same host, whereas a quarter of the variation was explained by differences between worms from different hosts. With the help of a newly derived model we conclude that while the offspring from different infrapopulations mixes fairly frequently in new hosts, the level of admixture is not enough to homogenize the parasite populations among dogs. Small infrapopulation sizes along with clumped transmission may also result in members of infrapopulations being closely related. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum.

    PubMed

    Wu, Ma-li; Ye, Gong-yin; Zhu, Jia-ying; Chen, Xue-xin; Hu, Cui

    2008-10-01

    In hymenopteran parasitoids devoid of symbiotic viruses, venom proteins appear to play a major role in host immune suppression and host regulation. Not much is known about the active components of venom proteins in these parasitoids, especially those that have the functions involved in the suppression of host cellular immunity. Here, we report the isolation and characterization of a venom protein Vn.11 with 24.1 kDa in size from Pteromalus puparum, a pupa-specific endoparasitoid of Pieris rapae. The Vn.11 venom protein is isolated with the combination of ammonium sulfate precipitation and anion exchange chromatography, and its purity is verified using SDS-PAGE analysis. Like crude venom, the Vn.11 venom protein significantly inhibits the spreading behavior and encapsulation ability of host hemocytes in vitro. It is suggested that this protein is an actual component of P. puparum crude venom as host cellular-immune suppressive factor.

  1. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

    PubMed Central

    Contreras, Marinela; Alberdi, Pilar; Mateos-Hernández, Lourdes; Fernández de Mera, Isabel G.; García-Pérez, Ana L.; Vancová, Marie; Villar, Margarita; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Valdés, James J.; Stuen, Snorre; Gortazar, Christian; de la Fuente, José

    2017-01-01

    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens. PMID:28725639

  2. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection.

    PubMed

    Contreras, Marinela; Alberdi, Pilar; Mateos-Hernández, Lourdes; Fernández de Mera, Isabel G; García-Pérez, Ana L; Vancová, Marie; Villar, Margarita; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Valdés, James J; Stuen, Snorre; Gortazar, Christian; de la Fuente, José

    2017-01-01

    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.

  3. The Influence of MHC and Immunoglobulins A and E on Host Resistance to Gastrointestinal Nematodes in Sheep

    PubMed Central

    Lee, C. Y.; Munyard, K. A.; Gregg, K.; Wetherall, J. D.; Stear, M. J.; Groth, D. M.

    2011-01-01

    Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia, it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are the effects the host's response has on the parasite, which immunological components are responsible for these effects, genetic factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be developed to manage susceptible animals. PMID:21584228

  4. Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity.

    PubMed

    Li, Li-Fang; Xu, Zhi-Wen; Liu, Nai-Yong; Wu, Guo-Xing; Ren, Xue-Min; Zhu, Jia-Ying

    2018-06-01

    Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom. © 2018 Wiley Periodicals, Inc.

  5. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.

    PubMed

    John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-04-21

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  6. Impact of Childhood Malnutrition on Host Defense and Infection.

    PubMed

    Ibrahim, Marwa K; Zambruni, Mara; Melby, Christopher L; Melby, Peter C

    2017-10-01

    The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population. Copyright © 2017 American Society for Microbiology.

  7. Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro.

    PubMed

    Cardile, Anthony P; Sanchez, Carlos J; Samberg, Meghan E; Romano, Desiree R; Hardy, Sharanda K; Wenke, Joseph C; Murray, Clinton K; Akers, Kevin S

    2014-07-17

    Microbial biofilms have been associated with the development of chronic human infections and represent a clinical challenge given their increased antimicrobial tolerance. Staphylococcus aureus is a major human pathogen causing a diverse range of diseases, of which biofilms are often involved. Staphylococcal attachment and the formation of biofilms have been shown to be facilitated by host factors that accumulate on surfaces. To better understand how host factors enhance staphylococcal biofilm formation, we evaluated the effect of whole human plasma on biofilm formation in clinical isolates of S. aureus and the expression of seven microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) known to be involved in biofilm formation by quantitative real-time PCR. We also evaluated whether plasma augmented changes in S. aureus biofilm morphology and antimicrobial resistance. Exposure of clinical isolates of S. aureus to human plasma (10%) within media, and to a lesser extent when coated onto plates, significantly enhanced biofilm formation in all of the clinical isolates tested. Compared to biofilms grown under non-supplemented conditions, plasma-augmented biofilms displayed significant changes in both the biofilm phenotype and cell morphology as determined by confocal scanning laser microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Exposure of bacteria to plasma resulted in a significant fold-increase in MSCRAMM expression in both a time and isolate-dependent manner. Additionally, plasma-augmented biofilms displayed an increased tolerance to vancomycin compared to biofilms grown in non-supplemented media. Collectively, these studies support previous findings demonstrating a role for host factors in biofilm formation and provide further insight into how plasma, a preferred growth medium for staphylococcal biofilm formation enhances as well as augments other intrinsic properties of S. aureus biofilms. Consequently, these findings indicate that incorporation of host factors may be necessary to better replicate in vivo conditions and for the best utility of a clinical biofilm assay to evaluate the process of biofilm formation and treatments.

  8. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota

    PubMed Central

    Org, Elin; Mehrabian, Margarete; Lusis, Aldons J.

    2015-01-01

    Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. PMID:26071662

  9. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  10. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.

    PubMed

    Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko

    2018-06-07

    Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.

  11. Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function.

    PubMed

    Bledsoe, Jacob W; Waldbieser, Geoffrey C; Swanson, Kelly S; Peterson, Brian C; Small, Brian C

    2018-01-01

    The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae , specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1) or overall composition (weighted and unweighted UniFrac) and UniFrac distances showed no correlation with host genetic distances (Rst) according to Mantel tests. The microbiota of environmental samples (diet and water) were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI . The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while also containing pathways involved in virulence factors of pathogens. Testing of the inferred KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways by DESeq2 revealed minor difference in microbiota function, with only two metagenomic pathways detected as differentially abundant between the two catfish species. As the first study to characterize the gut microbiota of blue catfish, our study results have direct implications on future ictalurid catfish research. Additionally, our insight into the intrinsic factors driving microbiota structure has basic implications for the future study of fish gut microbiota.

  12. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage

    PubMed Central

    Bien, Justyna; Sokolova, Olga; Bozko, Przemyslaw

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs. PMID:22506110

  13. Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein.

    PubMed

    D'Auria, Giuseppe; Jiménez, Núria; Peris-Bondia, Francesc; Pelaz, Carmen; Latorre, Amparo; Moya, Andrés

    2008-01-14

    The repeats in toxin (Rtx) are an important pathogenicity factor involved in host cells invasion of Legionella pneumophila and other pathogenic bacteria. Its role in escaping the host immune system and cytotoxic activity is well known. Its repeated motives and modularity make Rtx a multifunctional factor in pathogenicity. The comparative analysis of rtx gene among 6 strains of L. pneumophila showed modularity in their structures. Among compared genomes, the N-terminal region of the protein presents highly dissimilar repeats with functionally similar domains. On the contrary, the C-terminal region is maintained with a fashionable modular configuration, which gives support to its proposed role in adhesion and pore formation. Despite the variability of rtx among the considered strains, the flanking genes are maintained in synteny and similarity. In contrast to the extracellular bacteria Vibrio cholerae, in which the rtx gene is highly conserved and flanking genes have lost synteny and similarity, the gene region coding for the Rtx toxin in the intracellular pathogen L. pneumophila shows a rapid evolution. Changes in the rtx could play a role in pathogenicity. The interplay of the Rtx toxin with host membranes might lead to the evolution of new variants that are able to escape host cell defences.

  14. The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes

    PubMed Central

    Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph

    2010-01-01

    Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954

  15. Motility and more: the flagellum of Trypanosoma brucei

    PubMed Central

    Langousis, Gerasimos; Hill, Kent L.

    2014-01-01

    A central feature of trypanosome cell biology and life cycle is the parasite’s single flagellum, which is an essential and multifunctional organelle involved in cell propulsion, morphogenesis and cytokinesis. The flagellar membrane is also a specialized subdomain of the cell surface that harbors multiple parasite virulence factors with roles in signaling and host-parasite interactions. In this review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interaction. PMID:24931043

  16. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  17. Modulation of the gut microbiota by prebiotic fibres and bacteriocins

    PubMed Central

    Umu, Özgün C. O.; Rudi, Knut; Diep, Dzung B.

    2017-01-01

    ABSTRACT The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche. PMID:28959178

  18. First insights into the pleiotropic role of vrf (yedF), a newly characterized gene of Salmonella Typhimurium.

    PubMed

    Ballesté-Delpierre, Clara; Fernandez-Orth, Dietmar; Ferrer-Navarro, Mario; Díaz-Peña, Ramón; Odena-Caballol, Antonia; Oliveira, Eliandre; Fàbrega, Anna; Vila, Jordi

    2017-11-10

    Salmonella possesses virulence determinants that allow replication under extreme conditions and invasion of host cells, causing disease. Here, we examined four putative genes predicted to encode membrane proteins (ydiY, ybdJ, STM1441 and ynaJ) and a putative transcriptional factor (yedF). These genes were identified in a previous study of a S. Typhimurium clinical isolate and its multidrug-resistant counterpart. For STM1441 and yedF a reduced ability to interact with HeLa cells was observed in the knock-out mutants, but an increase in this ability was absent when these genes were overexpressed, except for yedF which phenotype was rescued when yedF was restored. In the absence of yedF, decreased expression was seen for: i) virulence-related genes involved in motility, chemotaxis, attachment and survival inside the host cell; ii) global regulators of the invasion process (hilA, hilC and hilD); and iii) factors involved in LPS biosynthesis. In contrast, an increased expression was observed for anaerobic metabolism genes. We propose yedF is involved in the regulation of Salmonella pathogenesis and contributes to the activation of the virulence machinery. Moreover, we propose that, when oxygen is available, yedF contributes sustained repression of the anaerobic pathway. Therefore, we recommend this gene be named vrf, for virulence-related factor.

  19. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  20. Eukaryotic translational initiation factor 4AII reduces the replication of infectious bursal disease virus by inhibiting VP1 polymerase activity.

    PubMed

    Gao, Li; Li, Kai; Zhong, Li; Zhang, Lizhou; Qi, Xiaole; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2017-03-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although an interaction between eukaryotic translational initiation factor 4AII (eIF4AII) of the host and viral protein 1 (VP1), the RNA-dependent RNA polymerase (RdRp) of IBDV, has been established, the underlying effects of this interaction on IBDV and the molecular mechanism remain unclear. We here report that interaction of the host eIF4AII with VP1 inhibits the RNA polymerase activity of IBDV to reduce its replication in host cells. We found that ectopically expressed eIF4AII markedly inhibited IBDV growth in DF1 cells, and knockdown of eIF4AII by small interfering RNA significantly enhanced viral replication in CEF cells. Furthermore, IBDV infection led to an increase in host eIF4AII expression, suggesting a feedback mechanism between the host and virus infection both in vitro and in vivo, which further confirmed the involvement of the host eIF4AII in the IBDV life cycle. Thus, via the interaction with VP1, eIF4AII plays a critical role in the IBDV life cycle, by inhibiting viral RNA polymerase activity, leading to a reduction of IBDV replication in cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. SUMO1 depletion prevents lipid droplet accumulation and HCV replication.

    PubMed

    Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama

    2016-01-01

    Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.

  2. Viral and Cellular Factors Involved in Phloem Transport of Plant Viruses

    PubMed Central

    Hipper, Clémence; Brault, Véronique; Ziegler-Graff, Véronique; Revers, Frédéric

    2013-01-01

    Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement. PMID:23745125

  3. The Pathogenesis of Staphylococcus aureus Eye Infections

    PubMed Central

    2018-01-01

    Staphylococcus aureus is a major pathogen of the eye able to infect the tear duct, eyelid, conjunctiva, cornea, anterior and posterior chambers, and the vitreous chamber. Of these infections, those involving the cornea (keratitis) or the inner chambers of the eye (endophthalmitis) are the most threatening because of their potential to cause a loss in visual acuity or even blindness. Each of these ocular sites is protected by the constitutive expression of a variety of antimicrobial factors and these defenses are augmented by a protective host response to the organism. Such infections often involve a predisposing factor that weakens the defenses, such as the use of contact lenses prior to the development of bacterial keratitis or, for endophthalmitis, the trauma caused by cataract surgery or intravitreal injection. The structural carbohydrates of the bacterial surface induce an inflammatory response able to reduce the bacterial load, but contribute to the tissue damage. A variety of bacterial secreted proteins including alpha-toxin, beta-toxin, gamma-toxin, Panton-Valentine leukocidin and other two-component leukocidins mediate tissue damage and contribute to the induction of the inflammatory response. Quantitative animal models of keratitis and endophthalmitis have provided insights into the S. aureus virulence and host factors active in limiting such infections. PMID:29320451

  4. RNA Extraction Methods for Real-Time PCR and Microarray Analyses of Cryptosporidium and Toxoplasma gondii Oocysts - 2nd Presentation

    EPA Science Inventory

    The ability of infectious oocyst forms of Toxoplasma gondii and Cryptosporidium spp. to resist disinfection treatments and cause disease may have significant public health implications. Currently, little is known about oocyst-specific factors involved during host cell invasion pr...

  5. RNA Extraction Methods for Reverse Transcriptase Real-Time PCR and Microarray Analysis of Cryptosporidium and Toxoplasma gondii Oocysts

    EPA Science Inventory

    The ability of infectious oocyst forms of Toxoplasma gondii and Cryptosporidium spp. to resist disinfection treatments and cause disease may have significant public health implications. Currently, little is known about oocyst-specific factors involved during host cell invasion p...

  6. High-throughput SuperSAGE for gene expression analysis of Nicotiana tabacum - Rhizoctonia solani interaction

    USDA-ARS?s Scientific Manuscript database

    Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Knowledge of plant susceptibility factors and the molecular processes involved in the infection process are critical for understanding plant-pathogen interactions. We used SuperSAGE t...

  7. Virus-Induced Necrosis Is a Consequence of Direct Protein-Protein Interaction between a Viral RNA-Silencing Suppressor and a Host Catalase[C][W

    PubMed Central

    Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara

    2011-01-01

    Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis. PMID:21622812

  8. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase.

    PubMed

    Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara

    2011-08-01

    Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.

  9. Development of Meteorus pulchricornis and regulation of its noctuid host, Pseudaletia separata.

    PubMed

    Suzuki, M; Tanaka, T

    2007-10-01

    The solitary endoparasitoid Meteorus pulchricornis can parasitize many lepidopteran host species successfully. In the case of parasitization of Pseudaletia separata, developmental duration of M. pulchricornis was 8-9 days from egg to larval emergence and 6 days from prepupa to adult emergence. Successful parasitism by M. pulchricornis decreased with host age. Following parasitization of day-0 4th host instar, the parasitoid embryo, whilst still enclosed in serosal cell membrane, hatched out of the egg chorion 2 days after oviposition. Subsequently, the 1st instar parasitoid emerged from the surrounding serosal cell membrane. Serosal cells dissociated and developed as teratocytes 3.5 days after oviposition. One embryo of M. pulchricornis gave rise to approximately 1200 teratocytes, a number that remained constant until 6 days after parasitization, but decreased drastically to 200 at 7 days post-oviposition. The teratocytes of M. pulchricornis were round- or oval-shaped and grew from 65 microm at 4 days to 200 microm in the long axis at 6 days post-parasitization. At 4 days post-parasitization, many cells or cell clusters with lipid particles were observed in the hemocoels of parasitized hosts. In addition, paraffin sections of parasitized hosts revealed that many teratocytes were attached to the host's fat body and contributed to disrupting the fat body tissue. Further, examination of the total hemocyte count (THC) during parasitization revealed that THC was maintained at low levels. Surprisingly, a temporal decrease followed by restoration of THC was observed in hosts injected with virus-like particles of M. pulchricornis (MpVLPs) plus venom, which contrasts with the constant THC suppression seen in parasitized hosts. This indicates that MpVLP function is temporal and is involved in regulation of the host during early parasitism. Therefore, teratocytes, a host regulation factor in late parasitism, could be involved in keeping THC at a low level.

  10. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    PubMed

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Role of GATA transcription factor ELT-2 and p38 MAPK PMK-1 in recovery from acute P. aeruginosa infection in C. elegans

    PubMed Central

    Head, Brian P.; Olaitan, Abiola O.; Aballay, Alejandro

    2017-01-01

    ABSTRACT Infectious diseases caused by bacterial pathogens reduce the fitness of their associated host but are generally limited in duration. In order for the diseased host to regain any lost fitness upon recovery, a variety of molecular, cellular, and physiological processes must be employed. To better understand mechanisms underlying the recovery process, we have modeled an acute Pseudomonas aeruginosa infection in C. elegans using brief exposures to this pathogen and subsequent antibiotic treatment. To identify host genes altered during recovery from P. aeruginosa infection, we performed whole genome expression profiling. The analysis of this dataset indicated that the activity of the host immune system is down-regulated upon recovery and revealed shared and pathogen-specific host responses during recovery. We determined that the GATA transcription factor ELT-2 and the p38 MAP kinase PMK-1 are necessary for animals to successfully recover from an acute P. aeruginosa infection. In addition, we found that ELT-2 plays a more prominent and earlier role than PMK-1 during recovery. Our data sheds further light on the molecular mechanisms and transcriptional programs involved in recovery from an acute bacterial infection, which provides a better understanding of the entire infectious disease process. PMID:27600703

  12. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  13. African swine fever virus controls the host transcription and cellular machinery of protein synthesis.

    PubMed

    Sánchez, Elena G; Quintas, Ana; Nogal, Marisa; Castelló, Alfredo; Revilla, Yolanda

    2013-04-01

    Throughout a viral infection, the infected cell reprograms the gene expression pattern in order to establish a satisfactory antiviral response. African swine fever virus (ASFV), like other complex DNA viruses, sets up a number of strategies to evade the host's defense systems, such as apoptosis, inflammation and immune responses. The capability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, suggests that the virus displays effective mechanisms to escape host defense systems. ASFV has been described to regulate the activation of several transcription factors, thus regulating the activation of specific target genes during ASFV infection. Whereas some reports have concerned about anti-apoptotic ASFV genes and the molecular mechanisms by which ASFV interferes with inducible gene transcription and immune evasion, less is yet known regarding how ASFV regulates the translational machinery in infected cells, although a recent report has shown a mechanism for favored expression of viral genes based on compartmentalization of viral mRNA and ribosomes with cellular translation factors within the virus factory. The viral mechanisms involved both in the regulation of host genes transcription and in the control of cellular protein synthesis are summarized in this review. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Immune Interplay between the Host and the Pathogen in Aspergillus fumigatus Lung Infection

    PubMed Central

    Sales-Campos, Helioswilton; Tonani, Ludmilla; Cardoso, Cristina Ribeiro Barros; Kress, Márcia Regina Von Zeska

    2013-01-01

    The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis. PMID:23984400

  15. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems.

    PubMed

    Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J

    2018-05-01

    Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  16. Legionella phospholipases implicated in virulence.

    PubMed

    Kuhle, Katja; Flieger, Antje

    2013-01-01

    Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.

  17. Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer-selective Anti-influenza A Virus Activity Involving Nrf2 Activation*

    PubMed Central

    Shoji, Masaki; Arakaki, Yumie; Esumi, Tomoyuki; Kohnomi, Shuntaro; Yamamoto, Chihiro; Suzuki, Yutaka; Takahashi, Etsuhisa; Konishi, Shiro; Kido, Hiroshi; Kuzuhara, Takashi

    2015-01-01

    Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (−)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (−)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response. PMID:26446794

  18. Immune response and immunopathology during toxoplasmosis1

    PubMed Central

    Dupont, Christopher D.; Christian, David A.; Hunter, Christopher A.

    2012-01-01

    Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection. PMID:22955326

  19. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota.

    PubMed

    Org, Elin; Mehrabian, Margarete; Lusis, Aldons J

    2015-08-01

    Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells.

    PubMed

    Sheh, Alexander; Chaturvedi, Rupesh; Merrell, D Scott; Correa, Pelayo; Wilson, Keith T; Fox, James G

    2013-07-01

    While Helicobacter pylori infects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.

  1. Optimising Laser Tattoo Removal

    PubMed Central

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  2. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  3. Host-parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites.

    PubMed Central

    Sorci, G; Morand, S; Hugot, J P

    1997-01-01

    The environmental factors that drive the evolution of parasite life histories are mostly unknown. Given that hosts provide the principal environmental features parasites have to deal with, and given that these features (such as resource availability and immune responses) are well characterized by the life history of the host, we may expect natural selection to result in covariation between parasite and host life histories. Moreover, some parasites show a high degree of host specificity, and cladistic analyses have shown that host and parasite phylogenies can be highly congruent. These considerations suggest that parasite and host life histories may covary. The central argument in the theory of life history evolution concerns the existence of trade-offs between traits. For parasitic nematodes it has been shown that larger body sizes induce higher fecundity, but this is achieved at the expense of delayed maturity. As high adult mortality would select for reduced age at maturity, the selective benefit of increased fecundity is expressed only if adult mortality is low. Parasite adult mortality may depend on a number of factors, including host longevity. Here we tested the hypothesis concerning the positive covariation between parasite body size (which reflects parasite longevity) and host longevity. To achieve this goal, we used the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Oxyurids are highly host specific and are supposed to be involved in a coevolutionary process with their hosts. We found that female parasite body length was positively correlated with host longevity after correcting for phylogeny and host body mass. Conversely, male parasite body length and host longevity were not correlated. These results confirm that host longevity may represent a constraint on the evolution of body size in oxyurids, at least in females. The discrepancy between female and male oxyurids is likely to depend on the particular mode of reproduction of this taxon (haplodiploidy), which should result in weak (or even null) selection pressures to an increase of body size in males. PMID:9061975

  4. Global Reprogramming of Host SUMOylation during Influenza Virus Infection

    PubMed Central

    Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.

    2015-01-01

    Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460

  5. Candida albicans, the opportunist. A cellular and molecular perspective.

    PubMed

    Dupont, P F

    1995-02-01

    Candida albicans causes the majority of opportunistic fungal infections. The yeast's commensualistic relationship with humans enables it, when environmental conditions are favorable, to multiply and replace much of the normal flora. Virulence factors of C. albicans, enabling the organism to adhere to and penetrate host tissues, involve specific molecular interactions between the cells of the fungus and the host. Localized disease, such as oral candidiasis, onychomycosis, and vaginitis, results. These infections are usually limited to surfaces of the host, and can be quickly and successfully controlled by the use of one of the available antifungal agents. Candida albicans infections typically become systemic and life threatening when the host is immunocompromised. Depending on the immune defect in the host, one of the spectrum of Candida diseases can develop. If successful treatment of these patients is to be achieved, modulation of the immune deficit, as well as the use of an appropriate antifungal drug, must become a routine part of therapeutic interventions.

  6. Novel bioassay demonstrates attraction of the white potato cyst nematode Globodera pallida (Stone) to non-volatile and volatile host plant cues.

    PubMed

    Farnier, Kevin; Bengtsson, Marie; Becher, Paul G; Witzell, Johanna; Witzgall, Peter; Manduríc, Sanja

    2012-06-01

    Potato cyst nematodes (PCNs) are a major pest of solanaceous crops such as potatoes, tomatoes, and eggplants and have been widely studied over the last 30 years, with the majority of earlier studies focusing on the identification of natural hatching factors. As a novel approach, we focused instead on chemicals involved in nematode orientation towards its host plant. A new dual choice sand bioassay was designed to study nematode responses to potato root exudates (PRE). This bioassay, conducted together with a traditional hatching bioassay, showed that biologically active compounds that induce both hatching and attraction of PCNs can be collected by water extraction of incised potato roots. Furthermore, our results demonstrated that PCN also were attracted by potato root volatiles. Further work is needed to fully understand how PCNs use host plant chemical cues to orientate towards hosts. Nevertheless, the simple attraction assay used in this study provides an important tool for the identification of host-emitted attractants.

  7. Discovery of Cellular Proteins Required for the Early Steps of HCV Infection Using Integrative Genomics

    PubMed Central

    Yang, Jae-Seong; Kwon, Oh Sung; Kim, Sanguk; Jang, Sung Key

    2013-01-01

    Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets. PMID:23593195

  8. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  9. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    PubMed

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    PubMed

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  11. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    PubMed

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  12. Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations

    PubMed Central

    Kurtz, Sherry L.

    2015-01-01

    A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537

  13. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a useful technique for functional characterization of plant genes. However, the silencing efficiency of the VIGS system is variable largely depending on compatibility between the host and the virus. Antiviral RNA silencing is involved in plant antiviral defense...

  14. Hepatitis C Virus Infection Activates a Novel Innate Pathway Involving IKKα in Lipogenesis and Viral Assembly

    PubMed Central

    Li, Qisheng; Pène, Véronique; Krishnamurthy, Siddharth; Cha, Helen; Liang, T. Jake

    2013-01-01

    Hepatitis C virus interacts extensively with host factors not only to establish productive infection but also to trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IKKα is a critical host factor for HCV. Here we describe a novel NF-κB-independent and kinase-mediated nuclear function of IKKα in HCV assembly. HCV infection, through its 3’-untranslated region, interacts with DDX3X to activate IKKα, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving SREBPs. This novel innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKKα suppress HCV infection and IKKα-induced lipogenesis, offering a proof-of-concept approach for novel HCV therapeutic development. Our results show that HCV commands a novel mechanism to its advantage by exploiting intrinsic innate response and hijacking lipid metabolism, which likely contributes to a high chronicity rate and the pathological hallmark of steatosis in HCV infection. PMID:23708292

  15. Mechanisms of Molecular Mimicry of Plant CLE Peptide Ligands by the Parasitic Nematode Globodera rostochiensis1[C][W

    PubMed Central

    Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E.

    2011-01-01

    Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry. PMID:21750229

  16. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis.

    PubMed

    Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E

    2011-09-01

    Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.

  17. Angiogenesis and parasitic helminth-associated neovascularization.

    PubMed

    Dennis, Roger D; Schubert, Uwe; Bauer, Christian

    2011-04-01

    Successful metazoan parasitism, among many other factors, requires a supply of nutrients and the removal of waste products. There is a prerequisite for a parasite-defined vasculature. The angiogenic mechanism(s) involved presumably depend on the characteristics of the tissue- and vascular system-dwelling, parasitic helminths. Simplistically, 2 possibilities or a combination of both have been considered in this review. The multifactorial induction of parasitic helminth-associated neovascularization could arise through, either a host-, a parasite- or a host-/parasite-dependent, angiogenic switch. Most studies appear to support the first and third hypotheses, but evidence exists for the intrahepatic cestode Echinococcus multilocularis, the free-living nematode Caenorhabditis elegans and the intravascular trematode Schistosoma mansoni for the second inference. In contrast, the nematode anti-coagulant protein NAPc2 from adult Ancylostoma caninum is also an anti-angiogenic factor.

  18. Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    PubMed Central

    Skapski, Agnès; Hygonenq, Marie-Claude; Sagné, Eveline; Guiral, Sébastien; Citti, Christine; Baranowski, Eric

    2011-01-01

    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions. PMID:21966487

  19. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  20. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the Flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate viral assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. The findings expand our understanding of how host factors participate in the flavivirus replication lifecycle, and identify potential anti-viral targets for combatting flavivirus infection. Copyright © 2018 American Society for Microbiology.

  1. Molecular genetics of Erwinia amylovora involved in the development of fire blight.

    PubMed

    Oh, Chang-Sik; Beer, Steven V

    2005-12-15

    The bacterial plant pathogen, Erwinia amylovora, causes the devastating disease known as fire blight in some Rosaceous plants like apple, pear, quince, raspberry and several ornamentals. Knowledge of the factors affecting the development of fire blight has mushroomed in the last quarter century. On the molecular level, genes encoding a Hrp type III secretion system, genes encoding enzymes involved in synthesis of extracellular polysaccharides and genes facilitating the growth of E. amylovora in its host plants have been characterized. The Hrp pathogenicity island, delimited by genes suggesting horizontal gene transfer, is composed of four distinct regions, the hrp/hrc region, the HEE (Hrp effectors and elicitors) region, the HAE (Hrp-associated enzymes) region, and the IT (Island transfer) region. The Hrp pathogenicity island encodes a Hrp type III secretion system (TTSS), which delivers several proteins from bacteria to plant apoplasts or cytoplasm. E. amylovora produces two exopolysaccharides, amylovoran and levan, which cause the characteristic fire blight wilting symptom in host plants. In addition, other genes, and their encoded proteins, have been characterized as virulence factors of E. amylovora that encode enzymes facilitating sorbitol metabolism, proteolytic activity and iron harvesting. This review summarizes our understanding of the genes and gene products of E. amylovora that are involved in the development of the fire blight disease.

  2. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Brogaard, Louise; Klitgaard, Kirstine; Heegaard, Peter M H; Hansen, Mette Sif; Jensen, Tim Kåre; Skovgaard, Kerstin

    2015-05-28

    Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection.

  3. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection.

    PubMed

    Fang, Xin; Hu, Zhen; Shang, Weilong; Zhu, Junmin; Xu, Chuanshan; Rao, Xiancai

    2012-11-01

    The dengue virus (DENV) belongs to the flavivirus family. Each of the four distinct serotypes of this virus is capable of causing human disease, especially in tropical and subtropical areas. The majority of people infected with DENV manifest asymptomatic or dengue fever with flu-like self-limited symptoms. However, a small portion of patients emerge with severe manifestations referred to as dengue hemorrhagic fever, which has a high mortality rate if not treated promptly. The host immune system, which plays important roles throughout the whole process of DENV infection, has been confirmed to have double-edged effects on DENV infection. Recently, much attention has been paid to the genetic heterogeneity of molecules involved in the host immune response to DENV infection. This heterogeneity has been proved to be the determining factor for DENV disease orientation. The present review discusses the primary functions and single nucleotide polymorphisms of some critical molecules in the human DENV immunological defense, especially the polymorphism locus associated with the DENV pathogenesis and disease susceptibility. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    PubMed Central

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  5. Predicted outcomes of vaccinating wildlife to reduce human risk of Lyme disease.

    PubMed

    Tsao, Kimberly; Fish, Durland; Galvani, Alison P

    2012-07-01

    Vaccination efforts for Lyme disease prevention in humans have focused on wildlife reservoirs to target the causative agent, Borrelia burgdorferi, for elimination in vector ticks. Multiple host species are involved in the transmission and maintenance of the bacterium, but not all host species can be vaccinated effectively. To evaluate vaccinating a subset of hosts in the context of host-tick interactions, we constructed and evaluated a dynamic model of B. burgdorferi transmission in mice. Our analyses indicate that on average, a mouse-targeted vaccine is expected to proportionally reduce infection prevalence among ticks by 56%. However, relative to mouse vaccination, human risk of exposure is dominated by the number of tick bites received per person, the proportion of tick blood meals taken from the highly reservoir-competent white-footed mouse relative to other hosts, and the average number of tick bites per mouse. Variation in these factors reduces the predictability of vaccination outcomes. Additionally, contributions of nonmouse hosts to pathogen maintenance preclude elimination of B. burgdorferi through mouse vaccination alone. Our findings indicate that to increase the impact of wildlife vaccination, reducing tick populations by acaricide application, in addition to targeting additional reservoir-competent host species, should be employed.

  6. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    PubMed

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  7. Regulation of the Host Antiviral State by Intercellular Communications

    PubMed Central

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-01-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  8. Host- and microbe determinants that may influence the success of S. aureus colonization

    PubMed Central

    Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647

  9. Host- and microbe determinants that may influence the success of S. aureus colonization.

    PubMed

    Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.

  10. Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15.

    PubMed

    Liu, Qing; Gao, Wen-Wei; Elsheikha, Hany M; He, Jun-Jun; Li, Fa-Cai; Yang, Wen-Bin; Zhu, Xing-Quan

    2018-06-19

    Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15 I ) or type II PRU strain (GRA15 II ). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15 I and GRA15 II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15 II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15 I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.

  11. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  12. A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection.

    PubMed

    Marcatili, Paolo; Nielsen, Martin W; Sicheritz-Pontén, Thomas; Jensen, Tim K; Schafer-Nielsen, Claus; Boye, Mette; Nielsen, Morten; Klitgaard, Kirstine

    2016-12-01

    Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.

  13. Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life

    PubMed Central

    Loker, Eric S.

    2012-01-01

    An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909

  14. A murine host cell factor required for nicking of the dimer bridge of MVM recognizes two CG nucleotides displaced by 10 basepairs.

    PubMed

    Liu, Q; Astell, C R

    1996-10-01

    During replication of the minute virus of mice (MVM) genome, a dimer replicative form (RF) intermediate is resolved into two monomer RF molecules in such a way as to retain a unique sequence within the left hand hairpin terminus of the viral genome. Although the proposed mechanism for resolution of the dimer RF remains uncertain, it likely involves site-specific nicking of the dimer bridge. The RF contains two double-stranded copies of the viral genome joined by the extended 3' hairpin. Minor sequence asymmetries within the 3' hairpin allow the two halves of the dimer bridge to be distinguished. The A half contains the sequence [sequence: see text], whereas the B half contains the sequence [sequence: see text]. Using an in vitro assay, we show that only the B half of the MVM dimer bridge is nicked site-specifically when incubated with crude NS-1 protein (expressed in insect cells) and mouse LA9 cellular extract. When highly purified NS-1, the major nonstructural protein of MVM, is used in this nicking reaction, there is an absolute requirement for the LA9 cellular extract, suggesting a cellular factor (or factors) is (are) required. A series of mutations were created in the putative host factor binding region (HFBR) on the B half of the MVM dimer bridge adjacent to the NS-1 binding site. Nicking assays of these B half mutants showed that two CG motifs displaced by 10 nucleotides are important for nicking. Gel mobility shift assays demonstrated that a host factor(s) can bind to the HFBR of the B half of the dimer bridge and efficient binding depends on the presence of both CG motifs. Competitor DNA containing the wild-type HFBR sequence is able to specifically inhibit nicking of the B half, indicating that the host factor(s) bound to the HFBR is(are) essential for site-specific nicking to occur.

  15. Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors.

    PubMed

    Bergé, Célia; Terradot, Laurent

    2017-01-01

    The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.

  16. Relative Effects of Temperature, Light, and Humidity on Clinging Behavior of Metacercariae-Infected Ants.

    PubMed

    Botnevik, C F; Malagocka, J; Jensen, A B; Fredensborg, B L

    2016-10-01

    The lancet fluke, Dicrocoelium dendriticum, is perhaps the best-known example of parasite manipulation of host behavior, which is manifested by a radically changed behavior that leaves infected ants attached to vegetation at times when transmission to an herbivore host is optimal. Despite the publicity surrounding this parasite, curiously little is known about factors inducing and maintaining behavioral changes in its ant intermediate host. This study examined the importance of 3 environmental factors on the clinging behavior of red wood ants, Formica polyctena , infected with D. dendriticum . This behavior, hypothesized to involve cramping of the mandibular muscles in a state of tetany, was observed in naturally infected F. polyctena under controlled temperature, light, and humidity conditions. We found that low temperature significantly stimulated and maintained tetany in infected ants while light, humidity, ant size, and infection intensity had no influence on this behavior. Under none of the experimental conditions did uninfected ants attach to vegetation, demonstrating that tetany was induced by D. dendriticum . Temperature likely has a direct impact on the initiation of clinging behavior, but it may also serve as a simple but reliable indicator of the encounter rate between infected ants and ruminant definitive hosts. In addition, temperature-sensitive behavior manipulation may protect infected ants from exposure to temperatures in the upper thermal range of the host.

  17. Understanding the complexities of Salmonella-host crosstalk as revealed by in vivo model organisms.

    PubMed

    Verma, Smriti; Srikanth, Chittur V

    2015-07-01

    Foodborne infections caused by non-typhoidal Salmonellae, such as Salmonella enterica serovar Typhimurium (ST), pose a major challenge in the developed and developing world. With constant rise of drug-resistant strains, understanding the epidemiology, microbiology, pathogenesis and host-pathogen interactions biology is a mandatory requirement to enable health systems to be ready to combat these illnesses. Patient data from hospitals, at least from some parts of the world, have aided in epidemiological understanding of ST-mediated disease. Most of the other aspects connected to Salmonella-host crosstalk have come from model systems that offer convenience, genetic tractability and low maintenance costs that make them extremely valuable tools. Complex model systems such as the bovine model have helped in understanding key virulence factors needed for infection. Simple systems such as fruit flies and Caenorhabditis elegans have aided in identification of novel virulence factors, host pathways and mechanistic details of interactions. Some of the path-breaking concepts of the field have come from mice model of ST colitis, which allows genetic manipulations as well as high degree of similarity to human counterpart. Together, they are invaluable for correlating in vitro findings of ST-induced disease progression in vivo. The current review is a compilation of various advances of ST-host interactions at cellular and molecular levels that has come from investigations involving model organisms. © 2015 International Union of Biochemistry and Molecular Biology.

  18. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    PubMed

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  19. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.

    PubMed

    Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi

    2018-04-17

    Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.

  20. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    PubMed

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  1. Virus-induced gene silencing suggests (1,3;1,4)-β-glucanase is a susceptibility factor in the compatible russian wheat aphid-wheat interaction.

    PubMed

    Anderson, Victoria A; Haley, Scott D; Peairs, Frank B; van Eck, Leon; Leach, Jan E; Lapitan, Nora L V

    2014-09-01

    The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a significant insect pest of wheat (Triticum aestivum L.) and has a major economic impact worldwide, especially on winter wheat in the western United States. The continuing emergence of new RWA biotypes virulent to existing resistance genes reinforces the need for more durable resistance. Studies have indicated that resistance in previously susceptible plants can be produced by knock-down of susceptibility genes or other genes involved in host plant susceptibility. Therefore, investigation into genes involved in compatible RWA-wheat interactions could be a feasible approach to achieving durable RWA resistance. The objective of this study was to test whether silencing (1,3;1,4)-β-glucanase, previously observed to be highly induced in susceptible compared with resistant wheat during aphid infestation, would confer resistance to a susceptible wheat genotype. Barley stripe mosaic virus-mediated virus-induced gene silencing was employed to test whether (1,3;1,4)-β-glucanase is involved in the susceptible reaction of 'Gamtoos-S' (GS). Controlled infestation with U.S. biotype RWA2 was done to assess aphid reproduction and host symptom development. Aphids on (1,3;1,4)-β-glucanase-silenced plants reproduced less per day and had longer prenymphipositional periods than those on control GS plants. Furthermore, the (1,3;1,4)-β-glucanase-silenced plants exhibited less chlorosis and greater dry weight compared with GS. Aphid reproduction and host plant symptom development showed linear relationships with (1,3;1,4)-β-glucanase transcript levels. Our results suggest that (1,3;1,4)-β-glucanase is required for successful infestation by the RWA and may be a susceptibility factor that could be exploited as a potential target for RWA resistance breeding.

  2. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    PubMed Central

    2011-01-01

    Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393

  3. Genome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis

    PubMed Central

    Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for further work on host-parasite interaction between insects and microsporidia. PMID:24386341

  4. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri.

    PubMed

    Facincani, Agda P; Moreira, Leandro M; Soares, Márcia R; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Ferro, Jesus A; Gozzo, Fabio C; de Oliveira, Julio C F

    2014-03-01

    The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant-pathogen interactions.

  5. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum.

    PubMed

    Colinet, Dominique; Anselme, Caroline; Deleury, Emeline; Mancini, Donato; Poulain, Julie; Azéma-Dossat, Carole; Belghazi, Maya; Tares, Sophie; Pennacchio, Francesco; Poirié, Marylène; Gatti, Jean-Luc

    2014-05-06

    Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum. A combined large-scale transcriptomic and proteomic approach allowed us to identify 16 putative venom proteins among which three γ-glutamyl transpeptidases (γ-GTs) were by far the most abundant. Two of the γ-GTs most likely correspond to alleles of the same gene, with one of these alleles previously described as involved in host castration. The third γ-GT was only distantly related to the others and may not be functional owing to the presence of mutations in the active site. Among the other abundant proteins in the venom, several were unique to A. ervi such as the molecular chaperone endoplasmin possibly involved in protecting proteins during their secretion and transport in the host. Abundant transcripts encoding three secreted cystein-rich toxin-like peptides whose function remains to be explored were also identified. Our data further support the role of γ-GTs as key players in A. ervi success on aphid hosts. However, they also evidence that this wasp venom is a complex fluid that contains diverse, more or less specific, protein components. Their characterization will undoubtedly help deciphering parasitoid-aphid and parasitoid-aphid-symbiont interactions. Finally, this study also shed light on the quick evolution of venom components through processes such as duplication and convergent recruitment of virulence factors between unrelated organisms.

  6. Macrophage Migration Inhibitory Factor Release by Macrophages after Ingestion of Plasmodium chabaudi-Infected Erythrocytes: Possible Role in the Pathogenesis of Malarial Anemia

    PubMed Central

    Martiney, James A.; Sherry, Barbara; Metz, Christine N.; Espinoza, Marisol; Ferrer, Angel S.; Calandra, Thierry; Broxmeyer, Hal E.; Bucala, Richard

    2000-01-01

    Human falciparum malaria, caused by Plasmodium falciparum infection, results in 1 to 2 million deaths per year, mostly children under the age of 5 years. The two main causes of death are severe anemia and cerebral malaria. Malarial anemia is characterized by parasite red blood cell (RBC) destruction and suppression of erythropoiesis (the mechanism of which is unknown) in the presence of a robust host erythropoietin response. The production of a host-derived erythropoiesis inhibitor in response to parasite products has been implicated in the pathogenesis of malarial anemia. The identity of this putative host factor is unknown, but antibody neutralization studies have ruled out interleukin-1β, tumor necrosis factor alpha, and gamma interferon while injection of interleukin-12 protects susceptible mice against lethal P. chabaudi infection. In this study, we report that ingestion of P. chabaudi-infected erythrocytes or malarial pigment (hemozoin) induces the release of macrophage migration inhibitory factor (MIF) from macrophages. MIF, a proinflammatory mediator and counter-regulator of glucocorticoid action, inhibits erythroid (BFU-E), multipotential (CFU-GEMM), and granulocyte-macrophage (CFU-GM) progenitor-derived colony formation. MIF was detected in the sera of P. chabaudi-infected BALB/c mice, and circulating levels correlated with disease severity. Liver MIF immunoreactivity increased concomitant with extensive pigment and parasitized RBC deposition. Finally, MIF was elevated three- to fourfold in the spleen and bone marrow of P. chabaudi-infected mice with active disease, as compared to early disease, or of uninfected controls. In summary, the present results suggest that MIF may be a host-derived factor involved in the pathophysiology of malaria anemia. PMID:10722628

  7. The CoFactor database: organic cofactors in enzyme catalysis.

    PubMed

    Fischer, Julia D; Holliday, Gemma L; Thornton, Janet M

    2010-10-01

    Organic enzyme cofactors are involved in many enzyme reactions. Therefore, the analysis of cofactors is crucial to gain a better understanding of enzyme catalysis. To aid this, we have created the CoFactor database. CoFactor provides a web interface to access hand-curated data extracted from the literature on organic enzyme cofactors in biocatalysis, as well as automatically collected information. CoFactor includes information on the conformational and solvent accessibility variation of the enzyme-bound cofactors, as well as mechanistic and structural information about the hosting enzymes. The database is publicly available and can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/CoFactor.

  8. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    PubMed Central

    Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. 13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. PMID:25681189

  9. Proteomic Characterization of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Murphy, G; Gonzales, A

    2005-01-05

    Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditionsmore » were identified by mass spectrometry. Expected differences in expression were observed for several known virulence factors including catalase-peroxidase (KatY), murine toxin (Ymt), plasminogen activator (Pla), and F1 capsule antigen (Caf1), as well as putative virulence factors. Chaperone proteins and signaling molecules hypothesized to be involved in virulence due to their role in Type III secretion were also identified. Other differentially expressed proteins not previously reported to contribute to virulence are candidates for more detailed mechanistic studies, representing potential new virulence determinants. For example, several sugar metabolism proteins were differentially regulated in response to lower calcium and higher temperature, suggesting these proteins, while not directly connected to virulence, either represent a metabolic switch for survival in the host environment or may facilitate production of virulence factors. Results presented here contribute to a more thorough understanding of the virulence mechanism of Y. pestis through proteomic characterization of the pathogen under induced virulence.« less

  10. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less

  11. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system

    USDA-ARS?s Scientific Manuscript database

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...

  12. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Treesearch

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  13. The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin.

    PubMed

    Pinne, Marija; Choy, Henry A; Haake, David A

    2010-09-07

    Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (K(d), 104±19 nM) and aortic elastin (K(d), 152±27 nM). It also binds fibrinogen (K(d), 244±15 nM), fibrinogen fragment D (K(d), 132±30 nM), plasma fibronectin (K(d), 359±68 nM), and murine laminin (K(d), 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.

  14. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is currently available in a research program focused on a variety of key aspects of HIV-1 assembly and release.  Of particular interest are the interplay between viral and host factors in the targeting of assembly to the plasma membrane and the mechanism by which the viral envelope glycoproteins are incorporated into virions.  Recent studies have been aimed at defining the cellular pathways and host factors involved in envelope glycoprotein incorporation and the budding of retrovirus particles from the plasma membrane and identifying inhibitors of virus budding and entry.  Mechanisms of HIV-1 drug resistance are also under investigation, and studies are underway to define the target and mechanism of action of a novel HIV-1 maturation inhibitor.  Further details and a list of relevant publications can be found at http://home.ncifcrf.gov/hivdrp/Freed.html.

  15. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease

    PubMed Central

    Fennema, Diede; Phillips, Ian R.

    2016-01-01

    Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria (TMAU). Affected individuals cannot produce TMAO and, consequently, excrete large amounts of TMA. A dysbiosis in gut bacteria can give rise to secondary TMAU. Recently, there has been much interest in FMO3 and its catalytic product, TMAO, because TMAO has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport, and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to TMA, the gut bacteria involved in the production of TMA from dietary precursors, the metabolic reactions by which bacteria produce and use TMA, and the enzymes that catalyze the reactions. Also included is information on bacteria that produce TMA in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the TMA/TMAO microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of TMA, the involvement of TMAO and FMO3 in disease, and the implications of the host-microbiome axis for management of TMAU. PMID:27190056

  16. The Frustrated Host Response to Legionella pneumophila Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines

    PubMed Central

    Asrat, Seblewongel; Dugan, Aisling S.; Isberg, Ralph R.

    2014-01-01

    Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response. PMID:25058342

  17. Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation

    PubMed Central

    Goormachtig, Sofie; Capoen, Ward; James, Euan K.; Holsters, Marcelle

    2004-01-01

    Rhizobia colonize their legume hosts by different modes of entry while initiating symbiotic nitrogen fixation. Most legumes are invaded via growing root hairs by the root hair-curl mechanism, which involves epidermal cell responses. However, invasion of a number of tropical legumes happens through fissures at lateral root bases by cortical, intercellular crack entry. In the semiaquatic Sesbania rostrata, the bacteria entered via root hair curls under nonflooding conditions. Upon flooding, root hair growth was prevented, invasion on accessible root hairs was inhibited, and intercellular invasion was recruited. The plant hormone ethylene was involved in these processes. The occurrence of both invasion pathways on the same host plant enabled a comparison to be made of the structural requirements for the perception of nodulation factors, which were more stringent for the epidermal root hair invasion than for the cortical intercellular invasion at lateral root bases. PMID:15079070

  18. Mediators involved in the immunomodulatory effects of apoptotic cells.

    PubMed

    Saas, Philippe; Bonnefoy, Francis; Kury-Paulin, Stephanie; Kleinclauss, François; Perruche, Sylvain

    2007-07-15

    Immunomodulatory properties are attributed to apoptotic cells. These properties have been used to modulate allogeneic immune responses in experimental transplantation settings. In independent studies, apoptotic cell infusion has been shown to favor hematopoietic cell engraftment, to increase heart graft survival, and to delay the lethal onset of graft-versus-host disease (GVHD). The goal of this review was to discuss how apoptotic cell infusion interferes with graft rejection or host rejection (i.e., GVHD) and to focus on the potential mediators or "perpetuators" involved in apoptotic cell-induced immunomodulation. Particular emphasis on apoptotic cell phagocytosis, transforming growth factor (TGF)-beta secretion, and regulatory T cell induction was performed. Stimulating "naturally" immunosuppressive molecules (i.e., TGF-beta) or immunomodulatory cells ("alternatively-activated" macrophages, certain dendritic cell subsets, or regulatory T cells) in a physiological manner by using apoptotic cell infusion can be a promising way to induce tolerance.

  19. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.

    PubMed

    Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud

    2013-01-01

    N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.

  20. Aphanomyces euteiches Cell Wall Fractions Containing Novel Glucan-Chitosaccharides Induce Defense Genes and Nuclear Calcium Oscillations in the Plant Host Medicago truncatula

    PubMed Central

    Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud

    2013-01-01

    N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes. PMID:24086432

  1. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    PubMed

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  2. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements

    PubMed Central

    Gowda, Malali

    2016-01-01

    Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors. PMID:27658241

  3. Host-pathogen interplay of Haemophilus ducreyi.

    PubMed

    Janowicz, Diane M; Li, Wei; Bauer, Margaret E

    2010-02-01

    Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.

  4. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci

    PubMed Central

    Shelburne, Samuel A.; Davenport, Michael T.; Keith, David B.; Musser, James M.

    2009-01-01

    Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction. PMID:18508271

  5. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  6. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    PubMed

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  7. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  8. Bacterial Liasons: Bacteria Associated With Marine Benthic Meiofauna in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Sevigny, J.; Leasi, F.; Thomas, W. K.

    2017-12-01

    All macroorganisms are colonized by and harbor microbial associates that form their microbiome. Some microbial associates establish predictable symbioses across a host species. Other microbial assemblages, such as the human gut microbiome, exhibit semi-predictable patterns dependent on various factors such as host habitat and diet. Host species typically share core microbiota that remain temporally and spatially stable, but turnover of accessory microbiota due to to environmental change often confers adaptive advantage to the host would not receive from its own genome or core microbiome. Benthic meiofauna, microscopic eukaryotes that live in marine sediments, harbor bacterial associates that may confer functional advantages in the face of environmental perturbation that allow the host to persist and adapt during an environmental disturbance such as an oil spill. However, benthic meiofauna and their microbiota represent relatively unknown components of marine environments. In 2010, the Deepwater Horizon oil spill poured over 0.5 million metric tons of crude oil into the Gulf of Mexico. Now, much of the oil has dispersed, but some still lingers in environments such as marine sediments. Benthic meiofauna remain affected by these lingering hydrocarbons. Their inability to simply leave their habitat makes them ideal sentinels of environmental change that can factor into understanding oil spill impacts and inform response and mitigation of similar future events. Binning bacterial sequences from host whole shotgun genomes allows for analysis of microbiome gene coding and functional potentials that may assist the host through environmental disturbances, such as genes involved in hydrocarbon degradation pathways. 16S rRNA gene surveys reveal of microbiome composition of diverse meiofaunal taxa collected throughout the Gulf of Mexico. This work will examine structure and distribution of benthic meiofauna microbiomes in the Gulf of Mexico. Thus far, 16S surveys display differences between host microbiome composition and environmental microbiota. Microbiomes cluster based on host taxonomy and sampling location around the gulf.

  9. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus.

    PubMed

    Madsen, Lene H; Tirichine, Leïla; Jurkiewicz, Anna; Sullivan, John T; Heckmann, Anne B; Bek, Anita S; Ronson, Clive W; James, Euan K; Stougaard, Jens

    2010-04-12

    Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.

  10. Opportunistic respiratory pathogens in the oral cavity of the elderly.

    PubMed

    Tada, Akio; Hanada, Nobuhiro

    2010-10-01

    The oral cavity of the hospitalized or bedridden elderly is often a reservoir for opportunistic pathogens associated with respiratory diseases. Commensal flora and the host interact in a balanced fashion and oral infections are considered to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. The definition of the process involved in colonization by opportunistic respiratory pathogens needs to elucidate the factors responsible for the transition of the microbiota from commensal to pathogenic flora. The regulatory factors influencing the oral ecosystem can be divided into three major categories: the host defense system, commensal bacteria, and external pathogens. In this article, we review the profile of these categories including the intricate cellular interaction between immune factors and commensal bacteria and the disturbance in homeostasis in the oral cavity of hospitalized or bedridden elderly, which facilitates oral colonization by opportunistic respiratory pathogens. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Host control of plasmid replication: requirement for the sigma factor sigma 32 in transcription of mini-F replication initiator gene.

    PubMed Central

    Wada, C; Imai, M; Yura, T

    1987-01-01

    Replication of F factor or mini-F plasmid is strongly inhibited in the rpoH (htpR) mutants of Escherichia coli deficient in the sigma factor (sigma 32) known to be required for heat shock gene expression. Transcription of the mini-F repE gene encoding a replication initiator protein (E protein) was examined by operon fusion and by direct determination of repE mRNA. The synthesis rate and the level of repE mRNA were found to increase transiently upon temperature upshift (30 degrees C to 42 degrees C) in wild-type cells but to decrease rapidly in the rpoH mutants. Thus sigma 32 appeared to be directly involved in transcription of repE whose product, E protein, in turn activates DNA replication from the mini-F ori2 region. This scheme of host-controlled plasmid replication is further supported by the analysis of transcription in vitro: RNA synthesis can be initiated from the repE promoter by a minor form of RNA polymerase containing sigma 32 but not by the major polymerase containing the normal sigma factor sigma 70. The sigma 32-mediated transcription from the repE promoter is strongly inhibited by the E protein. We conclude that transcription of the mini-F repE gene is mediated by the host transcription factor sigma 32 and is negatively controlled by its own product. Images PMID:2447584

  12. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts.

    PubMed

    Escoll, Pedro; Rolando, Monica; Gomez-Valero, Laura; Buchrieser, Carmen

    2013-01-01

    Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.

  13. Environment and host as large-scale controls of ectomycorrhizal fungi.

    PubMed

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  14. Genomic Diversification of Enterococci in Hosts: The Role of the Mobilome

    PubMed Central

    Santagati, Maria; Campanile, Floriana; Stefani, Stefania

    2012-01-01

    Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained. Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments. PMID:22435066

  15. Genomic diversification of enterococci in hosts: the role of the mobilome.

    PubMed

    Santagati, Maria; Campanile, Floriana; Stefani, Stefania

    2012-01-01

    Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained. Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments.

  16. Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review

    PubMed Central

    Kapasi, Anokhi J.; Dittrich, Sabine; González, Iveth J.; Rodwell, Timothy C.

    2016-01-01

    Background In resource limited settings acute febrile illnesses are often treated empirically due to a lack of reliable, rapid point-of-care diagnostics. This contributes to the indiscriminate use of antimicrobial drugs and poor treatment outcomes. The aim of this comprehensive review was to summarize the diagnostic performance of host biomarkers capable of differentiating bacterial from non-bacterial infections to guide the use of antibiotics. Methods Online databases of published literature were searched from January 2010 through April 2015. English language studies that evaluated the performance of one or more host biomarker in differentiating bacterial from non-bacterial infection in patients were included. Key information extracted included author information, study methods, population, pathogens, clinical information, and biomarker performance data. Study quality was assessed using a combination of validated criteria from the QUADAS and Lijmer checklists. Biomarkers were categorized as hematologic factors, inflammatory molecules, cytokines, cell surface or metabolic markers, other host biomarkers, host transcripts, clinical biometrics, and combinations of markers. Findings Of the 193 citations identified, 59 studies that evaluated over 112 host biomarkers were selected. Most studies involved patient populations from high-income countries, while 19% involved populations from low- and middle-income countries. The most frequently evaluated host biomarkers were C-reactive protein (61%), white blood cell count (44%) and procalcitonin (34%). Study quality scores ranged from 23.1% to 92.3%. There were 9 high performance host biomarkers or combinations, with sensitivity and specificity of ≥85% or either sensitivity or specificity was reported to be 100%. Five host biomarkers were considered weak markers as they lacked statistically significant performance in discriminating between bacterial and non-bacterial infections. Discussion This manuscript provides a summary of host biomarkers to differentiate bacterial from non-bacterial infections in patients with acute febrile illness. Findings provide a basis for prioritizing efforts for further research, assay development and eventual commercialization of rapid point-of-care tests to guide use of antimicrobials. This review also highlights gaps in current knowledge that should be addressed to further improve management of febrile patients. PMID:27486746

  17. The Bartonella quintana Extracytoplasmic Function Sigma Factor RpoE Has a Role in Bacterial Adaptation to the Arthropod Vector Environment

    PubMed Central

    Abromaitis, Stephanie

    2013-01-01

    Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment. PMID:23564167

  18. Host-environment mismatches associated with subalpine fir decline in Colorado

    Treesearch

    Robin M. Reich; John E. Lundquist; Kristina Hughes

    2016-01-01

    Subalpine fir decline (SFD) has killed more trees in Colorado’s high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic...

  19. Analysis of the interactions between host factor Sam68 and viral elements during foot-and-mouth disease virus infection

    USDA-ARS?s Scientific Manuscript database

    The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68, is a multi-functional protein implicated in the life cycle of retroviru...

  20. Diseases of Pacific Coast conifers. Agriculture handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpf, R.F.

    1993-06-01

    The handbook provides basic information needed to identify the common diseases of Pacific Coast conifers. Hosts, distribution, disease cycles, and identifying characteristics are described for more than 150 diseases, including cankers, diebacks, galls, rusts, needle diseases, root diseases, mistletoes, and rots. Diseases in which abiotic factors are involved are also described. For some groups of diseases, a descriptive key to field identification is included.

  1. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts.

    PubMed

    Peinado, Héctor; Lavotshkin, Simon; Lyden, David

    2011-04-01

    Metastasis is a multistep process that requires acquisition of malignant cell phenotypes which allow tumor cells to escape from the primary tumor site. Each of the steps during metastatic progression involves co-evolution of the tumor and its microenvironment. Although tumor cells are the driving force of metastasis, new findings suggest that the host cells within the tumor microenvironment play a key role in influencing metastatic behavior. Many of these contributing cells are derived from the bone marrow; in particular, recruited bone marrow progenitor cells generate the "pre-metastatic niche" to which the tumor cells metastasize. Analysis of the molecular mechanisms involved in pre-metastatic niche formation has revealed that secreted soluble factors are key players in bone marrow cell mobilization during metastasis. In addition, membrane vesicles derived from both tumor and host cells have recently been recognized as new candidates with important roles in the promotion of tumor growth and metastasis. This review describes old ideas and presents new insights into the role of tumor and bone marrow-derived microvesicles and exosomes in pre-metastatic niche formation and metastasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Determinants of immunogenic response to protein therapeutics.

    PubMed

    Singh, Satish K; Cousens, Leslie P; Alvarez, David; Mahajan, Pramod B

    2012-09-01

    Protein therapeutics occupy a very significant position in the biopharmaceutical market. In addition to the preclinical, clinical and post marketing challenges common to other drugs, unwanted immunogenicity is known to affect efficacy and/or safety of most biotherapeutics. A standard set of immunogenicity risk factors are routinely used to inform monitoring strategies in clinical studies. A number of in-silico, in vivo and in vitro approaches have also been employed to predict immunogenicity of biotherapeutics, but with limited success. Emerging data also indicates the role of immune tolerance mechanisms and impact of several product-related factors on modulating host immune responses. Thus, a comprehensive discussion of the impact of innate and adaptive mechanisms and molecules involved in induction of host immune responses on immunogenicity of protein therapeutics is needed. A detailed understanding of these issues is essential in order to fully exploit the therapeutic potential of this class of drugs. This Roundtable Session was designed to provide a common platform for discussing basic immunobiological and pharmacological issues related to the role of biotherapeutic-associated risk factors, as well as host immune system in immunogenicity against protein therapeutics. The session included overview presentations from three speakers, followed by a panel discussion with audience participation. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  3. Advances in environmental and occupational disorders in 2012.

    PubMed

    Peden, David B; Bush, Robert K

    2013-03-01

    The year 2012 produced a number of advances in our understanding of the effect of environmental factors on allergic diseases, identification of new allergens, immune mechanisms in host defense, factors involved in asthma severity, and therapeutic approaches. This review focuses on the articles published in the Journal in 2012 that enhance our knowledge base of environmental and occupational disorders. Identification of novel allergens can improve diagnostics, risk factor analysis can aid preventative approaches, and studies of genetic-environmental interactions and immune mechanisms will lead to better therapeutics. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells

    PubMed Central

    2012-01-01

    Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (−) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (−) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection. PMID:22857383

  5. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics,more » the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence and pathogenicity into detection systems, may allow us to anticipate both natural and engineered evolution of infectious diseases while laying the foundation for next-generation detection of biothreat agents.« less

  6. Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp.

    PubMed

    Cardoso, Catarina; Ruyter-Spira, Carolien; Bouwmeester, Harro J

    2011-03-01

    Strigolactones are signaling molecules that play a role in host recognition by parasitic plants of the Striga, Orobanche and Phelipanche genera which are among the most detrimental weeds in agriculture. The same class of molecules is also involved in the establishment of the symbiosis of plants with arbuscular mycorrhizal (AM) fungi. In addition, the strigolactones are being shown to be involved in an increasing number of physiological processes in plants, such as the regulation of plant architecture and the response to abiotic factors such as nutrient availability and light. These new findings suggest that biosynthesis and perception of strigolactones are conserved throughout the plant kingdom. The structural variation in the strigolactones discovered so far and its possible role in host recognition by the parasites and AM fungi as well as the evolution of strigolactone-dependent-germination in parasitic plants will be discussed. Finally, due to the recent advance in strigolactone research, new insights are emerging on the relation between parasitic and host plants which may result in new strategies to control parasitic plant infestation that will be discussed in this review. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    PubMed

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Viral Interference and Persistence in Mosquito-Borne Flaviviruses.

    PubMed

    Salas-Benito, Juan Santiago; De Nova-Ocampo, Mónica

    2015-01-01

    Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  9. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  10. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    PubMed

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  11. The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances.

    PubMed

    Castelino, Madhura; Eyre, Stephen; Upton, Mathew; Ho, Pauline; Barton, Anne

    2014-05-01

    The resident microbial community, harboured by humans in sites such as the skin and gastrointestinal tract, is enormous, representing a candidate environmental factor affecting susceptibility to complex diseases, where both genetic and environmental risk factors are important. The potential of microorganisms to influence the human immune system is considerable, given their ubiquity. The impact of the host-gene-microbe interaction on the maintenance of health and the development of disease has not yet been assessed robustly in chronic inflammatory conditions. PsA represents a model inflammatory disease to explore the role of the microbiome because skin involvement and overlap with IBD implicates both the skin and gastrointestinal tract as sources of microbial triggers for PsA. In parallel with genetic studies, characterization of the host microbiota may benefit our understanding of the microbial contribution to disease pathogenesis-knowledge that may eventually inform the development of novel therapeutics.

  12. Quorum Sensing Attenuates Virulence in Sodalis praecaptivus.

    PubMed

    Enomoto, Shinichiro; Chari, Abhishek; Clayton, Adam Larsen; Dale, Colin

    2017-05-10

    Sodalis praecaptivus is a close relative and putative environmental progenitor of the widely distributed, insect-associated, Sodalis-allied symbionts. Here we show that mutant strains of S. praecaptivus that lack genetic components of a quorum-sensing (QS) apparatus have a rapid and potent killing phenotype following microinjection into an insect host. Transcriptomic and genetic analyses indicate that insect killing occurs as a consequence of virulence factors, including insecticidal toxins and enzymes that degrade the insect integument, which are normally repressed by QS at high infection densities. This method of regulation suggests that virulence factors are only utilized in early infection to initiate the insect-bacterial association. Once bacteria reach sufficient density in host tissues, the QS circuit represses expression of these harmful genes, facilitating a long-lasting and benign association. We discuss the implications of the functionality of this QS system in the context of establishment and evolution of mutualistic relationships involving these bacteria. Published by Elsevier Inc.

  13. The GATA3 gene is involved in leprosy susceptibility in Brazilian patients.

    PubMed

    Medeiros, Priscila; da Silva, Weber Laurentino; de Oliveira Gimenez, Bruna Beatriz; Vallezi, Keren Bastos; Moraes, Milton Ozório; de Souza, Vânia Niéto Brito; Latini, Ana Carla Pereira

    2016-04-01

    Leprosy outcome is a complex trait and the host-pathogen-environment interaction defines the emergence of the disease. Host genetic risk factors have been successfully associated to leprosy. The 10p13 chromosomal region was linked to leprosy in familial studies and GATA3 gene is a strong candidate to be part of this association. Here, we tested tag single nucleotide polymorphisms at GATA3 in two case-control samples from Brazil comprising a total of 1633 individuals using stepwise strategy. The A allele of rs10905284 marker was associated with leprosy resistance. Then, a functional analysis was conducted and showed that individuals carrying AA genotype express higher levels of GATA-3 protein in lymphocytes. So, we confirmed that the rs10905284 is a locus associated to leprosy and influences the levels of this transcription factor in the Brazilian population. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pathogenesis of Staphylococcus aureus Bloodstream Infections

    PubMed Central

    Thomer, Lena; Schneewind, Olaf; Missiakas, Dominique

    2016-01-01

    Staphylococcus aureus , a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes. PMID:26925499

  15. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity

    PubMed Central

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185

  16. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.

  17. From the Environment to the Host: Re-Wiring of the Transcriptome of Pseudomonas aeruginosa from 22°C to 37°C

    PubMed Central

    Bielecki, Piotr; Suárez-Diez, María; Puchałka, Jacek; Albertí, Sebastian; dos Santos, Vitor Martins; Goldberg, Joanna B.

    2014-01-01

    Pseudomonas aeruginosa is a highly versatile opportunistic pathogen capable of colonizing multiple ecological niches. This bacterium is responsible for a wide range of both acute and chronic infections in a variety of hosts. The success of this microorganism relies on its ability to adapt to environmental changes and re-program its regulatory and metabolic networks. The study of P. aeruginosa adaptation to temperature is crucial to understanding the pathogenesis upon infection of its mammalian host. We examined the effects of growth temperature on the transcriptome of the P. aeruginosa PAO1. Microarray analysis of PAO1 grown in Lysogeny broth at mid-exponential phase at 22°C and 37°C revealed that temperature changes are responsible for the differential transcriptional regulation of 6.4% of the genome. Major alterations were observed in bacterial metabolism, replication, and nutrient acquisition. Quorum-sensing and exoproteins secreted by type I, II, and III secretion systems, involved in the adaptation of P. aeruginosa to the mammalian host during infection, were up-regulated at 37°C compared to 22°C. Genes encoding arginine degradation enzymes were highly up-regulated at 22°C, together with the genes involved in the synthesis of pyoverdine. However, genes involved in pyochelin biosynthesis were up-regulated at 37°C. We observed that the changes in expression of P. aeruginosa siderophores correlated to an overall increase in Fe2+ extracellular concentration at 37°C and a peak in Fe3+ extracellular concentration at 22°C. This suggests a distinct change in iron acquisition strategies when the bacterium switches from the external environment to the host. Our work identifies global changes in bacterial metabolism and nutrient acquisition induced by growth at different temperatures. Overall, this study identifies factors that are regulated in genome-wide adaptation processes and discusses how this life-threatening pathogen responds to temperature. PMID:24587139

  18. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health.

    PubMed

    Wasielewski, Helen; Alcock, Joe; Aktipis, Athena

    2016-05-01

    Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  19. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle.

    PubMed

    Jupe, Julietta; Stam, Remco; Howden, Andrew J M; Morris, Jenny A; Zhang, Runxuan; Hedley, Pete E; Huitema, Edgar

    2013-06-25

    Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics.

  20. Review of the trematode genus Ribeiroia (Psilostomidae): ecology, life history and pathogenesis with special emphasis on the amphibian malformation problem.

    PubMed

    Johnson, Pieter T J; Sutherland, Daniel R; Kinsella, J M; Lunde, Kevin B

    2004-01-01

    Trematodes in the genus Ribeiroia have an indirect life cycle involving planorbid snails as first intermediate hosts, fishes or amphibians as second intermediate hosts and birds or mammals as definitive hosts. Although rarely pathogenic in definitive hosts, Ribeiroia infection can cause severe pathology and mortality in snails and amphibians. This group of parasites has gained notoriety for its prominent rol in the recent rash of amphibian deformities in North America. Under some circumstances, these malformations may enhance parasite transmission by rendering infected amphibian hosts more susceptible to definitive host predators. However, increasing reports of malformations in North American amphibian populations emphasize the importance of understanding infection patterns. Here we review important aspects of the biology, ecology, life cycle and pathogenesis of parasites in the genus Ribeiroia and identify priorities for future research. Based on available morphological descriptions and preliminary molecular data, three species of Ribeiroia are recognized: R. ondatrae in the Americas, R. marini in the Caribbean and R. congolensis/C. lileta in Africa. We further evaluate the influence of abiotic and biotic factors in determining the intensity and prevalence of Ribeiroia infection and malformations in amphibians, highlighting the importance of habitat alteration and secondary factors (e.g. aquatic eutrophication, contaminants) in promoting infection. Although not a "new" parasite, Ribeiroia may have increased in range, prevalence, or intensity in recent years, particularly within amphibian hosts. Nevertheless, while much is known about this intriguing group of parasites, there remains much that we do not know. Particular importance for future research is placed on the following areas: evaluating the phylogenetic position of the genus, establishing the molecular mechanism of parasite-induced malformations in amphibians, isolating the drivers of parasite transmission under field conditions and studying the consequences of malformations for parasite and host populations. Investigation of these questions will benefit enormously from a multidisciplinary approach that effectively integrates parasitology, developmental biology, immunology, herpetology and aquatic ecology.

  1. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors☆

    PubMed Central

    Chomel, Bruno B.; Boulouis, Henri-Jean; Breitschwerdt, Edward B.; Kasten, Rickie W.; Vayssier-Taussat, Muriel; Birtles, Richard J.; Koehler, Jane E.; Dehio, Christoph

    2009-01-01

    Bartonella spp. are facultative intracellular bacteria that cause characteristic host-restricted hemotropic infections in mammals and are typically transmitted by blood-sucking arthropods. In the mammalian reservoir, these bacteria initially infect a yet unrecognized primary niche, which seeds organisms into the blood stream leading to the establishment of a long-lasting intra-erythrocytic bacteremia as the hall-mark of infection. Bacterial type IV secretion systems, which are supra-molecular transporters ancestrally related to bacterial conjugation systems, represent crucial pathogenicity factors that have contributed to a radial expansion of the Bartonella lineage in nature by facilitating adaptation to unique mammalian hosts. On the molecular level, the type IV secretion system VirB/VirD4 is known to translocate a cocktail of different effector proteins into host cells, which subvert multiple cellular functions to the benefit of the infecting pathogen. Furthermore, bacterial adhesins mediate a critical, early step in the pathogenesis of the bartonellae by binding to extracellular matrix components of host cells, which leads to firm bacterial adhesion to the cell surface as a prerequisite for the efficient translocation of type IV secretion effector proteins. The best-studied adhesins in bartonellae are the orthologous trimeric autotransporter adhesins, BadA in Bartonella henselae and the Vomp family in Bartonella quintana. Genetic diversity and strain variability also appear to enhance the ability of bartonellae to invade not only specific reservoir hosts, but also accidental hosts, as shown for B. henselae. Bartonellae have been identified in many different blood-sucking arthropods, in which they are typically found to cause extracellular infections of the mid-gut epithelium. Adaptation to specific vectors and reservoirs seems to be a common strategy of bartonellae for transmission and host diversity. However, knowledge regarding arthropod specificity/restriction, the mode of transmission, and the bacterial factors involved in arthropod infection and transmission is still limited. PMID:19284965

  2. A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa

    PubMed Central

    Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E.

    2008-01-01

    Cell–cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF. PMID:18268318

  3. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa.

    PubMed

    Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E

    2008-02-19

    Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.

  4. Implications of microbiota and bile acid in liver injury and regeneration

    PubMed Central

    Liu, Hui-Xin; Keane, Ryan; Sheng, Lili; Wan, Yu-Jui Yvonne

    2015-01-01

    Summary Studies examining the mechanisms by which the liver injures and regenerates usually focus on factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years that have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Despite many correlative findings, the intricate networks of pathways involved along with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, and host response. Such knowledge would better elucidate the molecular mechanisms that link microbiota alteration to host physiological response and vice-versa. PMID:26256437

  5. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    PubMed

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.

    PubMed

    Marvig, Rasmus Lykke; Sommer, Lea Mette; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.

  7. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.

    PubMed

    Tan, Shumin; Noto, Jennifer M; Romero-Gallo, Judith; Peek, Richard M; Amieva, Manuel R

    2011-05-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.

  8. Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface

    PubMed Central

    Tan, Shumin; Noto, Jennifer M.; Romero-Gallo, Judith; Peek, Richard M.; Amieva, Manuel R.

    2011-01-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche. PMID:21589900

  9. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts.

    PubMed

    Daugherty, Matthew D; Young, Janet M; Kerns, Julie A; Malik, Harmit S

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts.

  10. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts. PMID:24875882

  11. Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination

    PubMed Central

    2012-01-01

    Background The salmon louse is an ectoparasitic copepod that causes major economic losses in the aquaculture industry of Atlantic salmon. This host displays a high level of susceptibility to lice which can be accounted for by several factors including stress. In addition, the parasite itself acts as a potent stressor of the host, and outcomes of infection can depend on biotic and abiotic factors that stimulate production of cortisol. Consequently, examination of responses to infection with this parasite, in addition to stress hormone regulation in Atlantic salmon, is vital for better understanding of the host pathogen interaction. Results Atlantic salmon post smolts were organised into four experimental groups: lice + cortisol, lice + placebo, no lice + cortisol, no lice + placebo. Infection levels were equal in both treatments upon termination of the experiment. Gene expression changes in skin were assessed with 21 k oligonucleotide microarray and qPCR at the chalimus stage 18 days post infection at 9°C. The transcriptomic effects of hormone treatment were significantly greater than lice-infection induced changes. Cortisol stimulated expression of genes involved in metabolism of steroids and amino acids, chaperones, responses to oxidative stress and eicosanoid metabolism and suppressed genes related to antigen presentation, B and T cells, antiviral and inflammatory responses. Cortisol and lice equally down-regulated a large panel of motor proteins that can be important for wound contraction. Cortisol also suppressed multiple genes involved in wound healing, parts of which were activated by the parasite. Down-regulation of collagens and other structural proteins was in parallel with the induction of proteinases that degrade extracellular matrix (MMP9 and MMP13). Cortisol reduced expression of genes encoding proteins involved in formation of various tissue structures, regulators of cell differentiation and growth factors. Conclusions These results suggest that cortisol-induced stress does not affect the level of infection of Atlantic salmon with the parasite, however, it may retard repair of skin. The cortisol induced changes are in close concordance with the existing concept of wound healing cascade. PMID:22480234

  12. Role of host protein Ebp1 in influenza virus growth: intracellular localization of Ebp1 in virus-infected and uninfected cells.

    PubMed

    Honda, Ayae

    2008-01-20

    The cellular protein Ebp1 was identified to interact with PB1 protein of influenza virus RNA polymerase, and inhibit both RNA synthesis in vitro and influenza virus replication in vivo [Honda, A., Okamoto, T., Ishihama, A., 2007. Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells 12, 133-142]. The intracellular localization of Ebp1 that is involved in cell proliferation control was analyzed by direct immunostaining of cells before and after influenza virus infection. Ebp1 was found to localize in the nuclear membrane of uninfected cells, and to form nuclear aggregates with viral P proteins in virus-infected cells.

  13. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  14. Genes involved in host-parasite interactions can be revealed by their correlated expression.

    PubMed

    Reid, Adam James; Berriman, Matthew

    2013-02-01

    Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.

  15. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site.

    PubMed

    Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V

    2013-01-01

    Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.

  16. International Collaborations in Large Geophysical Experiments: A Win-Win Situation

    NASA Astrophysics Data System (ADS)

    Keller, G. R.

    2007-12-01

    It has been my privilege to be involved in a significant number of large international cooperative geophysical experiments. These logistically challenging efforts all took place in developing or under-developed countries and were co-driven at least to some extent by scientists in the host country. A team of scientists from developed countries were involved in each case but were not always the leaders of the effort. The host countries were all supportive and played roles ranging from simply facilitating the effort to providing most of the funding. Some lessons learned from these efforts were the following: 1) permissions for large efforts must come from very high levels in the host government; 2) the host scientists should never be overlooked or underestimated; 3) involving students from both the host country and developed countries produces big educational and cultural dividends for all involved (it is a life experience for the visitors and a chance to widen perspectives and even acquire advanced degrees for the students from the host countries); 4) providing funds for scientists and students from the host country to visit their international partners to participate in the data processing and analysis and to attend scientific meetings is extremely important; 5) return trips to the host country to collaborate on data processing and analysis and to consolidate partnerships are also important; 6) the partnership with the host country should be viewed as a long term commitment to scientific cooperation and education that benefits all involved. Our experiences have encountered only a few roadblocks and have been ultimately universally positive. Lifelong relationships have been forged, students have been educated and enriched, and excellent scientific results have been produced.

  17. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    PubMed

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    PubMed

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction.

    PubMed

    Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali

    2018-01-01

    Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay.

    PubMed

    Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-10-26

    Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.

  1. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    NASA Astrophysics Data System (ADS)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  2. Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2.

    PubMed

    Saha, S; Haggård-Ljungquist, E; Nordström, K

    1990-01-01

    Whether infection by bacteriophage P2 results in lysogenization of the host or vegetative growth of the phage depends upon a race between transcription from the repressor promoter Pc and the early promoter Pe; transcription from these promoters is mutually exclusive, since the Pc repressor Cox is formed from the Pe transcript and the Pe repressor C from the Pc transcript. The involvement of integration host factor (IHF) in the lysogenization of Escherichia coli K12 by P2 was tested by comparing wild-type and IHF-deficient (himA and himD) mutants. No lysogenic clones were formed following infection of the mutant bacteria. A switch plasmid that contains Pc-C-cat and Pe-cox-kan was used to test the choice for expression of Pc versus Pe. In the wild-type K12 bacteria, 20% of the clones expressed Pe transcription and 80% Pc transcription, whereas all transformed IHF-defective clones expressed transcription from Pe only. The effects of IHF on the in vivo expression of the Pe and Pc promoters were only marginal. The IHF protein was found to bind upstream of the Pe promoter, where a potential ihf sequence is located.

  3. Human and Animal Dirofilariasis: the Emergence of a Zoonotic Mosaic

    PubMed Central

    Siles-Lucas, Mar; Morchón, Rodrigo; González-Miguel, Javier; Mellado, Isabel; Carretón, Elena; Montoya-Alonso, Jose Alberto

    2012-01-01

    Summary: Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections. PMID:22763636

  4. Determining the Involvement and Therapeutic Implications of Host Cellular Factors in Hepatitis C Virus Cell-to-Cell Spread

    PubMed Central

    Barretto, Naina; Sainz, Bruno; Hussain, Snawar

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) infects 180 million people worldwide and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. It has been shown that HCV can spread to naive cells using two distinct entry mechanisms, “cell-free” entry of infectious extracellular virions that have been released by infected cells and direct “cell-to-cell” transmission. Here, we examined host cell requirements for HCV spread and found that the cholesterol uptake receptor NPC1L1, which we recently identified as being an antiviral target involved in HCV cell-free entry/spread, is also required for the cell-to-cell spread. In contrast, the very low density lipoprotein (VLDL) pathway, which is required for the secretion of cell-free infectious virus and thus has been identified as an antiviral target for blocking cell-free virus secretion/spread, is not required for cell-to-cell spread. Noting that HCV cell-free and cell-to-cell spread share some common factors but not others, we tested the therapeutic implications of these observations and demonstrate that inhibitors that target cell factors required for both forms of HCV spread exhibit synergy when used in combination with interferon (a representative inhibitor of intracellular HCV production), while inhibitors that block only cell-free spread do not. This provides insight into the mechanistic basis of synergy between interferon and HCV entry inhibitors and highlights the broader, previously unappreciated impact blocking HCV cell-to-cell spread can have on the efficacy of HCV combination therapies. IMPORTANCE HCV can spread to naive cells using distinct mechanisms: “cell-free” entry of extracellular virus and direct “cell-to-cell” transmission. Herein, we identify the host cell HCV entry factor NPC1L1 as also being required for HCV cell-to-cell spread, while showing that the VLDL pathway, which is required for the secretion of cell-free infectious virus, is not required for cell-to-cell spread. While both these host factors are considered viable antiviral targets, we demonstrate that only inhibitors that block factors required for both forms of HCV entry/spread (i.e., NPC1L1) exhibit synergy when used in combination with interferon, while inhibitors that block factors required only for cell-free spread (i.e., VLDL pathway components) do not. Thus, this study advances our understanding of HCV cell-to-cell spread, provides mechanistic insight into the basis of drug synergy, and highlights inhibition of HCV spread as a previously unappreciated consideration in HCV therapy design. PMID:24554660

  5. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  6. KF-finder: identification of key factors from host-microbial networks in cervical cancer.

    PubMed

    Hu, Jialu; Gao, Yiqun; Zheng, Yan; Shang, Xuequn

    2018-04-24

    The human body is colonized by a vast number of microbes. Microbiota can benefit many normal life processes, but can also cause many diseases by interfering the regular metabolism and immune system. Recent studies have demonstrated that the microbial community is closely associated with various types of cell carcinoma. The search for key factors, which also refer to cancer causing agents, can provide an important clue in understanding the regulatory mechanism of microbiota in uterine cervix cancer. In this paper, we investigated microbiota composition and gene expression data for 58 squamous and adenosquamous cell carcinoma. A host-microbial covariance network was constructed based on the 16s rRNA and gene expression data of the samples, which consists of 259 abundant microbes and 738 differentially expressed genes (DEGs). To search for risk factors from host-microbial networks, the method of bi-partite betweenness centrality (BpBC) was used to measure the risk of a given node to a certain biological process in hosts. A web-based tool KF-finder was developed, which can efficiently query and visualize the knowledge of microbiota and differentially expressed genes (DEGs) in the network. Our results suggest that prevotellaceade, tissierellaceae and fusobacteriaceae are the most abundant microbes in cervical carcinoma, and the microbial community in cervical cancer is less diverse than that of any other boy sites in health. A set of key risk factors anaerococcus, hydrogenophilaceae, eubacterium, PSMB10, KCNIP1 and KRT13 have been identified, which are thought to be involved in the regulation of viral response, cell cycle and epithelial cell differentiation in cervical cancer. It can be concluded that permanent changes of microbiota composition could be a major force for chromosomal instability, which subsequently enables the effect of key risk factors in cancer. All our results described in this paper can be freely accessed from our website at http://www.nwpu-bioinformatics.com/KF-finder/ .

  7. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    PubMed

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  8. Characterization of resistance to rhabdovirus and retrovirus infection in a human myeloid cell line.

    PubMed

    Boso, Guney; Somia, Nikunj V

    2015-01-01

    Viruses interact with various permissive and restrictive factors in host cells throughout their replication cycle. Cell lines that are non-permissive to viral infection have been particularly useful in discovering host cell proteins involved in viral life cycles. Here we describe the characterization of a human myeloid leukemia cell line, KG-1, that is resistant to infection by retroviruses and a Rhabdovirus. We show that KG-1 cells are resistant to infection by Vesicular Stomatits Virus as well as VSV Glycoprotein (VSVG) pseudotyped retroviruses due to a defect in binding. Moreover our results indicate that entry by xenotropic retroviral envelope glycoprotein RD114 is impaired in KG-1 cells. Finally we characterize a post- entry block in the early phase of the retroviral life cycle in KG-1 cells that renders the cell line refractory to infection. This cell line will have utility in discovering proteins involved in infection by VSV and HIV-1.

  9. Silencing the alarms: innate immune antagonism by rotavirus NSP1 and VP3

    PubMed Central

    Morelli, Marco; Ogden, Kristen M.; Patton, John T.

    2016-01-01

    The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFN) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)-RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other RV species evade host innate immune responses. PMID:25724417

  10. Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    PubMed Central

    Ochola, Lucy B.; Siddondo, Bethsheba R.; Ocholla, Harold; Nkya, Siana; Kimani, Eva N.; Williams, Thomas N.; Makale, Johnstone O.; Liljander, Anne; Urban, Britta C.; Bull, Pete C.; Szestak, Tadge; Marsh, Kevin; Craig, Alister G.

    2011-01-01

    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases. PMID:21390226

  11. Portrait of an Enzyme, a Complete Structural Analysis of a Multimodular beta-N-Acetylglucosaminidase from Clostridium perfringens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ficko-Blean, E.; Gregg, K; Adams, J

    2009-01-01

    Common features of the extracellular carbohydrate-active virulence factors involved in host-pathogen interactions are their large sizes and modular complexities. This has made them recalcitrant to structural analysis, and therefore our understanding of the significance of modularity in these important proteins is lagging. Clostridium perfringens is a prevalent human pathogen that harbors a wide array of large, extracellular carbohydrate-active enzymes and is an excellent and relevant model system to approach this problem. Here we describe the complete structure of C. perfringens GH84C (NagJ), a 1001-amino acid multimodular homolog of the C. perfringens ?-toxin, which was determined using a combination of smallmore » angle x-ray scattering and x-ray crystallography. The resulting structure reveals unprecedented insight into how catalysis, carbohydrate-specific adherence, and the formation of molecular complexes with other enzymes via an ultra-tight protein-protein interaction are spatially coordinated in an enzyme involved in a host-pathogen interaction.« less

  12. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers.

    PubMed

    Di Domenico, Marina; Giovane, Giancarlo; Kouidhi, Soumaya; Iorio, Rosamaria; Romano, Maurizio; De Francesco, Francesco; Feola, Antonia; Siciliano, Camilla; Califano, Luigi; Giordano, Antonio

    2017-03-31

    Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.

  13. Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways.

    PubMed

    Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François

    2017-08-01

    Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.

  14. Pathogen evolution across the agro-ecological interface: implications for disease management.

    PubMed

    Burdon, Jeremy J; Thrall, Peter H

    2008-02-01

    Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for disease management in agro-ecosystems and how we can influence those outcomes. Finally, we identify several major gaps where future research could increase our ability to utilize evolutionary principles in managing disease in agro-ecosystems.

  15. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference

    PubMed Central

    Palmarini, Massimo; Mertens, Peter

    2017-01-01

    Spatio-temporal patterns of the spread of infectious diseases are commonly driven by environmental and ecological factors. This is particularly true for vector-borne diseases because vector populations can be strongly affected by host distribution as well as by climatic and landscape variables. Here, we aim to identify environmental drivers for bluetongue virus (BTV), the causative agent of a major vector-borne disease of ruminants that has emerged multiple times in Europe in recent decades. In order to determine the importance of climatic, landscape and host-related factors affecting BTV diffusion across Europe, we fitted different phylogeographic models to a dataset of 113 time-stamped and geo-referenced BTV genomes, representing multiple strains and serotypes. Diffusion models using continuous space revealed that terrestrial habitat below 300 m altitude, wind direction and higher livestock densities were associated with faster BTV movement. Results of discrete phylogeographic analysis involving generalized linear models broadly supported these findings, but varied considerably with the level of spatial partitioning. Contrary to common perception, we found no evidence for average temperature having a positive effect on BTV diffusion, though both methodological and biological reasons could be responsible for this result. Our study provides important insights into the drivers of BTV transmission at the landscape scale that could inform predictive models of viral spread and have implications for designing control strategies. PMID:29021180

  16. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  17. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  18. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH.

    PubMed

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas; Weber, Friedemann

    2014-03-01

    The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.

  19. Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH

    PubMed Central

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas

    2014-01-01

    ABSTRACT The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. IMPORTANCE Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity. PMID:24403578

  20. [Vulnerability to HIV: tourism and the use of alcohol and other drugs].

    PubMed

    Santos, Alessandro de Oliveira; Paiva, Vera

    2007-12-01

    To describe situations of alcohol and other drug use involving tourists, and their implications regarding vulnerability to HIV. This was an exploratory qualitative study conducted in communities that host tourism in the Vale do Ribeira, State of São Paulo, from October 2002 to February 2003. In the first stage of the study, 29 monitors in four host communities were interviewed to gather scenarios of drug use involving tourists. In the second stage, two workshops were held, bringing together 77 interviewees and health and education professionals from ten communities, in order to dramatize the scenarios gathered in the interviews and share repertoires for dealing with these situations and finding ways for preventing HIV. The scenarios showed that alcohol and other drug use by tourists increases their vulnerability to HIV transmission through favoring casual sexual intercourse without condoms and sexual harassment and abuse. HIV prevention work in these communities that host tourism needs to take into account the consumption of these substances which use creates difficulties regarding safe sex practices and, in the case of injecting drugs that are shared, constitutes a risk factor for HIV transmission. This study provided data to help in understanding how situations of alcohol and other drug use fit within daily life in these host communities, thereby extending the vulnerability to HIV. The study produced analysis of the social context of HIV transmission that may provide backing for drawing up prevention programs that are better adapted to these communities.

  1. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    PubMed Central

    2011-01-01

    Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and activated EGFR/PDGFR/PI3-kinase. Using C. jejuni mutant strains we further demonstrated that the fibronectin-binding protein CadF and intact flagella are involved in Cdc42-GTP induction, indicating that the bacteria may directly target the fibronectin/integrin complex for inducing signaling leading to its host cell entry. Conclusion Collectively, our findings led us propose that C. jejuni infection triggers a novel fibronectin→integrin-beta1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 signaling cascade, which plays a crucial role for Cdc42 GTPase activity associated with filopodia formation and enhances bacterial invasion. PMID:22204307

  2. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  3. Legionella pathogenicity: genome structure, regulatory networks and the host cell response.

    PubMed

    Steinert, Michael; Heuner, Klaus; Buchrieser, Carmen; Albert-Weissenberger, Christiane; Glöckner, Gernot

    2007-11-01

    Legionella spp. the causative agent of Legionnaires' disease is naturally found in fresh water where the bacteria parasitize intracellularly within protozoa. Upon aerosol formation via man-made water systems, Legionella can enter the human lung and cause a severe form of pneumonia. Here we review results from systematic comparative genome analysis of Legionella species with different pathogenic potentials. The complete genomes reveal that horizontal gene transfer has played an important role during the evolution of Legionella and indicate the importance of secretion machineries for the intracellular lifestyle of this pathogen. Moreover, we highlight recent findings on the in vivo transcriptional program of L. pneumophila and the regulatory networks involved in the biphasic life cycle. In order to understand how Legionella effectively subvert host cell functions for its own benefit the transcriptional host cell response upon infection of the model amoeba Dictyostelium discoideum was studied. The use of this model organism made it possible to develop a roadmap of host cell factors which significantly contribute to the uptake of L. pneumophila and the establishment of an ER-associated replicative vacuole.

  4. Probiotics: beneficial factors of the defence system.

    PubMed

    Antoine, Jean Michel

    2010-08-01

    Probiotics, defined as living micro-organisms that provide a health benefit to the host when ingested in adequate amounts, have been used traditionally as food components to help the body to recover from diarrhoea. They are commonly ingested as part of fermented foods, mostly in fresh fermented dairy products. They can interact with the host through different components of the gut defence systems. There is mounting clinical evidence that some probiotics, but not all, help the defence of the host as demonstrated by either a shorter duration of infections or a decrease in the host's susceptibility to pathogens. Different components of the gut barrier can be involved in the strengthening of the body's defences: the gut microbiota, the gut epithelial barrier and the immune system. Many studies have been conducted in normal free-living subjects or in subjects during common infections like the common cold and show that some probiotic-containing foods can improve the functioning of or strengthen the body's defence. Specific probiotic foods can be included in the usual balanced diet of consumers to help them to better cope with the daily challenges of their environment.

  5. Risk factors for the development of ocular graft-versus-host disease (GVHD) dry eye syndrome in patients with chronic GVHD.

    PubMed

    Wang, Jay Ching Chieh; Teichman, Joshua C; Mustafa, Majd; O'Donnell, Heather; Broady, Raewyn; Yeung, Sonia N

    2015-11-01

    To investigate the factors associated with the development of ocular graft-versus-host disease (oGVHD) dry eye syndrome (DES) in patients with chronic GVHD (cGVHD) after receiving allogenic haematopoietic stem cell transplantation (AHSCT) METHODS: A retrospective chart review of patients receiving AHSCT between 1998 and 2013 at the Bone Marrow Transplant Unit of the British Columbia Cancer Agency was carried out. Demographic and clinical data from both donors and recipients were obtained. The diagnostic criteria for the development of oGVHD DES from the National Institutes of Health were used to identify patients with the disease. Descriptive and inferential statistics were carried out. A total of 146 patients with a median follow-up time of 24.0 months (range 11.3-249.7 months) were included in this study. Sixty-six (45.2%) patients were women. Seventy-seven (52.7%) patients had oGVHD DES. The median age of patients was 57 years (range 25-71 years). Compared with other ethnicities, Caucasian patients were less likely to develop oGVHD DES, with an OR of 0.29 (p=0.01). Patients who received a transplant from Epstein-Barr-positive donors had a higher prevalence of oGVHD DES (OR=4.39, p=0.01). This was also found in patients with the following systemic involvement of cGVHD: grade 1-3 cGVHD skin involvement (OR=1.57, p=0.01), oral involvement (OR=2.51, p=0.01) and liver involvement (p=0.04). Patients with grade 2-3 overall cGVHD were also more susceptible to oGVHD DES (OR=2.72, p<0.001). This study identified risk factors associated with a higher prevalence of oGVHD DES in post-AHSCT patients with cGVHD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus.

    PubMed

    Bostan, Nazish; Javed, Sundus; Nabgha-E-Amen; Eqani, Syed Ali Musstjab Akber Shah; Tahir, Faheem; Bokhari, Habib

    2017-01-01

    Dengue fever is regarded as one of the most prominent emerging arboviral infections in Pakistan since its first epidemic almost 2 decades ago. Interplay between potential vectors, susceptible host, and lax environmental conditions may promote the infection, leading to an epidemic. These factors may indeed have played a major role in the spread of the disease in the country, which was limited to Karachi till 2006. With recent natural disasters such as the earthquake in 2005 and flooding in 2010, 2011 and 2012, numbers of vector-borne diseases and outbreaks including dengue fever are on the rise in Pakistan. Therefore, it is a major concern for health sector workers and of utmost importance to have some understanding of the factors affecting disease outbreak for better risk assessment in the region. In the following report we review the climatic as well as host- and vector-associated factors involved in the outbreak of dengue epidemics in Pakistan and highlight high-risk zones in the country. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation

    PubMed Central

    Takahashi, Kazue; Chang, Wei-Chuan; Takahashi, Minoru; Pavlov, Vasile; Ishida, Yumi; La Bonte, Laura; Shi, Lei; Fujita, Teizo; Stahl, Gregory L.; Van Cott, Elizabeth M.

    2010-01-01

    The first line of host defense is the innate immune system that includes coagulation factors and pattern recognition molecules, one of which is mannose-binding lectin (MBL). Previous studies have demonstrated that MBL deficiency increases susceptibility to infection. Several mechanisms are associated with increased susceptibility to infection, including reduced opsonophagocytic killing and reduced lectin complement pathway activation. In this study, we demonstrate that MBL and MBL-associated serine protease (MASP)-1/3 together mediate coagulation factor-like activities, including thrombin-like activity. MBL and/or MASP-1/3 deficient hosts demonstrate in vivo evidence that MBL and MASP-1/3 are involved with hemostasis following injury. Staphylococcus aureus infected MBL null mice developed disseminated intravascular coagulation (DIC), which was associated with elevated blood IL-6 levels (but not TNF-α and multi-organ inflammatory responses). Infected MBL null mice also develop liver injury. These findings suggest that MBL deficiency may manifest into DIC and organ failure during infectious diseases. PMID:20399528

  8. Host and parasite morphology influence congruence between host and parasite phylogenies.

    PubMed

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Anytime Prediction: Efficient Ensemble Methods for Any Computational Budget

    DTIC Science & Technology

    2014-01-21

    difficult problem and is the focus of this work. 1.1 Motivation The number of machine learning applications which involve real time and latency sensitive pre...significantly increasing latency , and the computational costs associated with hosting a service are often critical to its viability. For such...balancing training costs, concerns such as scalability and tractability are often more important, as opposed to factors such as latency which are more

  10. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication.

    PubMed

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-03

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes.

  11. Genetic and Environmental Factors Associated with Cannabis Involvement

    PubMed Central

    Bogdan, Ryan; Winstone, Jonathan MA; Agrawal, Arpana

    2016-01-01

    Approximately 50-70% of the variation in cannabis use and use disorders can be attributed to heritable factors. For cannabis use, the remaining variance can be parsed in to familial and person-specific environmental factors while for use disorders, only the latter contribute. While numerous candidate gene studies have identified the role of common variation influencing liability to cannabis involvement, replication has been elusive. To date, no genomewide association study has been sufficiently powered to identify significant loci. Despite this, studies adopting polygenic techniques and integrating genetic variation with neural phenotypes and measures of environmental risk, such as childhood adversity, are providing promising new leads. It is likely that the small effect sizes associated with variants related to cannabis involvement will only be robustly identified in substantially larger samples. Results of such large-scale efforts will provide valuable single variant targets for translational research in neurogenetic, pharmacogenetic and non-human animal models as well as polygenic risk indices that can be used to explore a host of other genetic hypotheses related to cannabis use and misuse. PMID:27642547

  12. EGG-HATCHING MECHANISM OF HUMAN LIVER FLUKE, OPISTHORCHIS VIVERRINI: A ROLE FOR LEUCINE AMINOPEPTIDASES FROM THE SNAIL HOST, BITHYNIA SIAMENSIS GONIOMPHALOS.

    PubMed

    Tesana, Smarn; Khampoosa, P; Piratae, S; Prasopdee, S; Sripanidkulchai, B

    2018-05-08

    The human liver fluke Opisthorchis viverrini (Platyhelminthes, Trematoda, Digenea) uses snails of the genus Bithynia as first intermediate host. Peculiarly among trematodes, the eggs of O. viverrini hatch within the digestive tract of its snail host. It remains uncertain whether hatching in this species is mediated through mechanical fracture of the eggshell or by digestion with specific digestive enzymes. This study aimed to characterize enzymes with specific inhibitor and factors involved in the hatching activity of O. viverrini eggs. For measuring egg hatching in vivo, 50 O. viverrini mature eggs were fed to individual Bithynia siamensis goniomphalos snail at various temperature conditions for 24 hrs. Ex vivo, mature eggs were incubated with crude snail extract and commercial leucine aminopeptidase (LAP). Egg-hatching of O. viverrini was temperature dependent, with optimal hatching occurring at 24-28 C, with a peak of hatching of 93.54% in vivo and 30.55% ex vivo occurring at these temperatures. Ex vivo hatching rates increased to 45.87% under anaerobic conditions at 28 C. Some 22.70% and 16.21% of heat-killed eggs also hatched within the snail digestive tract and snail extract, respectively, indicating that host molecules are involved in the hatching response. Most eggs hatch in the anterior regions of the digestive tract. Hatching was completely inhibited in the presence of bestatin, an inhibitor of leucine aminopeptidase (LAP), but not in the presence of phosphatase inhibitors. Bestatin inhibition of hatching was reversible. Finally, egg hatching could be induced by addition of a porcine LAP. The results indicate that this digenean utilizes both LAP of the snail host and movement of miracidia for hatching.

  13. Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany

    PubMed Central

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. PMID:26214509

  14. Beech Fructification and Bank Vole Population Dynamics--Combined Analyses of Promoters of Human Puumala Virus Infections in Germany.

    PubMed

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.

  15. LitR of Vibrio salmonicida Is a Salinity-Sensitive Quorum-Sensing Regulator of Phenotypes Involved in Host Interactions and Virulence

    PubMed Central

    Bjelland, Ane Mohn; Sørum, Henning; Tegegne, Daget Ayana; Winther-Larsen, Hanne C.; Willassen, Nils Peder

    2012-01-01

    Vibrio (Aliivibrio) salmonicida is the causal agent of cold-water vibriosis, a fatal bacterial septicemia primarily of farmed salmonid fish. The molecular mechanisms of invasion, colonization, and growth of V. salmonicida in the host are still largely unknown, and few virulence factors have been identified. Quorum sensing (QS) is a cell-to-cell communication system known to regulate virulence and other activities in several bacterial species. The genome of V. salmonicida LFI1238 encodes products presumably involved in several QS systems. In this study, the gene encoding LitR, a homolog of the master regulator of QS in V. fischeri, was deleted. Compared to the parental strain, the litR mutant showed increased motility, adhesion, cell-to-cell aggregation, and biofilm formation. Furthermore, the litR mutant produced less cryptic bioluminescence, whereas production of acylhomoserine lactones was unaffected. Our results also indicate a salinity-sensitive regulation of LitR. Finally, reduced mortality was observed in Atlantic salmon infected with the litR mutant, implying that the fish were more susceptible to infection with the wild type than with the mutant strain. We hypothesize that LitR inhibits biofilm formation and favors planktonic growth, with the latter being more adapted for pathogenesis in the fish host. PMID:22371373

  16. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    PubMed

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of cementum or collagen fibers inserted into cementum - indicating that some stem cells are not active around dental implants or their niches are not available. Investigation of these similarities and differences between teeth and implants will help to develop a better understanding of the biology and physiologic functioning of the periodontium.

  17. Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.

    PubMed

    Rich, Mélanie K; Courty, Pierre-Emmanuel; Roux, Christophe; Reinhardt, Didier

    2017-08-08

    Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots. We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins. Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.

  18. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    PubMed

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017 Loh et al.

  19. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  20. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    PubMed Central

    Krishnan, Manoj N.; Garcia-Blanco, Mariano A.

    2014-01-01

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970

  1. Targeting host factors to treat West Nile and dengue viral infections.

    PubMed

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-10

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  2. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections.

    PubMed

    Campos, Rafael K; Garcia-Blanco, Mariano A; Bradrick, Shelton S

    2017-07-09

    Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.

  3. Host and Environmental Factors Modulate the Exposure of Free-Ranging and Farmed Red Deer (Cervus elaphus) to Coxiella burnetii

    PubMed Central

    Velasco Ávila, Ana Luisa; Boadella, Mariana; Beltrán-Beck, Beatriz; Barasona, José Ángel; Santos, João P. V.; Queirós, João; García-Pérez, Ana L.; Barral, Marta; Ruiz-Fons, Francisco

    2015-01-01

    The control of multihost pathogens, such as Coxiella burnetii, should rely on accurate information about the roles played by the main hosts. We aimed to determine the involvement of the red deer (Cervus elaphus) in the ecology of C. burnetii. We predicted that red deer populations from broad geographic areas within a European context would be exposed to C. burnetii, and therefore, we hypothesized that a series of factors would modulate the exposure of red deer to C. burnetii. To test this hypothesis, we designed a retrospective survey of 47 Iberian red deer populations from which 1,751 serum samples and 489 spleen samples were collected. Sera were analyzed by enzyme-linked immunosorbent assays (ELISA) in order to estimate exposure to C. burnetii, and spleen samples were analyzed by PCR in order to estimate the prevalence of systemic infections. Thereafter, we gathered 23 variables—within environmental, host, and management factors—potentially modulating the risk of exposure of deer to C. burnetii, and we performed multivariate statistical analyses to identify the main risk factors. Twenty-three populations were seropositive (48.9%), and C. burnetii DNA in the spleen was detected in 50% of the populations analyzed. The statistical analyses reflect the complexity of C. burnetii ecology and suggest that although red deer may maintain the circulation of C. burnetii without third species, the most frequent scenario probably includes other wild and domestic host species. These findings, taken together with previous evidence of C. burnetii shedding by naturally infected red deer, point at this wild ungulate as a true reservoir for C. burnetii and an important node in the life cycle of C. burnetii, at least in the Iberian Peninsula. PMID:26150466

  4. Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus.

    PubMed

    Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M

    2010-03-09

    Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.

  5. The role of probiotics on each component of the metabolic syndrome and other cardiovascular risks.

    PubMed

    Miglioranza Scavuzzi, Bruna; Miglioranza, Lucia Helena da Silva; Henrique, Fernanda Carla; Pitelli Paroschi, Thanise; Lozovoy, Marcell Alysson Batisti; Simão, Andréa Name Colado; Dichi, Isaias

    2015-01-01

    Probiotics are defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The consumption of probiotics has gained increasing recognition from the scientific community due to the promising effects on metabolic health through gut microbiota modulation. This article presents a review of scientific studies investigating probiotic species and their effects on different risk factors of the metabolic syndrome (MetS). This article also presents a summary of the major mechanisms involved with gut microbiota and the components of the MetS and raises the key issues to be considered by scientists in search of probiotics species for treatment of patients suffering from this metabolic disorder. Probiotics may confer numerous health benefits to the host through positive gut microbiota modulation. The strain selection is the most important factor for determining health effects. Further studies may consider gut microbiota as a novel target for prevention and management of MetS components and other cardiovascular risks.

  6. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense.

    PubMed

    Harashima, Ai; Guettouche, Toumy; Barber, Glen N

    2010-12-01

    Here, we describe a new mechanism of host defense that involves the nuclear factors associated with dsRNA (NFAR1 [90 kDa] and NFAR2 [110 kDa]), which constitute part of the shuttling ribonuclear protein (RNP) complex. Activation of the dsRNA-activated protein kinase PKR by viral RNA enabled phosphorylation of NFAR1 and NFAR2 on Thr 188 and Thr 315, an event found to be evolutionarily conserved in Xenopus. Phosphorylated NFAR1 and NFAR2 became dissociated from nuclear factor 45 (NF45), which was requisite for NFAR reshuttling, causing the NFARs to be retained on ribosomes, associate with viral transcripts, and impede viral replication. Cre-loxP animals with depletion of the NFARs in the thymus were exquisitely sensitive to the cytoplasmic replicating virus VSV (vesicular stomatitis virus). Thus, the NFARs constitute a novel, conserved mechanism of host defense used by the cell to detect and impede aberrant translation events.

  7. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  8. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling.

    PubMed

    Jauregui, Andrew R; Savalia, Dhruti; Lowry, Virginia K; Farrell, Cara M; Wathelet, Marc G

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues.

  9. Review of osteoimmunology and the host response in endodontic and periodontal lesions

    PubMed Central

    Graves, Dana T.; Oates, Thomas; Garlet, Gustavo P.

    2011-01-01

    Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However, there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast, bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation is likely to be important so that a host response that is restricted to a subepithelial space is associated with gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the persistence of inflammation is also thought to be important in periodontitis since inflammation present during coupled bone formation may limit the capacity to repair the resorbed bone. PMID:21547019

  10. Determinants of host species range in plant viruses.

    PubMed

    Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy

    2017-04-01

    Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.

  11. Understanding the optimal learning environment in palliative care.

    PubMed

    Connell, Shirley E; Yates, Patsy; Barrett, Linda

    2011-07-01

    The learning experiences of student nurses undertaking clinical placement are reported widely, however little is known about the learning experiences of health professionals undertaking continuing professional development (CPD) in a clinical setting, especially in palliative care. The aim of this study, which was conducted as part of the national evaluation of a professional development program involving clinical attachments with palliative care services (The Program of Experience in the Palliative Approach [PEPA]), was to explore factors influencing the learning experiences of participants over time. Thirteen semi-structured, one-to-one telephone interviews were conducted with five participants throughout their PEPA experience. The analysis was informed by the traditions of adult, social and psychological learning theories and relevant literature. The participants' learning was enhanced by engaging interactively with host site staff and patients, and by the validation of their personal and professional life experiences together with the reciprocation of their knowledge with host site staff. Self-directed learning strategies maximised the participants' learning outcomes. Inclusion in team activities aided the participants to feel accepted within the host site. Personal interactions with host site staff and patients shaped this social/cultural environment of the host site. Optimal learning was promoted when participants were actively engaged, felt accepted and supported by, and experienced positive interpersonal interactions with, the host site staff. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses

    PubMed Central

    Iwasaki, Masaharu; Caì, Yíngyún; de la Torre, Juan C.

    2018-01-01

    Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans. PMID:29462184

  13. Stromal-Derived Factor-1α (CXCL12) Levels Increase in Periodontal Disease

    PubMed Central

    Havens, Aaron M.; Chiu, Evonne; Taba, Mario; Wang, Jincheng; Shiozawa, Yusuke; Jung, Younghun; Taichman, L. Susan; D'Silva, Nisha J.; Gopalakrishnan, R.; Wang, CunYu; Giannobile, William V.; Taichman, Russell S.

    2008-01-01

    Background The CXC chemokine receptor 4 (CXCR4) and its ligand, stromal cell–derived factor-1 (SDF-1α or CXC chemokine ligand 12) are involved in the trafficking of leukocytes into and out of extravascular tissues. The purpose of this study was to determine whether SDF-1α secreted by host cells plays a role in recruiting inflammatory cells into the periodontia during local inflammation. Methods SDF-1α levels were determined by enzyme-linked immunosorbent assay in gingival crevicular fluid (GCF) of 24 individuals with periodontitis versus healthy individuals in tissue biopsies and in a preclinical rat model of Porphyromonas gingivalis lipopolysaccharide–induced experimental bone loss. Neutrophil chemotaxis assays were also used to evaluate whether SDF-1α plays a role in the recruitment of host cells at periodontal lesions. Results Subjects with periodontal disease had higher levels of SDF-1α in their GCF compared to healthy subjects. Subjects with periodontal disease who underwent mechanical therapy demonstrated decreased levels of SDF-1α. Immunohistologic staining showed that SDF-1α and CXCR4 levels were elevated in samples obtained from periodontally compromised individuals. Similar results were observed in the rodent model. Neutrophil migration was enhanced in the presence of SDF-1α, mimicking immune cell migration in periodontal lesions. Conclusions SDF-1α may be involved in the immune defense pathway activated during periodontal disease. Upon the development of diseased tissues, SDF-1α levels increase and may recruit host defensive cells into sites of inflammation. These studies suggest that SDF-1α may be a useful biomarker for the identification of periodontal disease progression. PMID:18454663

  14. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  15. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast

    PubMed Central

    Nagy, Peter D.

    2017-01-01

    Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. PMID:28759634

  16. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates

    PubMed Central

    Pietrocola, Giampiero; Arciola, Carla Renata; Rindi, Simonetta; Montanaro, Lucio; Speziale, Pietro

    2018-01-01

    Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of “old” and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention. PMID:29686667

  17. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence

    PubMed Central

    Yue, Min; Schifferli, Dieter M.

    2014-01-01

    Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories. PMID:24454310

  18. The genome of Eimeria falciformis--reduction and specialization in a single host apicomplexan parasite.

    PubMed

    Heitlinger, Emanuel; Spork, Simone; Lucius, Richard; Dieterich, Christoph

    2014-08-20

    The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

  19. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome.

    PubMed

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-02-24

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.

  20. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  1. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.

  2. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  3. Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil.

    PubMed

    Barbosa, Deibs; Alencar, Valquíria Campos; Santos, Daiene Souza; de Freitas Oliveira, Ana Cláudia; de Souza, Alessandra A; Coletta-Filho, Helvecio D; de Oliveira, Regina Souza; Nunes, Luiz R

    2015-05-01

    Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS)--a disease with potential to cause severe economic losses to the Brazilian coffee industry. This paper describes a thorough genomic characterization of coffee-infecting X. fastidiosa strains, initially performed through a microarray-based approach, which demonstrated that CLS strains could be subdivided in two phylogenetically distinct subgroups. Whole-genomic sequencing of two of these bacteria (one from each subgroup) allowed identification of ORFs and horizontally transferred elements (HTEs) that were specific to CLS-related X. fastidiosa strains. Such analyses confirmed the size and importance of HTEs as major mediators of chromosomal evolution amongst these bacteria, and allowed identification of differences in gene content, after comparisons were made with previously sequenced X. fastidiosa strains, isolated from alternative hosts. Although direct experimentation still needs to be performed to elucidate the biological consequences associated with such differences, it was interesting to verify that CLS-related bacteria display variations in genes that produce toxins, as well as surface-related factors (such as fimbrial adhesins and LPS) that have been shown to be involved with recognition of specific host factors in different pathogenic bacteria. © 2015 The Authors.

  4. Sarcoid-like lesions in Paracoccidioidomycosis: immunological factors*

    PubMed Central

    de Medeiros, Vanessa Lucília Silveira; Arruda, Lúcia

    2013-01-01

    The clinical presentation of paracoccidioidomycosis is spectral. Spontaneous cure, state of latency or active disease with different levels of severity can occur after the hematogenous dissemination. The morphology and number of skin lesions will depend on the interaction of host immunity, which is specific and individual, and fungus virulence. Some individuals have natural good immunity, which added to the low virulence of the fungus maintain the presence of well-marked granulomas with no microorganism and negative serology for a long time, making the diagnosis a challenge. Factors inherent to the fungus, however, may modulate the immune response and modify the clinical picture over the time. We present a sarcoidosis-like clinical presentation and discuss the immunological factors involved. PMID:23539015

  5. Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.

    PubMed

    Pueyrredon, J M; Crespo, J E; Castelo, M K

    2017-10-01

    Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.

  6. Eilat virus host range restriction is present at multiple levels of the virus life cycle.

    PubMed

    Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C

    2015-01-15

    Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development

    PubMed Central

    Beheshti, Afshin; Wage, Justin; McDonald, J. Tyson; Lamont, Clare; Peluso, Michael; Hahnfeldt, Philip; Hlatky, Lynn

    2015-01-01

    The concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3ε, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease. PMID:26497558

  8. Probing Molecular Insights into Zika Virus–Host Interactions

    PubMed Central

    Lee, Ina; Li, Ge; Wang, Shusheng; Desprès, Philippe; Zhao, Richard Y.

    2018-01-01

    The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions. PMID:29724036

  9. Probing Molecular Insights into Zika Virus⁻Host Interactions.

    PubMed

    Lee, Ina; Bos, Sandra; Li, Ge; Wang, Shusheng; Gadea, Gilles; Desprès, Philippe; Zhao, Richard Y

    2018-05-02

    The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain⁻Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV⁻host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV⁻host Interactions.

  10. The influence of developmental environment on courtship song in cactophilic Drosophila.

    PubMed

    Iglesias, Patricia P; Soto, Eduardo M; Soto, Ignacio M; Colines, Betina; Hasson, Esteban

    2018-04-15

    Closely related species often differ in the signals involved in sexual communication and mate recognition. Determining the factors influencing signal quality (i.e. signal's content and conspicuousness) provides an important insight into the potential pathways by which these interspecific differences evolve. Host specificity could bias the direction of the evolution of sexual communication and the mate recognition system, favouring sensory channels that work best in the different host conditions. In this study, we focus on the cactophilic sibling species Drosophila buzzatii and D. koepferae that have diverged not only in the sensory channel used for sexual communication and mate recognition but also in the cactus species that use as primary hosts. We evaluate the role of the developmental environment in generating courtship song variation using an isofemale line design. Our results show that host environment during development induces changes in the courtship song of D. koepferae males, but not in D. buzzatii males. Moreover, we report for the first time that host rearing environment affects the conspicuousness of courtship song (i.e. song volume). Our results are mainly discussed in the context of the sensory drive hypothesis. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  11. Cell surface expression of CCR5 and other host factors influence the inhibition of HIV-1 infection of human lymphocytes by CCR5 ligands

    PubMed Central

    Ketas, Thomas J.; Kuhmann, Shawn E.; Palmer, Ashley; Zurita, Juan; He, Weijing; Ahuja, Sunil K.; Klasse, Per Johan; Moore, John P.

    2007-01-01

    Several CCR5 ligands, including small molecules and monoclonal antibodies (MAbs), are being developed as therapies for infection with strains of human immunodeficiency virus type 1 (HIV-1) that use CCR5 for entry (R5 viruses). The efficacy of such therapies could be influenced by inter-individual differences in host factors, such as CCR5 expression levels. To study this, we used peripheral blood mononuclear cells (PBMCs) from humans and rhesus macaques. The half-maximal inhibitory concentrations (IC50) of the small-molecule CCR5 ligands CMPD167, UK427,857 and SCH-D, and of the PRO 140 MAb, differ by >2 logs in a donor-dependent manner. We studied this variation by using flow cytometry to measure CCR5 expression on PBMCs from six of the human donors: the IC50 values of both SCH-D and PRO 140 correlated with CCR5 expression (R2 = 0.64 and 0.99, respectively). We also determined the efficacy of the CCR5 ligands against HIV-1 infection of HeLa-derived cell lines that express CD4 at the same level but vary 2-fold in CCR5 expression (JC.48 and JC.53 cells). The moderately greater CCR5 expression on the JC.53 than the JC.48 cells was associated with proportionately higher median IC50 values for all four CCR5 ligands but not for a soluble CD4-based inhibitor or a non-nucleoside reverse transcriptase inhibitor. We conclude that differences in CCR5 expression on human PBMCs, which can be affected by CCL3L1 gene dose, may influence the antiviral potency of CCR5 ligands in vitro, but other host factors are also likely to be involved. These host factors may affect the clinical activity of CCR5 inhibitors, including their use as topical microbicides to prevent HIV-1 transmission. PMID:17428518

  12. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770

  13. A Host Susceptibility Gene, DR1, Facilitates Influenza A Virus Replication by Suppressing Host Innate Immunity and Enhancing Viral RNA Replication

    PubMed Central

    Hsu, Shih-Feng; Su, Wen-Chi; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication. Genome-wide transcriptomic analysis showed that there was a strong induction of interferon-stimulated gene (ISG) expression after prolonged DR1 KD. We found that beta interferon (IFN-β) was induced by DR1 KD, thereby activating the JAK-STAT pathway to turn on ISG expression, which led to a strong inhibition of IAV replication. This result suggests that DR1 in normal cells suppresses IFN induction, probably to prevent undesired cytokine production, but that this suppression may create a milieu that favors IAV replication once cells are infected. Furthermore, biochemical assays of viral RNA replication showed that DR1 KD suppressed viral RNA replication. We also showed that DR1 associated with all three subunits of the viral RNA-dependent RNA polymerase (RdRp) complex, indicating that DR1 may interact with individual components of the viral RdRp complex to enhance viral RNA replication. Thus, DR1 may be considered a novel host susceptibility gene for IAV replication via a dual mechanism, not only suppressing the host defense to indirectly favor IAV replication but also directly facilitating viral RNA replication. IMPORTANCE Investigations of virus-host interactions involved in influenza A virus (IAV) replication are important for understanding viral pathogenesis and host defenses, which may manipulate influenza virus infection or prevent the emergence of drug resistance caused by a high error rate during viral RNA replication. For this purpose, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNAi screen as a positive regulator in IAV replication. In the current studies, we showed that DR1 suppressed the gene expression of a large set of host innate immunity genes, which indirectly facilitated IAV replication in the event of IAV infection. Besides this scenario, DR1 also directly enhanced the viral RdRp activity, likely through associating with individual components of the viral RdRp complex. Thus, DR1 represents a novel host susceptibility gene for IAV replication via multiple functions, not only suppressing the host defense but also enhancing viral RNA replication. DR1 may be a potential target for drug development against influenza virus infection. PMID:25589657

  14. Host pathogen interactions in Helicobacter pylori related gastric cancer

    PubMed Central

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  15. Host pathogen interactions in Helicobacter pylori related gastric cancer.

    PubMed

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-03-07

    Helicobacter pylori ( H. pylori ), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori -related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori -driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.

  16. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens.

    PubMed

    Eichenlaub, Rudolf; Gartemann, Karl-Heinz

    2011-01-01

    Clavibacter michiganensis subspecies are actinomycete plant pathogens residing mainly in the xylem vessels that infect economically important host plants. In the Clavibacter subspecies michiganensis and sepedonicus, infecting tomato and potato, respectively, essential factors for disease induction are plasmid encoded and loss of the virulence plasmids converts these biotrophic pathogens into endophytes. The genes responsible for successful colonization of the host plant, including evasion/suppression of plant defense reactions, are chromosomally encoded. Several serine proteases seem to be involved in colonization. They are secreted by Clavibacter, but their targets remain unknown. A type 3 secretion system (T3SS) translocating effectors into the plant cells is absent in these gram-positive pathogens. With the development of the modern 'omics technologies for RNA and proteins based on the known genome sequences, a new phase in the investigation of the mechanisms of plant pathogenicity has begun to allow the genome-wide investigation of the Clavibacter-host interaction. Copyright © 2011 by Annual Reviews. All rights reserved.

  17. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  18. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  19. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  20. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete.

    PubMed

    Grove, Arianna P; Liveris, Dionysios; Iyer, Radha; Petzke, Mary; Rudman, Joseph; Caimano, Melissa J; Radolf, Justin D; Schwartz, Ira

    2017-08-22

    The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi , the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ 70 -dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB , the glp operon, and bba74 As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB - and glp-gfp constructs containing only the minimal (-35/-10) σ 70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between -165 and -82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74 ) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential "gatekeeper" role of RpoS throughout the B. burgdorferi enzootic cycle. IMPORTANCE Borrelia burgdorferi , the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a "gatekeeper" due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal. Copyright © 2017 Grove et al.

  1. Pathogenic Leptospira interrogans Exoproteins Are Primarily Involved in Heterotrophic Processes

    PubMed Central

    Eshghi, Azad; Pappalardo, Elisa; Hester, Svenja; Thomas, Benjamin; Pretre, Gabriela

    2015-01-01

    Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins. PMID:25987703

  2. Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe.

    PubMed

    Stanko, Michal; Fričová, Jana; Miklisová, Dana; Khokhlova, Irina S; Krasnov, Boris R

    2015-06-01

    We studied the effects of environment- (habitat, season) and host-related (sex, body mass) factors on the occurrence of four species of lice (Insecta:Phthiraptera:Anoplura) on six rodent species (Rodentia:Muridae). We asked how these factors influence the occurrence of lice on an individual host and whether different rodent-louse associations demonstrate consistent trends in these effects. We found significant effects of at least one environment-related and at least one host-related factor on the louse occurrence in five of six host-louse associations. The effect of habitat was significant in two associations with the occurrence of lice being more frequent in lowland than in mountain habitats. The effect of season was significant in five associations with a higher occurrence of infestation during the warm season in four associations and the cold season in one association. Host sex affected significantly the infestation by lice in three associations with a higher frequency of infestation in males. Host body mass affected the occurrence of lice in all five associations, being negative in wood mice and positive in voles. In conclusion, lice were influenced not only by the host- but also by environment-related factors. The effects of the latter could be mediated via life history parameters of a host.

  3. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.

    PubMed

    Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D

    2013-09-01

    Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  4. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

    PubMed Central

    Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne

    2013-01-01

    Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132

  5. Cryptosporidium parvum Induces an Endoplasmic Stress Response in the Intestinal Adenocarcinoma HCT-8 Cell Line*

    PubMed Central

    Morada, Mary; Pendyala, Lakhsmi; Wu, Gang; Merali, Salim; Yarlett, Nigel

    2013-01-01

    Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N1-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N1-acetylspermine and N1-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N1-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase. PMID:23986438

  6. The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6.

    PubMed

    Ceyssens, Pieter-Jan; Mesyanzhinov, Vadim; Sykilinda, Nina; Briers, Yves; Roucourt, Bart; Lavigne, Rob; Robben, Johan; Domashin, Artem; Miroshnikov, Konstantin; Volckaert, Guido; Hertveldt, Kirsten

    2008-02-01

    Pseudomonas aeruginosa phage YuA (Siphoviridae) was isolated from a pond near Moscow, Russia. It has an elongated head, encapsulating a circularly permuted genome of 58,663 bp, and a flexible, noncontractile tail, which is terminally and subterminally decorated with short fibers. The YuA genome is neither Mu- nor lambda-like and encodes 78 gene products that cluster in three major regions involved in (i) DNA metabolism and replication, (ii) host interaction, and (iii) phage particle formation and host lysis. At the protein level, YuA displays significant homology with phages M6, phiJL001, 73, B3, DMS3, and D3112. Eighteen YuA proteins were identified as part of the phage particle by mass spectrometry analysis. Five different bacterial promoters were experimentally identified using a promoter trap assay, three of which have a sigma54-specific binding site and regulate transcription in the genome region involved in phage particle formation and host lysis. The dependency of these promoters on the host sigma54 factor was confirmed by analysis of an rpoN mutant strain of P. aeruginosa PAO1. At the DNA level, YuA is 91% identical to the recently (July 2007) annotated phage M6 of the Lindberg typing set. Despite this level of DNA homology throughout the genome, both phages combined have 15 unique genes that do not occur in the other phage. The genome organization of both phages differs substantially from those of the other known Pseudomonas-infecting Siphoviridae, delineating them as a distinct genus within this family.

  7. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  8. Prevention of Escherichia coli K1 penetration of the blood-brain barrier by counteracting the host cell receptor and signaling molecule involved in E. coli invasion of human brain microvascular endothelial cells.

    PubMed

    Zhu, Longkun; Pearce, Donna; Kim, Kwang Sik

    2010-08-01

    Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interaction with its receptor, the 67-kDa laminin receptor (67LR), and host signaling molecules including cytosolic phospholipase A(2)alpha (cPLA(2)alpha). In the present study, we showed that treatment with etoposide resulted in decreased expression of 67LR on HBMEC and inhibited E. coli invasion of HBMEC. Pharmacological inhibition of cysteinyl leukotrienes, lipoxygenated products of arachidonic acid released by cPLA(2)alpha, using montelukast (an antagonist of the type 1 cysteinyl leukotriene receptor) also inhibited E. coli invasion of HBMEC. E. coli penetration into the brain was significantly decreased by etoposide as well as by montelukast, and a combination of etoposide and montelukast was significantly more effective in inhibiting E. coli K1 invasion of HBMEC than single agents alone. These findings demonstrate for the first time that counteracting the HBMEC receptor and signaling molecule involved in E. coli invasion of HBMEC provides a novel approach for prevention of E. coli penetration into the brain, the essential step required for development of E. coli meningitis.

  9. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague.

    PubMed

    Lemaître, Nadine; Sebbane, Florent; Long, Daniel; Hinnebusch, B Joseph

    2006-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system that transfers six Yop effector proteins into host cells. One of these proteins, YopJ, has been shown to disrupt host cell signaling pathways involved in proinflammatory cytokine production and to induce macrophage apoptosis in vitro. YopJ-dependent apoptosis in mesenteric lymph nodes has also been demonstrated in a mouse model of Yersinia pseudotuberculosis infection. These results suggest that YopJ attenuates the host innate and adaptive immune response during infection, but the role of YopJ during bubonic plague has not been completely established. We evaluated the role of Yersinia pestis YopJ in a rat model of bubonic plague following intradermal infection with a fully virulent Y. pestis strain and an isogenic yopJ mutant. Deletion of yopJ resulted in a twofold decrease in the number of apoptotic immune cells in the bubo and a threefold increase in serum tumor necrosis factor alpha levels but did not result in decreased virulence, systemic spread, or colonization levels in the spleen and blood. Our results indicate that YopJ is not essential for bubonic plague pathogenesis, even after peripheral inoculation of low doses of Y. pestis. Instead, the effects of YopJ appear to overlap and augment the immunomodulatory effects of other Y. pestis virulence factors.

  10. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.

    PubMed

    Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R

    2011-08-24

    Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.

  11. Dynamics of Vector-Host Interactions in Avian Communities in Four Eastern Equine Encephalitis Virus Foci in the Northeastern U.S.

    PubMed Central

    Molaei, Goudarz; Thomas, Michael C.; Muller, Tim; Medlock, Jan; Shepard, John J.; Armstrong, Philip M.; Andreadis, Theodore G.

    2016-01-01

    Background Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Methodology and principle findings Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Conclusion and significance Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci. PMID:26751704

  12. Dynamics of Vector-Host Interactions in Avian Communities in Four Eastern Equine Encephalitis Virus Foci in the Northeastern U.S.

    PubMed

    Molaei, Goudarz; Thomas, Michael C; Muller, Tim; Medlock, Jan; Shepard, John J; Armstrong, Philip M; Andreadis, Theodore G

    2016-01-01

    Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.

  13. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success

    PubMed Central

    Alacid, Elisabet; Park, Myung G.; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If, however, highly susceptible hosts are absent from the community, the parasitoid population could suffer a dilution effect maintaining a lower parasitoid density. Therefore, both host community structure and host susceptibility will determine infectivity in the field. PMID:27252688

  14. Association of interleukin 18, interleukin 2, and tumor necrosis factor polymorphisms with subacute sclerosing panencephalitis.

    PubMed

    Piskin, Ibrahim Etem; Karakas-Celik, Sevim; Calik, Mustafa; Abuhandan, Mahmut; Kolsal, Ebru; Genc, Gunes Cakmak; Iscan, Akin

    2013-06-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive inflammatory and degenerative disorder of the central nervous system. The measles virus (MV) and host and environmental factors are involved in the development of SSPE, but the precise mechanism by which the MV causes SSPE is still unknown. Studies have indicated that in SSPE patients, specific polymorphisms of certain genes are most likely involved in impairing the host's ability to eradicate the MV. The purpose of our study was to elucidate the role of polymorphisms in the genes encoding interleukin (IL)-2, IL-18, and tumor necrosis factor alpha (TNF-α) in the development of SSPE. Using the polymerase chain reaction with sequence-specific primers, the single-nucleotide polymorphisms (SNPs) of the promoter regions of IL-2 (-330), TNF-α (-308), and IL-18 (-137 and -607) were studied in 54 patients with SSPE and 72 healthy controls. The frequency of SSPE patients with the AA genotype of IL-18 at position -607 was significantly higher than the frequency of those with the CC genotype (p<0.001, odds ratio [OR]: 5.76), and a significantly higher proportion of patients had the C allele at -137 compared with the controls (p=0.002, OR: 2.72). In a haplotype analysis of two SNPs in the IL-18 gene, the frequency of the CA haplotype was significantly higher in SSPE patients (p<0.001, OR: 3.99) than in the controls. The IL-2 (-330) and TNF-α (-308) polymorphisms revealed no significant differences. In conclusion, these data suggest that the IL-18 gene polymorphisms at position -607 and -137 might be genetic risk factors for the SSPE disease.

  15. Class I ADP-Ribosylation Factors Are Involved in Enterovirus 71 Replication

    PubMed Central

    Wang, Jianmin; Du, Jiang; Jin, Qi

    2014-01-01

    Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies. PMID:24911624

  16. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response.

    PubMed

    Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé

    2018-02-01

    Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  17. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.)

    PubMed Central

    Carere, Jason; Fitzgerald, Timothy L.; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2017-01-01

    Abstract Background and Aims Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum. The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen. PMID:27941094

  18. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.).

    PubMed

    Powell, Jonathan J; Carere, Jason; Fitzgerald, Timothy L; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L; Gardiner, Donald M; Manners, John M; Henry, Robert J; Kazan, Kemal

    2017-03-01

    Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Intersections between immune responses and morphological regulation in plants.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2010-06-01

    Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.

  20. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain

    PubMed Central

    Ou, Judy J. J.; Drilling, Amanda J.; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P.; Psaltis, Alkis J.; Wormald, Peter J.; Vreugde, Sarah

    2016-01-01

    Background: Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2SCV) developed from a clinical isolate (WCH-SK2WT) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2WT and WCH-SK2SCV infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2WT or WCH-SK2SCV, and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2WT and WCH-SK2SCV. Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2WT infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2SCV infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2SCV and WCH-SK2WT were similar, WCH-SK2SCV intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2WT infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival. PMID:28083514

  1. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  2. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    PubMed Central

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  3. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    PubMed

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  4. Project CHECO Southeast Asia Report. Air Defense in Southeast Asia 1945 - 1971

    DTIC Science & Technology

    1973-01-17

    a Thus the planning and building of the TACS in MSEA continued. Opti- mally, such a system would be designed and installed on an integrated basis; 3...psychological factors. Designed to allow unilateral or Joint U.S./Host country operations, this enabled the systems of the three countries involved to...help prevent violations of the Chinese communist 57/ border. The capability of the airborne search radar system (AN/APS 95) was limited: designed for

  5. Clinical and Microbiological Aspects of Trichomonas vaginalis

    PubMed Central

    Petrin, Dino; Delgaty, Kiera; Bhatt, Renuka; Garber, Gary

    1998-01-01

    Trichomonas vaginalis, a parasitic protozoan, is the etiologic agent of trichomoniasis, a sexually transmitted disease (STD) of worldwide importance. Trichomoniasis is the most common nonviral STD, and it is associated with many perinatal complications, male and female genitourinary tract infections, and an increased incidence of HIV transmission. Diagnosis is difficult, since the symptoms of trichomoniasis mimic those of other STDs and detection methods lack precision. Although current treatment protocols involving nitroimidazoles are curative, metronidazole resistance is on the rise, outlining the need for research into alternative antibiotics. Vaccine development has been limited by a lack of understanding of the role of the host immune response to T. vaginalis infection. The lack of a good animal model has made it difficult to conduct standardized studies in drug and vaccine development and pathogenesis. Current work on pathogenesis has focused on the host-parasite relationship, in particular the initial events required to establish infection. These studies have illustrated that the pathogenesis of T. vaginalis is indeed very complex and involves adhesion, hemolysis, and soluble factors such as cysteine proteinases and cell-detaching factor. T. vaginalis interaction with the members of the resident vaginal flora, an advanced immune evasion strategy, and certain stress responses enable the organism to survive in its changing environment. Clearly, further research and collaboration will help elucidate these pathogenic mechanisms, and with better knowledge will come improved disease control. PMID:9564565

  6. The manifold phospholipases A of Legionella pneumophila - identification, export, regulation, and their link to bacterial virulence.

    PubMed

    Banerji, Sangeeta; Aurass, Philipp; Flieger, Antje

    2008-04-01

    The intracellular lung pathogen Legionella pneumophila expresses secreted and cell-associated phospholipase A (PLA) and lysophospholipase A (LPLA) activities belonging to at least three enzyme families. The first family consists of three secreted PLA and LPLA activities displaying the amino acid signature motif 'GDSL'; PlaA, PlaC and PlaD. The second group contains the cell-associated and very potent PLA/LPLA, PlaB. The third group, the patatin-like proteins, comprises 11 members. One patatin-like protein, PatA/VipD, shows LPLA and PLA activities and interferes with vesicular trafficking when expressed in yeast and therefore is possibly involved in the intracellular infection process. Likewise, members of the first two phospholipase families have roles in bacterial virulence because phospholipases are important virulence factors that have been shown to promote bacterial survival, spread and host cell modification/damage. The GDSL enzyme PlaA detoxifies cytolytic lysophospholipids, and PlaB shows contact-dependent haemolytic activity. PlaC acylates cholesterol, a lipid present in eukaryotic hosts but not in the bacterium. Many of the L. pneumophila PLAs are exported by the type II Lsp or the type IVB Dot/Icm secretion systems involved in virulence factor export. Moreover, the regulation of lipolytic activities depends on the transcriptional regulators LetA/S and RpoS, inducing the expression of virulence traits, and on posttranscriptional activators like the zinc metalloprotease ProA.

  7. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  8. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  9. Phenotypic plasticity in Drosophila cactophilic species: the effect of competition, density, and breeding sites.

    PubMed

    Fanara, Juan Jose; Werenkraut, Victoria

    2017-08-01

    Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  10. Status of and candidates for cell therapy in liver cirrhosis: overcoming the "point of no return" in advanced liver cirrhosis.

    PubMed

    Terai, Shuji; Tsuchiya, Atsunori

    2017-02-01

    The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.

  11. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.

    PubMed

    Duval, Valérie; Lister, Ida M

    2013-01-01

    Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli , three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.

  12. Role of antibiotic therapy for bacterial vaginosis and intermediate flora in pregnancy.

    PubMed

    Ugwumadu, Austin

    2007-06-01

    Bacterial vaginosis and intermediate flora are associated with late miscarriage and preterm delivery. The mechanisms involved are not yet fully understood. Clinical trials of antibiotic therapy to reduce these complications have yielded conflicting results. These trials, however, were conducted in mixed populations of pregnant women with variable risk profiles for preterm delivery. Furthermore, investigators used different criteria for diagnosis, treated with different antibiotics at different doses and via different routes, and initiated treatment at different gestational ages. Over 80% of pregnant women with abnormal vaginal flora have a good outcome, and in some populations the presence of bacterial vaginosis is not associated with preterm delivery, suggesting that other host factors may modify the risk. Recent studies have examined the roles of genetic regulation of host immune response, bacterial pathogenic factors, and enzymes in the vagina, and how these factors interact to drive a given outcome. These markers have the potential to better define the women at maximal risk and therefore guide future interventions. This chapter aims to appraise the current state of treatment of abnormal vaginal flora in pregnancy and suggest appropriate management based on the available evidence.

  13. Bacillus megaterium SF185 induces stress pathways and affects the cell cycle distribution of human intestinal epithelial cells.

    PubMed

    Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A

    2016-09-01

    The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.

  14. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?

    PubMed Central

    Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.

    2017-01-01

    Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896

  15. Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad.

    PubMed

    Bulgarella, Mariana; Heimpel, George E

    2015-09-01

    Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.

  16. The difference in the stimulation by putrescine of DNA synthesis using DNA polymerase extracts of normal rat liver or of tumour tissue or host liver from tumour-bearing rats.

    PubMed

    Taguchi, Takahiko; Kurata, Sumiko; Ohashi, Mochihiko

    2002-09-01

    Putrescine biosynthesis is elevated before DNA replication, and a stimulation of DNA synthesis by 20 mM putrescine has been found using an in vitro DNA synthesizing system. Furthermore, this stimulation of DNA synthesis by putrescine involves a particular factor (factor PA). This factor PA stimulates DNA polymerases alpha, beta, and gamma, and is present in nuclei and mitochondria but not in cytoplasm. Factor PA loses about 80% of its activity by heating at 45 degrees C for 15 min or by hydrolysis with 100 mg ml(-1) Enzygel trypsin. These properties indicate that factor PA is a protein. Its size is estimated to be about 2.1 S. DNA synthesis in nuclear and mitochondrial DNA polymerase extracts from tumour tissues and host livers of tumour-bearing rats are not stimulated by 20 mM putrescine. However, the addition of excess factor PA to DNA synthesizing systems using DNA polymerase extracts from proliferative tissues again results in a stimulation of DNA synthesis by exogenous putrescine. These findings indicate that the stimulatory effect of DNA synthesis in vitro by exogenous putrescine is controlled by the ratio between factor PA and endogenously synthesized putrescine in proliferative tissues or that sent by the bloodstream from proliferative tissues. These results suggest that a non-stimulatory effect of putrescine on DNA synthesis may be diagnostic in tumour-bearing patients. Copyright 2002 John Wiley & Sons, Ltd.

  17. Impact of Manganese, Copper and Zinc Ions on the Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583

    PubMed Central

    Coelho Abrantes, Marta; Lopes, Maria de Fátima; Kok, Jan

    2011-01-01

    Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn2+, Mn2+ and Cu2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles. PMID:22053193

  18. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  19. The Staphylococcus aureus RNome and Its Commitment to Virulence

    PubMed Central

    Felden, Brice; Vandenesch, François; Bouloc, Philippe; Romby, Pascale

    2011-01-01

    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity. PMID:21423670

  20. The role of gene-gene interaction in the prediction of criminal behavior.

    PubMed

    Boutwell, Brian B; Menard, Scott; Barnes, J C; Beaver, Kevin M; Armstrong, Todd A; Boisvert, Danielle

    2014-04-01

    A host of research has examined the possibility that environmental risk factors might condition the influence of genes on various outcomes. Less research, however, has been aimed at exploring the possibility that genetic factors might interact to impact the emergence of human traits. Even fewer studies exist examining the interaction of genes in the prediction of behavioral outcomes. The current study expands this body of research by testing the interaction between genes involved in neural transmission. Our findings suggest that certain dopamine genes interact to increase the odds of criminogenic outcomes in a national sample of Americans. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Comparative analysis of Leishmania exoproteomes: implication for host-pathogen interactions.

    PubMed

    Peysselon, Franck; Launay, Guillaume; Lisacek, Frédérique; Duclos, Bertrand; Ricard-Blum, Sylvie

    2013-12-01

    Leishmaniasis is a vector-borne disease caused by the protozoa Leishmania. We have analyzed and compared the sequences of three experimental exoproteomes of Leishmania promastigotes from different species to determine their specific features and to identify new candidate proteins involved in interactions of Leishmania with the host. The exoproteomes differ from the proteomes by a decrease in the average molecular weight per protein, in disordered amino acid residues and in basic proteins. The exoproteome of the visceral species is significantly enriched in sites predicted to be phosphorylated as well as in features frequently associated with molecular interactions (intrinsic disorder, number of disordered binding regions per protein, interaction and/or trafficking motifs) compared to the other species. The visceral species might thus have a larger interaction repertoire with the host than the other species. Less than 10% of the exoproteomes contain heparin-binding and RGD sequences, and ~30% the host targeting signal RXLXE/D/Q. These latter proteins might thus be exported inside the host cell during the intracellular stage of the infection. Furthermore we have identified nine protein families conserved in the three exoproteomes with specific combinations of Pfam domains and selected eleven proteins containing at least three interaction and/or trafficking motifs including two splicing factors, phosphomannomutase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, the paraflagellar rod protein-1D and a putative helicase. Their role in host-Leishmania interactions warrants further investigation but the putative ATP-dependent DEAD/H RNA helicase, which contains numerous interaction motifs, a host targeting signal and two disordered regions, is a very promising candidate. © 2013.

  2. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation

    PubMed Central

    Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko

    2011-01-01

    Summary The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like-1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions. PMID:21938682

  3. Distributional Patterns of Pseudacteon Associated with the Solenopsis saevissima Complex in South America

    PubMed Central

    Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.

    2009-01-01

    Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779

  4. Analysis of protein targets in pathogen-host interaction in infectious diseases: a case study on Plasmodium falciparum and Homo sapiens interaction network.

    PubMed

    Saha, Sovan; Sengupta, Kaustav; Chatterjee, Piyali; Basu, Subhadip; Nasipuri, Mita

    2017-09-23

    Infection and disease progression is the outcome of protein interactions between pathogen and host. Pathogen, the role player of Infection, is becoming a severe threat to life as because of its adaptability toward drugs and evolutionary dynamism in nature. Identifying protein targets by analyzing protein interactions between host and pathogen is the key point. Proteins with higher degree and possessing some topologically significant graph theoretical measures are found to be drug targets. On the other hand, exceptional nodes may be involved in infection mechanism because of some pathway process and biologically unknown factors. In this article, we attempt to investigate characteristics of host-pathogen protein interactions by presenting a comprehensive review of computational approaches applied on different infectious diseases. As an illustration, we have analyzed a case study on infectious disease malaria, with its causative agent Plasmodium falciparum acting as 'Bait' and host, Homo sapiens/human acting as 'Prey'. In this pathogen-host interaction network based on some interconnectivity and centrality properties, proteins are viewed as central, peripheral, hub and non-hub nodes and their significance on infection process. Besides, it is observed that because of sparseness of the pathogen and host interaction network, there may be some topologically unimportant but biologically significant proteins, which can also act as Bait/Prey. So, functional similarity or gene ontology mapping can help us in this case to identify these proteins. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma.

    PubMed

    Pérez-Losada, Marcos; Castro-Nallar, Eduardo; Bendall, Matthew L; Freishtat, Robert J; Crandall, Keith A

    2015-01-01

    High-throughput sequencing (HTS) analysis of microbial communities from the respiratory airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this approach, airway microbiome research has focused on assessing bacterial composition during health and disease, and its variation in relation to clinical and environmental factors, or other microbiomes. Consequently, very little effort has been dedicated to describing the functional characteristics of the airway microbiota and even less to explore the microbe-host interactions. Here we present a simultaneous assessment of microbiome and host functional diversity and host-microbe interactions from the same RNA-seq experiment, while accounting for variation in clinical metadata. Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epithelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to available human and NCBI-NR protein reference databases. Human genes differentially expressed in asthmatics and controls were then used to infer upstream regulators involved in immune and inflammatory responses. Concomitantly, microbial genes were mapped to metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially expressed in asthmatics and controls. Finally, multivariate analysis was applied to find associations between microbiome characteristics and host upstream regulators while accounting for clinical variation. Our study showed significant differences in the metabolism of microbiomes from asthmatic and non-asthmatic children for up to 25% of the functional properties tested. Enrichment analysis of 499 differentially expressed host genes for inflammatory and immune responses revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (virulence) and Proteobacteria abundance were significantly associated with variation in the expression of the upstream regulator IL1A; suggesting that microbiome characteristics modulate host inflammatory and immune systems during asthma.

  6. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    PubMed Central

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the host and also improves our current understanding of this host-parasitoid interaction. PMID:21906285

  7. A Bovine Lymphosarcoma Cell Line Infected with Theileria annulata Exhibits an Irreversible Reconfiguration of Host Cell Gene Expression

    PubMed Central

    Durrani, Zeeshan; Pillai, Sreerekha S.; Baird, Margaret; Shiels, Brian R.

    2013-01-01

    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner. PMID:23840536

  8. Interferon-γ-Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients

    PubMed Central

    Zhou, Jing; Qin, Lingfeng; Yi, Tai; Ali, Rahmat; Li, Qingle; Jiao, Yang; Li, Guangxin; Tobiasova, Zuzana; Huang, Yan; Zhang, Jiasheng; Yun, James J.; Sadeghi, Mehran M.; Giordano, Frank J.; Pober, Jordan S.; Tellides, George

    2015-01-01

    Rationale Transplantation, the most effective therapy for end-stage organ failure, is markedly limited by early-onset cardiovascular disease (CVD) and premature death of the host. The mechanistic basis of this increased CVD is not fully explained by known risk factors. Objective To investigate the role of alloimmune responses in promoting CVD of organ transplant recipients. Methods and Results We established an animal model of graft-exacerbated host CVD by combining murine models of atherosclerosis (apolipoprotein E-deficient recipients on standard diet) and of intra-abdominal graft rejection (heterotopic cardiac transplantation without immunosuppression). CVD was absent in normolipidemic hosts receiving allogeneic grafts and varied in severity among hyperlipidemic grafted hosts according to recipient-donor genetic disparities, most strikingly across an isolated major histocompatibility complex class II antigen barrier. Host disease manifested as increased atherosclerosis of the aorta that also involved the native coronary arteries and new findings of decreased cardiac contractility, ventricular dilatation, and diminished aortic compliance. Exacerbated CVD was accompanied by greater levels of circulating cytokines, especially interferon-γ and other Th1-type cytokines, and showed both systemic and intra-lesional activation of leukocytes, particularly T helper cells. Serologic neutralization of interferon-γ after allotransplantation prevented graft-related atherosclerosis, cardiomyopathy, and aortic stiffening in the host. Conclusions Our study reveals that sustained activation of the immune system due to chronic allorecognition exacerbates the atherogenic diathesis of hyperlipidemia and results in de novo cardiovascular dysfunction in organ transplant recipients. PMID:26399469

  9. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli

    PubMed Central

    2013-01-01

    Background Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. Results We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. Conclusion A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification. PMID:23638724

  10. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli.

    PubMed

    Pandey, Neeraj; Sachan, Annapurna; Chen, Qi; Ruebling-Jass, Kristin; Bhalla, Ritu; Panguluri, Kiran Kumar; Rouviere, Pierre E; Cheng, Qiong

    2013-05-02

    Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.

  11. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  12. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?

    PubMed

    Cenit, María Carmen; Olivares, Marta; Codoñer-Franch, Pilar; Sanz, Yolanda

    2015-08-17

    It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD) patients, untreated and treated with a gluten-free diet (GFD), compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant's gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc.) could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections) in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis.

  13. The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes

    PubMed Central

    Vega, Luis A.; Valdes, Kayla M.; Sundar, Ganesh S.; Belew, Ashton T.; Islam, Emrul; Berge, Jacob; Curry, Patrick; Chen, Steven

    2016-01-01

    ABSTRACT As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host. PMID:27993974

  14. Association of functional polymorphisms of the transforming growth factor B1 gene with survival and graft-versus-host disease after unrelated donor hematopoietic stem cell transplantation

    PubMed Central

    Berro, Mariano; Mayor, Neema P.; Maldonado-Torres, Hazael; Cooke, Louise; Kusminsky, Gustavo; Marsh, Steven G.E.; Madrigal, J. Alejandro; Shaw, Bronwen E.

    2010-01-01

    Background Many genetic factors play major roles in the outcome of hematopoietic stem cell transplants from unrelated donors. Transforming growth factor β1 is a member of a highly pleiotrophic family of growth factors involved in the regulation of numerous immunomodulatory processes. Design and Methods We investigated the impact of single nucleotide polymorphisms at codons 10 and 25 of TGFB1, the gene encoding for transforming growth factor β1, on outcomes in 427 mye-loablative-conditioned transplanted patients. In addition, transforming growth factor β1 plasma levels were measured in 263 patients and 327 donors. Results Patients homozygous for the single nucleotide polymorphism at codon 10 had increased non-relapse mortality (at 3 years: 46.8% versus 29.4%, P=0.014) and reduced overall survival (at 5 years 29.3% versus 42.2%, P=0.013); the differences remained statistically significant in multivariate analysis. Donor genotype alone had no impact, although multiple single nucleotide polymorphisms within the pair were significantly associated with higher non-relapse mortality (at 3 years: 44% versus 29%, P=0.021) and decreased overall survival (at 5 years: 33.8% versus 41.9%, P=0.033). In the 10/10 HLA matched transplants (n=280), recipients of non-wild type grafts tended to have a higher incidence of acute graft-versus-host disease grades II-IV (P=0.052). In multivariate analysis, when analyzed with patients’ genotype, the incidences of both overall and grades II-IV acute graft-versus-host disease were increased (P=0.025 and P=0.009, respectively) in non-wild-type pairs. Conclusions We conclude that increasing numbers of single nucleotide polymorphisms in codon 10 of TGFB1 in patients and donors are associated with a worse outcome following hematopoietic stem cell transplantation from unrelated donors. PMID:19713222

  15. Host Serine/Threonine Kinases mTOR and Protein Kinase C-α Promote InlB-Mediated Entry of Listeria monocytogenes

    PubMed Central

    Bhalla, Manmeet; Law, Daria; Dowd, Georgina C.

    2017-01-01

    ABSTRACT The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. PMID:28461391

  16. West Nile and St. Louis encephalitis viral genetic determinants of avian host competence

    PubMed Central

    Maharaj, Payal D.; Bosco-Lauth, Angela M.; Langevin, Stanley A.; Anishchenko, Michael; Bowen, Richard A.; Reisen, William K.

    2018-01-01

    West Nile virus (WNV) and St. Louis encephalitis (SLEV) virus are enzootically maintained in North America in cycles involving the same mosquito vectors and similar avian hosts. However, these viruses exhibit dissimilar viremia and virulence phenotypes in birds: WNV is associated with high magnitude viremias that can result in mortality in certain species such as American crows (AMCRs, Corvus brachyrhynchos) whereas SLEV infection yields lower viremias that have not been associated with avian mortality. Cross-neutralization of these viruses in avian sera has been proposed to explain the reduced circulation of SLEV since the introduction of WNV in North America; however, in 2015, both viruses were the etiologic agents of concurrent human encephalitis outbreaks in Arizona, indicating the need to re-evaluate host factors and cross-neutralization responses as factors potentially affecting viral co-circulation. Reciprocal chimeric WNV and SLEV viruses were constructed by interchanging the pre-membrane (prM)-envelope (E) genes, and viruses subsequently generated were utilized herein for the inoculation of three different avian species: house sparrows (HOSPs; Passer domesticus), house finches (Haemorhous mexicanus) and AMCRs. Cross-protective immunity between parental and chimeric viruses were also assessed in HOSPs. Results indicated that the prM-E genes did not modulate avian replication or virulence differences between WNV and SLEV in any of the three avian species. However, WNV-prME proteins did dictate cross-protective immunity between these antigenically heterologous viruses. Our data provides further evidence of the important role that the WNV / SLEV viral non-structural genetic elements play in viral replication, avian host competence and virulence. PMID:29447156

  17. Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia.

    PubMed

    Naucler, Pontus; Darenberg, Jessica; Morfeldt, Eva; Ortqvist, Ake; Henriques Normark, Birgitta

    2013-06-01

    Host and bacterial factors as well as different treatment regimens are likely to influence the outcome in patients with bacteraemic pneumococcal pneumonia. To estimate the relative contribution of host factors as well as bacterial factors and antibiotic treatment to mortality in bacteraemic pneumococcal pneumonia. A cohort study of 1580 adult patients with community-acquired bacteraemic pneumococcal pneumonia was conducted between 2007 and 2009 in Sweden. Data on host factors and initial antibiotic treatment were collected from patient records. Antibiotic resistance and serotype were determined for bacterial isolates. Logistic regression analyses were performed to assess risk factors for 30-day mortality. Smoking, alcohol abuse, solid tumour, liver disease and renal disease attributed to 14.9%, 13.1%, 13.1%, 8.0% and 7.4% of the mortality, respectively. Age was the strongest predictor, and mortality increased exponentially from 1.3% in patients <45 years of age to 26.1% in patients aged ≥85 years. There was considerable confounding by host factors on the association between serotype and mortality. Increasing age, liver disease and serotype were associated with mortality in patients admitted to the ICU. Combined treatment with β-lactam antibiotics and macrolide/quinolone was associated with reduced mortality in patients in the ICU, although confounding could not be ruled out. Host factors appear to be more important than the specific serotype as determinants of mortality in patients with bacteraemic pneumococcal pneumonia. Several host factors were identified that contribute to mortality, which is important for prognosis and to guide targeted prevention strategies.

  18. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell.

  19. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    PubMed

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate antiviral responses. Identification of host proteins involved in the ZIKV replication process may lead to the discovery of antiviral targets. In this study, the first quantitative proteomic analysis of ZIKV-infected cells was performed to investigate host proteins involved in the ZIKV replication process. Bioinformatics analysis highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the UPS, bortezomib, can inhibit ZIKV infection in vivo Our study not only illustrated how host cells respond to ZIKV infection but also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. Copyright © 2017 American Society for Microbiology.

  20. Pig immune response to general stimulus and to porcine reproductive and respiratory syndrome virus infection: a meta-analysis approach

    PubMed Central

    2013-01-01

    Background The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. Results The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. Conclusions This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection. PMID:23552196

  1. The Lectin Complement Pathway Is Involved in Protection Against Enteroaggregative Escherichia coli Infection.

    PubMed

    Adler Sørensen, Camilla; Rosbjerg, Anne; Hebbelstrup Jensen, Betina; Krogfelt, Karen Angeliki; Garred, Peter

    2018-01-01

    Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number ( n  = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.

  2. Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System

    PubMed Central

    Gladue, Douglas P.; Baker-Bransetter, Ryan; Holinka, Lauren G.; Fernandez-Sainz, Ignacio J.; O’Donnell, Vivian; Fletcher, Paige; Lu, Zhiqiang; Borca, Manuel V.

    2014-01-01

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle. PMID:24416391

  3. Identification of a Novel Host-Specific IgM Protease in Streptococcus suis

    PubMed Central

    Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter

    2013-01-01

    Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300

  4. Pathogenicity and virulence: another view.

    PubMed Central

    Isenberg, H D

    1988-01-01

    The concepts of pathogenicity and virulence have governed our perception of microbial harmfulness since the time of Pasteur and Koch. These concepts resulted in the recognition and identification of numerous etiological agents and provided natural and synthetic agents effective in therapy and prevention of diseases. However, Koch's postulates--the premier product of this view--place the onus of harmfulness solely on the microbial world. Our recent experiences with polymicrobic and nosocomial infections, legionellosis, and acquired immunodeficiency syndrome point to the host as the major determinant of disease. The principles of parasitism, enunciated by Theobold Smith, approximate more accurately the disturbances of the host-parasite equilibrium we designate as infection. Many complex attributes of microbial anatomy and physiology have been obscured by our dependency on the pure-culture technique. For example, bacterial attachment organelles and the production of exopolysaccharides enable microorganisms to interact with mammalian glycocalyces and specific receptors. In addition, selection, through the use of therapeutic agents, aids in the progression of environmental organisms to members of the intimate human biosphere, with the potential to complicate the recovery of patients. These factors emphasize further the pivotal significance of host reactions in infections. Parasitism, in its negative aspects, explains the emergence of "new" infections that involve harm to more than host organs and cells: we may encounter subtler infections that reveal parasitic and host cell nucleic acid interactions in a form of genomic parasitism. PMID:3060244

  5. The role of microbiome in central nervous system disorders

    PubMed Central

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  6. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    PubMed

    Kumar, D; Tiwari, K; Rajala, M S

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  7. Structure of the Epiphyte Community in a Tropical Montane Forest in SW China

    PubMed Central

    Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel

    2015-01-01

    Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest. PMID:25856457

  8. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.

  9. Profiling of Genes Related to Cross Protection and Competition for NbTOM1 by HLSV and TMV

    PubMed Central

    Wen, Yi; Lim, Grace Xiao-Yun; Wong, Sek-Man

    2013-01-01

    Cross protection is the phenomenon through which a mild strain virus suppresses symptoms induced by a closely related severe strain virus in infected plants. Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) are species within the genus tobamovirus. HLSV can protect Nicotiana benthamiana against TMV-U1 strain, resulting in mild symptoms instead of severe systemic necrosis. The mechanism of cross protection between HLSV and TMV is unknown. In the past, some researchers suggest that the protecting virus strain might occupy virus-specific replication sites within a cell leaving no room for the challenge virus. Quantitative real-time RT-PCR was performed to detect viral RNA levels during cross protection. HLSV accumulation increased in cross protected plants compared with that of single HLSV infected plants, while TMV decreased in cross protected plants. This suggests that there is a competition for host factors between HLSV and TMV for replication. To investigate the mechanism under the cross protection between HLSV and TMV, microarray analysis was conducted to examine the transcriptional levels of global host genes during cross protection, using Tobacco Gene Expression Microarray, 4x44 k slides. The transcriptional level of some host genes corresponded to accumulation level of TMV. Some host genes were up-regulated only by HLSV. Tobamovirus multiplication gene 1 (TOM1), essential for tobamovirus multiplication, was involved in competition for replication by HLSV and TMV during cross protection. Both HLSV and TMV accumulation decreased when NbTOM1 was silenced. A large quantity of HLSV resulted in decreased TMV accumulation in HLSV+TMV (100:1) co-infection. These results indicate that host genes involved in the plant defense response and virus multiplication are up-regulated by challenge virus TMV but not by protecting virus HLSV during cross protection. PMID:24023899

  10. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions

    PubMed Central

    Libânio, Diogo; Dinis-Ribeiro, Mário; Pimentel-Nunes, Pedro

    2015-01-01

    The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis. PMID:26468448

  11. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host.

    PubMed

    Ondracková, M; Simková, A; Gelnar, M; Jurajda, P

    2004-12-01

    Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.

  12. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    PubMed Central

    2010-01-01

    Background Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. Results Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. Conclusion The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host. PMID:21192786

  13. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival.

    PubMed

    Echenique-Rivera, Hebert; Muzzi, Alessandro; Del Tordello, Elena; Seib, Kate L; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide

    2011-05-01

    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.

  14. Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival

    PubMed Central

    Del Tordello, Elena; Seib, Kate L.; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide

    2011-01-01

    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism. PMID:21589640

  15. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma

    PubMed Central

    Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.

    2018-01-01

    Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454

  16. Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.

    PubMed

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria

    2015-04-01

    The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  18. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  19. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection.

    PubMed

    Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng

    2013-01-01

    White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.

  20. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev.

    PubMed

    Banerjee, Atoshi; Benjamin, Ronald; Balakrishnan, Kannan; Ghosh, Payel; Banerjee, Sharmistha

    2014-02-13

    The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.

  1. Common themes in microbial pathogenicity revisited.

    PubMed Central

    Finlay, B B; Falkow, S

    1997-01-01

    Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID:9184008

  2. Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors

    PubMed Central

    Wang, Zhishi; Craven, Mark; Newton, Michael A.; Ahlquist, Paul

    2013-01-01

    Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3% to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise overlap of these enriched-category lists was high, ∼19%, implying more agreement among studies than apparent at the gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process. For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be ∼2,800. This and multiple other aspects of our experimental and computational results imply that, when following good quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene identifications. These results and methods have implications for and applications to multiple forms of genome-wide analysis. PMID:24068911

  3. West Nile virus: Uganda, 1937, to New York City, 1999.

    PubMed

    Hayes, C G

    2001-12-01

    West Nile virus, first isolated in 1937, is among the earliest arthropod-borne viruses discovered by humans. Its broad geographical distribution, not uncommon infection of humans, transmission by mosquitoes, and association with wild birds as enzootic hosts were well documented by the mid-1960s. However, West Nile virus was not considered to be a significant human pathogen because most infections appeared to result in asymptomatic or only mild febrile disease. Several epidemics had been documented prior to 1996, some involving hundreds to thousands of cases in mostly rural populations, but only a few cases of severe neurological disease had been reported. The occurrence between 1996 and 1999 of three major epidemics, in southern Romania, the Volga delta in southern Russia, and the northeastern United States, involving hundreds of cases of severe neurological disease and fatal infections was totally unexpected. These were the first epidemics reported in large urban populations. A significant factor that appeared in common to all three outbreaks was the apparent involvement of the common house mosquito, Culex pipiens, as a vector. This species had not previously been implicated as important in the transmission of West Nile virus. In addition the epidemic in the northeastern United States was unusual in the association of West Nile virus infection with fatal disease of birds, suggesting a change in the virulence of the virus toward this host. Understanding the risk factors that contributed to these three urban epidemics is important for minimizing the potential for future occurrences. This review will attempt to compare observations on the biology of West Nile virus made over about 60 years prior to the recent epidemics to observations made in association with these urban epidemics.

  4. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza1

    PubMed Central

    Rich, Mélanie K.

    2015-01-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  5. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza.

    PubMed

    Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier

    2015-07-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Influence of temperature and substrate on infection rate, triactinomyxon production, and release duration from eastern tubifex worms infected with Myxobolus cerebralis

    USGS Publications Warehouse

    Waldrop, Thomas; Blazer, Vicki; Smith, David; Schill, Bane; Densmore, Christine; Schill, B.; Waldrop, T.; Blazer, V.

    1999-01-01

    Salmonid whirling disease is caused by Myxobolus cerebralis, a metazoan parasite with a two host life cycle involving salmonid fish a an aquatic oligochaete, Tubifex tubifex (Wolf, Markiw and Hiltunen, 1986). Whirling disease has been reported in 22 U.S. states with the greatest losses occurring in the salmonid fisheries of western and Midwestern states. Although whirling disease is endemic in the eastern United States, serious documented losses to wild populations have not been reported. Two high priority research needs identified in 1996 were a better understanding of how worm and parasite populations might differ from different geographic areas and how environmental factors affect the various stages of whirling disease. To begin to address these research needs we established "eastern" populations of worms, parasite and fish hosts. This abstract will present data on the effects of temperature and substrate upon eastern T. tubifex worms infected with an eastern isolate of M. cerebralis. The influences of these abiotic factors upon the ability to infect the worms and subsequently their ability to produce waterborne triactinomyxons.

  7. The "parallel pathway": a novel nutritional and metabolic approach to cancer patients.

    PubMed

    Muscaritoli, Maurizio; Molfino, Alessio; Gioia, Gianfranco; Laviano, Alessandro; Rossi Fanelli, Filippo

    2011-04-01

    Cancer-associated malnutrition results from a deadly combination of anorexia, which leads to reduced food intake, and derangements of host metabolism inducing body weight loss, and hindering its reversal with nutrient supplementation. Cancer patients often experience both anorexia and weight loss, contributing to the onset of the clinical feature named as anorexia-cachexia syndrome. This condition has a negative impact upon patients' nutritional status. The pathogenesis of the anorexia-cachexia syndrome is multifactorial, and is related to: tumour-derived factors, host-derived factors inducing metabolic derangements, and side effects of anticancer therapies. In addition, the lack of awareness of cancer patients' nutritional issues and status by many oncologists, frequently results in progressive weight loss going undiagnosed until it becomes severe. The critical involvement of host inflammatory response in the development of weight loss, and, in particular, lean body mass depletion, limits the response to the provision of standard nutrition support. A novel nutritional and metabolic approach, named "parallel pathway", has been devised that may help maintain or improve nutritional status, and prevent or delay the onset of cancer cachexia. Such an approach may improve tolerance to aggressive anticancer therapies, and ameliorate the functional capacity and quality of life even in advanced disease stages. The "parallel pathway" implies a multiprofessional and multimodal approach aimed at ensuring early, appropriate and continuous nutritional and metabolic support to cancer patients in any phase of their cancer journey.

  8. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT.

    PubMed

    Nissan, Gal; Manulis-Sasson, Shulamit; Chalupowicz, Laura; Teper, Doron; Yeheskel, Adva; Pasmanik-Chor, Metsada; Sessa, Guido; Barash, Isaac

    2012-02-01

    The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.

  9. Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis

    PubMed Central

    Too, Issac Horng Khit; Bonne, Isabelle; Tan, Eng Lee; Chu, Justin Jang Hann; Alonso, Sylvie

    2018-01-01

    A close relative of poliovirus, enterovirus 71 (EV71) is regarded as an important neurotropic virus of serious public health concern. EV71 causes Hand, Foot and Mouth Disease and has been associated with neurological complications in young children. Our limited understanding of the mechanisms involved in its neuropathogenesis has hampered the development of effective therapeutic options. Here, using a two-dimensional proteomics approach combined with mass spectrometry, we have identified a unique panel of host proteins that were differentially and dynamically modulated during EV71 infection of motor-neuron NSC-34 cells, which are found at the neuromuscular junctions where EV71 is believed to enter the central nervous system. Meta-analysis with previously published proteomics studies in neuroblastoma or muscle cell lines revealed minimal overlapping which suggests unique host-pathogen interactions in NSC-34 cells. Among the candidate proteins, we focused our attention on prohibitin (PHB), a protein that is involved in multiple cellular functions and the target of anti-cancer drug Rocaglamide (Roc-A). We demonstrated that cell surface-expressed PHB is involved in EV71 entry into neuronal cells specifically, while membrane-bound mitochondrial PHB associates with the virus replication complex and facilitates viral replication. Furthermore, Roc-A treatment of EV71-infected neuronal cells reduced significantly virus yields. However, the inhibitory effect of Roc-A on PHB in NSC-34 cells was not through blocking the CRAF/MEK/ERK pathway as previously reported. Instead, Roc-A treated NSC-34 cells had lower mitochondria-associated PHB and lower ATP levels that correlated with impaired mitochondria integrity. In vivo, EV71-infected mice treated with Roc-A survived longer than the vehicle-treated animals and had significantly lower virus loads in their spinal cord and brain, whereas virus titers in their limb muscles were comparable to controls. Together, this study uncovers PHB as the first host factor that is specifically involved in EV71 neuropathogenesis and a potential drug target to limit neurological complications. PMID:29324904

  10. Integrity of the actin cytoskeleton of host macrophages is essential for Leishmania donovani infection.

    PubMed

    Roy, Saptarshi; Kumar, G Aditya; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2014-08-01

    Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Proteomics – The research frontier in periodontics

    PubMed Central

    Gupta, Abhaya; Govila, Vivek; Saini, Ashish

    2015-01-01

    Periodontitis is an inflammatory condition resulting from the interplay between the infectious agents and host factors. Various protein molecules play a vital role in the initiation, progression and severity of periodontal diseases. The study of proteins as biomarkers in periodontal diseases has been highlighted during the last few years. In periodontitis multiple bacteria derived (e.g. collagen degrading enzymes, elastase like enzymes etc) and host derived mediators (eg. PGE2, TNF, IL1, IL6, MMP's etc) expressed in the saliva and gingival crevicular fluid, can be utilized as diagnostic markers for the disease. Another significant development regarding human genes and proteins has been the discovery of potential new drugs for the treatment of periodontal diseases. Therefore the information of the proteins involved in the pathogenesis of periodontal diseases can be utilized for its diagnosis, prevention and treatment. PMID:25853048

  12. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases.

    PubMed

    Ren, Ji-Hua; Hu, Jie-Li; Cheng, Sheng-Tao; Yu, Hai-Bo; Wong, Vincent Kam Wai; Law, Betty Yuen Kwan; Yang, Yong-Feng; Huang, Ying; Liu, Yi; Chen, Wei-Xian; Cai, Xue-Fei; Tang, Hua; Hu, Yuan; Zhang, Wen-Lu; Liu, Xiang; Long, Quan-Xin; Zhou, Li; Tao, Na-Na; Zhou, Hong-Zhong; Yang, Qiu-Xia; Ren, Fang; He, Lin; Gong, Rui; Huang, Ai-Long; Chen, Juan

    2018-04-06

    Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA) which serves as a template for HBV RNA transcription is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified SIRT3 as a host factor restricting HBV transcription and replication by screening seven members of Sirtuin family which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA as well as replicative intermediate DNA in HBV-infected HepG2-NTCP cells and PHH. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. Mechanistic study found nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9 (H3K9). Importantly, occupancy of SIRT3 onto cccDNA could increase the recruitment of histone methyltransferase SUV39H1 to cccDNA and decrease recruitment of SETD1A, leading to a marked increase of H3K9me3 and a decrease of H3K4me3 on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor YY1 to cccDNA. Finally, viral protein HBx could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. SIRT3 is a novel host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase. These data provided a rational for the use of SIRT3 activators in the prevention or treatment of HBV infection. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  13. A Novel Mechanism for Protein Delivery by the Type 3 Secretion System for Extracellularly Secreted Proteins.

    PubMed

    Tejeda-Dominguez, Farid; Huerta-Cantillo, Jazmin; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando

    2017-03-28

    The type 3 secretion system (T3SS) is essential for bacterial virulence through delivering effector proteins directly into the host cytosol. Here, we identified an alternative delivery mechanism of virulence factors mediated by the T3SS, which consists of the association of extracellularly secreted proteins from bacteria with the T3SS to gain access to the host cytosol. Both EspC, a protein secreted as an enteropathogenic Escherichia coli (EPEC) autotransporter, and YopH, a protein detected on the surface of Yersinia , require a functional T3SS for host cell internalization; here we provide biophysical and molecular evidence to support the concept of the EspC translocation mechanism, which requires (i) an interaction between EspA and an EspC middle segment, (ii) an EspC translocation motif (21 residues that are shared with the YopH translocation motif), (iii) increases in the association and dissociation rates of EspC mediated by EspA interacting with EspD, and (iv) an interaction of EspC with the EspD/EspB translocon pore. Interestingly, this novel mechanism does not exclude the injection model (i.e., EspF) operating through the T3SS conduit; therefore, T3SS can be functioning as an internal conduit or as an external railway, which can be used to reach the translocator pore, and this mechanism appears to be conserved among different T3SS-dependent pathogens. IMPORTANCE The type 3 secretion system is essential for injection of virulence factors, which are delivered directly into the cytosol of the host cells for usurping and subverting host processes. Recent studies have shown that these effectors proteins indeed travel inside an "injectisome" conduit through a single step of translocation by connecting the bacterium and host cell cytoplasms. However, all findings are not compatible with this model. For example, both YopH, a protein detected on the surface of Yersinia , and EspC, an autotransporter protein secreted by enteropathogenic E. coli , require a functional T3SS for host cell translocation. Both proteins have an intermediate extracellular step before their T3SS-dependent translocation. Here, we show an alternative delivery mechanism for these extracellularly secreted virulence factors that are then incorporated into the T3SS to enter the cells; this novel mechanism coexists with but diverges from the canonical injection model that involves the passage of the protein inside the injectisome. Copyright © 2017 Tejeda-Dominguez et al.

  14. Hepatitis C virus utilizes VLDLR as a novel entry pathway.

    PubMed

    Ujino, Saneyuki; Nishitsuji, Hironori; Hishiki, Takayuki; Sugiyama, Kazuo; Takaku, Hiroshi; Shimotohno, Kunitada

    2016-01-05

    Various host factors are involved in the cellular entry of hepatitis C virus (HCV). In addition to the factors previously reported, we discovered that the very-low-density lipoprotein receptor (VLDLR) mediates HCV entry independent of CD81. Culturing Huh7.5 cells under hypoxic conditions significantly increased HCV entry as a result of the expression of VLDLR, which was not expressed under normoxic conditions in this cell line. Ectopic VLDLR expression conferred susceptibility to HCV entry of CD81-deficient Huh7.5 cells. Additionally, VLDLR-mediated HCV entry was not affected by the knockdown of cellular factors known to act as HCV receptors or HCV entry factors. Because VLDLR is expressed in primary human hepatocytes, our results suggest that VLDLR functions in vivo as an HCV receptor independent of canonical CD81-mediated HCV entry.

  15. Variation in a Host-Parasitoid Interaction across Independent Populations.

    PubMed

    van Nouhuys, Saskya; Niemikapee, Suvi; Hanski, Ilkka

    2012-12-05

    Antagonistic relationships between parasitoids and their insect hosts involve multiple traits and are shaped by their ecological and evolutionary context. The parasitoid wasp Cotesia melitaearum and its host butterfly Melitaea cinxia occur in several locations around the Baltic sea, with differences in landscape structure, population sizes and the histories of the populations. We compared the virulence of the parasitoid and the susceptibility of the host from five populations in a reciprocal transplant-style experiment using the progeny of five independent host and parasitoid individuals from each population. The host populations showed significant differences in the rate of encapsulation and parasitoid development rate. The parasitoid populations differed in brood size, development rate, pupal size and adult longevity. Some trait differences depended on specific host-parasitoid combinations, but neither species performed systematically better or worse in experiments involving local versus non-local populations of the other species. Furthermore, individuals from host populations with the most recent common ancestry did not perform alike, and there was no negative effect due to a history of inbreeding in the parasitoid. The complex pattern of variation in the traits related to the vulnerability of the host and the ability of the parasitoid to exploit the host may reflect multiple functions of the traits that would hinder simple local adaptation.

  16. Microbial interactions: ecology in a molecular perspective.

    PubMed

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  18. On-Bark Behavior of Dendroctonus frontalis: A Markov Chain Analysis

    Treesearch

    J. Bishir; James H. Roberds; Brian L. Strom

    2004-01-01

    Tree-killing species of the Scolytidae (Coleoptera) must locate suitable hosts at least once per generation for successful reproduction. The process used to select hosts is complex, involving a sequence of steps and many possible outcomes. Because more beetles land on bark (host-find) than bore galleries (host-recognize), postlanding behaviors appear to be important in...

  19. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions.

    PubMed

    Ricci, Vittorio

    2016-07-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about half the global population and represents the greatest risk factor for gastric malignancy. The relevance of H. pylori for gastric cancer development is equivalent to that of tobacco smoking for lung cancer. VacA toxin seems to play a pivotal role in the overall strategy of H. pylori towards achieving persistent gastric colonization. This strategy appears to involve the modulation of host cell autophagy. After an overview of autophagy and its role in infection and carcinogenesis, I critically review current knowledge about the action of VacA on host cell autophagy during H. pylori infection of the human stomach. Although VacA is a key player in modulation of H. pylori-induced autophagy, a few discrepancies in the data are also evident and many questions remain to be answered. We are thus still far from a definitive understanding of the molecular mechanisms through which VacA affects autophagy and the consequences of this toxin action on the overall pathogenic activity of H. pylori.

  20. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  1. Pathogenesis of varicelloviruses in primates.

    PubMed

    Ouwendijk, Werner J D; Verjans, Georges M G M

    2015-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice.

    PubMed

    Stilling, Roman M; Moloney, Gerard M; Ryan, Feargal J; Hoban, Alan E; Bastiaanssen, Thomaz Fs; Shanahan, Fergus; Clarke, Gerard; Claesson, Marcus J; Dinan, Timothy G; Cryan, John F

    2018-05-29

    Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). © 2018, Stilling et al.

  3. gga-miR-155 Enhances Type I Interferon Expression and Suppresses Infectious Burse Disease Virus Replication via Targeting SOCS1 and TANK

    PubMed Central

    Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.

    2018-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226

  4. Staphylococcus lugdunensis IsdG Liberates Iron from Host Heme▿

    PubMed Central

    Haley, Kathryn P.; Janson, Eric M.; Heilbronner, Simon; Foster, Timothy J.; Skaar, Eric P.

    2011-01-01

    Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization. PMID:21764939

  5. Neutrophil extracellular trap formation in supragingival biofilms.

    PubMed

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter-patient variability suggests NET formation as a potential factor influencing the individual course of disease. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae

    PubMed Central

    Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370

  7. CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions

    PubMed Central

    Gebre, Makda; Nomburg, Jason L.; Gewurz, Benjamin E.

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens. PMID:29385696

  8. CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions.

    PubMed

    Gebre, Makda; Nomburg, Jason L; Gewurz, Benjamin E

    2018-01-30

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus-host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR-Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein-Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus-host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.

  9. Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto

    DOEpatents

    Craft, David L.; Madduri, Krishna M.; Loper, John C.

    2003-01-01

    A novel gene has been isolated which encodes cytochrome b5 (CYTb5) protein of the .omega.-hydroxylase complex of C. tropicalis 20336. Vectors including this gene, and transformed host cells are provided. Methods of increasing the production of a CYTb5 protein are also provided which involve transforming a host cell with a gene encoding this protein and culturing the cells. Methods of increasing the production of a dicarboxylic acid are also provided which involve increasing in the host cell the number of genes encoding this protein.

  10. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense. PMID:24899174

  11. The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex

    PubMed Central

    Prasanth, K. Reddisiva; Barajas, Daniel

    2014-01-01

    ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. PMID:25540361

  12. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.

    PubMed

    Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas

    2016-05-12

    Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer's and other diseases. Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system.

  13. Identification of a Gal/GalNAc Lectin in the Protozoan Hartmannella vermiformis as a Potential Receptor for Attachment and Invasion by the Legionnaires' Disease Bacterium

    PubMed Central

    Venkataraman, Chandrasekar; Haack, Bradley J.; Bondada, Subbarao; Kwaik, Yousef Abu

    1997-01-01

    The Legionnaire's disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen which invades and replicates within two evolutionarily distant hosts, free-living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaire's disease. Although attachment and invasion of human macrophages by L. pneumophila is mediated in part by the complement receptors CR1 and CR3, the protozoan receptor involved in bacterial attachment and invasion has not been identified. To define the molecular events involved in invasion of protozoa by L. pneumophila, we examined the role of protein tyrosine phosphorylation of the protozoan host Hartmannella vermiformis upon attachment and invasion by L. pneumophila. Bacterial attachment and invasion were associated with a time-dependent tyrosine dephosphorylation of multiple host cell proteins. This host cell response was highly specific for live L. pneumophila, required contact with viable bacteria, and was completely reversible following washing off the bacteria from the host cell surface. Tyrosine dephosphorylation of host proteins was blocked by a tyrosine phosphatase inhibitor but not by tyrosine kinase inhibitors. One of the tyrosine dephosphorylated proteins was identified as the 170-kD galactose/N-acetylgalactosamine–inhibitable lectin (Gal/GalNAc) using immunoprecipitation and immunoblotting by antibodies generated against the Gal/GalNAc lectin of the protozoan Entamoeba histolytica. This Gal/GalNAc–inhibitable lectin has been shown previously to mediate adherence of E. histolytica to mammalian epithelial cells. Uptake of L. pneumophila by H. vermiformis was specifically inhibited by two monovalent sugars, Gal and GalNAc, and by mABs generated against the 170-kD lectin of E. histolytica. Interestingly, inhibition of invasion by Gal and GalNAc was associated with inhibition of bacterial-induced tyrosine dephosphorylation of H. vermiformis proteins. High stringency DNA hybridization confirmed the presence of the 170-kD lectin gene in H. vermiformis. We conclude that attachment of L. pneumophila to the H. vermiformis 170-kD lectin is required for invasion and is associated with tyrosine dephosphorylation of the Gal lectin and other host proteins. This is the first demonstration of a potential receptor used by L. pneumophila to invade protozoa. PMID:9254652

  14. Gut Microbiota Dynamics during Dietary Shift in Eastern African Cichlid Fishes

    PubMed Central

    Baldo, Laura; Riera, Joan Lluís; Tooming-Klunderud, Ave; Albà, M. Mar; Salzburger, Walter

    2015-01-01

    The gut microbiota structure reflects both a host phylogenetic history and a signature of adaptation to the host ecological, mainly trophic niches. African cichlid fishes, with their array of closely related species that underwent a rapid dietary niche radiation, offer a particularly interesting system to explore the relative contribution of these two factors in nature. Here we surveyed the host intra- and interspecific natural variation of the gut microbiota of five cichlid species from the monophyletic tribe Perissodini of lake Tanganyika, whose members transitioned from being zooplanktivorous to feeding primarily on fish scales. The outgroup riverine species Astatotilapia burtoni, largely omnivorous, was also included in the study. Fusobacteria, Firmicutes and Proteobacteria represented the dominant components in the gut microbiota of all 30 specimens analysed according to two distinct 16S rRNA markers. All members of the Perissodini tribe showed a homogenous pattern of microbial alpha and beta diversities, with no significant qualitative differences, despite changes in diet. The recent diet shift between zooplantkon- and scale-eaters simply reflects on a significant enrichment of Clostridium taxa in scale-eaters where they might be involved in the scale metabolism. Comparison with the omnivorous species A. burtoni suggests that, with increased host phylogenetic distance and/or increasing herbivory, the gut microbiota begins differentiating also at qualitative level. The cichlids show presence of a large conserved core of taxa and a small set of core OTUs (average 13–15%), remarkably stable also in captivity, and putatively favoured by both restricted microbial transmission among related hosts (putatively enhanced by mouthbrooding behavior) and common host constraints. This study sets the basis for a future large-scale investigation of the gut microbiota of cichlids and its adaptation in the process of the host adaptive radiation. PMID:25978452

  15. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor

    PubMed Central

    Chakravarti, Ananya; Camp, Kyle; McNabb, David S.

    2017-01-01

    Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation. PMID:28122000

  16. Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium.

    PubMed

    Ferrando, Maria Laura; Willemse, Niels; Zaccaria, Edoardo; Pannekoek, Yvonne; van der Ende, Arie; Schultsz, Constance

    2017-01-01

    Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT) is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP) to host-pathogen interaction at GIT level. SadP expression in presence of Intestinal Epithelial Cells (IEC) was compared with expression of other virulence factors by measuring transcript levels using quantitative Real Time PCR (qRT-PCR). SadP variants were identified by phylogenetic analysis of complete DNA sequences. The interaction of SadP knockout and complementation mutants with IEC was tested in vitro. Expression of sadP was significantly increased in presence of IEC. Sequence analysis of 116 invasive strains revealed five SadP sequence variants, correlating with genotype. SadP1, present in zoonotic isolates of clonal complex 1, contributed to binding to both human and porcine IEC and translocation across human IEC. Antibodies against the globotriaosylceramide Gb3/CD77 receptor significantly inhibited adhesion to human IEC. SadP is involved in the host-pathogen interaction in the GIT. Differences between SadP variants may determine different affinities to the Gb3/CD77 host-receptor, contributing to variation in adhesion capacity to host IEC and thus to S. suis zoonotic potential.

  17. Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae).

    PubMed

    Coquet, Laurent; Kolodziejek, Jolanta; Jouenne, Thierry; Nowotny, Norbert; King, Jay D; Conlon, J Michael

    2016-09-01

    The Uganda clawed frog Xenopus ruwenzoriensis with a karyotype of 2n=108 is one of the very few vertebrates with dodecaploid status. Peptidomic analysis of norepinephrine-stimulated skin secretions from this species led to the isolation and structural characterization of 23 host-defense peptides belonging to the following families: magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 6 peptides), xenopsin precursor fragment (XPF; 3 peptides), caerulein precursor fragment (CPF; 8 peptides), and caerulein precursor fragment-related peptide (CPF-RP; 3 peptides). In addition, the secretions contained caerulein, identical to the peptide from Xenopus laevis, and two peptides that were identified as members of the trefoil factor family (TFF). The data indicate that silencing of the host-defense peptide genes following polyploidization has been appreciable and non-uniform. Consistent with data derived from comparison of nucleotide sequences of mitochrondrial and nuclear genes, cladistic analyses based upon the primary structures of the host-defense peptides provide support for an evolutionary scenario in which X. ruwenzoriensis arose from an allopolyploidization event involving an octoploid ancestor of the present-day frogs belonging to the Xenopus amieti species group and a tetraploid ancestor of Xenopus pygmaeus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori

    PubMed Central

    Devi, Savita; Ansari, Suhail A.; Tenguria, Shivendra; Kumar, Naveen; Ahmed, Niyaz

    2016-01-01

    Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori. Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses. PMID:27550181

  19. A review of the proposed role of neutrophils in rodent amebic liver abscess models

    PubMed Central

    Campos-Rodríguez, Rafael; Gutiérrez-Meza, Manuel; Jarillo-Luna, Rosa Adriana; Drago-Serrano, María Elisa; Abarca-Rojano, Edgar; Ventura-Juárez, Javier; Cárdenas-Jaramillo, Luz María; Pacheco-Yepez, Judith

    2016-01-01

    Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response. PMID:26880421

  20. The microbial-mammalian metabolic axis: a critical symbiotic relationship.

    PubMed

    Chilloux, Julien; Neves, Ana Luisa; Boulangé, Claire L; Dumas, Marc-Emmanuel

    2016-07-01

    The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which in turn are also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host's characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. The microbiome is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases.

  1. Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii

    PubMed Central

    Ogier, Jean-Claude; Pagès, Sylvie; Bisch, Gaëlle; Chiapello, Hélène; Médigue, Claudine; Rouy, Zoé; Teyssier, Corinne; Vincent, Stéphanie; Tailliez, Patrick; Givaudan, Alain; Gaudriault, Sophie

    2014-01-01

    Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host. PMID:24904010

  2. Oral Microbial Ecology and the Role of Salivary Immunoglobulin A

    PubMed Central

    Marcotte, Harold; Lavoie, Marc C.

    1998-01-01

    In the oral cavity, indigenous bacteria are often associated with two major oral diseases, caries and periodontal diseases. These diseases seem to appear following an inbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. To define the process involved in caries and periodontal diseases, it is necessary to understand the ecology of the oral cavity and to identify the factors responsible for the transition of the oral microbiota from a commensal to a pathogenic relationship with the host. The regulatory forces influencing the oral ecosystem can be divided into three major categories: host related, microbe related, and external factors. Among host factors, secretory immunoglobulin A (SIgA) constitutes the main specific immune defense mechanism in saliva and may play an important role in the homeostasis of the oral microbiota. Naturally occurring SIgA antibodies that are reactive against a variety of indigenous bacteria are detectable in saliva. These antibodies may control the oral microbiota by reducing the adherence of bacteria to the oral mucosa and teeth. It is thought that protection against bacterial etiologic agents of caries and periodontal diseases could be conferred by the induction of SIgA antibodies via the stimulation of the mucosal immune system. However, elucidation of the role of the SIgA immune system in controlling the oral indigenous microbiota is a prerequisite for the development of effective vaccines against these diseases. The role of SIgA antibodies in the acquisition and the regulation of the indigenous microbiota is still controversial. Our review discusses the importance of SIgA among the multiple factors that control the oral microbiota. It describes the oral ecosystems, the principal factors that may control the oral microbiota, a basic knowledge of the secretory immune system, the biological functions of SIgA, and, finally, experiments related to the role of SIgA in oral microbial ecology. PMID:9529888

  3. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  4. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    PubMed

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Effect of major abdominal surgery on the host immune response to infection.

    PubMed

    Buttenschoen, Klaus; Fathimani, Kamran; Buttenschoen, Daniela Carli

    2010-06-01

    The present review summarizes key studies on the effects of major abdominal surgery on the host response to infection published during the last 18 months. Surgical trauma causes stereotyped systemic proinflammatory and compensatory anti-inflammatory reactions. It is leukocyte reprogramming rather than general immune suppression. The list of recent findings is long. Preoperative infectious challenge was found to increase survival. Obesity is associated with increased production of interleukin-17A in peritonitis. Abdominal surgery alters expression of toll-like receptors (TLRs). The acute phase reaction down-regulates the transcription factor carbohydrate response element binding protein. Myosin light chain kinase activation is a final pathway of acute tight junction regulation of gut barrier and zonula occludens 1 protein is an essential effector. The brain is involved in regulating the immune and gut system. Elimination of lipopolysaccharide is challenging. Th1/Th2 ratio is lowered in patients with postoperative complications. Cholinergic anti-inflammatory pathways can inhibit tissue damage. The new substance PXL01 prevents adhesions. Postoperative infection causes incisional hernias. Hypothermia reduced human leukocyte antigen DR surface expression and delayed tumor necrosis factor clearance. Systems biology identified interferon regulatory factor 3 as the negative regulator of TLR signaling. Protective immunity could contribute defeating surgical infections. Systemic inflammation is the usual response to trauma. All organs seem to be involved and linked up in cybernetic systems aiming at reconstitution of homeostasis. Although knowledge is still fragmentary, it is already difficult to integrate known facts and new technologies are required for information processing. Defining criteria to develop therapeutic strategies requires much more insight into molecular mechanisms and cybernetics of organ systems.

  6. Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses.

    PubMed

    Ferlin, Juliette; Farhat, Rayan; Belouzard, Sandrine; Cocquerel, Laurence; Bertin, Antoine; Hober, Didier; Dubuisson, Jean; Rouillé, Yves

    2018-06-20

    GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense single-stranded RNA viruses from different families might require class II Arfs for their replication.

  7. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread

    PubMed Central

    McCarty, Thomas; Martin, Scott E.; Le Nouën, Cyril; Buehler, Eugen; Chen, Yu-Chi; Smelkinson, Margery; Ganesan, Sundar; Fischer, Elizabeth R.; Brock, Linda G.; Liang, Bo; Munir, Shirin; Collins, Peter L.; Buchholz, Ursula J.

    2016-01-01

    Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most important viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vaccine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549 cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection. ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced filopodia formation and increased cell motility in A549 cells and that this phenotype was ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread. PMID:27926942

  8. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity.

    PubMed

    Fujisaki, Koki; Abe, Yoshiko; Ito, Akiko; Saitoh, Hiromasa; Yoshida, Kentaro; Kanzaki, Hiroyuki; Kanzaki, Eiko; Utsushi, Hiroe; Yamashita, Tetsuro; Kamoun, Sophien; Terauchi, Ryohei

    2015-09-01

    Vesicle trafficking including the exocytosis pathway is intimately associated with host immunity against pathogens. However, we still have insufficient knowledge about how it contributes to immunity, and how pathogen factors affect it. In this study, we explore host factors that interact with the Magnaporthe oryzae effector AVR-Pii. Gel filtration chromatography and co-immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR-Pii and OsExo70-F2 and OsExo70-F3, two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70-F2 and F3 totally abrogated Pii immune receptor-dependent resistance, but had no effect on Pia- and Pik-dependent resistance. Knockdown levels of OsExo70-F3 but not OsExo70-F2 correlated with reduction of Pii function, suggesting that OsExo70-F3 is specifically involved in Pii-dependent resistance. Under our current experimental conditions, over-expression of AVR-Pii or knockdown of OsExo70-F2 and -F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR-Pii interaction with OsExo70-F3 appears to play a crucial role in immunity triggered by Pii, suggesting a role for OsExo70 as a decoy or helper in Pii/AVR-Pii interactions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Impact of myxomatosis in relation to local persistence in wild rabbit populations: the role of waning immunity and the reproductive period.

    PubMed

    Fouchet, David; Guitton, Jean-Sébastien; Marchandeau, Stéphane; Pontier, Dominique

    2008-02-21

    Many diseases are less severe when they are contracted in early life. For highly lethal diseases, such as myxomatosis in rabbits, getting infected early in life can represent the best chance for an individual to survive the disease. For myxomatosis, early infections are attenuated by maternal antibodies. This may lead to the immunisation of the host, preventing the subsequent development of the lethal form of the disease. But early infection of young individuals requires specific demographic and epidemiological contexts, such as a high transmission rate of the pathogen agent. To investigate other factors involved in the impact of such diseases, we have built a stochastic model of a rabbit metapopulation infected by myxomatosis. We show that the impact of the pathogen agent can be reduced by early infections only when the agent has a long local persistence time and/or when the host subpopulations are highly connected. The length of the reproductive period and the duration of acquired immunity are also important factors influencing the persistence of the pathogen and thus, the impact of the disease. Besides confirming the role of classical factors in the persistence of a pathogen agent, such as the size of the subpopulation or the degree of connectivity, our results highlight novel factors that can modulate the impact of diseases whose severity increase with age.

  10. Three-way interaction among plants, bacteria, and coleopteran insects.

    PubMed

    Wielkopolan, Beata; Obrępalska-Stęplowska, Aleksandra

    2016-08-01

    Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

  11. Involving Communities in Deciding What Benefits They Receive in Multinational Research

    PubMed Central

    Wendler, David; Shah, Seema

    2015-01-01

    There is wide agreement that communities in lower-income countries should benefit when they participate in multinational research. Debate now focuses on how and to what extent these communities should benefit. This debate has identified compelling reasons to reject the claim that whatever benefits a community agrees to accept are necessarily fair. Yet, those who conduct clinical research may conclude from this rejection that there is no reason to involve communities in the process of deciding how they benefit. Against this possibility, the present manuscript argues that involving host communities in this process helps to promote four important goals: (1) protecting host communities, (2) respecting host communities, (3) promoting transparency, and (4) enhancing social value. PMID:26224724

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main generalmore » mechanism for coronaviruses to prevent IFN induction.« less

  13. Pas de deux: An Intricate Dance of Anther Smut and Its Host.

    PubMed

    San Toh, Su; Chen, Zehua; Rouchka, Eric C; Schultz, David J; Cuomo, Christina A; Perlin, Michael H

    2018-02-02

    The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80), predicted to interact and be involved in male gametophyte development. Copyright © 2018 Toh et al.

  14. Ebola virus host cell entry.

    PubMed

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  15. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    PubMed Central

    Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. PMID:22216205

  16. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle.

    PubMed

    Cohen, Sarah; Marr, Alexandra K; Garcin, Pierre; Panté, Nelly

    2011-05-01

    Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.

  17. Viruses and miRNAs: More Friends than Foes.

    PubMed

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  18. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  19. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    PubMed Central

    2011-01-01

    Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions. PMID:21342515

  20. Odontogenic infections. Complications. Systemic manifestations.

    PubMed

    Jiménez, Yolanda; Bagán, José Vicente; Murillo, Judith; Poveda, Rafael

    2004-01-01

    The term, odontogenic infection refers to an infection that originates in the tooth proper or in the tissues that closely surround it; said infection then progresses along the periodontia down to the apex, involving periapical bone and from this area, it then spreads through the bone and periosteum towards near-by or more distant structures. The relevance of this type of infection lies in that it can cause infections that compromise more distant structures (via direct spread and distant spread), for example, intracraneal, retropharyngeal and pulmonary pleural infections. Dissemination by means of the bloodstream can lead to rheumatic problems and deposits on the valves of the heart (endocarditis), etc. The conditions or factors that influence the spread of infection are dependent on the balance between patient-related conditions and microorganism-related conditions. The virulence of the affecting germs is dependent upon their quality and quantity and is one of the microbiological conditions that influences the infection. It is this virulence that promotes infectious invasion and the deleterious effects the microbe will have on the host. Patient-related conditions include certain systemic factors that determine host resistance, which may be impaired in situations such as immunodeficiency syndrome or in brittle diabetes, as well as local factors that will also exert their impact on the spread of the infection.

  1. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  2. G protein signaling in the parasite Entamoeba histolytica

    PubMed Central

    Bosch, Dustin E; Siderovski, David P

    2013-01-01

    The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling–Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation. PMID:23519208

  3. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    PubMed Central

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  4. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution. Copyright © 2016 The Author. Published by Elsevier GmbH.. All rights reserved.

  5. Kaposi’s Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration

    PubMed Central

    Giffin, Louise; West, John A.

    2015-01-01

    ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010

  6. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    PubMed

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  7. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  8. The Evolutionary Ecology of Biotic Association in a Megadiverse Bivalve Superfamily: Sponsorship Required for Permanent Residency in Sediment

    PubMed Central

    Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter

    2012-01-01

    Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID:22905116

  9. Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffieres in Australia.

    PubMed

    Linde, C C; Selmes, H

    2012-09-01

    Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees.

  10. Genetic Diversity and Mating Type Distribution of Tuber melanosporum and Their Significance to Truffle Cultivation in Artificially Planted Truffiéres in Australia

    PubMed Central

    Selmes, H.

    2012-01-01

    Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees. PMID:22773652

  11. Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei

    PubMed Central

    Dejung, Mario; Subota, Ines; Bucerius, Ferdinand; Dindar, Gülcin; Freiwald, Anja; Engstler, Markus; Boshart, Michael; Butter, Falk; Janzen, Christian J.

    2016-01-01

    Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes. PMID:26910529

  12. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  13. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages.

    PubMed

    Portier, Emilie; Zheng, Huaixin; Sahr, Tobias; Burnside, Denise M; Mallama, Celeste; Buchrieser, Carmen; Cianciotto, Nicholas P; Héchard, Yann

    2015-04-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Identification of candidate mimicry proteins involved in parasite-driven phenotypic changes.

    PubMed

    Hebert, Francois Olivier; Phelps, Luke; Samonte, Irene; Panchal, Mahesh; Grambauer, Stephan; Barber, Iain; Kalbe, Martin; Landry, Christian R; Aubin-Horth, Nadia

    2015-04-15

    Endoparasites with complex life cycles are faced with several biological challenges, as they need to occupy various ecological niches throughout their development. Host phenotypes that increase the parasite's transmission rate to the next host have been extensively described, but few mechanistic explanations have been proposed to describe their proximate causes. In this study we explore the possibility that host phenotypic changes are triggered by the production of mimicry proteins from the parasite by using an ecological model system consisting of the infection of the threespine stickleback (Gasterosteus aculeatus) by the cestode Schistocephalus solidus. Using RNA-seq data, we assembled 9,093 protein-coding genes from which ORFs were predicted to generate a reference proteome. Based on a previously published method, we built two complementary analysis pipelines to i) establish a general classification of protein similarity among various species (pipeline A) and ii) identify candidate mimicry proteins showing specific host-parasite similarities (pipeline B), a key feature underlying the possibility of molecular mimicry. Ninety-four tapeworm proteins showed high local sequence homology with stickleback proteins. Four of these candidates correspond to secreted or membrane proteins that could be produced by the parasite and eventually be released in or be in contact with the host to modulate physiological pathways involved in various phenotypes (e.g. behaviors). One of these candidates belongs to the Wnt family, a large group of signaling molecules involved in cell-to-cell interactions and various developmental pathways. The three other candidates are involved in ion transport and post-translational protein modifications. We further confirmed that these four candidates are expressed in three different developmental stages of the cestode by RT-PCR, including the stages found in the host. In this study, we identified mimicry candidate peptides from a behavior-altering cestode showing specific sequence similarity with host proteins. Despite their potential role in modulating host pathways that could lead to parasite-induced phenotypic changes and despite our confirmation that they are expressed in the developmental stage corresponding to the altered host behavior, further investigations will be needed to confirm their mechanistic role in the molecular cross-talk taking place between S. solidus and the threespine stickleback.

  15. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    PubMed

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  16. Histophilus somni host-parasite relationships.

    PubMed

    Corbeil, Lynette B

    2007-12-01

    Histophilus somni (Haemophilus somnus) is one of the key bacterial pathogens involved in the multifactorial etiology of the Bovine Respiratory Disease Complex. This Gram negative pleomorphic rod also causes bovine septicemia, thrombotic meningencephalitis, myocarditis, arthritis, abortion and infertility, as well as disease in sheep, bison and bighorn sheep. Virulence factors include lipooligosaccharide, immunoglobulin binding proteins (as a surface fibrillar network), a major outer membrane protein (MOMP), other outer membrane proteins (OMPs) and exopolysaccharide. Histamine production, biofilm formation and quorum sensing may also contribute to pathogenesis. Antibodies are very important in protection as shown in passive protection studies. The lack of long-term survival of the organism in macrophages, unlike facultative intracellular bacteria, also suggests that antibodies should be critical in protection. Of the immunoglobulin classes, IgG2 antibodies are most implicated in protection and IgE antibodies in immunopathogenesis. The immunodominant antigen recognized by IgE is the MOMP and by IgG2 is a 40 kDa OMP. Pathogenetic synergy of bovine respiratory syncytial virus (BRSV) and H. somni in calves can be attributed, in part at least, to the higher IgE anti-MOMP antibody responses in dually infected calves. Other antigens are probably involved in stimulating host defense or immunopathology as well.

  17. Donor cornea preparation in partial big bubble deep anterior lamellar keratoplasty.

    PubMed

    Lim, Li; Lim, Samuel Wen Yan

    2014-01-01

    The purpose of this paper is to describe a technique of donor cornea preparation to ensure good graft-host apposition in incomplete big bubble deep anterior lamellar keratoplasty. Following a partial-thickness trephination, manual dissection and excision of corneal stroma was performed. Anwar's big-bubble technique involving a deep stromal air injection was then initiated. However, the big bubble could not extend to the trephination edge and the peripheral residual corneal stroma could not be removed. Donor cornea preparation involving trimming of the posterior lip of the corneal button was then performed and good graft-host apposition was obtained without graft over-ride. We performed peripheral donor cornea trimming prior to allograft placement in order to ensure good graft-host apposition. Postoperatively, best-corrected visual acuity in both eyes was 6/7.5. Donor cornea preparation involving trimming of the posterior lip of the corneal button is a useful technique in instances where the big bubble does not extend to the trephination edge and ensures good graft-host apposition.

  18. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    PubMed

    Piñero, Jaime C; Souder, Steven K; Vargas, Roger I

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  19. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly

    PubMed Central

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069

  20. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria.

    PubMed

    Adukpo, Selorme; Kusi, Kwadwo A; Ofori, Michael F; Tetteh, John K A; Amoako-Sakyi, Daniel; Goka, Bamenla Q; Adjei, George O; Edoh, Dominic A; Akanmori, Bartholomew D; Gyan, Ben A; Dodoo, Daniel

    2013-01-01

    Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.

  1. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  2. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

    PubMed Central

    Verbruggen, Bas; Bickley, Lisa K.; van Aerle, Ronny; Bateman, Kelly S.; Stentiford, Grant D.; Santos, Eduarda M.; Tyler, Charles R.

    2016-01-01

    Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment. PMID:26797629

  3. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis

    PubMed Central

    Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric

    2017-01-01

    ABSTRACT   Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472

  4. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts

    PubMed Central

    Wang, Hongju; Liu, Siqing; Zhang, Bo

    2016-01-01

    Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824

  5. Membrane-shed vesicles from the parasite Trichomonas vaginalis: characterization and their association with cell interaction.

    PubMed

    Nievas, Yesica R; Coceres, Veronica M; Midlej, Victor; de Souza, Wanderley; Benchimol, Marlene; Pereira-Neves, Antonio; Vashisht, Ajay A; Wohlschlegel, James A; Johnson, Patricia J; de Miguel, Natalia

    2018-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract, where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Despite the serious consequences associated with trichomoniasis disease, little is known about parasite or host factors involved in attachment of the parasite-to-host epithelial cells. Here, we report the identification of microvesicle-like structures (MVs) released by T. vaginalis. MVs are considered universal transport vehicles for intercellular communication as they can incorporate peptides, proteins, lipids, miRNA, and mRNA, all of which can be transferred to target cells through receptor-ligand interactions, fusion with the cell membrane, and delivery of a functional cargo to the cytoplasm of the target cell. In the present study, we demonstrated that T. vaginalis release MVs from the plasma and the flagellar membranes of the parasite. We performed proteomic profiling of these structures demonstrating that they possess physical characteristics similar to mammalian extracellular vesicles and might be selectively charged with specific protein content. In addition, we demonstrated that viable T. vaginalis parasites release large vesicles (LVs), membrane structures larger than 1 µm that are able to interact with other parasites and with the host cell. Finally, we show that both populations of vesicles present on the surface of T vaginalis are induced in the presence of host cells, consistent with a role in modulating cell interactions.

  6. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  7. [Physico-chemical signals involved in host localization and in the induction of mosquito bites].

    PubMed

    Torres-Estrada, José Luis; Rodríguez, Mario H

    2003-01-01

    Disease vector female mosquitoes respond to physic-chemical signals to localize vertebrate hosts for blood meals. Zoophylic mosquitoes preferentially respond to CO2 and octenol released in the breath and bodily fluids, while anthropophylic mosquitoes respond to lactic acid and a variety of sweat compounds. These compounds are modified by saprophytic microorganisms in the skin sebaceous glands. Other factors present in human dwellings contribute to the integration of microsystems with characteristic odors that have different attraction for mosquitoes, explaining the focalization of malaria transmission in few households in endemic areas. The identification of the chemical attractants and their molecular receptors could be used to complement new methods to attract mosquitoes to traps during epidemiological surveys, to increase their contact with insecticides in control interventions, and for genetic manipulation to divert mosquito bites towards other animal populations. The English version of this paper is available at:http://www.insp.mx/salud/index.html.

  8. Metabolomics reveals metabolic biomarkers of Crohn's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, J.K.; Willing, B.; Lucio, M.

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonicmore » acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.« less

  9. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    PubMed

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  10. Acting on Actin: Rac and Rho Played by Yersinia.

    PubMed

    Aepfelbacher, Martin; Wolters, Manuel

    2017-01-01

    Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.

  11. Polyanion-Induced Self Association of Complement Factor H1

    PubMed Central

    Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.

    2008-01-01

    Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749

  12. Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)

    USDA-ARS?s Scientific Manuscript database

    Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...

  13. Discovery of Host Factors and Pathways Utilized in Hantaviral Infection

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0204 TITLE: Discovery of Host Factors and Pathways Utilized in Hantaviral Infection PRINCIPAL INVESTIGATOR: Paul...Aug 2016 4. TITLE AND SUBTITLE Discovery of Host Factors and Pathways Utilized in Hantaviral Infection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...after significance values were calculated and corrected for false discovery rate. The top hit is ATP6V0A1, a gene encoding a subunit of a vacuolar

  14. Involving Communities in Deciding What Benefits They Receive in Multinational Research.

    PubMed

    Wendler, David; Shah, Seema

    2015-10-01

    There is wide agreement that communities in lower-income countries should benefit when they participate in multinational research. Debate now focuses on how and to what extent these communities should benefit. This debate has identified compelling reasons to reject the claim that whatever benefits a community agrees to accept are necessarily fair. Yet, those who conduct clinical research may conclude from this rejection that there is no reason to involve communities in the process of deciding how they benefit. Against this possibility, the present manuscript argues that involving host communities in this process helps to promote four important goals: (1) protecting host communities, (2) respecting host communities, (3) promoting transparency, and (4) enhancing social value. Published by Oxford University Press on behalf of the Journal of Medicine and Philosophy, Inc. 2015.

  15. Within-Host Evolution of Human Influenza Virus.

    PubMed

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    PubMed

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  17. Cutaneous tuberculosis: diagnosis, histopathology and treatment - part II.

    PubMed

    Santos, Josemir Belo dos; Figueiredo, Ana Roberta; Ferraz, Cláudia Elise; Oliveira, Márcia Helena de; Silva, Perla Gomes da; Medeiros, Vanessa Lucília Sileira de

    2014-01-01

    The evolution in the knowledge of tuberculosis' physiopathology allowed not only a better understanding of the immunological factors involved in the disease process, but also the development of new laboratory tests, as well as the establishment of a histological classification that reflects the host's ability to contain the infectious agent. At the same time, the increasing bacilli resistance led to alterations in the basic tuberculosis treatment scheme in 2009. This article critically examines laboratory and histological investigations, treatment regimens for tuberculosis and possible adverse reactions to the most frequently used drugs.

  18. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.

    PubMed

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David

    2014-12-09

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.

  19. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    PubMed Central

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  20. Environmental and individual determinants of parasite richness across seasons in a free-ranging population of Mandrills (Mandrillus sphinx).

    PubMed

    Poirotte, Clémence; Basset, Didier; Willaume, Eric; Makaba, Fred; Kappeler, Peter M; Charpentier, Marie J E

    2016-03-01

    Parasites are ubiquitous and evolve fast. Therefore, they represent major selective forces acting on their hosts by influencing many aspects of their biology. Humans are no exception, as they share many parasites with animals and some of the most important outbreaks come from primates. While it appears important to understand the factors involved in parasite dynamics, we still lack a clear understanding of the determinants underlying parasitism. In this 2-year study, we identified several factors that influence parasite patterns in a wild population of free-ranging mandrills (Mandrillus sphinx). We explored the potential impact of seasonal factors-rainfall and temperature-and host characteristics, including sex, age, rank, and reproductive status, on parasite richness. We analyzed 12 parasite taxa found in 870 fecal samples collected from 63 individuals. Because nematodes and protozoa have different life-cycles, we analyzed these two types of parasites separately. Contrary to other studies where humid conditions seem favorable to parasite development, we report here that rainfall and high temperatures were associated with lower nematode richness and were not associated with lower protozoa richness. In contrast, female reproductive status seemed to reflect the seasonal patterns found for protozoa richness, as early gestating females harbored more protozoa than other females. Sex and dominance rank had no impact on overall parasite richness. However, age was associated with a specific decrease in nematode richness. Our study emphasizes the need to consider the ecological context, such as climatic conditions and habitat type, as well as the biology of both parasite and host when analyzing determinants of parasite richness. © 2015 Wiley Periodicals, Inc.

Top